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Abstract

Cieliebak & Fukaya & Latschev proposed to twist the canonical IBL-
structure on cyclic cochains of HdR(M) for a closed oriented manifold M

with a Maurer-Cartan element n built up from Chern-Simons like integrals
associated to trivalent ribbon graphs. They conjectured that this construc-
tion gives a chain model for Chas-Sullivan string topology. In this text, we
assume that the integrals converge and explicitly compute the case of Sn,
supporting the conjecture. We generalize this computation and show that
the twist with n is often trivial.
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1 Introduction and summary
An IBL∞-algebra is essentially a collection of multilinear operations qklg with k
inputs, l outputs and “genus” g satisfying certain relations; in particular, q110 is a
boundary operator, and the pair q210, q120 induces the structure of an involutive
Lie bialgebra on the homology of q110. It was introduced in [10] and applications
to string topology, symplectic field theory and higher genus Lagrangian Floer
theory were proposed.

This text is an attempt to understand the application to string topology.
The idea was to carry out some explicit computations according to the plan
sketched in [10, Section 13] and test the string topology conjecture (see below).

The following results from [10, Corollary 11.9] are our starting point (precise
definitions of all the notions will be given in Section 2; our IBL∞-algebras will
be strict and filtered in the terminology of [10]):

(A) For a finite-dimensional cyclic cochain complex (V,P,m1) of degree 2− n,
there is a canonical dIBL-structure p110, p210, p120 of bidegree (n− 3, 2)
on the degree shifted dual cyclic bar complex

C(V ) := B∗cycV [2− n] '
(⊕
k≥1

(
V [1]⊗k/cyc

)′)[2− n],

where cyc stands for cyclic permutations with the Koszul sign, ′ denotes
the graded dual and [·] the degree shift. This structure is denoted by
dIBL(C(V )).

(B) Let (H,P,m1) ⊂ (V,P,m1) be a subcomplex such that the restriction
of P to H[1] is non-degenerate. We apply (A) to (H,P,m1) to get the
canonical dIBL-algebra dIBL(C(H)) = (C(H), q110, q210, q120). Suppose
that π : V [1]→ V [1] is a projection to H[1] which satisfies

π ◦m1 = m1 ◦ π and

P(π(v1), v2) = P(v1, π(v2))

for all v1, v2 ∈ V [1], and let ι : H[1]→ V [1] be the inclusion. A linear map
G : V [1]→ V [1] of degree −1 such that

m1 ◦ G+G ◦m1 = ι ◦ π − 1V [1] and

P(G(v1), v2) = (−1)|v1|P(v1,G(v2))
(1)

for all v1, v2 ∈ V [1] induces the IBL∞-homotopy equivalence

f = (fklg) : dIBL(C(V )) −→ dIBL(C(H))

such that f110 : C(V )[1]→ C(H)[1] is the map given by the precomposition
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with ι in every component. We recall from [10] that fklg : EkC(V ) →
ElC(H) is a linear map between exterior powers.

The map fklg is constructed as a sum of contributions coming from iso-
morphism classes of ribbon graphs (=:multigraphs with a cyclic ordering of
half-edges at every internal vertex) with k internal vertices, l boundary compo-
nents and genus g. To compute the contribution of a labeled ribbon graph Γ to
the value

fklg(Ψ1 ⊗ · · · ⊗Ψk)(W1 ⊗ · · · ⊗Wl)

for Ψ1, . . . , Ψk ∈ B∗cycV [3 − n] and W1, . . . , Wl ∈ Bcyc
∗ H[3 − n], we decorate

the i-th internal vertex of Γ with Ψi, external vertices lying on the i-th boundary
component with components vi1, . . . , visi ∈ V [1] of Wi = s(vi1 ⊗ · · · ⊗ visi/cyc),
where s is a formal symbol of degree n− 3, and internal edges with the Schwartz
kernel G of G with respect to P. Decorated ribbon graphs are then evaluated
in a consistent way to obtain real numbers (see Appendix A for an invariant
formalism or [10, Section 10] for a coordinate version of this construction).

We will also use the following results from [10, Proposition 12.5 and Theo-
rem 12.9] about deformations of IBL∞-algebras:

(C) If in addition to (A) there is the product m2 : V [1]⊗ V [1]→ V [1] making
(V,m1,m2) into a cyclic dga, then (−1)n−2m+

2 defines a canonical Maurer-
Cartan element m := (m10) for dIBL(C(V )). The twisted IBL∞-algebra is
again a dIBL-algebra of bidegree (n− 3, 2); it is denoted by dIBLm(C(V ))
and satisfies

dIBLm(C(V ))

= (C(V ), pm110 = p110 + p210 ◦1 m10, p
m
210 = p210, p

m
120 = p120).

(2)

(D) The IBL∞-morphism f from (B) can be used to pushforward m and obtain
the Maurer-Cartan element n = (nlg) for dIBL(C(H)). The twist by n is
an IBL∞-algebra of bidegree (n− 3, 2); it is denoted by dIBLn(C(H)) and
satisfies

dIBLn(C(H))

=
(
C(H), qn110 = q110 + q210 ◦1 n10, q

n
210 = q210, q

n
120 = q120

+ q210 ◦1 n20, plus the higher operations qn1lg = q210 ◦1 nlg
)
.

This IBL∞-algebra is IBL∞-homotopy equivalent to dIBLm(C(V )) via the
twisted IBL∞-morphism

fm = (fmklg) : dIBLm(C(V )) −→ dIBLn(C(H)).

The pushforward Maurer-Cartan element n = f∗m can be expressed as a
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sum of contributions of isomorphism classes of trivalent ribbon graphs (m+
2 has

namely three inputs), where a labeled ribbon graph Γ is decorated with m+
2 at

internal vertices, with the components of the i-th argument of nlg, i.e., elements
of H(V )[1], at the i-th boundary component and with G at internal edges. Note
that whereas (A) – (C) can be formulated without completions, infinite sums
appear in nlg, and hence filtration and completions necessarily come into play.

The application to string topology of an oriented closed manifold M of
dimension n comes from studying generalizations of (A) – (D) to the infinite-
dimensional cyclic dga (Ω∗(M),P,m1,m2). Here Ω∗(M) is the de Rham complex
of M and the maps P : Ω(M)[1]⊗2 → R, m1 : Ω(M)[1] → Ω(M)[1] and
m2 : Ω(M)[1]⊗2 → Ω(M)[1] are defined for all η, η1, η2 ∈ Ω(M) as follows:

de Rham cyc. dga


P(θη1, θη2) := (−1)η1

∫
M

η1 ∧ η2,

m1(θη) := θdη,

m2(θη1, θη2) := (−1)η1θ(η1 ∧ η2),

(3)

where d is the de Rham differential, ∧ the wedge product, θ a formal symbol of
degree −1 and η1 in the exponent denotes the form-degree of η1. By picking a
Riemannian metric on M , we obtain the subcomplex of harmonic forms

(H∗(M),P,m1 ≡ 0)

with the projection πH : Ω(M)→ H(M) coming from the Hodge decomposition.
This cyclic cochain complex shall be taken as the subcomplex in (B).

From technical reasons stemming from the fact that the non-degenerate
pairing P on Ω(M)[1] is not perfect, one has to restrict the construction in
(A) to the subspace B∗cycΩ(M)∞ of elements with a smooth Schwartz kernel.
Then (A) and (B) work in the setting of the so called Fréchet IBL∞-algebras
introduced in [10, Section 13]. However, the element m10 ∈ B∗cycΩ(M)[3 − n],
which translates into the Chern-Simons term

m+
2 (θη1, θη2, θη3) := (−1)η2

∫
M

η1 ∧ η2 ∧ η3 for all η1, η2, η3 ∈ Ω(M),

does not define the canonical Maurer-Cartan element m in (C) directly because
m+

2 6∈ B̂∗cycΩ(M)∞. This also means that one cannot use (D) to conclude the
existence of the pushforward Maurer-Cartan element n.

Nevertheless, it was proposed to define n formally using the summation over
trivalent ribbon graphs as in the finite-dimensional case. We call such n a formal
pushforward Maurer-Cartan element. In order to compute the contribution of a
labeled trivalent ribbon graph Γ with k internal vertices, l boundary components
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and genus g to the value
nlg(Ω1 ⊗ · · · ⊗ Ωl),

where Ωi = sωi for ω1, . . . , ωl ∈ Bcyc
∗ H(M), one starts by decorating internal

vertices with integration variables x1, . . . , xk on the k-fold product M ×· · ·×M ,
external vertices on the i-th boundary component with the components αi1, . . . ,
αisi ∈ H(M)[1] of ωi and internal edges with the Green kernel G. In this
setting, G becomes the Schwartz kernel of G in the sense of pseudo-differential
operators; this G is necessarily singular at the diagonal ∆, so that we have
only G ∈ Ωn−1(M ×M\∆). One then takes the wedge product of all forms in
the decorated graph in the order and with the sign deduced from the labeling
of Γ and computes the integral over x1, . . . , xk. Similar integrals appear in
perturbative Chern-Simons quantum field theory.

Because of the singularity of G at ∆, the integrand described above is smooth
only on the k-th configuration space of M . It is not clear that all the integrals
converge and that the resulting nlg are well-defined and satisfy the Maurer-
Cartan equation. The idea of work in progress [12] of K. Cieliebak and E. Volkov
is to use iterated spherical blow-ups of the diagonals to resolve the singularities
and obtain integrals of smooth forms on compact manifolds with corners; this
guarantees integrability. The Maurer-Cartan equation for n = (nlg) is then
proven with the help of Stokes’ formula and by showing that the contributions
of hidden codimension-1 faces cancel. This method is similar to the method
from [2] and [3], where Feynman integrals of perturbative Chern-Simons theory
were considered.

Having n, the twisted IBL∞-algebra dIBLn(C(H(M))), which can be equiv-
alently written as dIBLn(C(HdR(M))) using the Hodge isomorphism H(M) '
HdR(M), should satisfy the following conjecture:

String topology conjecture (Conjecture 1.12 in [10]). Let M be a closed
oriented manifold of dimension n and HdR(M) its de Rham cohomology. Then
there exists an IBL∞-structure on (a suitable version of) B∗cycHdR[2− n] whose
homology equals the cyclic cohomology of the de Rham complex of M .

The idea is that the S1-equivariant homology of the free loop space HS1

∗ (LM)
is isomorphic to a version of Connes’ cyclic cohomology of the de Rham algebra
H∗λ(Ω∗(M)), at least for simply-connected M . The precise relation will be estab-
lished in yet another work in progress [12] of K. Cieliebak and E. Volkov using
a chain-map coming from a cyclic version of Chen’s iterated integrals. Now, a
suitable degree shift of H∗λ(Ω∗(M)) is isomorphic to the homology of the bound-
ary operator qm110 of the only formally defined dIBL-algebra dIBLm(C(Ω(M))),
which is according to (D) (formally) quasi-isomorphic to dIBLn(C(H(M))) via
the twisted IBL∞-morphism fm.

The space HS1

∗ (LM) is equipped with an IBL-structure coming from the Chas-
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Sullivan string bracket m2 and string cobracket c2; these operations were defined
geometrically on suitably transverse smooth chains in [9] and [8], respectively.1

The natural question is: How is the IBL-structure m2, c2 related to the IBL-
structure qn210, qn120 induced on HS1

∗ (LM) via the isomorphism from the string
topology conjecture? The extended string topology conjecture asserts that
these structures agree, and hence the operations qn210, qn120 defined on cyclic
cochains provide a chain model for m2, c2. Based on our observations and
explicit computations, we formulate an up-to-date version of the string topology
conjecture for simply-connected manifolds (see Conjecture 3.33).

A large part of this text consists of setting up the algebraic base for the
work with dIBLn(C(H(M))). In addition to repeating the theory from [10] in a
slightly different formalism, we also include the following topics:

• A formula for the partial composition ◦s in terms of operations of the
canonical associative bialgebra on the symmetric algebra (Definition 2.15);
formulas for qnklg (Proposition 2.45).

• Definition of the cyclic cohomology of A∞-algebras (Definition 2.34) and
its relation to the homology of qn110 (Proposition 2.47); definitions of the
reduced versions (Definitions 2.37, 2.48 and 2.49) and their relation to the
unreduced versions (Propositions 2.51 and 2.38).

• An invariant formulation of the evaluation of labeled ribbon graphs (Defi-
nition A.1 and Proposition A.2); formal analogy of the finite-dimensional
and the de Rham case which we use to obtain signs for the definition of n
(Proposition A.6).

• Definition of the Green kernel (Definition 3.5) and of the formal pushforward
Maurer-Cartan element n (Definition 3.19).

Our first result is an explicit computation of dIBLn(C(HdR(Sn))) by finding
a particular Green kernel and showing that all integrals which contribute to n

vanish for n ≥ 3; for n = 1, there is a non-vanishing integral whose value we
compute (see Section 4.1); for n = 2, the existence of a non-vanishing integral
remains open.

Theorem A (Explicit computation for Sn). Consider the round sphere Sn ⊂
Rn+1. Define 1 := θ1, v := θVol ∈ HdR(Sn)[1], where Vol is the volume form, 1
the constant one and θ a formal symbol of degree −1. The following holds for

1In fact, c2 is geometrically defined only on the homology relative to constant loops and m2
does not always restrict to it.
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the homology of the twisted boundary operator qn110:

Hn(C(HdR(Sn)))[1] := H(B̂∗cycHdR(Sn)[3− n], qn110)

=


〈svi∗, s12j−1∗ | i, j ≥ 1〉 for n ≥ 3 odd,

〈sv2i−1∗, s12j−1∗ | i, j ≥ 1〉 for n even,〈
s
∑∞
k=1 ckvk∗, s12j−1∗ | ck ∈ R, j ≥ 1

〉
for n = 1.

Here 〈·〉 denotes the linear span over R, ∗ the dual and s is a formal symbol of
degree n− 3. The product qn210 vanishes on Hn except for the following relations
for n ≥ 3 odd

qn210(s1∗ ⊗ svk∗) = qn210(svk∗ ⊗ s1∗) = −(k − 1)vk−1∗

and the following relations for n = 1:

qn210

(
s1∗ ⊗ s

∞∑
k=1

ckvk∗
)

= −s
∞∑
k=1

kck+1vk∗.

The coproduct qn120 as well as all higher operations qn1lg vanish on Hn in every
dimension n. For S1, we have qn120 6= q120 on the chain level; i.e., the twisting is
non-trivial. For n 6= 2, all higher operations vanish on the chain level.

If we mod out s12j−1∗, i.e., if we consider the point-reduced version, then,
after dropping s, the results agree with the string topology of M relative to one
constant loop and with Chas-Sullivan operations. The only exception is M = S1.
This supports the string topology conjecture for simply-connected manifolds and
provides a counterexample for non-simply connected manifolds.

Our second result generalizes the previous explicit computation and shows
that in many cases, the twists with n and m coincide. Its proof is a combination
of facts from Section 3.4.

Theorem B (Triviality of the twist with n on the chain level). Let M be a
closed oriented n-manifold. There exists a Green kernel G such that the following
holds for the twisted IBL∞-structure dIBLn(C(HdR(M))):

(1) For the basic operations qn110 = q210 ◦1 n10, qn210 = q210, qn120 = q120 +
q210 ◦1 n20, we have:

(a) If H1
dR(M) = 0, then n20 = 0, and hence qn120 = q120.

(b) If M is geometrically formal, then n10 = m10, and hence qn110 = qm110.
(In fact, if in addition H1

dR(M) = 0, then n = m, at least for n 6= 2.)

(2) For the higher operations qn1lg = q210 ◦1 n20 with (l, g) 6= (1, 0), (2, 0), we
have nlg = 0, and hence qn1lg = 0 with the possible exception of surfaces
and 3-manifolds with H1

dR(M) 6= 0.
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In our future work, we plan to concentrate on the following:

(1) We would like to improve Theorem B by showing that the higher operations
for S2 vanish. If this is the case, then the statement that all higher
operations vanish for every manifold M with H1

dR(M) = 0 is true.

(2) For a formal simply-connected manifold M , we would like to investi-
gate whether dIBLn(C(HdR(M))) and dIBLm(C(HdR(M))) are homotopy
equivalent as IBL∞-algebras. If not, we would like to understand the
obstruction.

(3) We would like to compute dIBLn(C(HdR(M))) for surfaces Σg with g ≥
1 and formulate a string topology conjecture for non-simply connected
manifolds.

(4) We would like to know whether the Schwartz kernel Gstd of Gstd = −d∗∆−1

(the so called standard Green kernel), where d∗ is the codifferential and ∆
the Hodge-de Rham Laplacian, extends smoothly to a blow-up. If yes,
then it is a canonical Green kernel for which the statement of Theorem B
holds.

(5) We would like to define a generalization of an IBL∞-algebra—a weak, non-
reduced IBL∞-algebra with a gauge group—and understand its precise
relation to perturbative Chern-Simons theory within the BV-formalism.

In the end, let us summarize some existing work on IBL∞-algebras which
helped us to understand IBL∞-algebras in broader context: In [30], they find
an IBL∞-structure in open-closed string field theory. In [14], they view IBL∞-
algebras as algebras over a certain Frobenius properad. In [26], they consider
IBL∞-algebras as a particular case of BV∞- or, more generally, MV-algebras.

Acknowledgements: I thank my Ph.D. supervisor Prof. Dr. Kai Cieliebak
for his continuous support, helpful discussions and encouragement during the
research. I thank Dr. Evgeny Volkov for providing me [12] and [13], for ex-
plaining me his work and for helpful discussions. I thank Prof. Robert Bryant
for suggesting a better notation for the Green kernel for spheres in an online
discussion. I thank my colleagues Dr. Alexandru Doicu for checking a tedious
sign computation, Alexei Kudryashov for discussing the introductory paragraphs,
English and notation, and Thorsten Hertl for answering my questions about alge-
braic topology, which he understands astonishingly well. I thank the University
of Augsburg for financial support and for being a nice place to pursue my Ph.D..
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2 Algebraic structures
In Section 2.1, we recall weight-grading (Definition 2.1), Koszul sign (Defini-
tion 2.2), degree shift (Definition 2.3), filtrations (Definition 2.8) and completions
(Definition 2.9). We prove the Künneth formula for completed symmetric coho-
mology (Proposition 2.13).

In Section 2.2, we review basics of IBL∞-algebras from [10]. We define the
exterior algebra EC over a graded vector space C as the symmetric algebra S
over C[1] (Definition 2.14) and use the operations µ and ∆ of the structure
of an associative bialgebra on S(C[1]) to give explicit formulas for the partial
compositions ◦h1,...,hk (Definition 2.15). We use the compositions to define
the notion of an IBL∞-algebra (qklg) on C (Definition 2.17), a Maurer-Cartan
element (nlg) (Definition 2.19) and twisted operations (qnklg) (Definition 2.20). We
mention that an IBL-algebra according to our definition is an odd degree shift of
a classical IBL-algebra (Proposition 2.18). We define the induced IBL-structure
on homology (Definition 2.21), briefly discuss the BV-formalism (Remark 2.22)
and mention weak IBL∞-algebras (Remark 2.23). Finally, we summarize the
situation for twisted dIBL-algebras (Proposition 2.24) and briefly discuss higher
operations (Remark 2.25).

In Section 2.3, we define the (weight-reduced) dual cyclic bar-complex B∗cycV

of a graded vector space V (Definition 2.26) and introduce some notation
(Notation 2.28). We then summarize some facts about the completions B̂∗cycV

and ÊkB∗cycV (Proposition 2.31). We define the notion of a cyclic A∞-structure
on V (Definition 2.32) and its Hochschild and cyclic cohomology (Definition 2.34).
We recall strict units and strict augmentations (Definition 2.35), define the
reduced dual cyclic bar complex B∗cyc,redV (Definition 2.37) and sketch a proof
of the fact that the cyclic cohomology is a direct sum of the reduced cyclic
cohomology and the cyclic cohomology of the ground field (Proposition 2.38).
We relate our version of the cyclic cohomology for dga’s to the classical version
from [24] (Proposition 2.39). We also show that the reduced spaces for a simply
connected and connected V are complete (Proposition 2.40).

In Section 2.4, we review the construction of the canonical dIBL-structure
dIBL(C(V )) (Definition 2.42) and the canonical Maurer-Cartan element m (Def-
inition 2.43) starting from a cyclic dga (V,P,m1,m2). We give formulas for
the operations (qn1lg) of the IBL∞-algebra dIBLn(C(V )) twisted by a Maurer-
Cartan element n (Proposition 2.45). We consider the A∞-structure induced
on V by n10 (Definition 2.46) and relate its cyclic cohomology to the homol-
ogy of qn110 (Proposition 2.47). We define the reduced canonical dIBL-algebra
dIBL(Cred(V )) (Definition 2.48) and the notion of a strictly reduced Maurer-
Cartan element (Definition 2.49). The twisted IBL∞-structure then splits into
the reduced part and the part generated by 1i∗, which we can explicitly compute
(Proposition 2.51).
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2.1 Gradings, degree shifts and completions

We will work with vector spaces over R, possibly infinite-dimensional, graded by
the degree d ∈ Z and the weight k ∈ N0.

Definition 2.1 (Weight-graded vector spaces). A graded vector space is a vector
space W together with a collection of subspaces W d ⊂W for all d ∈ Z such that

W =
⊕
d∈Z

W d.

Elements of W d are called homogenous of degree d; given w ∈ W d, we denote
the degree of w by |w| := d.

A linear map of graded vector spaces f : W1 →W2 is called homogenous of
degree |f | ∈ Z if it holds

f(W d
1 ) ⊂W d+|f |

2 for all d ∈ Z. (4)

A weight-graded vector space is a graded vector space W together with a
collection of subspaces W d

k ⊂W for all k ∈ N0 and d ∈ Z such that

W d =
⊕
k∈N0

W d
k for all d ∈ Z.

We define the weight-k component by

Wk :=
⊕
d∈Z

W d
k for all k ∈ N0.

If W d
0 = 0 for all d ∈ Z, we say that W is weight-reduced. We define the

weight-reduced subspace of a weight-graded vector space W by

W̄ :=
⊕
d∈Z

⊕
k∈N

W d
k .

We consider the following versions of the dual space of W :

W ∗ := {ψ : W → R linear} . . . linear dual,

W ′ :=
⊕
d∈Z

∏
k∈N0

W d∗
k . . . graded dual,

W ′′ :=
⊕
d∈Z

⊕
k∈N0

W d∗
k . . . weight-graded dual.

(5)

We identify W ′ with the subspace of W ∗ generated by homogenous maps and W ′′

with the subspace of W ∗ generated by maps which are non-zero only on finitely
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many W d
k ; hence, we have

W ′′ ⊂W ′ ⊂W ∗.

The grading convention for W ′ is the cohomological grading convention,
which differs from the convention (4) for maps f : W → R by the degree reversal
(see Definition 2.3).

Definition 2.2 (Koszul sign). Let k ≥ 1, and let σ ∈ Sk be a permutation on k
elements. For i = 1, . . . , k, let ai and bi be graded symbols of degrees |ai| and |bi|,
respectively. We denote by

ε(σ, a) and ε(a, b)

the Koszul signs of the transformations

a1 . . . ak 7−→ aσ−1
1
. . . aσ−1

k
and a1 . . . akb1 . . . bk 7−→ a1b1 . . . akbk,

respectively. Here σ−1
i := σ−1(i). The Koszul sign is computed by permuting

the left-hand side to the right-hand side using transpositions of two adjacent
elements such that whenever we transpose two graded symbols, e.g., ai ←→ aj,
we multiply with (−1)|ai||aj |.

We emphasize that the Koszul sign depends only on the initial and the final
order of the graded symbols; not on the sequence of transpositions.

Definition 2.3 (Degree shift and grading reversal). Let A ∈ Z. The degree shift
by A is a functor which associates to a graded vector space W the graded vector
space W [A] with

W [A]d := W d+A for all d ∈ Z.

There is the canonical degree shift morphism

W −→W [A] (6)

of degree −A mapping W d identically to W [A]d−A. We view this morphism as
multiplication from the left with a formal symbol sA of degree |sA| = −A, so
that (6) is given by w ∈W 7−→ sAw ∈W [A].

Given graded vector spaces W1, W2 and constants A1, A2 ∈ Z, we associate
to a morphism f : W1 →W2 its degree shift f : W1[A1]→W2[A2] by defining

f(sA1w) := sA2f(w) for all w ∈W1. (7)

Notice that if f : W1 →W2 has degree |f |, then f : W1[A1]→W2[A2] has degree
|f |+A1 −A2.

The grading reversal r is a functor which associates to a graded vector spaceW
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the graded vector space r(W ) with

r(W )d := W−d for all d ∈ Z.

There is the canonical morphism W → r(W ) mapping W d identically to W−d for
every d ∈ Z. The degree reversal of a morphism f : W1 →W2 is the morphism
f : r(W1)→ r(W2) defined by conjugating f with the canonical morphism. If |f |
is the degree of f : W1 →W2, then −|f | is the degree of f : r(W1)→ r(W2).

In our main reference [10], they view W and W [A] as one vector space with
two different gradings deg(·) and | · |, respectively; these are related by

|w| = deg(w)−A for all homogenous w ∈W.

On the other hand, we think of W and W [A] as of two different graded vector
spaces and never use the same symbol for an element w ∈ W and its degree
shift sAw ∈W [A]. It allows us to use just one notation | · | for the gradings on
both W and W [A]. However, in order to preserve compatibility with [10], we
will also sometimes use the notation deg(w) (in the exponent just (−1)w) for
the degrees on W .

For graded vector spaces W1, . . . , Wk and constants A1, . . . , Ak ∈ Z, we
identify

W1[A1]⊗ · · · ⊗Wk[Ak] ' (W1 ⊗ · · · ⊗Wk)[A1 + · · ·+Ak]

using the Koszul convention for the tensor product; for homogenous elements
w1 ∈W1, . . . , wk ∈Wk, it reads

sA1w1 ⊗ · · · ⊗ sAkwk = ε(sA, w) sA1 . . . sAk︸ ︷︷ ︸
=: sA1+···+Ak

w1 ⊗ · · · ⊗ wk. (8)

If A1 = · · · = Ak =: A is fixed in the context, which is our usual case, we omit
the subscript A and write just s.

In the case of the multilinear map f : W1 ⊗ · · · ⊗Wk → V1 ⊗ · · · ⊗ Vl, the
combination of (7) and (8) gives for f : W1[A1]⊗ · · · ⊗Wk[Ak]→ V1[B1]⊗ · · · ⊗
Vl[Bl] the following:

f(sA1+···+Akw1 ⊗ · · · ⊗ wk) = sB1+···+Blf(w1 ⊗ · · · ⊗ wk). (9)

Remark 2.4 (Why is this sign convention bad?). Let us illustrate that (9) is not
compatible with the following standard Koszul rule:

(K) : (f1 ⊗ f2)(w1 ⊗ w2) = (−1)|f2||w1|f1(w1)⊗ f2(w2).

13



On one hand, we get

(f1 ⊗ f2)(s2w1 ⊗ w2) (9)= s2(f1 ⊗ f2)(w1 ⊗ w2)
(K)= (−1)|f2||w1|s2f1(w1)⊗ f2(w2)
(8)= (−1)|f2||w1|+A(|f1|+|w1|)sf1(w1)⊗ sf2(w2).

On the other hand, we get

(f1 ⊗ f2)(s2w1 ⊗ w2) (8)= (−1)A|w1|(f1 ⊗ f2)(sw1 ⊗ sw2)
(K)= (−1)A|w1|+|f2|(A+|w1|)f1(sw1)⊗ f2(sw2)
(9)= (−1)A|w1|+|f2|(A+|w1|)sf1(w1)⊗ sf2(w2).

The results differ by (−1)A(|f1|+|f2|). Therefore, we can not use (K) to identify
Hom(W1, V1) ⊗ Hom(W2, V2) with a subspace of Hom(W1 ⊗ W2, V1 ⊗ V2) in
general. We will rather define an ad-hoc pairing in the case where we need it
(see Definition 2.29).

Another caveat is that in the case of the tensor product, the degree shift
by A1 followed by the degree shift by A2 is not the same as the degree shift by
A1 +A2. Indeed, we compute

(sA1+A2w1)⊗ (sA1+A2w2) = (sA2sA1w1)⊗ (sA2sA1w2)

= (−1)A2(A1+|w1|)s2
A2

(sA1w1)⊗ (sA1w2)

= (−1)A2A1+(A1+A2)|w1|s2
A2

s2
A1

(w1 ⊗ w2)

= (−1)A2A1+(A1+A2)|w1|s2(A1+A2)(w1 ⊗ w2),

which differs by (−1)A1A2 from the direct degree shift by A1 +A2. Therefore,
we have to always remember the vector spaces which we started with and the
sequence of degree shifts.

Note that we also have the unnatural sA1sA2 = sA2sA1 due to (8). C

Remark 2.5 (Is there a better sign convention?). The author originally respected
the Koszul rule for the algebra with formal symbols and considered the following
map sl∗sk∗f : W [A]⊗k → V [A]⊗l as the degree shift of f : W⊗k → V ⊗l:

(sl∗sk∗f)(skw1 ⊗ · · · ⊗ wk) = (−1)k|f |A+ 1
2k(k−1)Aslf(w1 ⊗ · · · ⊗ wk). (10)

Here s denotes the “inverse” of s with |s| = −|s|, sl∗f = sl ◦ f is the post-
composition, sk∗f = (−1)kA|f |f ◦ sk the pre-composition, and the sign ε(s, s) =
(−1) 1

2k(k−1)A comes from the “collision” s1 . . . sks1 . . . sk 7→ s1s1 . . . sksk.
However, the author did not manage to reprove the theory in [10] using (10)

(because of too many “external” signs appearing and a problem with disconnected
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graphs). A motivation to try a different sign convention was to explain some
artificial signs in [10] and formulate their coordinate constructions invariantly in
order to generalize them to the “continuous” de Rham case.

It might be possible to deduce a “universal” sign convention “respecting”
the Koszul rules by considering the category of chain complexes and graded
morphisms C as the category enriched in the closed monoidal category of chain
complexes and chain maps of degree 0. One can then define the enriched degree
shift functor sA : C → C, embed C⊗k ⊂ C using (K) and study enriched natural
transformations in the algebra of functors consisting of tensor products and
compositions of sA, Hom(·, ·) and the dual ∗. C

Definition 2.6 (Permutations). For k ≥ 1 and σ ∈ Sk (:= the group of permu-
tations on k elements), we define the action of σ on W⊗k by

σ(w1 ⊗ · · · ⊗ wk) := ε(σ,w)wσ−1
1
⊗ · · · ⊗ wσ−1

k
(11)

for all homogenous w1, . . . , wk ∈W .

Notice that the i-th vector is permuted to the σi-th place — this is the
“active” convention for permutations.

Definition 2.7 (Symmetric algebra). Let T(V ) :=
⊕

k≥0 V
⊗k be the tensor

algebra over a graded vector space V . The symmetric algebra over V is defined
by S(V ) :=

⊕
k≥0 Sk(V ), where

Sk(V ) := V ⊗k
/∑
σ∈Sk

Im(1− σ) (=: Sk-coinvariants).

It is a weight-graded vector space with components denoted by (SkV )d for all
d ∈ Z and k ∈ N0. Note that S0V = R has degree 0 by definition. Consider the
canonical projection

π : T(V ) −→ S(V )

v1 ⊗ · · · ⊗ vk 7−→ v1 · · · vk.

The dot · indicates the symmetric product. If vi ∈ V are homogenous, we call
v1 · · · vk a generating word; we have

v1 · · · vk = ε(σ, v)vσ−1
1
· · · vσ−1

k
for every σ ∈ Sk.

Let ι : S(V )→ T(V ) be the section of π defined by

ι(v1 · · · vk) := 1
k!
∑
σ∈Sk

ε(σ, v)vσ−1
1
⊗ . . .⊗ vσ−1

k
.
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We use it to identify S(V ) with the subspace of symmetric tensors

ι(Sk(V )) =
⋂
σ∈Sk

ker(1− σ) ⊂ Tk(V ) (=: Sk-invariants).

Definition 2.8 (Filtrations). Let W be a graded vector space. A filtration of W
is a collection of linear subspaces FλW ⊂W for λ ∈ R such that we have either

• Fλ1W ⊂ Fλ2W for all λ1 ≤ λ2 ⇐⇒: increasing filtration, or

• Fλ1W ⊃ Fλ2W for all λ1 ≤ λ2 ⇐⇒: decreasing filtration.

We will assume that our filtrations are graded in the following sense:

∀λ ∈ R : FλW =
⊕
d∈Z
FλW d, where FλW d := FλW ∩W d.

A filtration FλW is called:

• exhaustive :⇐⇒
⋃
λ∈R FλW = W ;

• Hausdorff :⇐⇒
⋂
λ∈R FλW = 0;

• Z-gapped :⇐⇒ FλW = FbλcW for all λ ∈ R;

• bounded from below :⇐⇒ ∃λ ∈ R : FλW = 0;

• bounded from above :⇐⇒ ∃λ ∈ R : FλW = W .

Given a graded vector space W filtered by a Z-gapped filtration FλW , we
associate to it the bi-graded vector space

gr(W ) =
⊕
d∈Z

⊕
λ∈Z

gr(W )dλ

called the graded module whose components are given as follows:

∀d, λ ∈ Z : gr(W )dλ :=

FλW d/Fλ−1W
d for increasing FλW,

Fλ−1W
d/FλW d for decreasing FλW.

We naturally extend a filtration over degree shifts, graded duals, direct sums,
tensor products and symmetric products as follows:

FλW [A]d := FλW d+A,

Fλ(W ′)d := {ψ ∈W d∗ | ψ
∣∣
FλW

= 0},

Fλ
(⊕
i∈I

Wi

)d :=
⊕
i∈I
FλW d

i ,
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Fλ(W1 ⊗ · · · ⊗Wk)d :=
⊕

d1,...,dk∈Z
d1+···+dk=d

∑
λ1,...,λk∈R
λ1+···+λk=λ

Fλ1W
d1
1 ⊗ · · · ⊗ FλkW

dk
k ,

Fλ(SkV )d := π(Fλ(V ⊗k)d),

where π : T(V )→ S(V ) is the canonical projection. If (W,∂) is a filtered chain
complex, we filter the homology as follows:

∀λ ∈ R, d ∈ Z : FλHd(W,∂) := {α ∈ Hd(C, ∂) | ∃w ∈ α : w ∈ FλW d}.

Definition 2.9 (Completions). Let W be a graded vector space filtered by a
decreasing filtration FλW . The filtration degree of w ∈W is defined by

‖w‖ := sup{λ ∈ R | w ∈ FλW}.

The filtration degree of a linear map f : W1 →W2 is defined by

‖f‖ := sup{λ ∈ R | ‖f(w)‖ ≥ ‖w‖+ λ ∀w ∈W1}.

We say that the filtration degree is finite if ‖f‖ > −∞. Note that ‖0‖ =∞.
The completion of W is the graded vector space

Ŵ :=
⊕
d∈Z

Ŵ d,

where for all d ∈ Z we define

Ŵ d :=
{ ∞∑
i=0

wi

∣∣∣ ∀i ∈ N0 : wi ∈W d; ‖wi‖ → ∞ as i→∞
}/
∼ .

Here
∑∞
i=0 wi ∼

∑∞
i=0 w

′
i if and only if ‖

∑n
i=0(wi−w′i)‖ → ∞ as n→∞.2 The

completion Ŵ is canonically filtered by the filtration FλŴ defined as follows:

∀λ ∈ R, d ∈ Z : FλŴ d :=
{ ∞∑
i=0

wi ∈ Ŵ d
∣∣∣ ∀i ∈ N0 : wi ∈ FλW d

}
.

We denote the completion of W1⊗ · · · ⊗Wk by W1⊗̂ · · · ⊗̂Wk and the completion
of SkV by ŜkV .

A map f : W1 → W2 of finite filtration degree extends continuously to a
2In fact, Ŵ is the inverse limit lim←−

gr
λ

(W/FλW ) in the category of graded vector spaces
and Ŵ d the inverse limit lim←−λ(W d/FλW d) in the category of vector spaces. As a side-remark,
if we forget the grading on W , we might also consider lim←−λ(W/FλW ), which would be a vector
space containing Ŵ as a subspace.
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linear map f : Ŵ1 → Ŵ2; this extension is defined by

f
( ∞∑
i=0

wi

)
:=

∞∑
i=0

f(wi) for all
∞∑
i=0

wi ∈ Ŵ .

Remark 2.10 (Completed tensor product). Using Proposition 2.11 below, one can
show that the completed tensor product ⊗̂ is associative and that W1⊗̂W2 '
Ŵ1⊗̂Ŵ2. By refining this argument, one can show that ŜkV ' ŜkV̂ for any
k ∈ N. C

A weight-graded vector space W is canonically filtered by weights:

∀λ ∈ R, d ∈ Z : FλW d :=
⊕
k≤λ

W d
k . (12)

This filtration is Z-gapped, exhaustive, Hausdorff, increasing and bounded from
below. The induced filtration on the graded dual W ′ is Z-gapped, Hausdorff,
decreasing and bounded from above (and thus automatically exhaustive). It holds
gr(W ) ' W , and it is easy to see from (5) that the canonical map W ′′ → W ′

induces the isomorphism
Ŵ ′′ 'W ′.

We also see that the condition

(WG0) : ∀d ∈ Z ∃J ⊂ N0, |J | <∞ ∀k ∈ N0\J : W d
k = 0

is equivalent to W ′′ = W ′.
A useful tool to compare completions is the following proposition:

Proposition 2.11 ([15, Proposition 7.3.7], Isomorphism criterion). Let W1

andW2 be graded vector spaces filtered by Z-gapped filtrations which are decreasing
and bounded from above. Suppose that f : W1 → W2 is a filtration preserving
homogenous linear map. Then the continuous extension f : Ŵ1 → Ŵ2 is
an isomorphism if and only if the induced map f : gr(W1) → gr(W2) is an
isomorphism.

Proof. The implication from the right to the left is obtained from the diagram

0 gr(W1)λ W1/FλW1 W1/Fλ−1W1 0

0 gr(W2)λ W2/FλW2 W2/Fλ−1W2 0

f f f

by induction using the definition of Ŵ as the inverse limit of W/FλW (see
Footnote 2 on page 17).

For a graded vector space W filtered by a Z-gapped filtration, consider the
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following conditions:

(WG1) : ∀λ ∈ Z ∃I ⊂ Z, |I| <∞ ∀d ∈ Z\I : gr(W )dλ = 0,

(WG2) : ∀d, λ ∈ Z : dim(gr(W )dλ) <∞.
(13)

Lemma 2.12 (Completion of symmetric powers of the graded dual). Let W be
a graded vector space filtered by an exhaustive Z-gapped filtration FλW which is
increasing and bounded from below. If (WG1) & (WG2) are satisfied, then the
natural map Sk(W ′)→ (SkW )′ induces the isomorphism

Ŝk(W ′) ' (SkW )′ for every k ∈ N.

Note that we filter graded duals by the induced filtration from Definition 2.8.

Proof. The natural map Sk(W ′)→ (SkW )′ is clearly filtration preserving, and
hence it extends continuously to a map of completions. The target space (SkW )′

is already complete (the dual space W ′ is complete, provided that the filtration
of W is exhaustive), and thus we obtain the map Ŝk(W ′)→ (SkW )′. According
to Proposition 2.11, this map is an isomorphism if and only if the induced map
gr(Sk(W ′))→ gr((SkW )′) is. This is shown by the following computation (the
maps involved are natural in at least one direction):

Fλ(W⊗k′)d

Fλ+1(W⊗k′)d
' Fλ(W⊗k)d∗

Fλ+1(W⊗k)d∗ '
(Fλ+1(W⊗k)d

Fλ(W⊗k)d
)∗

'

(⊕
|~d|=d

∑
|~λ|=λ+1 Fλ1W

d1 ⊗ · · · ⊗ FλkW dk⊕
|~d|=d

∑
|~λ|=λ Fλ1W

d1 ⊗ · · · ⊗ FλkW dk

)∗

'

(⊕
|~d|=d

∑
|~λ|=λ+1 Fλ1W

d1 ⊗ · · · ⊗ FλkW dk∑
|~λ|=λ Fλ1W

d1 ⊗ · · · ⊗ FλkW dk

)∗

'
(⊕
|~d|=d

⊕
|~λ|=λ

Fλ1+1W
d1

Fλ1W
d1
⊗ · · · ⊗ Fλk+1W

dk

FλkW dk

)∗
'
(⊕
|~λ|=λ

⊕
|~d|=d

Fλ1+1W
d1

Fλ1W
d1
⊗ · · · ⊗ Fλk+1W

dk

FλkW dk

)∗
Z−gapped

& bounded below
& (WG1)

→ '
⊕
|~λ|=λ

⊕
|~d|=d

(Fλ1+1W
d1

Fλ1W
d1
⊗ · · · ⊗ Fλk+1W

dk

FλkW dk

)∗
(WG2)→ '

⊕
|~λ|=λ

⊕
|~d|=d

(Fλ1+1W
d1

Fλ1W
d1

)∗
⊗ · · · ⊗

(Fλk+1W
dk

FλkW dk

)∗
'
⊕
|~d|=d

⊕
|~λ|=λ

Fλ1(W ′)d1

Fλ1+1(W ′)d1
⊗ · · · ⊗ Fλk(W ′)dk

Fλk+1(W ′)dk
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' Fλ(W ′⊗k)d

Fλ+1(W ′⊗k)d
.

In fact, this computation shows that T̂k(W ′) ' (TkW )′. The conclusion for Sk
follows by checking that the maps above are Sk-equivariant.

Given a chain complex (W,∂), the boundary operator ∂ induces the boundary
operator ∂k : W⊗k →W⊗k for all k ∈ N; for all w1, . . . , wk ∈W , it is defined by

∂k(w1 ⊗ · · · ⊗ wk) :=
k∑
i=1

(−1)|w1|+···+|wi−1|w1 ⊗ · · · ⊗ ∂wi ⊗ · · · ⊗ wk. (14)

The map ∂k is clearly Sk-equivariant, and thus induces the boundary operator
∂k : SkW → SkW .

Proposition 2.13 (Künneth formula for completed symmetric cohomology).
Let (W,∂) be a Z-graded chain complex over R filtered by an exhaustive Z-gapped
filtration FλW which is increasing and bounded from below. Consider the dual
cochain complex (W ′,d := ∂∗). Suppose that d has finite filtration degree, so
that dk : Sk(W ′) → Sk(W ′) extends continuously to dk : Ŝk(W ′) → Ŝk(W ′)
for every k ∈ N. If (WG1) & (WG2) are satisfied, then the natural map
SkH(W ′,d)→ H(Ŝk(W ′),dk) induces the isomorphism

ŜkH(W ′,d) ' H(Ŝk(W ′),dk) for all k ∈ N.

Proof. The natural map SkH(W ′, d)→ H(ŜkW ′, dk) is clearly filtration preserv-
ing, and hence it extends continuously to a map of completions. The target space
H(ŜkW ′, dk) is already complete (the homology of a complete space is complete),
and hence we obtain the map ŜkH(W ′,d)→ H(ŜkW ′,dk). The following facts
are easy to verify:

(1) The isomorphism from Lemma 2.12 is an isomorphism of cochain complexes

(ŜkW ′,dk) ' ((SkW )′, ∂∗k).

(2) If the filtration on W satisfies (WG1) and (WG2), then the filtration
on H(W ) also satisfies (WG1) and (WG2), respectively. Consequently,
Lemma 2.12 holds for symmetric powers of H(W,∂)′ as well.

(3) The Künneth formula H(W⊗k) ' H(W )⊗k implies H(SkW ) ' SkH(W ) for
any Z-graded chain complex W over R.

(4) We have (H(W ))′ ' H(W ′) over R by the universal coefficient theorem.
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Now, we compute

H(ŜkW ′,dk) '
↑

(1)

H((SkW )′, ∂∗k) '
↑

(4)

H(SkW,∂k)′ '
↑

(3)

(SkH(W,∂))′

'
↑

(2)

Ŝk(H(W,∂)′) '
↑

(4)

ŜkH(W ′,d).

This proves the proposition.

2.2 Basics of IBL∞-algebras

Definition 2.14 (Exterior algebra). Given a graded vector space C over R, we
define the exterior algebra over C by

EC := S(C[1]).

The weight-k component is denoted by EkC and the weight-reduced part by ĒC.
If C is in addition filtered, then EkC is filtered by the induced filtration and its
completion is denoted by ÊkC.

We have the product µ : EC⊗EC → EC and coproduct ∆ : EC → EC⊗EC
defined by

µ(c11 . . . c1k ⊗ c21 . . . c2k′) := c11 . . . c1kc21 . . . c2k′ and

∆(c1 . . . ck) :=
∑

k1, k2≥0
k1+k2=k

∑
σ∈Sk1,k2

ε(σ, c)cσ−1
1
. . . cσ−1

k1
⊗ cσ−1

k1+1
. . . cσ−1

k1+k2

for all homogenous cij , ci ∈ C[1] and k, k′ ≥ 0, respectively, where Sk1,k2 ⊂
Sk1+k2 denotes the set of shuffle permutations with blocks of lengths k1 and k2.
These operations satisfy relations of an associative bialgebra (see [25]):

Ass. bialg.


µ ◦ (1⊗ µ) = µ ◦ (µ⊗ 1),

(1⊗∆) ◦∆ = (∆⊗ 1) ◦∆,

∆ ◦ µ = (µ⊗ µ) ◦ (1⊗ τ ⊗ 1) ◦ (∆⊗∆).

(15)

Here τ : C1⊗C2 → C2⊗C1, c1⊗ c2 7→ (−1)|c1||c2|c2⊗ c1 denotes the twist map.
We will use the bialgebra calculus (:= relations (15)) to write down explicit

formulas for the operations ◦h1,...,hr which were briefly introduced in [10]; these
operations take symmetric maps f1, . . . , fr and connect h1, . . . , hr of their
outputs to the inputs of a symmetric map f in all possible ways, so that the
result, which we denote by f ◦h1,...,hr (f1, . . . , fr), becomes a symmetric map
again.
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Definition 2.15 (Partial compositions). Let C be a graded vector space. For i,
j ≥ 0, we denote by

πi : EC −→ EiC, ιi : EiC −→ EC,

1i : EiC −→ EiC, τi,j : EiC ⊗ EjC −→ EjC ⊗ EiC

the components of the canonical projection π, the canonical inclusion ι, the
identity 1 and the twist map τ , respectively. We also set

∆i,j := (πi ⊗ πj) ◦∆ ◦ ιi+j and µi,j := πi+j ◦ µ ◦ (ιi ⊗ ιj).

For k′, k1, l′, l1 ≥ 0, let f : Ek′C → El′C and f1 : Ek1C → El1C be linear maps,
and let 0 ≤ h ≤ min(k′, l1). We set

k := k′ + k1 − h and l := l′ + l1 − h

and define the composition of f and f1 at h common outputs to be the linear
map f ◦h f1 : EkC → ElC given by

f ◦h f1 := µl′,l1−h ◦ (f ⊗ 1l1−h) ◦ (µh,k′−h ⊗ 1l1−h) ◦ (1h ⊗ τl1−h,k′−h)

◦ (∆h,l1−h ⊗ 1k′−h) ◦ (f1 ⊗ 1k′−h) ◦∆k1,k′−h.

(16)

More generally, we define the composition of f : Ek′ → El′ with r ≥ 1 linear
maps fi : Eki → Eli with ki, li ≥ 0 for i = 1, . . . , r at 0 ≤ hi ≤ li common
outputs such that h := h1 + · · ·+ hr ≤ k′ as follows. We set

k := k′ + k1 + · · ·+ kr − h and l := l′ + l1 + · · ·+ lr − h

and define f ◦h1,...,hr (f1, . . . , fr) : EkC → ElC by

f ◦h1,...,hr (f1, . . . , fr)

:= µ ◦ (f ⊗ 1) ◦ (µ⊗ 1) ◦ (1⊗ τ)

◦
([

(µ(r) ⊗ µ(r)) ◦ (Fh1,...,hr ⊗ 1⊗r) ◦ σr ◦∆⊗r
]
⊗ 1

)
◦ (f1 ⊗ · · · ⊗ fr ⊗ 1) ◦∆(r+1),

(17)

where we have:

• The operation µ(r) is the “product with r inputs” and the operation ∆(r)

the “coproduct with r outputs”; they are defined by

µ(r) := µ(1⊗ µ) · · · (1⊗r−2 ⊗ µ), µ(1) := 1,

∆(r) := (1⊗r−2 ⊗∆) · · · (1⊗∆)∆, ∆(1) := 1.

22



• Fh1,...,hr := (ιh1πh1)⊗ · · · ⊗ (ιhrπhr ).

• The permutation σr ∈ S2r is given by

σr : (1, 2, . . . , 2r − 1, 2r) 7−→ (1, r + 1, . . . , r, 2r).

• The symbols f and fi inside the formula denote the trivial extensions of f
and fi, respectively; we extend a linear map f : Ek′C → El′C trivially to
f : EC → EC by defining f(EiC) = 0 for i 6= k′.

Remark 2.16 (On partial compositions). (i) Defining f ◦h1,...,hr (f1, . . . , fr) :
EkC → ElC using (17) makes sense because the right hand side is a trivial
extension of its component EkC → ElC. In fact, all µ, ∆, π, ι in (17) can be
replaced with µi,j , ∆i,j , πi, ιi for unique i, j, so that trivial extensions do not
have to be used at all. In this way, it can be seen that (16) is indeed a special
case of (17).

(ii) If h = k′ = l1, then f ◦h f1 = f ◦ f1.

(iii) It holds f ◦0 f1 = (−1)|f ||f1|f1 ◦0 f and

f ◦h1,...,hr (f1, . . . , fr) = ε(σ, f)f ◦h
σ
−1
1
,...,h

σ
−1
r

(fσ−1
1
, . . . , fσ−1

r
).

(iv) Consider the (“non-trivial”) extension f̂ := µ(f ⊗ 1)∆ : EC → EC and
the symmetric product f1 � · · · � fr := µ(r)(f1 ⊗ · · · ⊗ fr)∆(r) : EC → EC.
The proof of the following formulas appearing in [10] is now an exercise on the
bialgebra calculus:

f ◦h1,...,hr−1,0 (f1, . . . , fr) = f ◦h1,...,hr−1 (f1, . . . , fr−1)� fr,

f̂ ◦ f̂1 =
min(k′,l1)∑
h=0

f̂ ◦h f1,

f̂ ◦ (f1 � · · · � fr) =
∑

h1,...,hr≥0
h1+···+hr=k′

f ◦h1,...,hr (f1, . . . , fr).

(18)

We also have the “weak associativity”∑
0≤h2≤min(f−3 ,f

+
2 )

0≤h1≤min(f+
1 ,f
−
2 +f−3 −h2)

h1+h2=h

f1 ◦h1 (f2 ◦h2 f3) =
∑

0≤h1≤min(f+
1 ,f
−
2 )

0≤h2≤min(f+
1 +f+

2 −h1,f
−
3 )

h1+h2=h

(f1 ◦h1 f2) ◦h2 f3 (19)

for every 0 ≤ h ≤ min(k1 + k2 + k3, l1 + l2 + l3), where f+ denotes the number
of inputs and f− the number of outputs of f . The weak associativity of ◦h can
be proven using the associativity of ·̂ and the second relation of (18). C
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If C is filtered by a decreasing filtration, then the bialgebra operations extend
continuously to

µ : Êk1C⊗̂Êk2C −→ Êk1+k2C and

∆ : ÊkC −→
⊕
l1,l2≥0
l1+l2=k

Êl1C⊗̂Êl2C

for all k1, k2, k ∈ N0 because they preserve the filtration degree (see [15] for a
similar construction). Next, if f1 : Êk1C → Êl1C and f2 : Êk2C → Êl2C have
finite filtration degrees, then f1 ⊗ f2 : Êk1C ⊗ Êk2C → Êl1C ⊗ Êl2C has finite
filtration degree too, and hence it extends continuously to f1⊗f2 : Êk1C⊗̂Êk2C →
Êl1C⊗̂Êl2C. Using these facts, we can canonically extend Definition 2.15 to
maps f : Êk′C → Êl′C and fi : ÊkiC → ÊliC of finite filtration degrees. The
resulting map f ◦h1,...,hr (f1, . . . , fr) : ÊkC → ÊlC will have finite filtration
degree too. Moreover, the formulas in Remark 2.16 will still hold.

We will now rephrase the definitions of an IBL∞-algebra, a Maurer-Cartan
element and twisted operations from [10] in terms of ◦h1,...,hr .

Definition 2.17 (IBL∞-algebra). Let C be a graded vector space equipped with a
decreasing filtration, and let d ∈ Z and γ ≥ 0 be fixed constants. An IBL∞-algebra
of bidegree (d, γ) on C is a collection of linear maps qklg : ÊkC → ÊlC for all
k, l ≥ 1, g ≥ 0 which are homogenous, of finite filtration degree and satisfy the
following conditions:

1) |qklg| = −2d(k + g − 1)− 1.

2) ‖qklg‖ ≥ γχklg, where χklg := 2− 2g − k − l.

3) The IBL∞-relations hold: for all k, l ≥ 1, g ≥ 0, we have

g+1∑
h=1

∑
k1,k2,l1,l2≥1
g1,g2≥0

k1+k2=k+h
l1+l2=l+h

g1+g2=g+1−h

qk2l2g2 ◦h qk1l1g1 = 0. (20)

We denote a given IBL∞-algebra structure on C by IBL∞(C); i.e., we write
IBL∞(C) = (C, (qklg)).

If qklg ≡ 0 for all (k, l, g) 6= (1, 1, 0), (2, 1, 0), (1, 2, 0), then we call IBL∞(C)
a dIBL-algebra and denote it by dIBL(C). If in addition q110 ≡ 0, then we have
an IBL-algebra IBL(C). If the operations on the completed exterior powers ÊkC
arise as continuous extensions of operations qklg : EkC → ElC, then we call
the IBL∞-algebra completion-free and denote C together with the operations
qklg : EkC → ElC by IBL0

∞(C).
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The acronym IBL stands for an involutive Lie bialgebra. It follows namely
from the IBL∞-relations (20) that for IBL(C) = (C, q210, q120) the following
holds:

Lie bialg.


0 = q210 ◦1 q210 ← Jacobi id.

0 = q120 ◦1 q120 ← co-Jacobi id.

0 = q120 ◦1 q210 + q210 ◦1 q120 ← Drinfeld id.

0 = q210 ◦2 q120 ← Involutivity

Proposition 2.18 (Odd degree shift of an IBL-algebra). Let (C, q210, q120) be
an IBL-algebra of degree d from Definition 2.17, and let q̃210 : C⊗2 → C and
q̃120 : C → C⊗2 be the linear maps defined by

θq̃210(x1 ⊗ x2) := q210(π(θ2x1 ⊗ x2)) and

θ2q̃120(x) := ι(q120(θx))
(21)

for all x1, x2, x ∈ C, where ι : S2(C[1])→ C[1]⊗2 is the section of π : C[1]⊗2 →
S2(C[1]) from Definition 2.7 and θ is a formal symbol of degree |θ| = −1. Then
the degrees satisfy

|q̃210| = |q210| − 1 = −2d− 2 and |q̃120| = |q120|+ 1 = 0,

the operations q̃210 and q̃120 are graded antisymmetric, i.e., we have

q̃210 ◦ τ = −q̃210 and τ ◦ q̃120 = −q̃120

for the twist map τ , and the relations

0 = q̃210 ◦ (q̃210 ⊗ 1) ◦ (1⊗3 + t3 + t23),

0 = (1⊗3 + t3 + t23) ◦ (q̃120 ⊗ 1) ◦ q̃120,

0 = x1 · q̃120(x2)− (−1)x1x2x2 · q̃120(x1)− q̃120(q̃210(x1, x2)),

0 = q̃210 ◦ q̃120,

hold for all x1, x2 ∈ C. Hhere t3 ∈ S3 denotes the cyclic permutation with
t3(1) = 2 acting on C⊗3 and we define

x · (y1 ⊗ y2) := q̃210(x, y1)⊗ y2 + (−1)xy1y1 ⊗ q̃210(x, y2)

for all x, y1, y2 ∈ C.

Proof. The proof is a lengthy but straightforward computation.

Definition 2.19 (Maurer-Cartan element). A Maurer-Cartan element for an
IBL∞-algebra IBL∞(C) from Definition 2.17 is a collection n := (nlg)l≥1,g≥0 of
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qk1l1g1

qk2l2g2

(a) The term qk2l2g2 ◦h qk1l1g1 in the IBL∞-equation (20).

nlrgrnl1g1

qk′l′g′

(b) The term qk′l′g′ ◦h1,...,hr (nl1g1 , . . . , nlrgr ) in the Maurer-Cartan equation (22). We
remark that the contour of the surface corresponding to qk′l′g′ starts on the left and
continues to the right along the dotted line behind the two trivial cylinders.

nlrgrnl1g1

qk′l′g′

(c) The term qk′l′g′ ◦l1,...,lr (nl1g1 , . . . , nlrgr ) in the twisted operation (23). The remark
to Figure (b) applies too.

Figure 1: Graphical representation of compositions appearing in Definitions 2.17,
2.19 and 2.20 as gluing of connected Riemannian surfaces. The figure is to be
read from the top to the bottom, the empty cylinder represents the identity, and
the resulting surface must be connected. We emphasize that the gluing is not
associative (c.f., weak associativity (19)).

elements nlg ∈ ÊlC which are homogenous, of finite filtration degree and satisfy
the following conditions:

1) |nlg| = −2d(g − 1).

2) ‖nlg‖ ≥ γχ0lg with > for (l, g) = (1, 0), (2, 0) (see Definition 2.17 for χklg).

3) The Maurer-Cartan equation holds: for all l ≥ 1, g ≥ 0, we have

∑
r≥1

1
r!

∑
l′,k′,l1,...,lr≥1
g′,g1,...,gr≥0
h1,...,hr≥1

l1+···+lr+l′−k′=l
g1+···+gr+g′+k′=g+r

h1+···+hr−k′=0

qk′l′g′ ◦h1,...,hr (nl1g1 , . . . , nlrgr ) = 0,

(22)

where we view nlg as a linear map nlg : Ê0C = R→ ÊlC with nlg(1) = nlg.
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Definition 2.20 (Twisted operations). In the setting of Definition 2.19, the
twisted operations qnklg : ÊkC → ÊlC for k, l ≥ 1, g ≥ 0 are defined by

qnklg =
∑
r≥0

1
r!

∑
k′,l′,l1,...,lr≥1
g′,g1,...,gr≥0
h1,...,hr≥1

l1+···+lr+l′−k′=l−k
g1+···+gr+g′+k′=g+r+k

h1+···+hr−k′=−k

qk′l′g′ ◦h1,...,hr (nl1g1 , . . . , nlrgr ). (23)

In [10, Proposition 9.3], they prove that (qnklg)k,l≥1,g≥0 is again an IBL∞-algebra
of bidegree (d, γ) on C — the twisted IBL∞-algebra. We denote it by IBLn

∞(C).

Let (qklg) be an IBL∞-algebra on C. The boundary operator q110 : C[1]→
C[1] induces the boundary operator ∂k : EkC → EkC for every k ∈ N (see (14)).
Because of the finite filtration degree, ∂k continuously extends to ∂k : ÊkC →
ÊkC. The following is easy to see using (16):

qklg ◦1 q110 = qklg ◦ ∂k,

q110 ◦1 qklg = ∂l ◦ qklg.

Because qklg are odd (:=have odd degree), we have

[∂, qklg] := ∂l ◦ qklg − (−1)|∂||qklg|qklg ◦ ∂k
= ∂l ◦ qklg + qklg ◦ ∂k
= q110 ◦1 qklg + qklg ◦1 q110.

With this notation, the IBL∞-relations (20) for (k, l, g) = (2, 1, 0) and (1, 2, 0)
become [∂, q210] = 0 and [∂, q120] = 0, respectively. Therefore, q210 and q120

descend to the homology.

Definition 2.21 (Homology and the induced IBL-algebra). We define the
homology of an IBL∞-algebra IBL∞(C) by

H(C)[1] := H(Ĉ[1], q110).

It is a graded vector space with the induced filtration. If the canonical map
EkH(C) → H(ÊkC, ∂k) induces the isomorphism ÊkH(C) ' H(ÊkC, ∂k), then
the induced maps

q210 : Ê2H(C)→ Ê1H(C) and q120 : Ê1H(C)→ Ê2H(C)

define an IBL-structure on H(C) — the induced IBL-algebra on homology.
If n is a Maurer-Cartan element for IBL∞(C), we denote by Hn(C) the

homology of IBLn
∞(C).
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Remark 2.22 (BV-formalism). Consider the weight-reduced exterior algebra
ĒC. Let ˆ̄EC[[~]] and ˆ̄EC((~)) be the spaces of power and Laurent series in
a formal variable ~ of degree |~| = 2d with coefficients in ˆ̄EC, respectively,
where ˆ̄EC is a suitable completion of ĒC. Operations of an IBL∞-algebra on
C can be encoded in a degree −1 operator ∆ : ˆ̄EC[[~]] → ˆ̄EC[[~]] called the
BV∞-operator, while the data of a Maurer-Cartan element (nlg) give rise to an
operator en : ˆ̄EC[[~]] → ˆ̄EC((~)) called the exponential of n. These operators
are given by

∆ :=
∑
i≥0

∆i+1~i and en :=
∑
j∈Z

(en)j~j ,

where the maps ∆i, (en)j : ˆ̄EC → ˆ̄EC for i ≥ 1, j ∈ Z are defined by

∆i :=
∑

k≥1,g≥0
k+g=i

∑
l≥1

q̂klg and

(en)j :=
∞∑
r=0

1
r!

∑
g1,...,gr≥0

g1+···+gr−r=j

∑
l1,...,lr≥1

nl1g1 � · · · � nlrgr .

It can be shown that the IBL∞-relations (20) and the Maurer-Cartan equa-
tion (22) are equivalent to

∆ ◦∆ = 0 and ∆ ◦ en = 0, (24)

respectively, and that the BV∞-operator ∆n for the twisted IBL∞-structure
(qnklg) satisfies

∆n = e−n ◦∆ ◦ (en·). (25)

The notation (en·) means that we take the input · and multiply it, using the
extension of µ to ˆ̄EC[[~]], with en evaluated at 1 ∈ E0C = R. These facts were
shown in [10] using (18).3 C

Remark 2.23 (Weak IBL∞-algebras). A possible generalization of the IBL∞-
theory above is to allow k = 0 and l = 0, so that EC must be used instead of
ĒC in Remark 2.22. Such structures would be called weak IBL∞-algebras. C

In our application in string topology, a canonical dIBL-algebra dIBL(C) with
a natural Maurer-Cartan element n are given, and we want to study dIBLn(C);
in particular, we are interested in Hn(C), IBL(Hn(C)) and possible higher
operations on Hn(C) induced by qnklg (these are not chain maps in general). The
following proposition summarizes some observations in this situation:

Proposition 2.24 (Twist of a dIBL-algebra). Let dIBL(C) = (C, q110, q210, q120)
3One has to check that the compositions (24) and (25) are well-defined and pick a suitable

completion ˆ̄EC so that all the constructions work. The details will be discussed in [19].
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be a dIBL-algebra, and let n = (nlg) be a Maurer-Cartan element. The Maurer-
Cartan equation (22) reduces to the following:

0 = q110 ◦1 nlg + q120 ◦1 nl−1,g + q210 ◦2 nl+1,g−1

+ 1
2

∑
l1,l2≥1
g1,g2≥0
l1+l2=l+1
g1+g2=g

q210 ◦1,1 (nl1g1 , nl2g2) ∀l ≥ 1, g ≥ 0.

In particular, the “lowest” equation is given by4

(l, g) = (1, 0) : q110(n10) + 1
2q210(n10, n10) = 0. (26)

This can be visualized as

0 =
q110

n10

+ 1
2

q210

n10 n10

.

The twisted IBL∞-algebra dIBLn(C) consists of the operations qn110, qn210
and qn120, which we call the basic operations, and of the operations qn1lg for (l, g) ∈
N×N0\{(1, 0), (2, 0)}, which we call the higher operations. These operations are
given by

qn110 = q110 + q210 ◦1 n10,

qn210 = q210,

qn120 = q120 + q210 ◦1 n20,

qn1lg = q210 ◦1 nlg.

This can be visualized as

qn110 =
q110

+
q210

n10

,

qn210 =
q210

,

4In [10, Definition 2.4.], they define a partial ordering on the signatures (k, l, g).
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qn120 =
q120

+
q210

n20

,

qn1lg =
q210

nlg

.

The IBL∞-relations satisfied by (qnklg) read for all l ≥ 1, g ≥ 0 as follows:

(3, 1, 0) : 0 = qn210 ◦1 qn210,

(2, l, g) : 0 = qn1lg ◦1 qn210 + qn210 ◦1 qn1lg,

(1, l, g) : 0 =
∑

l1,l2≥1
g1,g2≥0
l1+l2=l+1
g1+g2=g

qn1l1g1
◦1 qn1l2g2

+ qn210 ◦2 qn1,l+1,g−1.
(27)

We call the relations for (k, l, g) = (1, 1, 0), (2, 1, 0), (1, 2, 0), (3, 1, 0), (1, 3, 0),
(2, 2, 0), (1, 1, 1) basic relations because they contain all compositions of basic
operations. In the order above, they read:

0 = qn110 ◦1 qn110,

0 = qn110 ◦1 qn210 + qn210 ◦1 qn110,

0 = qn110 ◦1 qn120 + qn120 ◦1 qn110,

0 = qn210 ◦1 qn210, ← Jacobi identity

0 = qn120 ◦1 qn120 + qn110 ◦1 qn130 + qn130 ◦1 qn110, ← co-Jacobi id. up to htpy.

0 = qn120 ◦1 qn210 + qn210 ◦1 qn120, ← Drinfeld identity

0 = qn210 ◦2 qn120 + qn111 ◦1 qn110 + qn110 ◦1 qn111. ← Involutivity up to htpy.

The last four equations can be visualized as

0 =

qn210

qn210

,
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0 =

qn120

qn120

+

qn130

qn110

+

qn130

qn110

,

0 =

qn210

qn120

+

qn120

qn210

,

0 =

qn120

qn210

+

qn110

qn111

+

qn110

qn111

.

Proof. The proof is clear by specializing (20), (22) and (23).

Remark 2.25 (Higher operations). We see from Proposition 2.24 that if qn120 ◦1
qn120 = 0 and qn210 ◦2 qn120 = 0, then [∂n, qn130] = 0 and [∂n, qn111] = 0, respectively,
and hence the operations qn130 : Ê1Hn → Ê3Hn and qn111 : Ê1Hn → Ê1Hn are well-
defined (provided that the assumption of Definition 2.21 holds). Likewise, the
higher operation qn1lg defines a map Ê1Hn → ÊlHn, provided that the following
equation holds:

qn210 ◦2 qn1,l+1,g−1 +
∑

l1,l2≥1
g1,g2≥0
l1+l2=l+1
g1+g2=g

(li,gi) 6=(1,0)

qn1l1g1
◦1 qn1l2g2

= 0.

This expression is just the left-over after subtracting the commutator [qn1lg, qn110] =
qn110 ◦1 qn1lg + qn1lg ◦1 qn110 from (27). C

2.3 Dual cyclic bar complex and cyclic cohomology

Definition 2.26 (Bar complexes). Let V be a graded vector space. The bar-
and dual bar-complex of V are the weight-graded vector spaces defined by

B∗V := T̄(V [1]) and B∗V := (B∗V )′′,

respectively, where T̄ V :=
⊕∞

k=1 V
⊗k is the weight-reduced tensor algebra. For

every k ∈ N, let tk ∈ Sk be the cyclic permutation tk : (1, . . . , k) 7→ (2, . . . , k, 1),
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so that for all v1, . . . , vk ∈ V [1] we have

tk(v1 ⊗ · · · ⊗ vk) = (−1)|vk|(|v1|+···+|vk−1|)vk ⊗ v1 ⊗ · · · ⊗ vk−1.

We set

t :=
∞∑
k=1

tk : B∗V −→ B∗V.

The cyclic bar-complex is defined by

Bcyc
∗ V := B∗V/ Im(1− t).

We denote the image of v1 ⊗ · · · ⊗ vk ∈ B∗V under the canonical projection
π : B∗V → Bcyc

∗ V by v1 . . . vk. If vi ∈ V [1] are homogenous, then v1 . . . vk is
called a generating word; we have

v1 . . . vk = (−1)|vk|(|v1|+···+|vk−1|)vkv1 . . . vk−1.

We define the section ι : Bcyc
∗ V → B∗V of π by

ι(v1 . . . vk) := 1
k

k−1∑
i=0

tik︸︷︷︸
=: tk ◦ · · · ◦ tk i-times

(v1 ⊗ · · · ⊗ vk)

and use it to identify Bcyc
∗ V with the subspace Im ι = ker(1− t) ⊂ B∗V consisting

of cyclic symmetric tensors.
We define the dual cyclic bar-complex by

B∗cycV := {ψ ∈ B∗V | ψ ◦ t = ψ}.

Remark 2.27 (Non-weight-reduced bar complex). In fact, our B∗cycV is weight-
reduced. The non-weight-reduced version would be B∗cycV ⊕R with R of degree 0.
This might play a role in the theory of weak A∞-algebras (:= operation µ0 added;
c.f., Definition 2.32), and it might also be possible to consider IBL∞-algebras on
non-weight-reduced cyclic cochains (c.f., Section 2.4). This may be discussed
more in [19]. C

Notice that ψ ∈ B∗V is homogenous of degree |ψ| ∈ Z if and only if for all
homogenous v1, . . . , vk ∈ V [1] the following implication holds:

|v1|+ · · ·+ |vk| 6= |ψ| =⇒ ψ(v1 ⊗ · · · ⊗ vk) = 0.

This is the cohomological grading convention.

Notation 2.28 (Degree shifts of bar complexes). Let A ∈ Z. In the following,
we write B∗cycV , but the convention applies to all complexes from Definition 2.26.
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We denote by sA and θ the formal symbols of degrees

|sA| = −A and |θ| = −1,

respectively. The degree shift V 7→ V [1] will be realized as multiplication with θ
and the degree shift B∗cycV 7→ B∗cycV [A] as multiplication with sA. In addition,
the following notation will be used consistently:

• ṽ ∈ V ←→ v = θṽ ∈ V [1]

To clarify this, given ṽ ∈ V , then v automatically means v = θṽ ∈ V [1], and
the other way round. Recall that the degree of ṽ ∈ V is denoted by deg(ṽ)
or simply by ṽ in the exponent, e.g., (−1)ṽ.

• ψ ∈ B∗cycV ←→ Ψ = sAψ ∈ B∗cycV [A].

• A generating word of Bcyc
∗ V of weight k will be denoted by the symbol w

and written as w = v1 . . . vk, where vi = θṽi ∈ V [1]. A generating word
of EkBcyc

∗ V is an element w1 · · ·wk ∈ EkBcyc
∗ V such that each wi is a

generating word of Bcyc
∗ V .

• w ∈ Bcyc
∗ V ←→ W = sAw ∈ Bcyc

∗ V [A].

We abbreviate
B∗cycV [A] := (B∗cycV )[A].

In contrast to this, we would write B∗cyc(V [A]) for the dual cyclic bar-complex
of V [A]. We also identify (B∗cycV [A])[1] = B∗cycV [A+ 1] in EB∗cycV [A].

Definition 2.29 (Pairing of tensor powers of bar complexes). For every A ∈ Z
and k ∈ N, we define the pairing as follows:

(B∗V [A])⊗k ⊗ (B∗V [A])⊗k −→ R

(Ψ1 ⊗ · · · ⊗Ψk,W1 ⊗ · · · ⊗Wk) 7−→ ψ1(w1) . . . ψ(wk)︸ ︷︷ ︸
(Ψ1 ⊗ · · · ⊗Ψk)(W1 ⊗ · · · ⊗Wk) :=

. (28)

This means that we evaluate elements from the left-hand side on the elements
from the right-hand side in this way without any signs (see the discussion in
Remark 2.4). We extend the pairing by 0 if the number of Ψi’s and the number
of Wi’s differ.

Remark 2.30 (Dual bar complex and dual of the bar complex). Because the
pairing (28) is non-degenerate, we can embed the space on the left into the the
linear dual of the space on the right. From Definition 2.26 we have B∗cycV ⊂ B∗V ,
and Bcyc

∗ V is identified with Im ι ⊂ B∗V . Therefore, we can restrict (28) to
obtain the pairing of B∗cycV and Bcyc

∗ V . It is easy to see that for any ψ ∈ B∗cycV
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and any generating word v1 . . . vk ∈ Bcyc
∗ V , we have

ψ(v1 . . . vk) = ψ(v1 ⊗ · · · ⊗ vk).

The subspace of (Bcyc
∗ V )∗ corresponding to B∗cycV is then precisely (Bcyc

∗ V )′′.
More generally, for every k ∈ N, the spaces EkB∗cycV and EkBcyc

∗ V are
embedded into (B∗cycV [1])⊗k and (Bcyc

∗ V [1])⊗k, respectively, using ι and π from
Definition 2.7. Therefore, the restriction of (28) gives the pairing of EkB∗cycV

and EkBcyc
∗ V . It is easy to see that for any generating word w1 · · ·wk ∈ EkBcyc

∗ V

and any ψ1 · · ·ψk ∈ EkB∗cycV , we have

(ψ1 · · ·ψk)(w1 · · ·wk) = 1
k!
∑
σ∈Sk

ε(σ,w)ψ1(wσ−1
1

) . . . ψk(wσ−1
k

).

The subspace of (EkBcyc
∗ V )∗ corresponding to EkB∗cycV lies in (EkBcyc

∗ V )′′; it is
equal to (EkBcyc

∗ V )′′, provided that V is finite-dimensional.5 C

The weight-graded vector spaces B∗V and Bcyc
∗ V are canonically filtered by

the filtration by weights (12). Their weight-graded duals B∗V and B∗cycV are
filtered by the dual filtrations and the exterior powers EkB∗V and EkB∗cycV by
the induced filtration from Definition 2.8.

Proposition 2.31 (Completed dual cyclic bar complex). Let V be a graded
vector space and A ∈ Z. The filtration of B∗cycV dual to the weight-filtration of
Bcyc
∗ V is Z-gapped, Hausdorff, decreasing and bounded from above. Moreover,

the following holds:

dim(V ) <∞ =⇒ (WG1) & (WG2) are satisfied.

The same holds for the induced filtration of EkB∗cycV [A].
In the sense of Remark 2.30, we have

B̂∗cycV ' (Bcyc
∗ V )′ and ÊkB∗cycV [A] ⊂ (EkBcyc

∗ V [A+ 1])′,

where “=” holds if V is finite-dimensional.
The filtration degree of Ψ ∈ ÊmB∗cycV [A] satisfies

‖Ψ‖ = min{k ∈ N0 | ∃W ∈ (EmBcyc
∗ V [A])k : Ψ(W) 6= 0}.

Proof. The proof is clear.

Definition 2.32 (Cyclic A∞-algebra). A graded vector space V together with a
pairing

P : V [1]⊗ V [1]→ R
5The problem is that if dim(V ) =∞, then (V ⊗ V )∗ 6= V ∗ ⊗ V ∗.
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of degree d ∈ Z and a collection of homogenous linear maps

µk : V [1]⊗k → V [1] for k ≥ 1

is called a cyclic A∞-algebra of degree d if the following conditions are satisfied:

(1) The pairing P is non-degenerate and graded antisymmetric; i.e., we have

P(v1, v2) = (−1)1+|v1||v2|P(v2, v1) for all v1, v2 ∈ V [1].

(2) The degrees satisfy |µk| = 1 for all k ≥ 1.

(3) The A∞-relations are satisfied: for all k ≥ 1, we have

∑
k1,k2≥1

k1+k2=k+1

k1∑
p=1

µk1 ◦
p
1 µk2 = 0, (29)

where for all p = 1, . . . , k and v1, . . . , vk ∈ V [1] we define

(µk1 ◦
p
1 µk2)(v1, . . . , vk) := (−1)|v1|+···+|vp−1|µk1(v1, . . . , vp−1,

µk2(vp, . . . , vp+k2−1), vp+k2 . . . , vk).

(4) The operations µ+
k : V [1]⊗k+1 → R defined by

µ+
k := P ◦ (µk ⊗ 1)

for all k ≥ 1 are cyclic symmetric; i.e., we have

µ+
k ◦ tk+1 = µ+

k .

We denote by P̃ : V ⊗ V → R and µ̃k : V ⊗k → R the operations before the degree
shift; i.e., for all k ≥ 1 and ṽ1, . . . , ṽk ∈ V with vi = θṽi, we have

P̃(ṽ1, ṽ2) := (−1)ṽ1P(v1, v2) and

µ̃k(ṽ1, . . . , ṽk) := ε(θ, ṽ)µk(v1, . . . , vk).

We define µ̃+
k : V ⊗k+1 → R similarly.

If µk ≡ 0 for all k ≥ 2, then (V,P, µ1) is called a cyclic cochain complex. If
µk ≡ 0 for all k ≥ 3, then (V,P, µ1, µ2) is called a cyclic dga. We use the same
terminology but omit “cyclic” if there is no pairing P and 1) and 4) are thus
irrelevant.

Remark 2.33 (A difference in sign conventions). Our definition of µ+
k differs from

the definition of m+
k in [10, Definition 12.1] by a sign. To compensate this, we
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have to add this artificial sign in the definitions of Maurer-Cartan elements later;
e.g., in Definition 2.43 or in the formula (100). C

Definition 2.34 (Cyclic (co)homology of A∞-algebras). Let A = (V, (µk)) be
an A∞-algebra. For every k ≥ 1, we consider the maps b′k, Rk : V [1]⊗k → B∗V
given by

b′k :=
k∑
j=1

k−j∑
i=0

tik−j+1 ◦ (µj ⊗ 1k−j) ◦ t−ik and

Rk :=
k∑
j=1

j−1∑
i=1

(µj ⊗ 1k−j) ◦ tik,

(30)

respectively, and define the following maps B∗V → B∗V :

b′ :=
∞∑
k=1

b′k, R :=
∞∑
k=2

Rk and b := b′ +R.

We denote by b∗ : B̂∗V = (B∗V )′ → B̂∗V the dual map to b : B∗V → B∗V . The
following holds:6

|b| = 1 (|b∗| = −1), b ◦ b = 0 and b(1− t) = (1− t)b′. (31)

From the last equation we see that b restricts to Bcyc
∗ V = B∗V/ Im(1− t). We

define the following graded vector spaces:

D∗(V ) := r(B∗V )[1], D∗(V ) := r(B̂∗V )[1],

Dλ
∗ (V ) := r(Bcyc

∗ V )[1], D∗λ(V ) := r(B̂∗cycV )[1].

For instance, we have

Dq
λ(V ) = r(B̂∗cycV )q+1 = (B̂∗cycV )−q−1 for all q ∈ Z.

Then (D∗(V ),b) and (Dλ
∗ (V ),b) are chain complexes and (D∗(V ),b∗) and

(D∗λ(V ),b∗) the dual cochain complexes, respectively. We define the following
(co)homologies:

HH∗(A;R) := H(D∗(V ),b), HH∗(A;R) := H(D∗(V ),b∗),

Hλ
∗(A;R) := H(Dλ

∗ (V ),b), H∗λ(A;R), := H(D∗λ(V ),b∗).

We call HH∗ the Hochschild homology and Hλ
∗ the cyclic homology of the A∞-

algebra A. We call HH∗ the Hochschild cohomology and H∗λ the cyclic cohomology
of A.

6The facts (31) are generally known in some form (see [27] or [23]). We also show them in
[19] using a graphical formalism which simplifies computations.
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For a dga A = (V, µ1, µ2), we have for all v1, . . . , vk ∈ V [1] the formula

b(v1 . . . vk) =
k∑
i=1

(−1)|v1|+···+|vi−1|v1 . . . µ1(vi) . . . vk

+
k−1∑
i=1

(−1)|v1|+···+|vi−1|v1 . . . µ2(vi, vi+1) . . . vk

+ (−1)|vk|(|v1|+···+|vk−1|)µ2(vk, v1)v2 . . . vk−1.

Definition 2.35 (Strict units and strict augmentations). Let A = (V, (µk)) be
an A∞-algebra. A non-zero homogenous element 1 ∈ V [1] with |1| = −1 is called
a strict unit for A if the following holds:

µ2(1, v) = (−1)|v|+1µ2(v, 1) = v ∀v ∈ V [1],

µk(v1, . . . , vi−1, 1, vi+1, . . . , vk) = 0 ∀ k 6= 2, 1 ≤ i ≤ k, vj ∈ V [1].

The pair (A, 1) is called a strictly unital A∞-algebra.
A strictly unital A∞-algebra (A, 1) is called strictly augmented if it is equipped

with a linear map ε : V [1]→ R[1] which satisfies

ε(1V ) = 1R, ε ◦ µ1 = 0 and ε ◦ µ2 = µ2 ◦ (ε⊗ ε),

where 1R is the strict unit for R endowed with the standard multiplication. The
map ε is called a strict augmentation..

If the homological dga H(A) := (H(V, µ̃1), µ1 ≡ 0, µ2) of A is strictly unital
and strictly augmented, then A is called homologically unital and homologically
augmented, respectively. A strictly unital and strictly augmented cochain complex
(V, µ1, 1, ε) is called just augmented.

We denote by u : R[1]→ V [1] the injective linear map defined by u(1R) := 1V ,
and by u∗ : B∗cycV → B∗cycR and ε∗ : B∗cycR→ B∗cycV the precompositions with
u⊗k and ε⊗k in every weight-k component, respectively.

Remark 2.36 (On units and augmentations). (i) A strict unit 1V for A in-
duces an A∞-morphism (uk) : R→ V given by u1(1R) := 1V and uk ≡ 0 for all
k ≥ 2. A (general) augmentation of (A, 1V ) is by definition any A∞-morphism
(εk) : V → R such that (εk) ◦ (uk) = 1 as A∞-morphisms (see [20]). Strict
augmentations are precisely the maps ε1 coming from augmentations (εk) with
εk ≡ 0 for all k ≥ 2.

(ii) As for (V, µ1, 1, ε), we need the chain map ε to provide the splitting of the
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short exact sequence of chain complexes

0 R[1] V [1] coker(u) 0,u

ε

so that we get H(V ) ' Hred(V )⊕R, where Hred(V ) := H(coker(u)). If (V, µ1) is
non-negatively graded and we are given an injective chain map u : R[1]→ V [1]
(=: the classical augmentation), then one can show that such ε always exists. C

Definition 2.37 (Reduced dual cyclic bar complex). Let (A, 1) be a strictly
unital A∞-algebra. Consider the injection ι1 : B∗V → B∗V , v1 ⊗ · · · ⊗ vk 7→
1⊗ v1 ⊗ · · · ⊗ vk. We define the reduced dual cyclic bar-complex by

B∗cyc,redV := {ψ ∈ B∗cycV | ψ ◦ ι1 = 0}.

Under the assumption of strict unitality, b∗ preserves B∗cyc,redV , and hence we
can consider the reduced cyclic cochain complex

D∗λ,red(V ) := r(B̂∗cycV )[1]

and define the reduced cyclic cohomology of A by

H∗λ,red(A;R) := H(D∗λ,red(V ),b∗).

Proposition 2.38 (Reduction to the reduced cyclic cohomology). Let A =
(V, (µk)) be an A∞-algebra with a strict unit 1 and a strict augmentation ε.
Then the inclusions B∗cyc,redV , ε∗(B∗cycR) ⊂ B∗cycV induce the decomposition

H∗λ(A;R) ' H∗λ,red(A;R)⊕H∗λ(R;R).

Here we have

Hq
λ(R;R) =

〈1q+1∗〉 for q ≥ 0 even,

0 for q > 0 odd and q < 0,

where 1i∗ : R[1]⊗i → R is defined by 1i∗(1i) := 1.

Sketch of the proof. The maps ε∗ : Dλ(R)→ Dλ(V ) and u∗ : Dλ(V )→ Dλ(R)
are chain maps with u∗ ◦ ε∗ = 1. Therefore, we have the sequence of cochain
complexes

0 Dλ,red(V ) Dλ(V ) Dλ(R) 0,u∗

ε∗
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which is exact everywhere except for the middle, and where ε∗ is a splitting map.
The idea of [24] is to replace these cochain complexes with quasi-isomorphic
bicomplexes consisting of normalized Hochschild cochains D̄(V ) such that the
sequence becomes exact. The work then reduces to proving that D̄(V ) computes
HH(A;R); a variant of this result for A∞-algebras was proven in [23]. A detailed
proof in our formalism will be provided in [19].

We will now compare our version of the cyclic cohomology of a dga (V, µ1, µ2)
to a version based on [24, Section 5.3.2]. Let b̃, δ̃ : T̄ V → T̄ V be the linear maps
defined for all ṽ1, . . . , ṽk ∈ V by

b̃(ṽ1 ⊗ · · · ⊗ ṽk) :=
k−1∑
i=1

(−1)i−1ṽ1 ⊗ · · · ⊗ µ̃2(ṽi, ṽi+1)⊗ · · · ⊗ ṽk

+ (−1)k−1+ṽk(ṽ1+···+ṽk−1)µ̃2(ṽk, ṽ1)⊗ ṽ2 ⊗ · · · ⊗ ṽk−1,

δ̃(ṽ1 ⊗ · · · ⊗ ṽk) :=
k∑
i=1

(−1)ṽ1+···+ṽi−1 ṽ1 ⊗ · · · ⊗ µ̃1(ṽi)⊗ · · · ⊗ ṽk.

For all q ≥ 0, we define

D̃q(V ) :=
⊕
k≥1
d∈Z

k−d=q+1

(V ⊗k)d

and ∂̃ : D̃q+1(V )→ D̃q(V ) by

∂̃(ṽ1 · · · ṽk) = b̃(ṽ1 · · · ṽk) + (−1)k+1δ̃(ṽ1 · · · ṽk).

It can be checked that ∂̃ ◦ ∂̃ = 0 and ∂̃(Im(1− t̃)) ⊂ Im(1− t̃), so that ∂̃ induces
a boundary operator on the chain complexes

D̃∗(V ) :=
⊕
q∈Z

D̃q(V ) and D̃λ
∗ (V ) := D̃∗(V )/ Im(1− t̃).

Here, we have t̃(ṽ1 · · · ṽk) := (−1)k+|ṽk|(|ṽ1|+···+|ṽk−1|)ṽkṽ1 · · · ṽk−1. We call
(D̃∗(V ), ∂̃) the classical Hochschild complex and (D̃λ

∗ (V ), ∂̃) the classical cyclic
complex of the dga (V, µ1, µ2). The chain complex (D̃∗(V ), ∂̃) is the total
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complex of the bicomplex

(V ⊗3)1 (V ⊗3)0 (V ⊗3)−1

(V ⊗2)1 (V ⊗2)0 (V ⊗2)−1

V 1 V 0 V −1 ,

b̃

δ̃

b̃

δ̃

b̃

b̃

−δ̃

b̃

−δ̃

b̃

δ̃ δ̃

which differs from the bicomplex [24, Equation (5.3.2.1)] by the reversed grading
and by the fact that it lies in the whole upper half-plane and not just in the
first quadrant. Their convention for a dga is namely |µ̃1| = −1, whereas ours is
|µ̃1| = 1, and they consider N0-grading, whereas we have Z-grading.

Proposition 2.39 (The classical case). Let A = (V, µ1, µ2) be a dga. Then the
degree shift map

U : D̃q(V ) −→ Dq(V ),

ṽ1 ⊗ · · · ⊗ ṽk 7−→ ε(θ, ṽ)v1 ⊗ · · · ⊗ vk,

where we denote vi = θṽi, is an isomorphism of the chain complexes (D̃∗(V ), ∂̃) '
(D∗(V ),b) and (D̃λ

∗ (V ), ∂̃) ' (Dλ
∗ (V ),b), respectively.

Proof. First of all, for the degrees holds |µ̃j | = 2− j for every j ≥ 1. For every
j, k, l ≥ 1 such that j + l ≤ k + 1 and for every ṽ1, . . . , ṽk ∈ V , we compute[
U−1(1l−1 ⊗ µj ⊗ 1k−j−l+1)U

]
(ṽ1 · · · ṽk)

= (−1)l−1+(j−2)(ṽ1+···+ṽl−1+k−l−j+1)ṽ1 · · · ṽl−1µ̃j(ṽl · · · ṽl+j−1)ṽl+j · · · ṽk,

[U−1tkU ](ṽ1 · · · ṽk) = (−1)k−1ṽ1 · · · ṽk,

where we use the Koszul convention (f1⊗f2)(v1⊗v2) = (−1)|f2||v1|f1(v1)⊗f2(v2).
Using this, we obtain

U−1b′kU =
k∑
j=1

k−1∑
i=0

(−1)i+j(i+k+1)tik−j+1(µ̃j ⊗ 1k−j)t−ik and

U−1RkU =
k∑
j=1

j−1∑
i=1

(−1)(i+j)(k+1)(µ̃j ⊗ 1k−j)tik.

It is now easy to check that U−1 ◦ b ◦ U = ∂̃.
If k ∈ N is a weight and d ∈ Z a degree such that k − d − 1 = q for some

q ∈ Z, we have schematically U : (k, d) 7→ (k, d− k) = (k,−q − 1). Therefore, U
preserves the grading of chain complexes. This finishes the proof.
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Proposition 2.40 (Reduced cochains are complete in 0, 1-connected case).
Suppose that V =

⊕
d≥0 V

d is a non-negatively graded vector space with V 0 = 〈1〉
for some 1 ∈ V (=:V is connected) and V 1 = 0 (=:V is simply-connected).
Then for all m ≥ 1, we have

ÊmB∗cyc,redV = EmB∗cyc,redV.

Proof. Let V̄ :=
⊕

d≥2 V
d. We clearly have B∗cyc,redV ' B∗cycV̄ . Since V̄ [1]

is positively graded, we have (B∗V̄ )dk = 0 whenever k > d. Therefore, a map
Ψ ∈ ÊmV̄ , which is non-zero only on finitely many homogenous components of
Bcyc
∗ V [1]⊗m, will be non-zero only on finitely many weights. This implies that

Ψ ∈ EmV̄ .

Remark 2.41 (Universal coefficient theorem). Because (D∗λ(V ),b∗) is dual to
(Dλ
∗ (V ),b) as a chain complex and because we work over R, the universal

coefficient theorem gives

Hq
λ(A,b∗) ' [Hλ

q (A,b)]∗ for all q ∈ Z.

Suppose that we have found closed homogenous elements (wi)i∈I ⊂ Dλ
∗ (V ) for

some index set I which induce a basis of Hλ
∗(A;R). For every i ∈ I, we define

the linear map w∗i : Dλ
∗ (V )→ R by prescribing

w∗i (wj) = δij for all j ∈ I

and w∗i ≡ 0 on Im b and on a complement of ker(b) in Dλ
∗ (V ). Then (w∗i )i∈I ⊂

D∗λ(V ) are closed homogenous elements which generate linearly independent
cohomology classes in H∗λ(A;R); if we denote Iq := {i ∈ I | wi ∈ Cλq (V )}, then
we can write

Hq
λ(A;R) =

{∑
i∈Iq

αiw
∗
i

∣∣ αi ∈ R
}

for all q ∈ Z. C

2.4 Canonical dIBL-structure on cyclic cochains

In this section, we will consider a finite-dimensional cyclic dga (V,P,m1,m2)
of degree 2 − n for some n ∈ N.This means that for all v1, v2, v3 ∈ V [1], the
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following relations holds:

cyc. dga



P(v1, v2) = (−1)1+|v1||v2|P(v2, v1),


cyc.
cochain
complex

m1(m1(v1)) = 0,

m+
1 (v1, v2) = (−1)|v1||v2|m+

1 (v2, v1),

m1(m2(v1, v2)) = −m2(m1(v1), v2)
− (−1)|v1|m2(v1,m1(v2)),

m2(m2(v1, v2), v3) = (−1)|v1|+1m2(v1,m2(v2, v3)),

m+
2 (v1, v2, v3) = (−1)|v3|(|v1|+|v2|)m+

2 (v3, v1, v2).

(32)

The facts (A) and (C) from the Introduction apply, and we get the canonical
dIBL-algebra dIBL(B∗cycV [2−n]) of bidegree (n−3, 2) and the canonical Maurer-
Cartan element m = (m10). We will denote

C(V ) := B∗cycV [2− n]

and call it the space of cyclic cochains on V . If V is fixed, we will write just C.

Definition 2.42 (The canonical dIBL-algebra). Let (V,P,m1) be a cyclic
cochain complex of degree 2− n which is finite-dimensional. Let (e0, . . . , em) ⊂
V [1] be a basis of V [1], and let (e0, . . . , em) be the dual basis with respect to P;
this means that

P(ei, ej) = δij for all i, j = 0, . . . ,m.

We define the tensor T =
∑m
i,j=0 T

ijei ⊗ ej ∈ V [1]⊗2 by7

T ij = (−1)|ei|P(ei, ej) for all i, j = 0, . . . ,m. (33)

The canonical dIBL-algebra on C(V ) is the quadruple

dIBL(C(V )) := (C(V ), q110, q210, q120),

where the operations q110, q210, q120 are defined for all ψ, ψ1, ψ2 ∈ B̂∗cycV and
generating words w = v1 . . . vk, w1 = v11 . . . v1k1 , w2 = v21 . . . v2k2 ∈ Bcyc

∗ V with
k, k1, k2 ≥ 1 as follows:

• The dIBL-boundary operator q110 : Ê1C → Ê1C of degree |q110| = −1 is
defined by

q110(sψ)(sw) := s
k∑
i=1

(−1)|v1|+···+|vi−1|ψ(v1 . . . vi−1m1(vi)vi+1 . . . vk).

(34)
7See Appendix A for the invariant meaning of T as the Schwartz kernel of ±1.
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• The product q210 : Ê2C −→ Ê1C of degree |q210| = −2(n−3)−1 is written
schematically as

q210(s2ψ1 ⊗ ψ2)(sw) :=
∑

ε(w 7→ w1w2)(−1)|ej ||w
1|T ijψ1(eiw1)ψ2(ejw2)

and defined “algorithmically” as follows:

For every cyclic permutation σ ∈ Sk, consider the tensor

σ(w) := ε(σ,w)vσ−1
1
⊗ · · · ⊗ vσ−1

k
,

and split it into two parts w1 and w2 of possibly zero length such that
vσ−1

1
⊗ · · · ⊗ vσ−1

k
= w1 ⊗ w2. Feed w1 and w2 into ψ1 and ψ2 preceded

by ei and ej , respectively, and multiply the result with the sign (−1)|ej ||w1|,
which is the Koszul sign to order

eiejw
1w2 7−→ eiw

1ejw
2.

Finally, sum over all σ ∈ Sk, all splittings of σ(w) and all indices i, j =
0, . . . , m. The sign ε(σ,w) is denoted by ε(w 7→ w1w2) to indicate the
splitting.

• The coproduct q120 : Ê1C −→ Ê2C of degree |q120| = −1 is written schemat-
ically as

q120(sψ)(s2w1 ⊗ w2)

= 1
2
∑

ε(w1 7→ w1
1)ε(w2 7→ w1

2)(−1)|ej ||w
1
1|T ijψ(eiw1

1ejw
1
2)

and defined “algorithmically” as follows:

For all cyclic permutations σ ∈ Sk1 and µ ∈ Sk2 , denote w1
1 := σ(w1) and

w1
2 := µ(w2) and let ε(w1 7→ w1

1) and ε(w2 7→ w1
2) be the corresponding

Koszul signs, respectively. Feed w1
1 and w1

2 into ψ in the indicated order
interleaved by ei and ej and multiply the result with the sign (−1)|ej ||w1

1|,
which is the Koszul sign to order

eiejw
1
1w

1
2 7→ eiw

1
1ejw

1
2.

Finally, sum over all σ ∈ Sk1 , µ ∈ Sk2 and all indices i, j = 0, . . . , m.

The operations are extended continuously to the completion.

Definition 2.43 (The canonical Maurer-Cartan element). Let (V,P,m1,m2)
be a finite-dimensional cyclic dga of degree 2− n. The canonical Maurer-Cartan
element m for dIBL(C(V )) consists of only one element m10 ∈ Ê1C of degree
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|m10| = 2(n− 3) which is defined by

m10(sv1v2v3) := (−1)n−2µ+
2 (v1, v2, v3) for all v1, v2, v3 ∈ V [1]

on the weight-three component of Bcyc
∗ V [3−n] and extended by 0 to other weight-k

components.

Remark 2.44 (On canonical dIBL-structure). (i) Elements of the completion
Ĉ(V ) which are not in C(V ) will be called long cyclic cochains. Because there
are no infinite sums in Definition 2.42, dIBL(C) is completion-free. Clearly, the
twist dIBLn(C) remains completion-free as long as nlg ∈ ElC for all l, g.

(ii) The constructions of q210 and q120 do not depend on the choice of a
basis and can be rephrased in terms of summation over ribbon graphs (see
Example A.5).

(iii) According to Proposition 2.31, the filtration on C(V ) satisfies (WG1) &
(WG2), and hence the IBL-structures IBL(H(C)) and IBL(Hm(C)) are well-
defined (see Definition 2.21). C

Proposition 2.45 (Formulas for twisted operations). Let dIBL(C(V )) be the
canonical dIBL-algebra for a finite-dimensional cyclic cochain complex (V,P,m1)
of degree 2 − n, and let n = (nlg) be a Maurer-Cartan element. Then for all
l ≥ 1, g ≥ 0, Ψ ∈ B̂∗cycV [3−n] and generating words W1, . . . , Wl ∈ Bcyc

∗ V [3−n],
we have

[(q210 ◦1 nlg)(Ψ)](W1 ⊗ · · · ⊗Wl)

=
l∑

j=1

∑
ε′ε(wj 7→ w1

jw
2
j )T abΨ(seaw1

j )nlg(W1 ⊗ · · ·Wj−1 ⊗ (sebw2
j )

⊗Wj+1 ⊗ · · · ⊗Wl),
(35)

where the sum without limits is the sum in Definition 2.42 for q210 and ε′ is the
Koszul sign of the following operation:

(seaeb)W1 . . .Wj−1(sw1
jw

2
j )Wj+1 . . .Wl

7−→ (seaw1
j )W1 . . .Wj−1(sebw2

j )Wj+1 . . .Wl.

In particular, for l = 1, g ≥ 0 and W ∈ Bcyc
∗ V [3− n], we have

(q210 ◦1 n1g)(W) = (−1)n−3
∑

T abε(w 7→ w1w2)n1g(seaw1)ψ(ebw2), (36)
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and for l = 2, g ≥ 0 and W1, W2 ∈ Bcyc
∗ V [3− n], we have

[(q210 ◦1 n2g)(Ψ)](W1 ⊗W2)

= (−1)(n−3)(|Ψ|+1)
[∑

T abε(w1 7→ w1
1w

2
1)(−1)|eb||w

1
1|Ψ(seaw1

1)

n20(sebw2
1 ⊗W2) + (−1)|W1||W2|

∑
T abε(w2 7→ w1

2w
2
2)

(−1)|eb||w
1
2|Ψ(seaw1

2)n20(sebw2
2 ⊗W1)

]
.

(37)

Proof. Let us first discuss the completions. Given nlg ∈ ÊlC, we can write
it as nlg =

∑∞
i=1 Φi

1 · · ·Φi
l with generating words Φi

1 · · ·Φi
l ∈ ElC of weights

approaching ∞. The canonical extension of ◦h to maps with finite filtration
degree commutes with convergent infinite sums, and hence we have qklg ◦h nlg =∑∞
i=1 qklg◦h (Φi1 · · ·Φil). Therefore, it suffices to prove the formulas for generating

words Φi1 · · ·Φil ∈ ElC.
From (16), we get for every Ψ, Φ1, . . . , Φl ∈ C the equation

[q210 ◦1 (Φ1 · · ·Φl)](Ψ) =
l∑
i=1

(−1)|Φi|(|Φ1|+···+|Φi−1|)q210(Ψ,Φi)Φ1 · · · Φ̂i · · ·Φl,

where Φ1 · · ·Φl on the left-hand-side is considered as a map E0C = R → ElC
mapping 1 to Φ1 · · ·Φl. For W1, . . . , Wl ∈ Bcyc

∗ V [3− n] and σ ∈ Sl, we use

[σ(Φ1 ⊗ · · · ⊗ Φl)](W1 ⊗ · · · ⊗Wl) = (Φ1 ⊗ · · · ⊗ Φl)[σ−1(W1 ⊗ · · · ⊗Wl)]

and Definition 2.42 to get(
[q210 ◦1 (Φ1 · · ·Φl)](Ψ)

)
(W1 ⊗ · · · ⊗Wl) =

=
l∑
i=1

(−1)|Φi|(|Φ1|+···+|Φi−1|) 1
l!
∑
σ∈Sl

ε(σ−1,W)[q210(Ψ,Φi)](Wσ1)

Φ1(Wσ2) · · · Φ̂i(∅) · · ·Φl(Wσl)

=
l∑
i=1

(−1)|Φi|(|Φ1|+···+|Φi−1|) 1
l!
∑
σ∈Sl

ε(σ−1,W)(−1)|s|Ψ

∑
ε(wσ1 7→ w1

σ1
w2
σ1

)(−1)|eb||w
1
σ1 |T abΨ(eaw1

σ1
)Φi(ebw2

σ1
)

Φ1(Wσ2) . . . Φ̂i(∅) . . .Φl(Wσl)

=: (∗),
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where Φ̂i(∅) means omission of the corresponding term. Consider the bijection

I : {1, . . . , l} × Sl −→ {1, . . . , l} × Sl

(i, σ) 7−→
(
j := σ1, µ :=

(
1 . . . i− 1 i i+ 1 . . . l

σ2 . . . σi σ1 σi+1 . . . σl

))
.

Given (i, σ) ∈ {1, . . . , l} × Sl and b ∈ {1, . . . ,m}, let (j, µ) := I(i, σ) and

W′ := W1 ⊗ · · · ⊗Wj−1 ⊗ (sebw2
j )⊗Wj+1 ⊗ · · · ⊗Wl.

Suppose that (Φ1 ⊗ · · · ⊗ Φl)(W′) 6= 0. We compute the Koszul sign ε(µ−1,W′)
in the following way:

W′ 7→ (−1)(|w1
j |+|eb|+|Wj |)(|W1|+···+|Wj−1|)(sebw2

j )W1 . . . Ŵj . . .Wl

7→ (−1)(|w1
j |+|eb|)(|W1|+···+|Wj−1|)︸ ︷︷ ︸

=:ε1

ε(σ−1,W)(sebw2
j )Wσ2 . . .Wσl

7→ ε1ε(σ−1,W)(−1)|Φi|(|Φ1|+···+|Φi−1|)︸ ︷︷ ︸
=ε(µ−1,W′)

Wσ2 . . .Wσi(sebw2
j )Wσi+1 . . .Wσl︸ ︷︷ ︸

=W′µ1 ...W
′
µl

.

Using this, we can rewrite (∗) as

(∗) = (−1)|s||Ψ|
l∑

j=1

∑
ε(wj 7→ w1

jw
2
j )(−1)|eb||w

1
j |T abΨ(eaw1

j )

ε1
1
l!
∑
µ∈Sl

ε(µ−1,W′)Φ1(W′µ1
) . . .Φl(W′µl)

=
l∑

j=1

∑
ε(wj 7→ w1

jw
2
j )(−1)|s||Ψ|+|eb||w

1
j |+(|w1

j |+|eb|)(|W1|+···+|Wj−1|)T ab

Ψ(seaw1
j )(Φ1 · · ·Φl)(W1 ⊗ · · · ⊗Wj−1 ⊗ (sebw2

j )⊗Wj+1 ⊗ · · · ⊗Wl).

Finally, we use
T ab 6= 0 =⇒ |ea|+ |eb| = n− 2

to write
|s||Ψ| = |s|(|w1

j |+ |ea|) = (n− 3)(|w1
j |+ n− 2− |eb|)

= |s|(|w1
j |+ |eb|) mod 2,

and the formula (35) follows.
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As for (36), we first compute ε′ for l = 1 as follows:

ln−1(ε′) = |w1||eb|+ (|eb|+ |w1|)|s| =
↑

2(n−3)=|n10|=|s|+|eb|+|w2|

|w1||w2|+ |s||eb|

=
↑

|ea|+|eb|=|s|+1

|w1||w2|+ |ea||eb| mod 2.

Using this, we obtain

[(q210 ◦1 n1g)(Ψ)](W ) =
∑

ε′ε(w 7→ w1w2)T abΨ(seaw1)n1g(sebw2)

=
↑

Tab=(−1)|s|+|ea||eb|T ba

ε(w 7→w1w2)=(−1)|w
1||w2|ε(w 7→w2w1)

(−1)|s|
∑

ε(w 7→ w2w1)T ban1g(sebw2)Ψ(seaw1),

which implies (36).
The proof of (37) is a combination of the same arguments.

We will now relate homology of the twisted boundary operator qn110 to
cohomology of an A∞-algebra on V induced by n10.

Definition 2.46 (A∞-operations and compatible Maurer-Cartan element). Let
(V,P,m1) be a finite-dimensional cyclic cochain complex of degree 2− n, and let
n = (nlg) be a Maurer-Cartan element for dIBL(C(V )). We define the operations
µk : V [1]⊗k → V [1] for all k ≥ 1 by

µk(v1, . . . , vk) := (−1)n−3
∑
i,j

T ijn10(seiv1 . . . vk)ej

for all v1, . . . , vk ∈ V [1], where T ij is the matrix from Definition 2.42.
If (V,P,m1,m2) is in addition a cyclic dga and m the canonical Maurer-

Cartan element for dIBL(C(V )), then we say that n is compatible with m if

n10(sv1v2v3) = m10(sv1v2v3) for all v1, v2, v3 ∈ V [1].

Proposition 2.47 (Twisted boundary operator qn110 and A∞-cyclic cohomology).
In the setting of Definition 2.46, the triple An(V ) := (V,P, (µk)) is a cyclic
A∞-algebra. We always have µ1 = m1, and if n is compatible with m for a cyclic
dga (V,P,m1,m2), then also µ2 = m2.

The following holds for the homologies:

Hn
∗(C(V )) = r(H∗λ(An(V );R))[3− n].

Proof. First of all, according to Definition 2.19 we must have ‖n10‖ > 2, and
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hence
n10(sv1v2) = n10(sv1) = 0 for all v1, v2 ∈ V [1].

This implies µ1 = m1.
Now, let e0, . . . , em be a basis of V [1] and let e0, . . . , em be the dual basis

with respect to P . For all k ≥ 2 and v1, . . . , vk ∈ V [1], we compute the following:

P(µk(v1, . . . , vk), vk+1)

= (−1)n−3
∑
ij

(−1)|ei|P(ei, ej)n10(seiv1 . . . vk)P(ej , vk+1)

=
↑

∀v∈V [1]:
∑

j
P(v,ej)ej=v

(−1)n−3
∑
i

(−1)|ei|n10(seiv1 . . . vk)P(ei, vk+1)

=
↑

(|v|1+···+|vk|)|ei|=
(|n10|+|s|+|ei|)|ei|=(|s|+1)|ei|

(−1)n−3
∑
i

(−1)|ei|(n−3)n10(sv1 . . . vkei)P(ei, vk+1)

=x
1+|vk+1||ei|=1+(|e|i+2−n)|ei|

=1+(3−n)|ei|=1+(3−n)|ei|

(−1)n−2
∑
i

n10(sv1 . . . vkei)P(vk+1, e
i)

= (−1)n−2n10(sv1 . . . vk+1).

Therefore, we have
n10 = (−1)n−2

∑
k≥2

µ+
k .

In this case, [10, Proposition 12.3] asserts that the A∞-relations (29) for (µk)k≥1

are equivalent to the “lowest” Maurer-Cartan equation (26) for n10. The degree
condition |µk| = 1 and the cyclic symmetry of µ+

k are easy to check. Therefore,
An(V ) is a cyclic A∞-algebra.

As for the compatibility with m, we have for all v1, v2 ∈ V [1] the following:

m2(v1, v2) =
∑
i

P(ei,m2(v1, v2))ei

=x
T ij=(−1)|ei|P(ei,ej)

∑
i,j

(−1)|ei|T ijP(ei,m2(v1, v2))ej

=x
P(v1,v2)=(−1)1+(n−3)|v1|P(v2,v1)

∑
i,j

(−1)1+(n−2)|ei|T ij P(m2(v1, v2), ei)︸ ︷︷ ︸
= (−1)n−2m10(sv1v2ei)

ej

=x
(|v1|+|v2|)|ei|=(|m10|−|s|−|ei|)|ei|

=(n−2)|ei|

(−1)n−3
∑
i,j

T ijm10(seiv1v2)ej

= µ2(v1, v2).
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We will now clarify the relation to the cyclic cohomology of An(V ). Recall
from Proposition 2.24 that qn110(Ψ) = q110(Ψ)+q210(n10,Ψ) for Ψ ∈ B̂∗cycV [3−n],
where the first term is given by (34) and the second by (36). Consider now b′k

and Rk from (30), whose sum gives the Hochschild boundary operator b. Using
the cyclic symmetry, we can rewrite a summand of b′k for j = 1, . . . , k and
i = 0, . . . , k − j applied to a generating word v1 . . . vk ∈ Bcyc

∗ V as follows:

[tik−j+1 ◦ (µj ⊗ 1k−j) ◦ t−ik ](v1 . . . vk︸ ︷︷ ︸
=:w

) =

= (−1)|v1|+···+|vi|v1 . . . viµj(vi+1 . . . vi+j)vi+j+1 . . . vk

= ε(w 7→ w1w2)µj(vi+1 . . . vi+j︸ ︷︷ ︸
=:w1

) vi+j+1 . . . vkv1 . . . vi︸ ︷︷ ︸
=:w2

(38)

Clearly, summing (38) over j = 1 and i = 0, . . . , k − 1 gives the dual to q110.
For j = 2, . . . , k, we can write (38) as

(−1)n−3
∑
i,j

ε(w 7→ w1w2)T ijn10(seiw1)ejw2.

Therefore, the sum over j = 2, . . . , k and i = 0, . . . , k − j gives the part of
the dual to q210(n10,Ψ) corresponding to the cyclic permutations σ ∈ Sk with
σ1 = 1, j+1, . . . , k. The rest, i.e., the cyclic permutations with σ1 = 2, . . . , j, is
obtained analogously from the summands (µj ⊗1k−j) ◦ tik of Rk for j = 2, . . . , k
and i = 1, . . . , j − 1. We conclude that qn110 : B̂∗cycV [3− n]→ B̂∗cycV [3− n] is a
degree shift of b∗ : B̂∗cycV → B̂∗cycV . As for the gradings, we have:

r(Dλ(V ))[3− n]i = r(Dλ(V ))i+3−n = (Dλ(V ))−i−3+n = (B̂∗cycV )i+3−n−1

= B̂∗cycV [2− n]i.

This finishes the proof.

We will now turn to units and augmentations.

Definition 2.48 (Reduced canonical dIBL-algebra). Let (V,P,m1, 1, ε) be an
augmented cyclic cochain complex of degree 2−n from Definition 2.35. We define
the space of reduced cyclic cochains on V by

Cred(V ) := B∗cyc,redV [2− n].

We define the reduced canonical dIBL-algebra by

dIBL(Cred(V )) := (Cred(V ), q110, q210, q120),

where q110, q210, q120 are restrictions of the operations of dIBL(C(V )).
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Definition 2.49 (Strictly reduced Maurer-Cartan element). In the setting of
Definition 2.48, we call a Maurer-Cartan element n = (nlg) for dIBL(C(V ))
strictly reduced if nlg ∈ ÊlCred(V ) for all (l, g) 6= (1, 0) and if the A∞-algebra
(An(V ), 1, ε) induced by n10 is strictly unital and strictly augmented. Given a
strictly reduced Maurer-Cartan element n, we can define the twisted IBL∞-algebra

dIBLn(Cred(V )) := (Cred(V ), (qnklg)),

where qnklg are the restrictions of the operations of dIBLn(C(V )). We denote the
homology of dIBLn(Cred) by Hn(Cred) or Hn,red(C).8

Remark 2.50 (On strictly reduced Maurer-Cartan element). (i) We see that
the IBL∞-algebra dIBLn(Cred) is a subalgebra of dIBLn(C), which means that
the inclusion Cred ↪−→ C induces the following commutative diagram for all
k, l ≥ 1, g ≥ 0:

ÊkC ÊlC

ÊkCred ÊlCred.

qn
klg

qn
klg

We denote this fact by dIBLn(Cred) ⊂ dIBLn(C).

(ii) The canonical Maurer-Cartan element m of a strictly augmented strictly
unital dga (V,m1,m2, 1, ε) is strictly reduced (this follows from Proposition 2.47).

(iii) In the situation of Definition 2.49, we denote

V̄ [1] := ker(ε),

so that V = V̄ ⊕ 〈1〉. We use the canonical projection π : V → V̄ to identify
B̂∗cycV̄

'−→ B̂∗cyc,redV via the componentwise pullback π∗. In this way, we obtain
the IBL∞-algebras dIBL(C(V̄ )) and dIBLn(C(V̄ )), which are isomorphic to
dIBL(Cred(V )) and dIBLn(Cred(V )), respectively. C

In the following list, we sum up our main reasons for considering units,
augmentations and reduced Maurer-Cartan elements. Suppose that we are in
the situation of Definition 2.49, then:

• Proposition 2.38 implies the splitting

Hn(C)[1] = Hn(Cred)[1]⊕ 〈s12q−1∗ | q ∈ N〉. (39)

Here 1i∗ ∈ B∗cycV is the componentwise pullback ε∗ of 1i∗ ∈ B∗cyc(R). To
8The latter option suggests that it might be possible to define the reduced homology

with the induced IBL-algebra even if n is not strictly reducible, e.g., if (An(V ), 1, ε) is only
homologically unital and augmented.
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get this, we used

Hn
∗(Cred) = r(H∗λ,red(An))[3− n],

which can be seen by redoing the proof of Proposition 2.47 with reduced
cochains.

• The subalgebra dIBLn(Cred) ⊂ dIBLn(C) induces the subalgebra

IBL(Hn(Cred)) ⊂ IBL(Hn(C)),

and any higher operation qn1lg which induces a map Ê1H(C) → ÊlH(C)
induces a map Ê1H(Cred)→ ÊlH(Cred) as well.

• If V is non-negatively graded, connected and simply-connected, then we
have ÊkCred ' EkCred for all k ∈ N0 by Proposition 2.40, and hence
dIBLn(Cred) is completion-free.

Proposition 2.51 (Operations on units). Suppose that (V,P,m1, 1, ε) is a finite-
dimensional augmented cyclic cochain complex of degree 2− n such that n ≥ 1,
and let n be a strictly reduced Maurer-Cartan element for dIBL(C(V )). The
following relations are the only relations containing 1i∗ which may be non-zero
on the homology Hn(C):

For all Ψ ∈ Cred(V ) and l ≥ 1, g ≥ 0, we have

q210(s1∗ ⊗Ψ) = (−1)(n−2)|Ψ|q210(Ψ⊗ s1∗) = (−1)n−2Ψ ◦ ιv and

qn1lg(s1∗) = −nlg ◦ ιv,

where ιv is defined as follows:

• The element v ∈ V [1] is the unique vector such that P(1, v) = 1 and
v ⊥ V̄ [1] with respect to P. Note that |v| = n− 1 and that such v always
exists due to non-degeneracy.

• We start by defining ιv : Bcyc
∗ V → Bcyc

∗ V by

ιv(v1 . . . vk) :=
k∑
i=1

(−1)|v|(|v1|+···+|vi−1|)v1 . . . vi−1vvi . . . vk

for all generating words v1 . . . vk ∈ Bcyc
∗ V . Next, for all k ≥ 1, we define

ιv : (Bcyc
∗ V )⊗k → (Bcyc

∗ V )⊗k by

ιv(w1 ⊗ · · · ⊗ wk) := (−1)|v|k
k∑
j=1

(−1)|v|(|w1|+···+|wj−1|)w1 ⊗ · · · ⊗ wj−1

⊗ ιv(wj)⊗ wj+1 ⊗ · · · ⊗ wk
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for all generating words w1, . . . , wk ∈ Bcyc
∗ V . Finally, we take the degree

shift ιv : (Bcyc
∗ V [3−n])⊗k → (Bcyc

∗ V [3−n])⊗k according to the degree shift
convention (7).

Proof. Pick a basis (e0, . . . , em) of V [1] such that e0 = 1 and V̄ [1] = 〈e1, . . . , em〉.
If (e0, . . . , em) is the dual basis, then we have v = e0. We will often use the
following relation:

m∑
j=0

T 1jej =
m∑
j=0

(−1)|1|P(v, ej)ej = −v. (40)

We consider only those generating words w = v1 . . . vk of Bcyc
∗ V with either

vi ∈ V̄ for each i (shortly w ∈ Bcyc
∗ V̄ ) or vi = 1 for each i with k odd (i.e.,

w = 12j−1 for some j). Let w1, . . . , wl with wj = vj1 . . . vjkj denote such
generating words. Clearly, if Φ ∈ ÊlC(V ) is a qn110-closed element which vanishes
on all w1 ⊗ · · · ⊗ wl, then (39) implies that [Φ] = 0 in ÊlH(C).

For Ψ ∈ Cred(V ) and q ≥ 1 odd, we compute using (40) the following:

q210(s21q∗ ⊗ ψ)(sw) =
∑

ε(w 7→ w1w2)(−1)(n−1)|w1|T 1j1q∗(1w1)ψ(ejw2)

= −
∑

ε(w 7→ w1w2)(−1)(n−1)|w1|1q∗(1w1)ψ(vw2)

=: (∗).

Now, in order to get (∗) 6= 0, we need either q = 1 and w ∈ Bcyc
∗ V̄ , in which case

(∗) = −
∑

ε(w 7→ w1︸︷︷︸
=∅

w2)ψ(vw2)

= −
k∑
j=1

(−1)|v|(|v1|+···+|vj−1|)ψ(v1 . . . vj−1vvj+1 . . . vk)

= −(ψ ◦ ιv)(w) = (−1)n−2(Ψ ◦ ιv)(W),

or q > 1 odd and w = 1q−1, in which case

(∗) =
∑

ε(w 7→ w1 w2︸︷︷︸
=∅

)1q∗(1q)ψ(v)

= ψ(v)
q−1∑
j=1

(−1)j

= 0.

Next, because n ≥ 1, we get T 11 = 0, and hence

q120(1q∗) = 0 for all q ∈ N
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on the chain level. Therefore, we have qn1lg = q210 ◦1 nlg for all l ≥ 1, g ≥ 0, and
using Proposition 2.45 and (40), we obtain

[(q210 ◦1 nlg)(1q∗)](W1 ⊗ · · · ⊗Wl)

= −
l∑

j=1

∑
ε′ε(wj 7→ w1

jw
2
j )1q∗(1w1

j )nlg(W1 ⊗ · · · ⊗Wj−1 ⊗ (svw2
j )

⊗Wj+1 ⊗ · · · ⊗Wl)

=: (∗∗).

In order to get (∗∗) 6= 0, we need either q = 1 and wj ∈ Bcyc
∗ V̄ for all j, in which

case

(∗∗) = −
l∑

j=1

kj∑
i=1

(−1)|v|(|W1|+···+|Wj−1|+|s|)(−1)|v|(|v1|+···+|vj−1|)nlg(W1 ⊗ · · ·

⊗Wj−1 ⊗ (sv1 . . . vi−1vvi . . . vkj )⊗Wj+1 ⊗ · · · ⊗Wl)

= −(nlg ◦ ιv)(W1 ⊗ · · · ⊗Wl),

or q > 1 odd and wj = 1q−1 for some j, in which case

(∗∗) = −
∑

1≤j≤l
wj=1q−1

ε′
(∑

ε(wj 7→ w1
j w

2
j︸︷︷︸

=∅

1q∗(1w1
j ))
)
nlg(W1 ⊗ · · ·

⊗Wj−1 ⊗ (sv)⊗Wj+1 ⊗ · · · ⊗Wl)

= −
∑

1≤j≤l
wj=1q−1

ε′
(q−1∑
i=1

(−1)i
)

︸ ︷︷ ︸
=0

nlg(W1 ⊗ · · · ⊗Wj−1 ⊗ (sv)⊗Wj+1⊗

· · · ⊗Wl)

= 0.

The only relation left to check is

q210(s1q1∗, s1q1∗) = 0 for all q1, q2 ∈ N.

However, this is easy to see, and the proof is done.
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3 Twisted IBL∞-structure and string topology
In Section 3.1, we consider the cyclic dga’s Ω(M), HdR(M) and H(M) for
a closed oriented n-manifold M (Proposition 3.2) and apply the theory from
Section 2.4 to the last two, which are finite-dimensional.

In Section 3.2, we define the Green kernel G (Definition 3.5). It is a primitive
to the Schwartz kernel H of the harmonic projection πH (see Proposition 3.8)
outside the diagonal and extends smoothly to the spherical blow-up of the
diagonal. These ideas come from an early version of [12]. We consider conditions
(G1)–(G5) on a linear operator G and its Schwartz kernel G (see p. 63) and show
that G satisfying all these conditions always exists (Proposition 3.11). We also
mention the standard Green kernel Gstd (see (55)), which might be a canonical
Green kernel satisfying (G1)–(G5).

In Section 3.3, we review ribbon graphs, labelings, compatibility of the
order and orientation of internal edges, and the edge and vertex order from [10]
(Definitions 3.14, 3.16, 3.17 and 3.18). We then define n as a signed sum of
integrals of products of Green kernels and harmonic forms which are associated
to labeled trivalent ribbon graphs (Definition 3.19). We do not show that
these integrals converge and that n satisfies the Maurer-Cartan equation, but
we do show all other properties of a Maurer-Cartan element (Lemma 3.20 and
Proposition 3.23). We define the Y -graph, trees, circular graphs, vertices of types
A, B, C and their contributions Aα1,α2 , Bα, C, respectively (Definitions 3.21
and 3.24).

In Section 3.4, we observe that vanishing of some special vertices in the
graphs implies nlg = mlg. For example, if all graphs, except for the Y -graph,
with 1 at an external vertex vanish, which holds if G satisfies (G4) and (G5)
(Proposition 3.26), then all higher operations qn1lg vanish on the chain level
in dimensions n > 3 (Proposition 3.25). Next, if all graphs with an A-vertex
vanish, then n10 = m10, and hence qn110 = qm110 (Proposition 3.27). We show
that n = m for simply-connected geometrically formal manifolds with n 6= 2
(Proposition 3.29). Using the results of [12], we argue that the chain complexes
of qm110 and qn110 are quasi-isomorphic providedM is simply-connected and formal
(Proposition 3.31).

In Section 3.5, we recall basic facts about the Chas-Sullivan operations m2

and c2 on the S1-equivariant homology of the free loop space and formulate
a version of the string topology conjecture for simply-connected manifolds
(Conjecture 3.33).
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3.1 Canonical dIBL-structures on C(HdR(M))
Let M be an oriented closed Riemannian manifold of dimension n. We consider
the following graded vector spaces:

Ω∗(M) . . . smooth de Rham forms,

H∗(M) . . . harmonic forms,

H∗dR(M) . . . de Rham cohomology.

Since M is fixed, we often write just Ω, H and HdR. We consider the Hodge
decomposition Ω = H⊕ Im d⊕ Im d∗, where d is the de Rham differential and d∗

the codifferential. We call the corresponding projection

πH : Ω∗(M) −→ H∗(M) (41)

the harmonic projection and the induced isomorphism πH : HdR → H mapping a
cohomology class into its unique harmonic representative the Hodge isomorphism.

Notation 3.1 (Updated notation for bar complexes). We use Notation 2.28 for
V = Ω, H, HdR and A = n− 3 with the following changes:

ṽ ∼ η ∈ V, v ∼ α ∈ V [1], w ∼ ω ∈ Bcyc
∗ V, W ∼ Ω ∈ Bcyc

∗ V [n− 3].

We use the formal symbols s and θ with |s| = n− 3 and |θ| = −1, so that α = θη

and Ω = sω.

Proposition 3.2 (De Rham cyclic dga’s). Let M be an oriented closed Rie-
mannian manifold of dimension n. The quadruple (Ω(M),P,m1,m2) with the
operations from (3) is a cyclic dga of degree 2− n. For the operations before the
degree shift, we have

m̃1(η1) = dη1,

m̃2(η1, η2) = η1 ∧ η2,

P̃(η1, η2) =
∫
M

η1 ∧ η2 =: (η1, η2),

where d is the de Rham differential, ∧ the wedge product and P̃ the intersection
pairing. The operations restrict to HdR(M) and make (HdR(M),P,m1 ≡ 0,m2)
into a cyclic dga. If we define µ1 ≡ 0 and

µ2(α1, α2) := πH(m2(α1, α2)) for all α1, α2 ∈ H(M)[1], (42)

then (H(M),P, µ1, µ2) is a cyclic dga as well, and πH : HdR → H is an iso-
morphism of cyclic dga’s. All three dga’s Ω, HdR and H are strictly unital and
strictly augmented with the unit 1 := θ1 ∈ Ω[1], where 1 is the constant one.
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Proof. The relations (32) follow from the classical properties of d and ∧ and
from the Stokes’ theorem for oriented closed manifolds. The Poincaré duality
asserts that (·, ·) is non-degenerate on HdR and H, and thus they are cyclic
dga’s as well. The fact that πH : HdR → H is an isomorphism of vector spaces
follows from the Hodge theory. As for compatibility with the product, given
η1, η2 ∈ H, then η1 ∧ η2 is closed, and since ker d = H ⊕ Im d, we see that
πH(η1 ∧ η2) = η1 ∧ η2 + dη for some η ∈ Ω is a harmonic representative of the
cohomology class [η1∧η2] = [η1]∧ [η2]. Unitality is obvious, and the construction
of an augmentation map clear. Note that a strict augmentation for Ω(M) is the
evaluation at a point, for instance.

The facts (A) and (C) from the Introduction apply to the cyclic dga’s H
and HdR (not to Ω because it is infinite-dimensional!), and we get the canonical
dIBL-algebras dIBL(C(H)) and dIBL(C(HdR)) of bidegrees (n− 3, 2) with the
canonical Maurer-Cartan element m = (m10). The Hodge isomorphism induces
an isomorphism of these dIBL-algebras, and hence we can use H and HdR

interchangeably. We have q110 ≡ 0, and hence dIBL(C(H)) is, in fact, an
IBL-algebra. However, we will denote it by dIBL and call it a dIBL algebra
as a reminder of the canonical dIBL-structure. The canonical Maurer-Cartan
element m satisfies

m10(sα1α2α3) = (−1)n−2+η2

∫
M

η1 ∧ η2 ∧ η3 for all α1, α2, α3 ∈ H[1]. (43)

We get the canonical twisted dIBL-algebra dIBLm(C(H)) from (2) with, in gen-
eral, non-trivial boundary operator qm110 whose homology is the cyclic homology
of HdR up to degree shifts.

3.2 Green kernel G

We will use fiberwise integration and spherical blow-ups, which we now recall.

Definition 3.3 (Fiberwise integration). Let pr : E → B be a smooth oriented
fiber bundle with an oriented fiber F over an oriented manifold B with ∂B = ∅.
We orient E as F × B. Let Ωc(B) denote the space of forms with compact
support and Ωcv(E) the space of forms with compact vertical support. For any
κ ∈ Ωcv(E), let

∫ F
κ ∈ Ω(B) be the unique smooth form such that∫

E

κ ∧ pr∗ η =
∫
B

(∫ F

κ
)
∧ η for all η ∈ Ωc(B).

Definition 3.4 (Spherical blow-up). Let X be a smooth n-dimensional manifold
and Y ⊂ X a smooth k-dimensional submanifold. The blow-up of X at Y is as
a set defined by

BlYX := X\Y t P+NY,
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where P+NY is the real oriented projectivization of the normal bundle NY of Y
in X. This means that P+NY is the quotient of {v ∈ NY | v 6= 0} by the relation
v ∼ av for all a ∈ (0,∞). The blow-down map is defined by

π : BlYX −→ X

p ∈ X\Y 7−→ p,

[v]p ∈ P+NY 7−→ p.

In the following, we will equip the blow-up with the structure of a smooth
manifold with boundary such that its interior becomes diffeomorphic to X\Y via
the blow-down map and the boundary becomes P+NY . Consider an adapted
chart (U,ψ) for Y in X with ψ(U) = Rn and ψ(U ∩ Y ) = {(0, y) | y ∈ Rk}. It
induces the bijection

ψ̃ : BlU∩Y U −→ [0,∞)× Sn−k−1 × Rk

p ∈ U\Y 7−→
(
|π1ψ(p)|, π1ψ(p)

|π1ψ(p)| , π2ψ(p)
)
,

[v] ∈ P+NpY 7−→
(

0, π1 dψ(v)
|π1 dψ(v)| , π2ψ(p)

)
,

where π1 and π2 are the canonical projections to the factors of Rn−k×Rk. Notice
that we have the canonical inclusion BlU∩Y U ⊂ BlYX. It can be checked that
for any two overlapping adapted charts (U1, ψ1) and (U2, ψ2), the transition
function ψ̃1 ◦ ψ̃−1

2 is a diffeomorphism of manifolds with boundary. Therefore,
we can use the charts (BlU∩Y U, ψ̃) to define a smooth atlas on BlYX. If X
is oriented, we orient BlYX so that π restricts to an orientation preserving
diffeomorphism of the interior.

An important fact is that if X is compact, then BlYX is compact.
We are interested in the case when X = M ×M for an oriented closed

manifold M and Y = ∆ := {(m,m) | m ∈ M} is the diagonal. Given a chart
ϕ : U → Rn on M , the following is a smooth chart on Bl∆(M ×M):

ϕ̃ : Bl∆(U × U) −→ [0,∞)× Sn−1 × Rn

(x, y) ∈ (U × U)\∆ 7−→ (r, w, u) :=
(1

2 |ϕ(x)− ϕ(y)|, ϕ(x)− ϕ(y)
|ϕ(x)− ϕ(y)| ,

1
2(ϕ(x) + ϕ(y))

)
,

[(v,−v)](x,x) 7−→
(

0, dϕx(v)
|dϕx(v)| , ϕ(x)

)
.

(44)

The inverse relations for r > 0 read

ϕ(x) = u+ wr and ϕ(y) = u− wr.
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We will denote by Mi the i-th factor of M ×M ; i.e., we will write M ×M =
M1×M2. We denote the corresponding projection by pri. We define p̃ri := pri ◦π,
where π : Bl∆(M ×M) → M ×M is the blow-down map. We also identify
(M ×M)\∆ with the interior of Bl∆(M ×M) via π.

The map p̃r2 : Bl∆(M ×M) → M2 is an oriented fiber bundle with fiber
Bl∗(M1), which is the blow-up of M1 at a point (we shall assume that M is
connected). The fiberwise integration along p̃r2 will be denoted by

∫ Bl∗M1 .

Definition 3.5 (Green kernel). Let M be an oriented closed n-dimensional
Riemannian manifold. Consider the harmonic projection πH from (41), and let
ιH : H(M) ↪−→ Ω(M) be the inclusion. A smooth (n− 1)-form G on (M ×M)\∆
is called a Green kernel if the following conditions are satisfied:

(1) The form G admits a smooth extension to Bl∆(M ×M). More precisely,
the pullback (π

∣∣
int)
∗G along the blow-down map restricted to the interior

is a restriction of a smooth form on Bl∆(M ×M). We denote this form
by G again by uniqueness.

(2) The operator G : Ω∗(M)→ Ω∗−1(M) defined by

G(η) :=
∫ Bl∗M1

G ∧ p̃r∗1η for all η ∈ Ω(M) (45)

satisfies
d ◦ G+G ◦d = ιH ◦ πH − 1. (46)

Any homogenous linear operator G : Ω∗(M) → Ω∗−1(M) satisfying (46)
will be called a Green operator.

(3) For the twist map τ : M ×M → M ×M defined by (x, y) 7→ (y, x), the
following symmetry property holds:

τ∗G = (−1)nG. (47)

Remark 3.6 (On Green kernel). (i) Given a homogenous linear operator G :
Ω∗(M)→ Ω∗−1(M), if there is a G ∈ Ωn−1(Bl∆(M ×M)) such that (45) holds,
then it is unique.

(ii) Because τ : M ×M →M ×M preserves ∆, it extends to a diffeomorphism
τ̃ of Bl∆(M ×M). The condition (47) is then equivalent to τ̃∗G̃ = (−1)nG̃ for
the extension G̃ of G to Bl∆(M ×M). We denote both extensions by τ and G,
respectively.

58



(iii) Using the intersection pairing (·, ·), we have

(G(η1), η2) =
∫

Bl∆(M×M)
G ∧ p̃r∗1η1 ∧ p̃r∗2η2

= (−1)n
∫

Bl∆(M×M)
τ∗G ∧ p̃r∗2η1 ∧ p̃r∗1η2

and
(η1,G(η2)) = (−1)η1(η2−1)(G(η2), η1)

= (−1)η1

∫
Bl∆(M×M)

G ∧ p̃r∗2η1 ∧ p̃r∗1η2

for all η1, η2 ∈ Ω(M). This implies the following:

τ∗G = (−1)nG ⇐⇒ (G(η1), η2) = (−1)η1(η1,G(η2))
∀η1, η2 ∈ Ω(M).

(48)

(iv) Because Bl∆(M ×M) is compact, G ∈ Ω(Bl∆(M ×M)) induces an L1-
integrable form on M ×M .

(v) In the literature, the term “Green operator” often denotes a generalized
inverse of an elliptic pseudo-differential operator, e.g., of the Laplacian ∆. This
is not what we mean here. C

We will now prove three propositions which will allow us to rewrite (46)
equivalently as a differential equation for G on M ×M\∆.

Proposition 3.7 (Identities for fiberwise integration). In the situation of Def-
inition 3.3, assume that F has a boundary ∂F . We orient ∂F using TpF =
N(p)⊕ Tp∂F for p ∈ ∂F , where N is an outward pointing normal vector field.
The following formulas hold for all κ ∈ Ωcv(E) and η ∈ Ωc(B):

• The projection formula∫ F

(κ ∧ π∗η) =
(∫ F

κ
)
∧ η,

• Stokes’ formula

(−1)Fd
∫ F

κ =
∫ F

dκ−
∫ ∂F

κ,

where F in the exponent denotes the dimension of F .

Proof. The projection formula is proven by a straightforward calculation from
the definition.

As for Stokes’ formula, we get the oriented fiber bundle ∂E → B with
fiber ∂F by restricting an oriented trivialization of E. There are two orientations
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on ∂E — as the total space of ∂E → B and as the boundary of E. They agree
due to our orientation convention. Using standard Stokes’ theorem, we get

(−1)F
∫
B

d
(∫ F

κ
)
∧ η = (−1)κ+1

∫
B

(∫ F

κ
)
∧ dη

= (−1)κ+1
∫
E

κ ∧ dπ∗η

=
∫
E

(
dκ ∧ π∗η − d(κ ∧ π∗η)

)
=
∫
B

(∫ F

dκ
)
∧ η −

∫
∂E

κ ∧ π∗η

=
∫
B

(∫ F

dκ−
∫ ∂F

κ
)
∧ η.

This proves the proposition.

In what comes next, we will view the canonical projection pr2 : M1×M2 →M2

as an oriented fiber bundle such that the orientation of the total space agrees
with the product orientation. The fiberwise integration for this bundle will be
denoted by

∫M1 .

Proposition 3.8 (Schwartz kernel of the harmonic projection). Let M be
an oriented closed n-dimensional Riemannian manifold. Let ν1, . . . , νm be a
homogenous basis of H(M) which is orthonormal with respect to the L2-inner
product

(η1, η2)L2 :=
∫
M

η1 ∧ ∗η2 for η1, η2 ∈ Ω(M),

where ∗ denotes the Hodge star. The smooth form H ∈ Ωn(M ×M) defined by

H :=
m∑
i=1

(−1)nνi pr∗1(∗νi) ∧ pr∗2(νi) (49)

satisfies the following properties:

(a) For all η ∈ Ω(M), we have

πH(η) =
∫ M1

H ∧ pr∗1 η.

(b) The form H is closed and Poincaré dual to ∆ ⊂M ×M .

(c) The following symmetry condition is satisfied:

τ∗H = (−1)nH. (50)

Proof. (a) For the purpose of the proof, we denote H(η) :=
∫M1 H ∧ pr∗1 η. For
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every k = 1, . . . , m, we use the projection formula to compute

H(νk) =
m∑
i=1

(−1)νin+νiνk
∫ M1

pr∗1(∗νi ∧ νk) ∧ pr∗2(νi)

=
m∑
i=1

(−1)νi(n+νk)+νk(n+νi)
(∫

M

νk ∧ ∗νi
)
νi

= νk.

It is easy to see that H(η) ∈ H(M) for all η ∈ Ω(M). Therefore, H is a projection
to H(M). Relations H(dη) = H(d∗η) = 0 for all η ∈ Ω(M) follow from the
second line of the computation above with νk replaced by dη and d∗η using that
Im d∗ ⊕ Im d is L2-orthogonal to H(M). We see that H = πH.

(b) Using d ◦ H = H ◦ d = 0 and Stokes’ theorem, we get∫ M1

dH ∧ pr∗1 η = (−1)ndH(η)−H(dη) = 0 for all η ∈ Ω(M).

It follows that dH = 0. Using the Künneth formula, we can write a given
κ ∈ Ω(M ×M) with dκ = 0 as κ = pr∗1 η1 ∧ pr∗2 η2 + dη for some η1, η2 ∈ H(M)
and η ∈ Ω(M). Then∫

M×M
H ∧ κ =

∫
M×M

H ∧ pr∗1 η1 ∧ pr∗2 η2

=
∫
M

H(η1) ∧ η2

=
∫
M

η1 ∧ η2 =
∫

∆
κ.

This shows that H is Poincaré dual to ∆.

(c) It follows from the Hodge decomposition that

(πH(η1), η2) = (πH(η1), πH(η2)) = (η1, πH(η2)) for all η1, η2 ∈ Ω(M). (51)

As in (iii) of Remark 3.6, one shows that this is equivalent to (50).

Proposition 3.9 (Differential condition). Let M be an oriented closed n-
dimensional Riemannian manifold. For G ∈ Ωn−1(Bl∆(M ×M)), the following
claims are equivalent:

(1) The operator G : Ω∗(M)→ Ω∗−1(M) defined by G(η) :=
∫ Bl∗M1 G ∧ p̃r∗1η

for η ∈ Ω(M) is a Green operator.

(2) It holds
dG = (−1)nH on (M ×M)\∆. (52)
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Proof. Before we begin, note that (52) is equivalent to the equation dG̃ =
(−1)nπ∗H on Bl∆(M ×M) for the extension G̃ of G; we denote G̃ by G and
π∗H by H by uniqueness.

We will first prove 2) =⇒ 1). Using Stokes’ formula, we get for every
η ∈ Ω(M) the following:

dG(η) = d
∫ Bl∗M1

G ∧ p̃r∗1η

= (−1)n
(∫ Bl∗M1

d(G ∧ p̃r∗1η)−
∫ ∂Bl∗M1

G ∧ p̃r∗1η
)

= πH(η)− G(dη) +
∫ ∂Bl∗M1

(−1)n+1G ∧ p̃r∗1η.

Since p̃r1 = p̃r2 on ∂Bl∆(M×M), we get with the help of the projection formula
the following:∫ ∂Bl∗M1

G ∧ p̃r∗1η =
∫ ∂Bl∗M1

G ∧ p̃r∗2η =
(∫ ∂Bl∗M1

G
)
∧ η.

We will show that the 0-form
∫ ∂Bl∗M1 G is constant (−1)n. Stokes’ formula

implies ∫ ∂Bl∗M1

G =
∫ Bl∗M1

dG = (−1)n
∫ Bl∗M1

H.

Using that H is Poincaré dual to ∆, we get for every η ∈ Ωn(M) the following:∫
M

(∫ Bl∗M1

H
)
∧ η =

∫
Bl∆(M×M)

H ∧ p̃r∗2η

=
∫
M×M

H ∧ pr∗2 η

=
∫

∆
pr∗2 η =

∫
M

1 ∧ η.

The implication follows.
We will now prove 1) =⇒ 2). Assume that (46) holds and that G extends

smoothly to the blow-up. Denote

K := (−1)ndG−H and L := −1 +
∫ ∂Bl∗(M1)

(−1)nG.

Notice that L is a function on M . From the previous computations, we deduce
that ∫ Bl∗(M1)

K ∧ p̃r∗1η = Lη for all η ∈ Ω(M),
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and hence∫
Bl∆(M×M)

K ∧ p̃r∗1(η1) ∧ p̃r∗2(η2) =
∫
M

Lη1 ∧ η2 for all η1, η2 ∈ Ω(M).

If K(x, y) 6= 0 for some (x, y) ∈ (M × M)\∆, we can choose η1, η2 with
disjoint supports such that the left-hand side is non-zero. This is a contradiction.
Consequently, we have K ≡ 0.

In general, the Schwartz kernel of a linear operator G : Ω(M)→ Ω(M) is a
distributional form G on M ×M which satisfies9

G(η)(x) =
∫
y∈M1

G(y, x)η(y) for all η ∈ Ω(M) and x ∈M2.

We consider the following conditions on G and G:

(G1) The Schwartz kernel G of G is a restriction of a smooth form on
Bl∆(M ×M).

(G2) d ◦ G+G ◦d = ιH ◦ πH − 1.

(G3) (G(η1), η2) = (−1)η1(η1,G(η2)) for all η1, η2 ∈ Ω(M).

(G4) G ◦πH = πH ◦ G = 0.

(G5) G ◦G = 0.

Clearly, (G1)–(G3) are equivalent to G being a Green kernel from Definition 3.5.
Conditions (G4) and (G5) play a crucial role in the vanishing results for the formal
pushforward Maurer-Cartan element n in Section 3.4 — the more conditions are
satisfied, the more vanishing we get.

The following lemma will be used in the proof of the upcoming proposition.

Lemma 3.10. Let G1, G2 be two linear operators Ω(M)→ Ω(M) with Schwartz
kernels G1, G2 ∈ Ω(Bl∆(M ×M)). Then G := G1 ◦ G2 is a smoothing operator,
i.e., its Schwartz kernel G is a smooth form on M ×M .

Proof. It holds G(x1, x2) = ±
∫
x
G2(x1, x)G1(x, x2). The lemma follows from

properties of convolution. See [19] for details.

A version of the following proposition can be found in [7].

Proposition 3.11 (Existence of special Green operator). Every oriented closed
Riemannian manifold M admits an operator G : Ω(M)→ Ω(M) which satisfies
(G1)–(G5).

9We may consider such class of G’s, e.g., pseudo-differential operators, such that G exists
and is unique (c.f., the well-known Schwartz kernel theorem).
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Proof of Proposition 3.11. Because H is Poincaré dual to ∆, we have for any
closed κ ∈ Ωc((M ×M)\∆) the following:∫

(M×M)\∆
H ∧ κ =

∫
M×M

H ∧ κ =
∫

∆
κ = 0.

Poincaré duality for non-compact oriented manifolds (see [5]) implies that H is
exact on (M×M)\∆. Because a manifold with boundary is homotopy equivalent
to its interior, the restriction of the blow-down map induces an isomorphism
π∗ : HdR((M×M)\∆)→ HdR(Bl∆(M×M)). It follows that (−1)nπ∗H admits a
primitive G ∈ Ω(Bl∆(M ×M)). According to Proposition 3.9, the corresponding
G satisfies (G1) and (G2).

If we define

G̃ := 1
2(G+ (−1)nτ∗G) ∈ Ωn−1(Bl∆(M ×M)),

then G̃ satisfies τ∗G̃ = (−1)nG̃ and is still a primitive to (−1)nπ∗H. Proposi-
tion 3.9 and (48) imply that the corresponding G satisfies (G1)–(G3).

Given G satisfying (G1)–(G3), we will now show that we can arrange (G4).
Let us define

G̃ := (1− πH) ◦ G ◦(1− πH).

Then G̃ is a Green operator because

d ◦ G̃ + G̃ ◦ d = (1− πH) ◦ (d ◦ G+G ◦d) ◦ (1− πH) = 1− πH.

Using (51) and (48), we see that G̃ satisfies (G3). Using the intersection pairing
and Proposition 3.8, we can write

πH(η) =
m∑
i=1

(−1)(n+η)νi(∗νi, η)νi for all η ∈ Ω(M),

and hence we have for all η1, η2 ∈ Ω(M) the following:

(
G(πH(η1)), η2

)
=

m∑
i=1

(−1)(n+η1)νi(∗νi, η1)
(
G(νi), η2

)
=

m∑
i=1

(−1)(n+1)νi
∫
M×M

pr∗1(∗νi) ∧ pr∗2(G(νi)) ∧ pr∗1(η1) ∧ pr∗2(η2).

It follows that the Schwartz kernel of G ◦πH is the smooth form

KG ◦πH :=
m∑
i=1

(−1)(n+1)νi pr∗1(∗νi) ∧ pr∗2(G(νi)).

64



Moreover, if we replace G with πH ◦ G, we get the smooth Schwartz kernel
KπH◦G ◦πH of (πH ◦ G) ◦ πH. In the same way, but now using in addition (48),
we can write(

πH(G(η1)), η2
)

= (−1)η1
(
η1,G(πH(η2))

)
= (−1)η1η2

(
G(πH(η2)), η1

)
=

m∑
i=1

(−1)η1η2+(n+1)νi
∫
M×M

pr∗1(∗νi) ∧ pr∗2(G(νi)) ∧ pr∗1(η2) ∧ pr∗2(η1)

=
m∑
i=1

(−1)(n+1)νi+n
∫
M×M

pr∗2(∗νi) ∧ pr∗1(G(νi)) ∧ pr∗1(η1) ∧ pr∗2(η2),

where in the last equality we pulled back the integral along the twist map. It
follows that the Schwartz kernel of πH ◦ G is the smooth form

KπH◦G :=
m∑
i=1

(−1)νi pr∗1(G(νi)) ∧ pr∗2(∗νi).

The Schwartz kernel of G̃ = G −πH ◦ G −G ◦πH + πH ◦ G ◦πH is then

G̃ = G− π∗KG ◦πH − π∗KπH◦G + π∗KπH◦G ◦πH ,

which is a smooth form on Bl∆(M ×M). Therefore, G̃ satisfies (G1)–(G4).
Given G satisfying (G1)–(G4), we will show that we can arrange (G5). The

trick from [7] is to define
G̃ = G dG .

Applying (G1) and (G2) repeatedly, we compute

dG G G d = dG G −dG G dG = dG G −dG G+dG dG G

= dG G −ddG G G = dG G = G −G dG,
(53)

and hence
G̃ = G −dG G G d.

Clearly, G̃ satisfies (G1) and (G2). As for (G3), we compute

(η1, G̃η2) = (−1)η1(G η1,dG η2) = (dG η1,G η2) = (−1)η1(G̃η1, η2).

As for (G5), we have

G̃G̃ = G dG(G d)G = G dG G −G d(G d)G G

= G dG G −G dG G+G ddG G = 0.
(54)

In order to show (G4), we have to compute the Schwartz kernel of dG G G d. By
Lemma 3.10, the Schwartz kernel T of T := G G G is a smooth form on M ×M .
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Therefore, Stokes’ formula without the boundary term applies, and we get

(dTd)η = d
∫ M1

T ∧ dπ∗1(η) =
∫ M1

dT ∧ dπ∗1(η) = (−1)T
∫ M1

d1dT ∧ π∗1(η).

Here d1 : Ω(M ×M)→ Ω(M ×M) is the operator defined in local coordinates
by

d1
(
f(x, y) dxI dyJ

)
=

n∑
i=1

∂f

∂xi
(x, y) dxi dxI dyJ .

It follows that the Schwartz kernel G̃ of G̃ satisfies

G̃ = G+ (−1)nd1dT

and is a smooth (n − 1)-form on Bl∆(M × M). Conditions (G1)–(G5) are
satisfied.

Remark 3.12 (Property (G5) in dimensions 1 and 2). In dimension 1, every
operator of degree −1 satisfies (G5) from degree reasons. In dimension 2, every
operator satisfying (G1) and (G2) satisfies (G5) as well, which follows from (53)
and (54). C

Remark 3.13 (The standard Green kernel). Consider the Hodge-de Rham Lapla-
cian ∆ = d◦d∗+d∗ ◦d : Ω(M)→ Ω(M) and its “Green operator” G∆ of degree 0
(see (v) of Remark 3.6 for the collision of terminology) which was defined in [33,
Definition 6.9] by

G∆ := (∆
∣∣
H(M)⊥)−1 ◦ πH(M)⊥ ,

where ⊥ denotes the L2-orthogonal complement. We introduce the standard
Green operator by

Gstd := −d∗ G∆ . (55)

Using the properties of G∆, d and d∗, one can show that Gstd satisfies (G2)–(G5)
(this will be shown in [19]).

As for (G1), the author was able to show it for flat manifolds (:= locally
isometric to Rn) by transforming the following formula inspired by [16] to blow-up
coordinates and explicitly computing the integral and limit:

Gstd = − lim
t→0

∫ ∞
t

1
2d∗Kτ dτ ,

where Kt(x, y) =
∑
i(−1)neie−λit(∗ei)(x) ∧ ei(y) is the heat kernel of ∆ and ei

the L2-orthonormal eigenbasis of ∆ with eigenvalues λi (the signs come from
our convention for fiberwise integration, c.f., (49)). C
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3.3 Formal pushforward Maurer-Cartan element n

We first recall ribbon graphs and their labelings based on [10].

Definition 3.14 (Ribbon graph). A graph Γ is a quadruple (V,H,V, E), where V
is a finite set of vertices, H a finite set of half-edges, V : H → V the “vertex
map” and E : H → H with E ◦ E = 1 and without fixed points the “edge map”.
The preimage E−1(h1) = {h1, h2} for some h1, h2 ∈ H is called an edge; the set
of edges is denoted by E. We assume that the graphs are connected, i.e., that
for any v1, v2 ∈ V there exists a path in E connecting v1 to v2.

A ribbon graph is a graph Γ which is equipped with a free transitive action
Zd(v)

� V−1(v) for every v ∈ V , where

d(v) := |V−1(v)|

is the valency of v. We denote by N : H → H the bijection induced by 1 ∈ Zd(v)

for every v ∈ V .
For a ribbon graph Γ, consider the set of sequences (hn)n∈Z ⊂ H such that

the following conditions holds:

∀n ∈ Z : hn+1 =

E(hn) n even,

N (hn) n odd.

Two such sequences (hn)n∈Z and (h′n)n∈Z are equivalent if and only if there
exist n0, n′0 ∈ Z both even or both odd such that hn0 = h′n0

. An equivalence
class [(hn)n∈Z] is called a boundary (or a boundary component) of Γ. The set of
boundaries of Γ is denoted by ∂Γ.

An IE ribbon graph is a ribbon graph Γ together with the decomposition
V = VinttVext into internal and external vertices Vint and Vext such that d(v) = 1
for all v ∈ Vext, respectively. This decomposition induces the decomposition
E = Eint t Eext, where an edge e is internal if it connects two internal vertices
and is external otherwise. We allow only graphs with at least one internal vertex.
We often identify an external vertex with its unique adjacent half-edge or the
unique adjacent external edge; we call either of these an external leg. For any
b ∈ ∂Γ, we define the valency of b by

s(b) := |V(b) ∩ Vext|,

where V(b) = {V(hn) | n ∈ Z}. We also have the free transitive Zs(b)-action on
V(b) ∩ Vext mapping v ∈ V(b) ∩ Vext to the next external vertex in the sequence
(V(hn))n∈Z. We will denote this action by N again.

We say that an IE ribbon graph Γ is reduced if s(b) ≥ 1 for all b ∈ ∂Γ.
The following letters will be used to denote the numerical invariants of a
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graph:
k . . . the number of internal vertices,

s . . . —"— external vertices.

l . . . —"— boundary components,

e . . . —"— internal edges.

Moreover, we define the genus g ∈ N0 so that the following Euler formula holds:

k − e+ l = 2− 2g. (56)

We denote by RGklg the set of isomorphism classes of connected IE ribbon
graphs with fixed k, l, g. We let RGklg ⊂ RGklg be the subset of reduced graphs.
For m ∈ N0, we denote by RG(m)

klg ⊂ RGklg the set of isomorphism classes of
connected IE ribbon graphs with all internal vertices m-valent, i.e., with

d(v) = m for all v ∈ Vint.

The notation Γ ∈ RGklg means that Γ is a representative of an equivalence class
[Γ] ∈ RGklg.

Remark 3.15 (On ribbon graphs). (i) An m-valent ribbon graph with m ≥ 2
has a unique decomposition V = Vint t Vext, and hence we can omit writing IE.

(ii) In this text, we will use only reduced ribbon graphs. Non-reduced ribbon
graphs may play a role in the extension of the theory of dIBLn(C(H)) to
non-reduced cyclic cochains or in the weak IBL∞-theory (see Remarks 2.23
and 2.27). C

Definition 3.16 (Labeling). A labeling of an IE ribbon graph Γ is the triple
L = (L1, L2, L3), where Li have the following meanings:

• The symbol L1 represents an ordering of internal vertices (=: Lv1), and
of boundary components (=: Lb1). Given L1, we write Vext = {v1, . . . , vk},
∂Γ = {b1, . . . ,bl} and denote

di := d(vi) and sj := s(bj).

• The symbol L2 represents an ordering and orientation of internal edges.
Given L2, we write Eint = {e1, . . . , ee} and ei = {hi,1, hi,2} for hi,1, hi,2 ∈
H.

• The symbol L3 represents an ordering of half-edges at every internal vertex
(=: Lv3) and of external vertices at every boundary component (=: Lb3),
both compatible with the ribbon structure (:= the Zm-actions). Given L3,
we write V−1(v) = {hv,1, . . . , hv,d(v)} and V(b) ∩ Vext = {vb,1, . . . , vb,s(b)}
with N (hv,i) = hv,i+1 and N (vb,j) = vb,j+1 for all i, j, respectively.
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We sometimes call Li partial labelings and L a full labeling. A ribbon graph Γ
together with a labeling L is called a labeled ribbon graph.

Given a ribbon graph Γ, one can construct an oriented surface with bound-
ary ΣΓ — the thickening of Γ — in the obvious way and a closed oriented
surface Σ̂Γ by gluing oriented disks to the oriented boundaries of ΣΓ. If partial
labelings L1 and L2 are given, we obtain the following chain complex with
oriented chain groups (vector spaces over R):

C2 := 〈b1, . . . ,bl〉 C1 := 〈e1, . . . , ee〉 C0 := 〈vk, . . . , v1〉.
∂2 ∂1 (57)

Here bi stands for the oriented disc glued to the i-th boundary component of ΣΓ

and now being mapped into Σ̂Γ, ei stands for the 1-simplex in Σ̂Γ corresponding
to the i-th internal edge, vi stands for the 0-simplex in Σ̂Γ corresponding to
the i-th internal vertex, and the boundary map ∂ is the “geometric” boundary
operator. The homology of this chain complex is isomorphic to the singular
homology H(Σ̂) := H(Σ̂Γ;R).

The orientation of Ci (:= the order of generators in (57)) induces naturally
an orientation of H(Σ̂Γ). The construction from [10, Appendix A] is as follows.
We pick complements Hi of Im(∂i+1) in ker(∂i) and complements Vi of ker(∂i)
in Ci and write

C2 = V2 ⊕H2 C1 = V1 ⊕H1 ⊕ Im(∂2) C0 = Im(∂1)⊕H0.
∂2 ∂1

We orient Vi arbitrarily and transfer the orientation to Im(∂i) via ∂i : Vi
'→

Im(∂i). Then, assuming the direct sum orientation, orienting Hi is equivalent to
orienting Ci, and we obtain the orientation of Hi(Σ̂Γ) via the canonical projection
π : Hi

'→ Hi(Σ̂Γ) = ker(∂i)/ Im(∂i+1). This construction does not depend on
the choices of complements and orientations of Vi.

Definition 3.17 (Compatibility of L1 and L2). Given a ribbon graph Γ with
partial labelings L1 and L2, we say that L2 is compatible with L1 if the orientation
on H(Σ̂Γ) induced by (57) agrees with the canonical orientation

H(Σ̂Γ) = 〈v1 + · · ·+ vk〉 ⊕H1(Σ̂Γ)⊕ 〈b1 + · · ·+ bl〉,

where H1(Σ̂Γ) is oriented using the canonical symplectic intersection form.

Given a labeled IE ribbon graph Γ, the set of half-edges adjacent to internal
vertices V−1(Vint) can be ordered in two ways corresponding to writing

2e+ (s1 + · · ·+ sl) = d1 + · · ·+ dk.

This leads to the following definition.
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Definition 3.18 (Edge order and vertex order). For a labeled IE ribbon graph Γ,
we define the following two orders on the set of half-edges H:

• Edge order: The first 2e half-edges he
i,j are the ones from internal edges;

they are ordered according to L2. They are followed by blocks of s1, . . . ,
sl half-edges hb

i,j which come from the boundary components i = 1, . . . ,
l, respectively, and which are ordered according to Lb3 inside the blocks.
Schematically, we have

(he
1,1h

e
1,2) . . . (he

e,1h
e
e,2)(hb

1,1 . . . h
b
1,s1) . . . (hb

l,1 . . . h
b
l,sl

).

• Vertex order: It consists of blocks of d1, . . . , dk half-edges hv
i,j which come

from internal vertices 1, . . . , k, and which are ordered according to Lv3
inside the blocks. Schematically, we have

(hv
1,1 . . . h

v
1,d1

) . . . (hv
k,1 . . . h

v
k,dk

).

We denote by σL ∈ S|H| the permutation from the edge to the vertex order
which is constructed such that the i-th half-edge in the edge order is the same as
the σL(i)-th half-edge in the vertex order.

From now on, we will consider only reduced trivalent ribbon graphs RG(3)
klg

with k, l ≥ 1, g ≥ 0. We will often use the equation

2e+ s = 3k. (58)

Definition 3.19 (Formal pushforward Maurer-Cartan element). Let M be an
oriented closed Riemannian manifold, and let G ∈ Ωn−1(Bl∆(M×M)) be a Green
kernel from Definition 3.5. The formal pushforward Maurer-Cartan element n
is the collection of

nlg ∈ ÊlC(H(M)) for all l ≥ 1, g ≥ 0

defined on generating words ωi = αi1 . . . αisi ∈ Bcyc
∗ H(M), where αij = θηij with

ηij ∈ H(M) for si ≥ 1 and i = 1, . . . , l, by the formula

nlg(slω1 ⊗ · · · ⊗ ωl)

:= 1
l!

∑
[Γ]∈RG(3)

klg

1
|Aut(Γ)| (−1)s(k,l)+P (ω)

∑
L1, Lb3

(−1)σLI(σL), (59)

which we explain as follows:

• The second sum is over all partial labelings L1 and Lb3 of a representative Γ
of [Γ]. In every summand, we complete L1 and Lb3 to a full labeling
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L = (L1, L2, L3) by picking an arbitrary Lv3 and an arbitrary L2 compatible
with L1.

• Suppose that Γ and L1 are admissible with respect to the input ω1, . . . , ωl;
this means that Γ has l boundary components and that the i-th boundary
component has valency si for every i = 1, . . . , l. In this case, denoting
σ = σL, we define

I(σL) :=
∫
x1,...,xk

G(xξ(σ1), xξ(σ2)) · · ·G(xξ(σ2e−1), xξ(σ2e))

η11(xξ(σ2e+1)) · · · ηlsl(xξ(σ2e+s)),

(60)

where ξ : {1, . . . , 3k} → {1, . . . , k} is the function defined by

ξ(3j − 2) = ξ(3j − 1) = ξ(3j) := j

for all j = 1, . . . , k, s = s1 + · · · + sl, η(xi) denotes the pullback of η
along the canonical projection πi : M×k → M to the i-th component Mi,
G(xi, xj) denotes the pullback of G along πi × πj : M×k →Mi ×Mj , and∫
x1,...,xk

denotes the integral of an nk-form over k copies of M .

If Γ and L1 are not admissible, then we set I(σL) := 0.

• s(k, l) := k + kl(n− 1) + 1
2k(k − 1)n mod 2.

• P (ω) :=
∑l
i=1
∑si
j=1(s− s1 − · · · − si−1 − j)ηij mod 2.

In order to show that nlg is well-defined and that the collection (nlg) satisfies
Definition 2.19 for dIBL(C(H(M))), there are several things to check:

(1) The integral I(σL) converges.

(2) The sums are finite.

(3) The product (−1)σLI(σL) is independent of the choice of Lv3 and L2

compatible with L1.

(4) The sum over labelings is independent of the chosen representative Γ in an
isomorphism class from RG(3)

klg.

(5) The map nlg : Bcyc
∗ H(M)[3− n]⊗l → R is graded symmetric on permuta-

tions of its inputs sωi.

(6) The map nlg is graded symmetric on cyclic permutations of the components
αij of each ωi.

(7) The degree condition 1) from Definition 2.19 holds with d = n− 3.

(8) The filtration-degree condition 2) from Definition 2.19 holds with γ = 2.
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(9) The Maurer-Cartan equation (22) holds.

Conditions 1) and 9) will be proven in [12] using the theory of iterated
blow-ups. In this text, we will take 1) and 9) for granted.

Lemma 3.20. Assuming 1), the conditions 2) – 8) hold.

Proof. As for 2), the fixed input ω1, . . . , ωl fixes the number s of external vertices
of Γ by admissibility. Expressing e from (56) and plugging it in (58) gives

k = s+ 2l + 4g − 4. (61)

We see that all parameters are fixed. Now, there is only finitely many ele-
ments with fixed s in RG(3)

klg, and each of them has only finitely many labelings.
Therefore, the sums are finite.

As for 3), we have to consider the orientation of the complex (57). Clearly,
if two L2’s are compatible with L1, then they differ by an even number of
the following operations: a transposition of two internal edges or a change
of the orientation of an internal edge. The former operation introduces no
sign in (−1)σL but generates the sign (−1)n−1 in I(σL) from swapping the
corresponding G’s. The latter operation induces the sign −1 in (−1)σL and the
sign (−1)n in I(σL) from the symmetry G(x, y) = (−1)nG(y, x). Because the
overall signs in (−1)σLI(σL) are the same, an even number of these operations
preserves (−1)σLI(σL). This implies the independence of an L2 compatible
with L1. A change in Lv3 produces no sign in (−1)σL because every internal
vertex is trivalent and a cyclic permutation of an odd number of elements is even.
The integral I(σL) remains unchanged because the change in σL is compensated
by the composition with ξ. Independence of the choice of Lv3 follows.

As for 4), every isomorphism of ribbon graphs Γ→ Γ′ induces the bijection
L 7→ L′ of compatible labelings such that σL = σL′ (L′ is the “pushforward”
labeling). The independence of the choice of a representative of [Γ] follows.

As for 5), let µ ∈ Sl be a permutation of the inputs sω1, . . . , sωl. The set of
graphs which admit an admissible labeling is the same for both nlg(slω1⊗· · ·⊗ωl)
and nlg(slωσ−1

1
⊗ · · · ⊗ ωσ−1

l
); we will pick one such Γ and study the admissible

labelings L and L′, respectively. We write ηi = ηi1 . . . ηisi and Ωi = sωi for all i,
j, and denote by I ′(σL′) the integral in the definition of nlg(slωµ−1

1
⊗ · · ·⊗ωµ−1

l
).

Let µ̃ ∈ S3k be the permutation which acts as the identity on 1, . . . , 2e and
as the block permutation determined by µ on 2e+ 1, . . . , 2e+ s divided into l
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blocks of lengths s1, . . . , sl. For any σ ∈ S3k, we have

I ′(σ) =
∫
x1,...,xk

G(xξ(σ1), xξ(σ2)) · · ·G(xξ(σ2e−1), xξ(σ2e))

ηµ−1
1 1(xξ(σ2e+1)) . . . ηµ−1

l
s
µ
−1
l

(xξ(σ2e+s))

= ε(µ, η)
∫
x1,...,xk

G(xξ((σ◦µ̃)1), xξ((σ◦µ̃)2)) · · ·G(xξ((σ◦µ̃)2e−1), xξ((σ◦µ̃)2e))

η11(xξ((σ◦µ̃)2e+1)) . . . ηlsl(xξ((σ◦µ̃)2e+s))

= ε(µ, η)I(σ ◦ µ̃).

The precomposition with µ̃ corresponds to a bijection (L1, L
b
3) 7→ (L′1, Lb3

′) of
partial labelings for nlg(slω1 . . . ωl) and nlg(slωµ−1

1
⊗ · · · ⊗ ωµ−1

l
), respectively.

However, if L2 is compatible with L1, then in order to get an L′2 compatible
with L′1, the labeling L2 has to be altered by as many operations of switching
two internal edges or changing the orientation of an internal edge as there are
transpositions in µ. We explained in the proof of 3) that this produces the
sign (−1)(n−1)µ in (−1)σL′ I(σL′). Therefore, after the choice of compatible L2

and L′2, we have

(−1)σL′ I ′(σL′) = (−1)(n−1)µ(−1)µ̃ε(µ, η)(−1)σLI(σL).

If we view η as η11 . . . ηlsl , we can understand (−1)P (ω) as the Koszul sign ε(θ, η).
Similarly, we write (−1)P (µ(ω)) = ε(θ, µ(η)), where we first view η as η1⊗· · ·⊗ηl
to apply µ and then as the list of components ηij to compute the Koszul sign
(this is a little ambiguity in our notation). If we denote by µ the permutation of
1, . . . , s permuting the l blocks of lengths s1, . . . , sl according to µ, then µ has
the same sign as µ̃, and the decomposition of ε(θ, µ(η)) into the moves

θ1 . . . θsηµ−1
1 1 . . . ηµ−1

l
s
µ
−1
l

(1)−−→ θµ1 . . . θµsη11 . . . ηlsl
(2)−−→ θµ1η11 . . . θµsηlsl

(3)−−→ θ1ηµ−1
1 1 . . . θsηµ−1

l
sl

shows that
(−1)P (µ(ω)) = (−1)µ̃ε(µ, η)︸ ︷︷ ︸

(1)

(−1)P (ω)︸ ︷︷ ︸
(2)

ε(µ, ω)︸ ︷︷ ︸
(3)

.

Using this, we write

(−1)P (µ(ω))(−1)σL′ I ′(σL′) = ε(µ, ω)(−1)(n−1)µ(−1)P (ω)(−1)σLI(σL),
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and compute

nlg(Ωµ−1
1
⊗ · · · ⊗ Ωµ−1

l
)

= ε(µ(s), µ(ω))nlg(slωµ−1
1
⊗ · · · ⊗ ωµ−1

l
)

= ε(µ(s), µ(ω))(−1)|s|µε(µ, ω)nlg(slω1 ⊗ · · · ⊗ ωl)

= ε(µ(s), µ(ω))︸ ︷︷ ︸
(1)

(−1)|s|µε(µ, ω)︸ ︷︷ ︸
(2)

ε(s, ω)︸ ︷︷ ︸
(3)

nlg(sω1 ⊗ · · · ⊗ sωl)

= ε(µ,Ω)nlg(Ω1 ⊗ · · · ⊗ Ωl).

We used |s| = n− 1 mod 2, and the last equality follows from the decomposition
of ε(µ,Ω) into the moves

s1ω1 . . . slωl
(3)−−→ s1 . . . slω1 . . . ωl

(2)−−→ sµ−1
1
. . . sµ−1

l
ωµ−1

1
. . . ωµ−1

l

(1)−−→ sµ−1
1
ωµ−1

1
. . . sµ−1

l
ωµ−1

l
.

This proves the symmetry of nlg.
As for 6), fix an i = 1, . . . , l and let µ ∈ Ssi be a cyclic permutation permuting

the components of ωi = αi1 . . . αisi . Similarly to the previous case, we denote
by µ̃ the corresponding permutation of 1, . . . , 3k and get a bijection (L1, L

b
3) 7→

(L′1 = L1, L
b
3
′) of admissible labelings of a given graph Γ for nlg(slω1 ⊗ · · · ⊗

αi1 . . . αisi ⊗· · ·⊗ωl) and nlg(slω1⊗· · ·⊗αiµ−1
1
. . . αiµ−1

si
⊗· · ·⊗ωl), respectively.

This time, there is no change in L1, and thus we can take L′2 = L2, producing
no sign. Therefore, we have

(−1)σL′ I ′(σL′) = (−1)µ̃ε(µ, ηi)(−1)σLI(σL),

where ε(µ, ηi) comes from permuting the forms in I ′(σL′). Further, we deduce

(−1)P (µ(ω)) = (−1)µ̃ε(µ, ηi)(−1)P (ω)ε(µ, ωi),

and hence

nlg(slω1 ⊗ · · · ⊗ αiµ−1
1
. . . αiµ−1

si
⊗ · · · ⊗ ωl)

= ε(µ, ωi)nlg(slω1 ⊗ · · · ⊗ αi1 . . . αisi ⊗ · · · ⊗ ωl).

This shows the symmetry of nlg on cyclic permutations of the components of ωi.
As for 7), suppose that nlg(slω1 ⊗ · · · ⊗ ωl) 6= 0, and let D denote the total

form-degree of the input η11, . . . , ηlsl ∈ H(M); i.e., we define

D := deg(η11) + · · ·+ deg(η1s1) + · · ·+ deg(ηl1) + · · ·+ deg(ηlsl).
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Clearly, we must have
nk = (n− 1)e+D, (62)

where the left-hand side is the dimension of M×k and the right-hand side the
form-degree of the integrand of I(σL). If we plug in e from (56) and k from (61),
we get

D = nk − (n− 1)e

= nk − (n− 1)(k + l + 2g − 2)

= k − (n− 1)(l + 2g − 2)

= s+ 2l + 4g − 4− (n− 1)(l + 2g − 2)

= s− (n− 3)(l + 2g − 2).

It follows that

|nlg| = |sl|+ |ω1|+ · · ·+ |ωl| = l(n− 3) +D − s = −2(n− 3)(g − 1).

This is exactly the degree from Definition 2.19.
As for 8), if nlg(slω1 ⊗ · · · ⊗ ωl) 6= 0, then

s = k − 2l − 4g − 4 ≥ 1 + 2(2− 2g − l) = 1 + 2χ0lg,

and hence nlg ∈ F1+2χ0lg ÊlC for the filtration induced from the dual of the
filtration of Bcyc

∗ H by weights. Therefore, we get

‖nlg‖ ≥ 1 + 2χ0lg > 2χ0lg for all l ≥ 1, g ≥ 0.

This finishes the proof.

Definition 3.21 (Vertices of types A, B, C and some special graphs). Let
Γ ∈ RG(3)

klg be a trivalent ribbon graph and v its internal vertex. We say that v
is of type A, B or C if it is connected to precisely 1, 2 or 3 internal vertices,
respectively (see Figure 4). The graph Γ is called (see Figures 2 and 3):

• a tree if [Γ] ∈ RGk10 for some k ≥ 1;

• circular if [Γ] ∈ RGk20 for some k ≥ 1;

• the Y -graph is the unique tree with k = 1;

• an Ok-graph if Γ is circular with k internal vertices and no A-vertex.

We denote the Y -graph simply by Y .

Remark 3.22 (On A, B, C vertices and special graphs). We observe the following:

(i) A trivalent graph Γ 6= Y has each internal vertex of type A, B or C.
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Figure 2: A tree and a circular graph. Internal vertices are denoted with a full
dot and external vertices with an empty dot.

Figure 3: The Y -graph and an O6-graph.

(ii) The term n10 is a sum over trees, and the term m10 is the contribution of
the Y -graph to n10 (see Proposition 3.23 below). The term n20 is a sum over
circular graphs. C

Wee will also denote by A, B, C the numbers of internal vertices of the
corresponding type. Under the change of variables

s = 2A+B,

e = B + 1
2A+ 3

2C,

k = A+B + C,

(63)

the trivalent formula (58) becomes trivial and the Euler formula (56) becomes

C −A = 2l − 4 + 4g. (64)

Proposition 3.23 (Formal pushforward Maurer-Cartan element). The push-
forward Maurer-Cartan element n = (nlg) is a Maurer-Cartan element for
dIBL(H(M)) which is compatible with m. In particular, the A∞-algebra H(M)n
is homologically unital and augmented.

Proof. The fact that n is a Maurer-Cartan element for dIBL(H(M)) follows from
Lemma 3.20 assuming 1) and 9) from [12].

As for the compatibility with m, the only graph contributing to n10(sα1α2α3)
is the Y -graph with k = 1. The group Aut(Y ) consists of three rotations, and
there is only one possible L1, no L2 and three Lb3. In Definition 3.19, we get
s(1, 1) = n− 2, (−1)σL = 1 because a cyclic permutation of an odd number of
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Aα1,α2(y)

x

Bα(y1, y2)

x

C(y1, y2, y3)

x

α1

α2 y

α

y1 y2

y1

y2 y3

Figure 4: Trivalent vertices of types A, B and C with the corresponding forms
Aα1,α2 , Bα and C, respectively.

elements is even, and also P (α1α2α3) = η2. Finally, we compute

n10(sα1α2α3) = 1
3(−1)n−2+η2

∑
Lb3

∫
x

α1(xξ(σ1))α2(xξ(σ2))α3(xξ(σ3))

= (−1)n−2+η2

∫
M

η1 ∧ η2 ∧ η3

= m10(sα1α2α3).

Definition 3.24 (Contributions of A, B, C vertices). Consider an internal
vertex of type A, B or C as in Figure 4. We define the following smooth forms
on M , M×2 and M×3, respectively:10

Aα1,α2(y) :=
∫
x

G(y, x)η1(x)η2(x),

Bα(y1, y2) :=
∫
x

G(y1, x)G(x, y2)η(x),

C(y1, y2, y3) :=
∫
x

G(x, y1)G(x, y2)G(x, y3).

3.4 Results about vanishing of n

In the situation of Definition 3.19, let Γ ∈ RG(3)
klg be a reduced trivalent ribbon

graph, L = (L1, L2, L3) its labeling, xi the integration variable associated to
the i-th internal vertex, G(xi, xj) the Green kernel on the oriented internal
edge between xi and xj , and αij ∈ H(M)[1] the harmonic form on the j-th
external vertex on the i-th boundary component. Recall that we denote by
ωi = sαi1 . . . αisi the i-th input of nlg and by D the total form-degree of all
inputs.

By saying “a graph vanishes” we mean that I(σL) = 0 in the given context.

Proposition 3.25 (Vanishing of graphs with 1). In the setting of Definition 3.19,
suppose that the following condition is satisfied:

10The definitions can be made precise in local coordinates. Smoothness of Aα1,α2 is clear,
smoothness of Bα follows from Lemma 3.10, and smoothness of C can be shown by a similar
argument.
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(V1) Every graph Γ ∈ RG(3)
klg, Γ 6= Y which has 1 = θ1 ∈ H(M)[1] at an external

vertex vanishes.

Then n is strictly reduced, and the following holds depending on the dimension n:

(a) For n > 3: All graphs which are not trees or circular vanish. There-
fore, nlg = 0 for all (l, g) 6= (1, 0), (2, 0), and it follows that all higher
operations qn1lg vanish on the chain level.

(b) For n = 3: A tree vanishes unless all η1, . . . , ηs are one-forms. Therefore,
n10(sα1 . . . αs) 6= 0 implies deg(ηi) = 1 for all i.

(c) For n < 3: All trees except for Y vanish. Therefore, we have n10 = m10,
and consequently qn110 = qm110.

Moreover, we have

(d) A circular graph vanishes unless all η11, . . . , η2s2 are one-forms. Therefore,
n20(s2α11 . . . α1s1 ⊗ α21 . . . α2s2) 6= 0 implies deg(ηij) = 1 for all i, j.

In addition to (V1), suppose that H1
dR(M) = 0. Then:

(e) All circular graphs vanish. Therefore, we have n20 = 0, and consequently
qn120 = q120.

(f) For n ≤ 6: All trees except for Y vanish. Therefore, we have n10 = m10,
and consequently qn110 = qm110.

Proof. The proof is just combinatorics with D. Suppose that a trivalent ribbon
graph Γ 6= Y does not vanish on the input ω1, . . . , ωl. Because all external
vertices of Γ are adjacent to an A-vertex or a B-vertex, the assumption (V1)
implies D ≥ s, where s is the total number of external vertices. A combination
of (62) and (58) yields

nk − (n− 1)e = D ≥ s = 3k − 2e ⇐⇒ (n− 3)k ≥ (n− 3)e.

(a) For n > 3, we get k ≥ e, which implies that Γ is either a tree or a circular
graph.

(b) If Γ is a tree, then s = k + 2 and e = k − 1. From (62) we get

D = nk − (n− 1)(k − 1) = k + n− 1. (65)

Now D is the sum of s = k + 2 form-degrees deg(ηij) > 0, and hence (65) for
n = 3 implies that deg(ηij) = 1 for all i, j.

(c) For n < 3, we get e ≥ k, which implies that Γ is not a tree.
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(d) If Γ is a circular graph, then e = k = s, and we get using (62) that

D = nk − (n− 1)k = k.

Here D is the sum of s = k form-degrees deg(ηij) > 0, and hence deg(ηij) = 1
for all i, j.

We will now assume, in addition, that H1(M) ' H1
dR(M) = 0.

(e) We must have D ≥ 2s, which is in contradiction with D = s for a circular
graph. Therefore, n20 = 0.

(f) Finally, for a tree Γ 6= Y , we have

k + n− 1 = D ≥ 2s = 2(k + 2) ⇐⇒ n− 5 ≥ k.

This finishes the proof of the proposition.

Proposition 3.26 (Green kernel with (G4) and (G5)). In the setting of Defini-
tion 3.19, suppose that the Green kernel G satisfies (G4) and (G5). Then the
condition (V1), and hence Proposition 3.25 holds.

Proof. It is easy to see that Aα1,α2 = G(η1 ∧ η2) for all α1, α2 ∈ H(M)[1],
and that −B1 is the Schwartz kernel of G ◦G. Therefore, (G4) and (G5) imply
Aα1,1 = 0 and B1 = 0, respectively.

As for the integral I(σL), one has to apply the Fubini theorem in order to
integrate out single vertices Aα1,1 and B1. This step relies on L1-integrability of
the integrand which follows from [12] (the integrand comes from a smooth form
on a compact manifold with corners).

Proposition 3.27 (Vanishing of A-vertices). In the setting of Definition 3.19,
suppose that the following condition is satisfied:

(VA) Every graph with an A-vertex vanishes.

Then we have n10 = m10, and the only contribution to n20(s2α11 . . . α1s1 ⊗
α21 . . . α2s2) comes from Ok-graphs with k = s1 + s2 = D.

Proof. The only trees and circular graphs which are not excluded by the assump-
tion are the Y -graph and Ok-graphs, respectively (the external branches contract).
The condition on form-degrees is obtained as in the proof of Proposition 3.25.

To argue that I(σL) = 0, we again need L1-integrability as in the proof of
Proposition 3.26.

Remark 3.28 (Integrability for trees). Given a tree, we can start at a leaf and
write I(σL) as an iterative integral of contributions Aα1,α2 for α1, α2 ∈ Ω(M).
These are smooth forms, and hence integrability is guaranteed. Therefore, the
result n10 = m10 is independent of the convergence results from [12]. C
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Proposition 3.29 (1-connected geometrically formal manifolds). Let M be a
geometrically formal n-manifold and G a Green kernel satisfying (G4) and (G5)
(it exists by Proposition 3.11). If H1

dR(M) = 0, then the following holds:

(n 6= 2) All Y 6= Γ ∈ RGklg with k, l ≥ 1, g ≥ 0 vanish, and hence n = m.

(n = 2) All Y 6= Γ ∈ RGkl0 with k, l ≥ 1 vanish, and hence nl0 = ml0 for
all l ≥ 1.

Proof. Given η1, η2 ∈ H, geometric formality implies η1 ∧ η2 ∈ H, and hence
Aα1,α2 = G(η1 ∧ η2) = 0. We see that (V1) and (VA) are satisfied, and hence the
implications of Propositions 3.25 and 3.27 hold. The claim for n > 3 follows.

As for n = 3, Poincaré duality implies H2
dR(M ;R) = 0. Therefore, the total

form-degree D satisfies D = nB, where B is the number of B-vertices. We see
using (64) that (62) is equivalent to

B + 1
2(3− n)C = D = nB ⇐⇒ (n− 1)B = 1

2(3− n)C. (66)

It follows that B = 0, and hence all reduced graphs vanish.
As for n = 2, we get from (66) and (64) that B ≥ l is equivalent to g ≥ 1.

Remark 3.30 (A∞-homotopy transfer). In [12], it will be shown that the A∞-
algebra H(M)n = (H(M), (µk)) induced by n10 agrees with the A∞-algebra
obtained by the A∞-homotopy transfer

( Ω(M)

m1, m2

) ( H(M)

µ1 ≡ 0, µ2 = πHm2(ιH, ιH), µ3, . . .

)

using the homotopy retract (see [32])

(Ω(M),m1) (H(M),m1 ≡ 0).G
πH

ιH

The operation µk of the transferred A∞-structure is computed as a sum over
planar trees with a root and k leaves decorated by ιH at the leaves, πH at the
root and G at the internal edges (see [1]). The result of [12] is plausible because
the part of n10 contributing to µk is a sum over trivalent ribbon trees with k + 1
leaves.

In [12], they will also show that ι1 := ιH : H → Ω extends to an A∞-quasi-
isomorphism (ιk)k≥1 from (H, (µk)) to (Ω,m1,m2). The induced chain map on
the dual cyclic bar complexes is then the map fm110 coming from the IBL∞-theory
in the Introduction. C
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Proposition 3.31 (Twisted boundary operator for formal manifolds). In the
setting of Definition 3.19, suppose that M is formal in the sense of rational
homotopy theory. Then there is a quasi-isomorphism

h110 : (B̂∗cycHdR(M)[3− n], qm110) (B̂∗cycH(M)[3− n], qn110).

Proof. Formality of M is equivalent to the existence of a zig-zag of dga-quasi-
isomorphisms (see [32])

(HdR(M),m1 ≡ 0,m2) • · · · • (Ω(M),m1,m2).

Because a dga-quasi-isomorphism has a homotopy inverse in the category of
A∞-algebras, we get a direct A∞-quasi-isomorphism

(gk) : (Ω(M),m1,m2) (HdR(M),m1 ≡ 0,m2).

Precomposing with (ιk) from Remark 3.30, we get the A∞-isomorphism

(hk) : (H(M), (µk)) (HdR(M),m1 ≡ 0,m2).

This induces the quasi-isomorphism h110 of the corresponding cyclic cochain
complexes (see [19] for details).

Remark 3.32 (On formality). Geometrically formal manifolds include Sn, CPn

and Lie groups (see [22]). Any geometrically formal manifold is formal. Every
simply-connected manifold of dimension at most 6 is formal (see [28]). C

3.5 Conjectured relation to string topology

Given a smooth connected oriented n-dimensional manifold M , we consider the
equivariant homology of the free loop space LM := {γ : S1 → M continuous}
with respect to the reparametrization action of S1. It is defined as the singular
homology of the Borel construction

LS1M := ES1 ×S1 LM := (ES1 × LM)/S1,

where ES1 = S∞ → BS1 = CP∞ is a model for the universal bundle for S1, and
we quotient out the diagonal action. We denote this homology by

HS1

∗ (LM) := H∗(LS1M).

The “geometric versions” of the homologies were defined in [9] as the degree
shifts

H(LM) := H(LM)[n] and H(LM) := HS1
(LM)[n].
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There is the loop product • : H(LM)⊗2 → H(LM) of degree 0 which makes
H(LM) into a graded commutative dga. There is also the loop coproduct
τ : H̄(LM)→ H̄(LM)⊗2 of degree 1− 2n which is graded cocommutative and
coassociative and is a derivation of •. The geometric construction of • and τ on
transverse smooth chains in LM was described in [9] and [4], respectively. Here,
the symbol H̄(LM) stands for the degree shifted relative homology

H̄(LM) := H(LM,M)[n]

with respect to constant loops M ↪→ LM . The geometric construction of τ does
not work on the whole H(LM) because of the phenomenon of “vanishing of small
loops” depicted in [11, Figure 4, p. 13].

The projection ES1×LM → LS1M is an S1-principal bundle and thus induces
a Gysin sequence. This sequence written using the geometric versions reads

. . . Hi Hi Hi−2 Hi−1 . . . ,E ∩c M (67)

where the mapM adds a marked point in each string in a family in all possible
positions, the map E erases the marked point of each string in a family, c ∈
HS1

2 (LM) is the Euler class of the circle bundle and ∩ the cap product.
The string bracket m̃2 : H(LM)⊗2 → H(LM) and the string cobracket

c̃2 : H̄(LM)→ H̄(LM)⊗2 are defined by

m̃2 := E ◦ • ◦M⊗2 and c̃2 := E⊗2 ◦ ν ◦M.

Here, the symbol H̄(LM) stands for the degree shifted relative S1-equivariant
homology

H̄(LM) := HS1
(ES1 ×S1 LM,ES1 ×S1 M)︸ ︷︷ ︸

=: H̄S1
(LM)

[n].

Because |M| = 1 and |E| = 0, we have for all ξ ∈ H̄(LM) and ξ1, ξ2 ∈ H the
relations

m̃2(ξ1, ξ2) = (−1)|ξ1|E(M(ξ1) •M(ξ2)),

c̃2(ξ) =
∑
E(ν1)⊗ E(ν2),

(68)

where we write ν(M(ξ)) =
∑
ν1⊗ ν2. The operations m̃2 and c̃2 have degrees 2

and 2 − 2n with respect to the grading on H(LM), respectively. In fact, we
will consider m̃2 and c̃2 given by (68) as operations on the even degree shift
HS1(LM)[2−n] = H(LM)[2−2n], which have degrees 2(2−n) and 0, respectively.
The symbols m2 and c2 will denote their degree shifts to HS1(LM)[3−n], which
have degrees of an IBL-algebra from Definition 2.17.
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In work in progress [13], they consider the map

Iλ,∗ : Hλ
−∗−1(Ω∗(M)) −→ H∗S1(LM ;R)

defined on the chain level as a cyclic version of Chen’s iterated integrals. Recall
that Hλ

−∗−1(Ω∗) = H∗(B̂∗cycΩ∗,b∗), where b : B∗Ω =
⊕

k≥1 Ω[1]⊗k → B∗Ω is
the Hochschild differential of the de Rham dga (Ω∗,m1,m2), and the grading
on Hλ

∗(Ω∗) was chosen such that Hλ
∗(Ω∗) ' Hλ,cl

∗ (Ω∗) for the classical cyclic
homology of a dga. They prove in [13] that if M is simply-connected, then the
map Iλ,∗ induces an isomorphism Hλ,red

−∗−1(Ω∗(M))) ' H∗S1,red(LM), where

H∗S1,red(LM) := H∗S1(ES1 ×S1 LM,ES1 ×S1 {x0})

is the reduced S1-equivariant cohomology with respect to a base point x0 ∈M
(the constant loop at x0). Dualizing their map, we obtain the isomorphism

H−∗−1
λ,red (Ω∗(M)) ' HS1,red

∗ (LM ;R). (69)

Suppose from now on that M is closed. Pick a Riemannian metric and a
Green kernel G ∈ Ωn−1(Bl∆(M×M)). We will assume that G satisfes (G1)–(G5)
from Section 3.2 so that the formal pushforward Maurer-Cartan element n is
strictly reduced, and hence the twisted reduced IBL∞-algebra dIBLn

(
Cred(H)

)
and the induced IBL-algebra IBL(Hn,red(C(H))) are well-defined. Recall that
Hn
∗(C(H)) = Hλ

n−3−∗(Hn), where Hn is the A∞-algebra on H twisted by n10.
From [12], we have

H∗λ(H∗(M)n) ' H∗λ(Ω∗(M)). (70)

A combination of (69) and (70) gives the following version of the string
topology conjecture from the Introduction.

Conjecture 3.33 (String topology conjecture for simply-connected manifold).
Let M be an oriented closed manifold of dimension n. There is a chain map

(Csing
∗ (LS1M ;R), ∂) −→ (B̂∗cycH(M), qn110),

where Csing
∗ denotes the (smooth) singular chain complex and ∂ the standard

boundary operator, which, if M is simply-connected, satisfies the following:

• It induces an isomorphism HS1,red
∗ (LM ;R)[2− n] ' Hn,red

∗
(
C(H(M))

)
.

• It intertwines m2 on HS1(LM ;R) and q210.

• The pullback of qn120 to HS1,red(LM ;R) is compatible with c2 on H̄S1(LM ;R)
under the morphism induced by the inclusion (LM,x0)→ (LM,M).

Remark 3.34 (On string topology conjecture). (i) The conjecture can be in-
terpreted as follows. There is an IBL-structure on HS1,red(LM ;R) compatible
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with Chas-Sullivan operations, and the IBL∞-algebra dIBLn(Cred(H(M))) is its
chain model.

(ii) The loop coproduct τ is geometrically defined only on H̄S1(LM); the
conjecture thus provides an extension of c2 to HS1,red(LM). In [4], it is shown
that the geometric definition of τ can be extended to H(LM) for manifolds with
zero Euler characteristic, i.e., χ(M) = 0. This extension depends on the choice
of a non-vanishing vector field on M . By homotopy invariance (see (v) below),
our extension of c2 should not depend on the Green kernel G.

(iii) The loop product • is geometrically defined on H(LM); however, it does
not always induce an associative product on Hred(LM) = H(LM,x0). Indeed,
the examples of T2 (see [4]) and S3 (see [9]) show that H(x0;R) ⊂ H(LM ;R) is
not an ideal with respect to •. By [31], this does not happen when χ(M) 6= 0,
and hence, in this case, • restricts to H(LM,x0;R).

(iv) The computation for Sn with n ≥ 2 and the computation for CPn in
Section 4 support the conjecture. The computation for S1 in Section 4.3 provides
a counterexample for non-simply-connected M . In [19], surfaces of genus g ≥ 1
will be considered.

(v) We expect that if M1 and M2 are homotopy equivalent, then the IBL∞-
algebras dIBLn(C(HdR(M1))) and dIBLn(C(HdR(M2))) are IBL∞-homotopy
equivalent. C
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4 Explicit computations
In Section 4.1, we solve the differential equation for the Green kernel G for Sn

(Proposition 4.2) using the Relative Poincaré Lemma (Lemma 4.1). In the rest
of the section, we will be showing that G satisfies all properties of the Green
kernel (Proposition 4.10); the most work is to show that G extends smoothly to
the blow-up (Proposition 4.9). Another Green kernel for S1 can be obtained in
an alternative simple way by writing S1 = R/Z, and there are nice geometric
formulas for G for S2 (Example 4.3).

In Section 4.2, we use G from Section 4.1 to compute the formal pushfor-
ward Maurer-Cartan element n for Sn (Proposition 4.21). We first prove that
the condition (V1) from Proposition 3.25 is satisfied (Lemma 4.12) and then
perform combinatorics with degrees to show vanishing of some more integrals
(Proposition 4.13). In fact, all the integrals vanish for Sn with n ≥ 3, and the
only non-vanishing integrals for S1 are the Ok-graphs with even k. We compute
these integrals explicitly together with all signs and combinatorial coefficients
required to obtain n20 (Lemmas 4.16, 4.17, 4.18 and 4.19). There might be
some non-vanishing integrals associated to reduced graphs for S2 as well as some
non-vanishing integrals associated to graphs without external vertices for S3;
however, the simplest examples vanish (Remarks 4.14 and 4.15).

In the remaining Sections 4.3 and 4.4, we compute IBL(Hn(C(H(M)))) and
the higher operations qn1lg on Hn for M = Sn, CPn. As soon as we argue that
n10 = m10 due to geometric formality, the computation of Hm(C(H(Sn))) and
Hm(C(H(CPn))) is an easy exercise in cyclic homology. The operations for S2m

and CPn vanish for degree reasons (Remark 4.22). Therefore, the integrals from
Section 4.2 help only in the case of S2m−1. We compare our results to Chas-
Sullivan string topology from [4] and confirm Conjecture 3.33 for Sn with n ≥ 2
and for CPn.

4.1 Computation of G for Sn

The standard Riemannian volume form on the round sphere Sn ⊂ Rn+1 is the
restriction of the following closed form on Rn+1\{0}:

Vol(x) := 1
|x|n+1

n+1∑
i=1

(−1)i+1xi dx1 · · · d̂xi · · · dxn+1 .

Here d̂xi means that dxi is omitted. We denote the Riemannian volume of Sn by

V :=
∫
Sn

Vol.
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The n-form H from Proposition 3.8 reads

H = 1
V

(
pr∗1 Vol + (−1)n pr∗2 Vol

)
.

According to Proposition 3.9, the equation which we want to solve reads

dG = 1
V

(
(−1)n pr∗1 Vol + pr∗2 Vol

)
. (71)

We denote
G̃ := V G and H̃ := V H.

The following lemma will be used to construct a solution to (71).

Lemma 4.1 (Relative Poincaré Lemma). Let M be a smooth oriented manifold
and ψ : [0, 1] ×M → M a smooth map. Consider the operator T : Ω∗(M) →
Ω∗−1(M) defined by

T (η) :=
∫ [0,1]

ψ∗η for all η ∈ Ω(M),

where we integrate along the fiber of the oriented fiber bundle pr2 : [0, 1]×M →M .
Then we have

d ◦ T + T ◦ d = ψ∗1 − ψ∗0 .

Proof. Stokes’ formula from Proposition 3.7 gives

d
∫ [0,1]

ψ∗η = −
(∫ [0,1]

dψ∗η −
∫ ∂[0,1]

ψ∗η
)

= −
∫ [0,1]

ψ∗dη + ψ∗1η − ψ∗0η

for all η ∈ Ω(M).

Proposition 4.2 (Solution to (71)). For all (x, y) ∈ (Sn × Sn)\∆, let

G(x, y) := (−1)n
n−1∑
k=0

gk(x, y)ωk(x, y), (72)

where
gk(x, y) :=

∫ 1

0

tk(t− 1)n−1−k

(2t(t− 1)(1 + x · y) + 1)n+1
2

dt (73)

and

ωk(x, y) := 1
k!

1
(n− 1− k)!

∑
σ∈Sn+1

(−1)σxσ1yσ2 dxσ3 · · · dxσ2+k

dyσ3+k · · · dyσn+1 .

(74)

The form (72) is a smoooth solution to (71) on (Sn × Sn)\∆.
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0

x = ψ1
t (x, y)

−x

y

t = 0

ψ2
t (x, y)

t = 1

Figure 5: Retraction ψt = (ψ1
t , ψ

2
t ). A point of Sn × Sn is visualized as a pair of

points on Sn.

Proof. Define the set

N := (Rn+1
6=0 × Rn+1

6=0 )\{(x, ax) | x ∈ Rn+1, a > 0}.

It is an open thickening of (Sn×Sn)\∆ in Rn+1×Rn+1\∆. Consider the smooth
deformation retraction

ψ : [0, 1]×N −→ N

(t, x, y) 7−→ ψt(x, y) := (x, (1− t)y − tx)

with

ψ0(x, y) = (x, y) and ψ1(x, y) = (x,−x) for all (x, y) ∈ N.

The retraction is depicted in Figure 5. Denote by A : Rn+1 → Rn+1, x 7→ −x
the antipodal map. It is easy to see that

A∗Vol = (−1)n+1Vol,

and hence

ψ∗1H̃ = ψ∗1 pr∗1 Vol + (−1)nψ∗1 pr∗2 Vol = pr∗1 Vol + (−1)n pr∗1 A∗Vol = 0.

Define

G := (−1)n+1
∫ [0,1]

ψ∗H. (75)
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Let T : Ω∗(N)→ Ω∗−1(N) be the cochain homotopy from Lemma 4.1 associated
to ψ. Because dH = 0, we get

dG = (−1)n+1dT (H) = (−1)n+1(dT +Td)H = (−1)n+1(ψ∗1−ψ∗0)H = (−1)nH.

For every i = 1, . . . , n+ 1, we have

ψ∗(dxi) = dxi and ψ∗(dyi) = (1− t) dyi−tdxi−(yi + xi) dt .

We compute

(−1)n+1
∫ [0,1]

ψ∗H̃ = −
∫ [0,1]

ψ∗ pr∗2 Vol

=
∫ [0,1] n+1∑

i=1
(−1)i ((1− t)yi − txi)

|(1− t)y − tx|n+1ψ
∗(dy1 · · · d̂yi · · · dyn+1)

=
∑

1≤i<j≤n+1
(−1)i+j(xiyj − yixj)

∫ [0,1] dtψ∗(dy1 · · · d̂yi · · · d̂yj · · · dyn+1)
|(1− t)y − tx|n+1

= (−1)n
n−1∑
k=0

(∫ 1

0

tk(t− 1)n−1−k

|(1− t)y − tx|n+1 dt
) ∑

1≤i<j≤n+1
(−1)i+j+1(xiyj − yixj)

∑
σ:{1,...,n−1}→{1,...,̂i,...,ĵ,...,n+1}

σ1<···<σk
σk+1<···<σn−1

(−1)σ dxσ1 · · · dxσk dyσk+1 · · · dyσn-1 .

The formulas (73) and (74) are obtained from this by writing

|(1− t)y − tx|2 = 2t(t− 1)(1 + x · y) + 1

in the denominator of the integrand and by simple combinatorics in the form part,
respectively. Smoothness of G on (Sn × Sn)\∆ follows from the expression (75).

Note that gk are smooth functions on (Sn × Sn)\∆.

Example 4.3 (Green kernel for S1 and S2). (a) Let

α : (S1 × S1)\∆→ (0, 2π)

be the smooth function assigning to a pair (x, y) ∈ (S1×S1)\∆ the counterclock-
wise angle from x to y. Let α1, α2 ∈ [0, 2π) be such that x = cos(α1)e1+sin(α1)e2

and y = cos(α2)e1 + sin(α2)e2 for the standard Euclidean basis e1, e2 of R2. It
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is easy to see that

α(x, y) =

α2 − α1 if α1 < α2,

α2 − α1 + 2π if α1 > α2.

Therefore, we get

dα = dα2−dα1 = −2πH on (S1 × S1)\∆.

On the other hand, we can computeG from (72) as follows. Using the substitution
u = 2t− 1, we get for all x, y ∈ S1 with x 6= ±y the following:

g0(x, y) =
∫ 1

0

dt
2t(t− 1)(1 + x · y) + 1 = 1

1− x · y

∫ 1

−1

du
1+x·y
1−x·yu

2 + 1

= 2√
1− (x · y)2

arctan
(√1 + x · y

1− x · y

)
= π − arccos(x · y)√

1− (x · y)2
= π − arccos(x · y)
|x1y2 − x2y1|

= π − α(x, y)
x1y2 − x2y1 .

The third from last equality can be obtained by trigonometric considerations and
the second from last equality by an algebraic manipulation with the denominator.
We will explain the last equality. Consider the matrix

R =
(

0 −1
1 0

)

representing the counterclockwise rotation by π
2 . The function arccos : (−1, 1)→

(0, π) satisfies

arccos(x · y) =

α(x, y) if y ·Rx > 0,

2π − α(x, y) if y ·Rx < 0.

The last equality becomes clear when we notice that x1y2 − x2y1 = y ·Rx.

Finally, we have ω0(x, y) = x1y2 − x2y1, and hence

2πG(x, y) = −g0(x, y)ω0(x, y) = α(x, y)− π = π − α(y, x).

(b) For n = 2, we get the formulas

g0(x, y) = −g1(x, y) = 1
x · y − 1 and

ω0(x, y) = (x2y3 − x3y2) dy1 +(x3y1 − x1y3) dy2 +(x1y2 − x2y1) dy3
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=
3∑
i=1

(x× y)i dyi .

The formula for ω1(x, y) is obtained from the formula for ω0(x, y) by replacing dy
with dx. C

Consider the diagonal action of the orthogonal group O(n+1) on Rn+1×Rn+1

by matrix multiplication.

Proposition 4.4 (Symmetries of G). Consider G from Proposition 4.2. For all
R ∈ O(n+ 1), we have

R∗G = (−1)RG,

where (−1)R = det(R). Moreover, if τ denotes the twist map, then

τ∗G = (−1)nG.

Proof. We will use the thickening N , the antipodal map A and the expression (75)
for G from the proof of Proposition 4.2.

It is easy to check that both τ and R preserve N . Let τ̃ and R̃ be the
isomorphisms of the fiber bundle pr2 : [0, 1]×N → N given by

τ̃(t, x, y) := (1− t, y, x) and R̃(t, x, y) := (t, Rx,Ry)

for all (t, x, y) ∈ [0, 1] × N . Then τ̃ covers τ and R̃ covers R. A simple
computation directly from Definition 3.3 shows that the fiberwise integration
commutes with the pullback along a bundle morphism if the bundle map and
the base map are both either orientation preserving or reversing. In our case,
we have

(−1)τ+τ̃ = −1 and (−1)R+R̃ = 1.

Using this and the equation

pr2 ◦ψ ◦ τ̃ = A ◦ pr2 ◦ψ,

we get firstly

τ∗
∫ [0,1]

ψ∗H̃ = −
∫ [0,1]

τ̃∗ψ∗ pr∗2 Vol

= −
∫ [0,1]

ψ∗ pr∗2 A∗Vol

= (−1)n
∫ [0,1]

ψ∗ pr∗2 Vol

= (−1)n
∫ [0,1]

ψ∗H̃
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and secondly

R∗
∫ [0,1]

ψ∗H =
∫ [0,1]

R̃∗ψ∗H =
∫ [0,1]

ψ∗R∗H = (−1)n+1
∫ [0,1]

ψ∗H.

This proves the proposition.

Both diffeomorphismsR and τ preserve ∆, and hence they extend to diffeomor-
phisms of Bl∆(Sn×Sn). If also G extends, then the statement of Proposition 4.4
holds for G on Bl∆(Sn × Sn).

In the rest of the section, we will be proving that G extends smoothly to
Bl∆(Sn × Sn). This is a local problem at the boundary, where we introduce the
following radial coordinates. Define the set

X := {(r, η, x) ∈ [0,∞)× Sn × Sn | η · x = 0},

and let κ : X −→ Bl∆(Sn × Sn) be the map defined by

κ(r, η, x) :=


(
x,

x+ rη

|x+ rη|

)
∈ (Sn × Sn)\∆ for r > 0,

[(−η, η)] ∈ P+N(x,x)∆ for r = 0.

For the upcoming computations, it is convention to define the map γ : R→ (−1, 1)
by

γ(r) := r√
1 + r2 + 1

for all r ∈ R.

It is a diffeomorphism with inverse r = 2γ
1−γ2 .

Lemma 4.5 (Parametrization of the collar neighborhood). The subset X ⊂ R×
Rn+1×Rn+1 is a submanifold with boundary, and the map κ : X −→ Bl∆(Sn×Sn)
is an embedding onto a neighborhood of ∂Bl∆(Sn × Sn).

Proof. The setX is a Cartesian product of [0,∞) and a regular level set; therefore,
it is a submanifold with boundary. The inclusion Sn×Sn ⊂ Rn+1×Rn+1 induces
an embedding of manifolds with boundary Bl∆(Sn × Sn) ⊂ Bl∆(Rn+1 × Rn+1).
Consider the global chart 1̃ : Bl∆(Rn+1×Rn+1)→ [0,∞)×Sn×Rn+1 from (44)
induced by the identity. We have

Y := 1̃(Bl∆(Sn × Sn))

= {(r̃, w, u) ∈ [0,∞)× Sn × Rn+1 | |u|2 + r̃2 = 1, w · u = 0},

where we denote r on Y by r̃ in order to distinguish it from r on X. It suffices to
prove the claim for the map µ := 1̃ ◦ κ : X → Y . For (r, η, x) ∈ X, we compute

µ(r, η, x) =
(

γ√
1 + γ2

,
1√

1 + γ2
(γx− η), 1

1 + γ2 (x+ γη)
)
.
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0 en

en+1

ζ(r)r

Figure 6: The curve ζ := κ ◦ ζ ′ is given by ζ(r) =
(
en+1,

en+1+ren
|en+1+ren|

)
for r > 0.

This formula defines a smooth map of R× Rn+1 × Rn+1. It is a local diffeomor-
phism because its Jacobian is non-vanishing:

|Dµ | = ∂r̃

∂r

(∂w
∂η

∂u

∂x
− ∂w

∂x

∂u

∂η

)n+1
= (−1)n+1(1 + γ2)−

n+4
2
∂γ

∂r
.

Moreover, the map µ is injective, maps X into Y and ∂X onto ∂Y . The claim
follows.

Consider the action of O(n+ 1) on X defined by

R · (r, η, x) := (r,Rη,Rx) for all (r, η, x) ∈ X and R ∈ O(n+ 1).

Via κ, this agrees with the diagonal action of O(n+ 1) on Bl∆(Sn× Sn). Denote

G′ := κ∗G ∈ Ωn−1(Int(X)).

From Proposition 4.4 we get

R∗G′ = (−1)RG′ for all R ∈ O(n+ 1). (76)

Consider the smooth curve (see Figure 6)

ζ ′ : [0,∞) −→ X

r 7−→ (r, en, en+1).

We have the following lemma.

Lemma 4.6 (Smooth extension along the curve). The form G′ extends smoothly
to X if and only if the map G′ ◦ ζ ′ : (0,∞)→ Λn−1T ∗X extends smoothly to the
interval [0,∞).

Proof. As for the non-trivial implication, let (0, η0, x0) ∈ X be a boundary point.
Pick vectors v1, . . . , vn−1 ∈ Rn+1 so that the vectors v1, . . . , vn−1, η0, x0 are
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linearly independent, and define the set

U := {(r, η, x) ∈ X | v1, . . . , vn−1, η, x are linearly independent}.

It is an open neighborhood of (0, η0, x0) in X. Applying the Gram-Schmidt
orthogonalization to v1, . . . , vn−1, η, x, we find a smooth map R : U → O(n+ 1)
such that

R(r, η, x) · (r, η, x) = (r, en, en+1) for all (r, η, x) ∈ U.

The equation (76) implies

G′(r, η, x) = (−1)RR(r, η, x)∗
(
G′(r, en, en+1)

)
for all (r, η, x) ∈ Int(U),

where R(r, η, x)∗ : Λ∗T ∗X → Λ∗T ∗X is the smooth cotangential map which is
induced by the diffeomorphism R(r, η, x) : X → X, and which maps the fiber
over z ∈ X to the fiber over R(r, η, x)−1z. By the assumption, all maps in the
composition are smooth in their arguments. The lemma follows.

Lemma 4.7 (Local expression at the boundary). On the interval (0,∞), we
have

G̃′ ◦ ζ ′ = (−1)n+1(1 + γ2)−
n−1

2

n−1∑
k=0

γn−k(hk ◦ γ)(νk ◦ ζ ′),

where the functions hk : (0, 1)→ R are defined by

hk(γ) :=
∫ 1

−1

(u+ γ2)k(u− 1)n−1−k

(u2 + γ2)n+1
2

du for all γ ∈ (0, 1)

and the forms νk ∈ Ω(X) are defined by

νk(r, x, η) := 1
k!(n− 1− k)!

∑
σ∈Sn−1

(−1)σ dxσ1 · · · dxσk dησk+1 · · · dησn-1 .

Proof. We start with the following formula from the proof of Proposition 4.2:

G̃ =
∑

1≤i<j≤n+1
(−1)i+j(xiyj − yixj)

∫ [0,1] dtψ∗(dy1 · · · d̂yi · · · d̂yj · · · dyn+1)
|(1− t)y − tx|n+1 .

We restrict to the points (x, y) = κ(r, en, en+1) with r > 0. There, we have

x1 = · · · = xn = 0, xn+1 = 1,

y1 = · · · = yn−1 = 0, yn = 2γ
1 + γ2 , y

n+1 = 1− γ2

1 + γ2 .
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Under the substitution u = 2t− 1, we get

|(1− t)y − tx|2 = 4t(t− 1)
1 + γ2 + 1 = u2 + γ2

1 + γ2 .

We make the following preliminary computations:

xiyj − yixj = 0 for 1 ≤ i ≤ n− 1 and i < j ≤ n+ 1,

xnyn+1 − ynxn+1 = − 2γ
1 + γ2 ,

κ∗(dyi) = 1
1 + γ2

(
(1− γ2) dxi +2γ dηi) for 1 ≤ i ≤ n− 1.

We plug these in the formula for G̃ and get

G̃′(ζ ′(r)) = 2γ(1 + γ2)
n−1

2

∫ [0,1]
dt
∏n−1
i=1
(
(1− t)κ∗(dyi)− tdxi)
(u2 + γ2)n+1

2

= (−1)n+1γ(1 + γ2)−
n−1

2

∫ [−1,1]
du
∏n−1
i=1
(
(u+ γ2) dxi +γ(u− 1) dηi)

(u2 + γ2)n+1
2

= (−1)n+1(1 + γ2)−
n−1

2

n−1∑
k=0

γn−k
(∫ 1

−1

(u+ γ2)k(u− 1)n−1−k

(u2 + γ2)n+1
2

du
)
νk.

The lemma follows.

Lemma 4.8 (Integrals depending on parameter). Let n ∈ N, and let l = 0, 1, . . . ,
n− 1. The function Fn,l : (0,∞)→ R defined by

Fn,l(t) :=
∫ 1

−1

tn−lul

(u2 + t2)n+1
2

du for all t ∈ (0,∞) (77)

extends smoothly to R.

Proof. We have

F1,0(t) = 2 arctan
(1
t

)
= π − 2 arctan(t) for all t ∈ (0,∞).

The right-hand side is a smooth function on R.
For n ≥ 2, we deduce the recursive formula

Fn,0(t) = 1
n− 1

(
(n− 2)Fn−2,0(t) + 2tn−2

(1 + t2)n−1
2

)
.

If l is odd, then Fn,l ≡ 0 for all n because the integrand of (77) is odd as a
function of u.
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For n ≥ 3 and even 2 ≤ l ≤ n− 1, we deduce yet another recursive formula

Fn,l(t) = 1
n− l

(
(l − 1)Fn,l−2(t)− 2tn−l

(1 + t2)n−1
2

)
.

The claim for all Fn,l follows by induction.

Proposition 4.9 (Smooth extension to the boundary). The form G from (72)
extends smoothly to Bl∆(Sn × Sn).

Proof. According to Lemmas 4.5 and 4.6, it suffices to show that the curve
G′ ◦ ζ ′ : (0,∞) → Λn−1T ∗X extends smoothly to [0,∞). Lemma 4.7 gives an
expression for G′ ◦ ζ ′ as a linear combination of smooth forms νk ∈ Ωn−1(X)
with coefficients γn−k(hk ◦ γ) for k = 0, . . . , n − 1 multiplied by the overall
coefficient (−1)n(1 + γ2)−n−1

2 . We expand

γn−k(hk ◦ γ) =
k∑
a=0

n−1−k∑
b=0

(−1)n−1−k−b
(
k

a

)(
n− 1− k

b

)∫ 1

−1

γn+k−2aua+b

(u2 + γ2)n+1
2

du

and notice that we can write∫ 1

−1

γn+k−2aua+b

(u2 + γ2)n+1
2

du = γk−a+b(Fn,a+b ◦ γ)

for the function Fn,l from (77) with l := a+b. Because 0 ≤ l ≤ n−1, Lemma 4.8
asserts that Fn,l extends smoothly to [0,∞). Because k − a+ b ≥ 0, the entire
coefficient at νk extends smoothly to [0,∞) for every k = 0, . . . , n − 1. The
lemma follows.

We summarize our results in the following proposition:

Proposition 4.10 (Green kernel for Sn). The form G from (72) defines a Green
kernel for Sn satisfying Definition 3.5. Moreover, we have the symmetries

R∗G = (−1)RG for all R ∈ O(n+ 1) and

τ∗G = (−1)nG.

Proof. The proposition is a summary of Propositions 4.2, 4.4 and 4.9.

Remark 4.11 (Better notation due to R. Bryant, see [6]). Pick an oriented
basis e1, . . . , en+1 of Rn+1 as generators of the exterior algebra Λ∗(Rn+1),
and view x, y, dx, dy as Λ∗(Rn+1)-valued forms on Rn+1. For example, we
view x as the map x ∈ Rn+1 7→

∑n+1
i=1 x

iei ∈ Λ1(Rn+1) and dx as the map
x ∈ Rn+1 7→

∑n+1
i=1 (dxi)xei ∈ Λ1(Rn+1). There is a natural wedge product on

the space of Λ∗(Rn+1)-valued forms. If ω is a top-form, we denote by [ω] the
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x1

v

1 1

Figure 7: The Y -graph for Sn.

coefficient of ω at e1 ∧ · · · ∧ en+1. Then it holds

ωk(x, y) = 1
k!

1
(n− 1− k)! [x ∧ y ∧ (dx)k ∧ (dy)n−1−k].

Note that if we view ei as odd variables, then [·] corresponds to the odd
integration

∫
De(·). It would be interesting to know whether this notation

simplifies some proofs, especially if Lemma 4.12 can be deduced from abstract
algebraic facts or rules valid for odd integration. C

4.2 Computation of n for Sn

We recall from Definition 3.19 that the formal pushforward Maurer-Cartan
element n is computed as a sum over trivalent ribbon graphs decorated with the
Green kernel G at internal edges, integration variables xi at internal vertices
and, in the case of Sn, with 1 or v at external vertices.

The canonical Maurer-Cartan element m is the contribution of the Y-graph
(see Figure 7), and it is easy to see that

m10(sv11) = (−1)nm10(s1v1) = m10(s11v) = (−1)n−2.

Throughout this section, we will be in the setting of Definition 3.19. In particular,
Γ ∈ RG(3)

klg is a ribbon graph, L its compatible labeling admissible with respect
to an input ω1, . . . , ωl and I(σL) the corresponding integral.

Lemma 4.12 (Condition (V1) holds). Consider Sn with the Green kernel G
from (72). Then every graph Γ 6= Y with 1 at an external vertex vanishes.

Proof. The only contribution of an A-vertex which does not vanish for degree
reasons is

Av,1(y) =
∫
x

G(x, y)Vol(x).

From the symmetry of G and Vol under the action of O(n+ 1), we get

R∗Av,1 = (−1)RAv,1 for all R ∈ O(n+ 1).

Therefore, it suffices to check that Av,1(e1) = 0, where e1, . . . , en+1 denotes the
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standard basis of Rn+1. Evaluation of (74) at (x, e1) gives

ω0(x, e1) = 1
(n− 1)!

∑
σ∈Sn+1
σ2=1

(−1)σxσ1 dyσ3 · · · dyσn+1 .

Therefore, we get

Av,1(e1) = (−1)n
∫
x

g0(x · e1)ω0(x, e1)Vol(x)

=
n+1∑
j=2

(−1)n+j+1
(∫

x

g0(x1)xjVol(x)
)

dy2 · · · d̂yj · · · dyn+1,

where we view g0 as a function of x · y. For every j = 2, . . . , n+ 1, consider the
orientation reversing diffeomorphism

Ij : Sn −→ Sn

(x1, . . . , xn+1) 7−→ (x1, . . . ,−xj , . . . , xn+1).

Then we have∫
x

g0(x1)xjVol(x) = −
∫
x

I∗j
(
g0(x1)xjVol(x)

)
= −

∫
x

g0(x1)(−xj)(−Vol(x)),

and it follows that Av,1(e1) = 0.
Let us now consider the contribution of a B-vertex with 1:

B1(y, z) =
∫
x

G(y, x)G(x, z) = (−1)n
∫
x

G(y, x)G(x, z).

For n = 1, the degree of G(y, x)G(x, z) is 0, and hence B1 = 0 trivially. Suppose
that n ≥ 2. As in the case of Av,1, we get that

R∗B1 = (−1)RB1 for all R ∈ O(n+ 1).

Therefore, it suffices to check that B1(e1, c1e1 + c2e2) = 0 for all (c1, c2) ∈ S1.
We have

B1(e1, c1e1 + c2e2) = (−1)n
n−1∑
a=1

∫
x

ga(x1)gn−a(c1x1 + c2x
2)ωa(x, e1)

ωn−a(x, c1e1 + c2e2).

We will show that for every a = 1, . . . , n− 1 we can write

µa(x) := ωa(x, e1)ωn−a(x, c1e1 + c1e2) =
(n+1∑
i=3
±xiVol(x)

)
ηa(y, z) (78)
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for some form ηa(y, z). Then, using the same argument as for Av,1, we will have∫
x

ga(x1)gn−a(c1x1 + c2x
2)xiVol(x)

= −
∫
x

I∗i
(
ga(x1)gn−a(c1x1 + c2x

2)xiVol(x)
)

= −
∫
x

ga(x1)gn−a(c1x1 + c2x
2)(−xi)(−Vol(x))

for all 3 ≤ i ≤ n+ 1, and hence B1(e1, c1e1 + c2e2) = 0.
In order to show (78), we have to study the product of ωi’s. From (74) we

get

ωa(x, y)ωn−a(x, z)

= 1
a!(n− 1− a)!(n− a)!(a− 1)!

∑
σ, µ∈Sn+1

(−1)σ+µxσ1xµ1yσ2zµ2

dxσ3 · · · dxσ2+a dxµ3 · · · dxµ2+n−a dyσ3+a · · · dyσn+1

dzµ3+n−a · · · dzµn+1 .

(79)

In order to simplify this expression, we decompose σ ∈ Sn+1 as

σ = σ5 ◦ σ4 ◦ σ3 ◦ σ2 ◦ σ1, (80)

where σ1, . . . , σ5 ∈ Sn+1 are permutations defined as follows:

• The permutation σ1 is a shuffle permutation σ1 ∈ S2+a,n−a−1 such that
its first block denoted by σ1(1) = (σ1

1 , . . . , σ
1
2+a) is equal to the or-

dered set {σ1, . . . , σ2+a}. The second block σ1(2) is then the ordered
set {σ3+a, . . . , σn+1}, which will be denoted by Jσ.

• The permutation σ2 acts on the block σ1(1) by moving σ2 in front. We
denote the new block σ1(1)\{σ2} by Iσ, so that we can write σ2 : σ1(1) 7→
(σ2, Iσ).

• The permutation σ3 acts on the block Iσ by moving σ1 in front. Together
with the previous step we get σ1(1) 7→ (σ2, σ1, Iσ\{σ1}).

• The permutation σ4 is a transposition of σ1 and σ2.

• The permutation σ5 is determined by the pair (σ51, σ52) ∈ Sa × Sn−1−a

of permutations σ51 and σ52 acting on blocks Iσ\{σ1} and Jσ to get
(σ3, . . . , σ2+a) and (σ3+a, . . . , σn+1), respectively.

We define the decomposition µ1, . . . , µ5 for µ ∈ Sn+1 from (79) analogously
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with a replaced by n− a. Using (80), the product (79) can be written as

1
a!(n− 1− a)!(n− a)!(a− 1)!

∑
σ1,..., σ5

µ1,..., µ5

(−1)σ
1+···+σ5+µ1+···+µ5

xσ1xµ1yσ2zµ2

dxσ
51(Iσ\{σ1}) dxµ

51(Iµ\{µ1}) dyσ
52(Jσ) dzµ

52(Jµ)

= −
∑
σ1, µ1

(−1)σ
1+µ1

( ∑
σ2, µ2

(−1)σ
2+µ2 ∑

σ3, µ3

(−1)σ
3+µ3

xσ1xµ1yσ2zµ2

dxIσ\{σ1} dxIµ\{µ1}
)

dyJσ dzJµ ,

where −1 comes from (−1)σ4 and σ5 is compensated by permutations of forms.
For fixed σ1 and µ1, consider the coefficient at dyJσ dzJµ in the brackets. If we
evaluate it at y = e1, z = c1e1 + c2e2, we get

c1

=: I︷ ︸︸ ︷∑
σ3, µ3

σ2=1
µ2=1

(−1)σ
3+µ3

xσ1xµ1 dxIσ\{σ1} dxIµ\{µ1}

+ (−1)µ
2
c2

=: II︷ ︸︸ ︷∑
σ3, µ3

σ2=1
µ2=2

(−1)σ
3+µ3

xσ1xµ1 dxIσ\{σ1} dxIµ\{µ1},

where (−1)µ2 = −1 if and only if 1 ∈ Iµ.
More generally, for multiindices I1, I2 ⊂ {1, . . . , n+ 1} of lengths a+ 1 and

n− a+ 1, respectively, consider the sum

S(I1, I2) :=
∑
i1∈I1
i2∈I2

(−1)(i1,I1)+(i2,I2)xi1xi2 dxI1\{i1} dxI2\{i2}, (81)

where (ij , Ij) is the number of transpositions required to move ij in front of Ij .
The following implication holds:

S(I1, I2) 6= 0 =⇒ 1 ≤ |I1 ∩ I2| ≤ 2.

We distinguish the two cases left:

Case I1 ∩ I2 = {i, j} with i < j: We get

S(I1, I2) = (−1)(i,I1)+(j,I2)xixj dxI1\{i} dxI2\{j}

+ (−1)(j,I1)+(i,I2)xjxi dxI1\{j} dxI2\{i}
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= (−1)(i,I1)+(j,I2)+(j,I1)+1+(i,I2)xixj dxj dxI1\{i,j}

dxi dxI2\{i,j}+(−1)(j,I1)+(i,I2)+(i,I1)+(j,I2)+1xixj

dxi dxI1\{i,j} dxj dxI2\{i,j}

= ±(−1 + 1)xixj dxi dxI1\{i,j} dxj dxI2\{i,j},

where in the last step we switched dxi ↔ dxj in the first summand.
Therefore, it holds S(I1, I2) = 0.

Case I1 ∩ I2 = {i}: We must have I1∪I2 = {1, . . . , n+1}. A non-zero summand
in (81) has either i1 = i and i2 ∈ I2, in which case

I1\{i1} ∪ I2\{i2} = {1, . . . , î2, . . . , n+ 1},

or i2 = i and i1 ∈ I1 with i1 6= i, in which case

I1\{i1} ∪ I2\{i2} = {1, . . . , î1, . . . , n+ 1}.

Indices i2 from the first case and i1 from the second case constitute
{1, . . . , n+ 1}. Therefore, for some signs ±, we can write

S(I1, I2) = xi
n+1∑
j=1
±xj dx1 · · · d̂xj · · · dxn+1 .

We will prove that the signs alternate, and hence S(I1, I2) = ±xiVol(x).
Suppose that j, j + 1 ∈ I1 for some j ∈ {1, . . . , n}. The two summands
in (81) with (i1, i2) = (j, i) and (i1, i2) = (j + 1, i), respectively, give

(−1)(j,I1)+(i,I2)xjxi dxI1\{j} dxI2\{i}+(−1)(j+1,I1)+(i,I2)xj+1xi

dxI1\{j+1} dxI2\{i}

= (−1)(i,I2)xjxi dxj+1 dxI1\{j,j+1} dxI2\{i}

+ (−1)1+(i,I2)xj+1xi dxj dxI1\{j,j+1} dxI2\{i}

= (−1)(i,I2)xi(xj dxj+1−xj+1 dxj) dxI1\{j,j+1} dxI2\{i} .

The signs clearly alternate. A symmetric argument holds when j, j+1 ∈ I2.
Now assume that j ∈ I1 and j + 1 ∈ I2. The two summands in (81) which
have (i1, i2) = (j, i) and (i1, i2) = (i, j + 1), respectively, give

(−1)(j,I1)+(i,I2)xjxi dxI1\{j} dxI2\{i}+(−1)(i,I1)+(j+1,I2)xixj+1

dxI1\{i} dxI2\{j+1}

= (−1)(j,I1)+(i,I1\{j})+(a+1)xjxi dxI1\{i,j} dxI2

+ (−1)(i,I1)+(j+1,I2)+(j,I1\{i})xixj+1 dxj dxI1\{i,j} dxI2\{j+1}
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= (−1)(j,I1)+(i,I1\{j})+(j+1,I2)xixj dxj+1 dxI1\{i,j} dxI2\{j+1}

+ (−1)1+(j,I1)+(i,I1\{j})+(j+1,I2)xixj+1 dxj dxI1\{i,j} dxI2\{j+1}

= (−1)(j,I1)+(i,I1\{j})+(j+1,I2)xi(xj dxj+1−xj+1 dxj)
dxI1\{i,j} dxI2\{j+1} .

The signs alternate again. A symmetric argument holds for j ∈ I2 and
j + 1 ∈ I1.

Back to the original problem, we have I = S(Iσ, Iµ) with Iσ, Iµ ⊂ {2, . . . , n+
1}. It follows that the first case applies, and hence I = 0. We have II = S(Iσ, Iµ)
with Iσ ⊂ {2, . . . , n + 1} and Iµ ⊂ {1, 2̂, . . . , n + 1}. It follows that either the
first case or the second case with i ≥ 3 applies. This proves (78). Consequently,
we get B1 = 0 also for n ≥ 2.

The last paragraph of the proof of Proposition 3.26 finishes the proof.

We summarize the consequences in the following proposition. The main
argument is the same as in the proof of Proposition (3.29).

Proposition 4.13 (Vanishing of graphs for Sn). Consider Sn with the Green
kernel (72). Only the following trivalent ribbon graphs Γ 6= Y do not necessarily
vanish:

(n = 1): The Ok-graph with k ∈ 2N internal vertices of type B with v at the
external vertex (see Figure 11).

(n = 2): It must hold A = 0, C = 2B and all B vertices must have v at the
external vertex. Moreover, if Γ is reduced, it must have g ≥ 1.

(n = 3): There is no external vertex and 4 | C holds.

(n > 3): All graphs vanish.

Proof. Lemma 4.12 implies that A = 0 and that the total form-degree D satisfies
D = nB. Therefore, we get from (66) the following: for n > 3 there is neither
a B-vertex nor a C-vertex; for n = 3, there is no B-vertex; for n = 2, we have
C = 2B; and for n = 1, there is no C-vertex.

Consider the pullback of I(σL) along the (multi)diagonal action of an R ∈
O(n+ 1) with det(R) = −1 on (Sn)×k. We get schematically∫

(Sn)×k
GeVols = (−1)k+e+s

∫
(Sn)×k

GeVols.

Therefore, k + e+ s has to be even. If we plug-in from (63), we get

k + e+ s =


3B for n = 1,

8B for n = 2,
5
2C for n = 3.
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Figure 8: Graphs P1 with (l, g) = (1, 1) and P2 with (l, g) = (2, 1) for n = 2.

A non-vanishing reduced graph must have B ≥ l. For n = 2, so that C = 2B,
the formula (64) gives g ≥ 1.

Remark 4.14 (Graphs for S2). The simplest possibly non-vanishing graph for S2

has A = 0, B = 1, C = 2. If it is reduced, we must have l = g = 1, and hence
it will contribute to n11. Up to an isomorphism, there is only one such graph,
which we denote by P1 (see Figure 8). However, we see that the pair of internal
vertices x1 and x2 is connected by two edges, which implies that P1 = 0. Indeed,
G(x, y) has odd degree, and hence we have11

G(x, y)G(y, x) = G(x, y)2 = 0

by the symmetry on the pullback along the twist map. It follows that n11 = 0.
The second simplest possibly non-vanishing reduced graph is the graph P2

from Figure 8. Let

η(x1, x2, x3, x4, x5) := G(x1, x2)G(x1, x3)G(x4, x2)G(x4, x3)G(x3, x5)
G(x2, x5)Vol(x5)

denote the form in the integrand coming from the part of the graph on the
right-hand side of the vertical axis going through x1, x4. If τ1,4 denotes the
exchange of x1 and x4, then clearly τ∗1,4η = η because the graph is symmetric

11We recall from Section 3.3 that the notation G(xi, xj) means (πi × πj)∗G and not just
the evaluation at (xi, xj).
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with respect to the horizontal axis going through x5, x6. Using this, we compute∫
x1,x2,x3,x4,x5,x6

v(x6)G(x1, x6)G(x4, x6)η(x1, x2, x3, x4, x5)

=
∫
τ1,4(x1,x2,x3,x4,x5,x6)

τ∗1,4
(
v(x6)G(x1, x6)G(x4, x6)η(x1, x2, x3, x4, x5)

)
=
∫
x4,x2,x3,x1,x5,x6

v(x6)G(x4, x6)G(x1, x6)η(x4, x2, x3, x1, x5)

= −
∫
x1,x2,x3,x4,x5,x6

v(x6)G(x1, x6)G(x4, x6)η(x1, x2, x3, x4, x5),

where the minus sign comes from switching the first two G’s. We see that P2

vanishes. The other variants with x5 moved on the edge x3, x4 and x2, x4

vanish by a similar argument using the compositions τ1,3 ◦ τ5,6 and τ1,2 ◦ τ5,6,
respectively. We conclude that n21 = 0, and hence qn121 = 0.

We sum up some general observations about the integrals for S2:

• We have B1 6= 0 and C 6= 0 for the corresponding forms.

• We have the multiplication formula (c.f., Example 4.3)

ω1(x, y)ω1(x, z) = x · (y × z)Vol(x).

• The number (−1)σLI(σL) does not depend on the choice of L1 provided a
compatible L2 is chosen.

• It holds
∑
Lb3

(−1)σLI(σL) = 0 whenever there is a boundary component
with even number of v’s.

• If there is a B-vertex x such that the underlying graph (after forgetting
the ribbon structure) is symmetric on the reflection along an axis going
through x, then I(σL) = 0. C

Remark 4.15 (Graphs for S3). For S3, we consider the non-reduced graphs K1

and K2 and the tadpole graph from Figure 9. The graphs K1 and K2 appear in
the definition of the Chern-Simons topological invariant in [21] (with a gauge
group). The corresponding integrals from our theory vanish “algebraically”, i.e.,
at the level of wedge products of ωi. Indeed, every summand in K1 contains

ωa(x1, x1) = 0 for some a = 0, 1, 2,

and, for degree reasons, the form part of K2 can contain only

ω1(x1, x2)3 = 0 or ω0(x1, x2)ω1(x1, x2)ω2(x1, x2) = 0.
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1 1

(c) Tadpole

Figure 9: Graphs K1 and K2 from the Chern-Simons theory and the tadpole
graph with (l, g) = (2, 0) for n = 3.

The tadpole graph contains only

ω2(x1, x3)ω1(x1, x2)ω2(x2, x3) = 0. C

Equations in Remarks 4.14 and 4.15 were checked by the computer. The
program for Wolfram Mathematica 10.4 will be made available at [18].

We will now compute n20 for S1, which according to Proposition 4.13 consists
only of contributions from the Ok-graphs with k even. By analogy with the finite
dimensional case (see Appendix A), we expect that the number (−1)σLI(σL)
does not depend on L. All inputs are namely the same and the degrees even,
i.e., |m+

2 | = −2, |θ2G| = −2 and |v| = 0.
We fix s1, s2 ≥ 1 such that k = s1 + s2 is even and make the ansatz

n20(svs1 ⊗ svs2) := ε(s1, s2)C(s1, s2)I(k),

where I(k) is the integral

1
V k

∫
x1,...,xk

G(x1, x2) · · ·G(xk−1, xk)G(xk, x1)Vol(x1) · · ·Vol(xk), (82)

ε(s1, s2) a sign and C(s1, s2) a combinatorial coefficient to be determined.
We fix a circle in the plane with k points (= internal vertices) and denote by

O(s1, s2) the set of ribbon graphs constructed by attaching external legs from
which s1 points in the interior and s2 in the exterior, or the other way round,
so that O(s1, s2) = O(s2, s1) (see Figure 11). Recall that the ribbon structure
is induced from the counterclockwise orientation of the plane. It is easy to see
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that all graphs in O(s1, s2) admit a labeling which is admissible with respect to
svs1 ⊗ svs2 , and that O(s1, s2) contains a representative of every such Ok-graph.

Lemma 4.16 (Integral for the Ok-graph for S1). For every even k ≥ 2, the
integral I(k) is equal to

(−1)k+1 1
2k

∑
i=2,4,...,k

i

(i+ 1)!
∑

i1+···+ir=k−i
i1,...,ir∈2N, r∈N

(−1)r 1
(i1 + 1)! · · · (ir + 1)! . (83)

Proof. Denote Ḡ(x, y) := −2πG. For all k, l ≥ 1, we consider the more general
integral

I(k, l) :=
∫
x1,...,xk

Ḡ(x1, x2) · · · Ḡ(xk−1, xk)Ḡ(xk, x1)lVol(x1) · · ·Vol(xk).

Taking the pullback along (x1, x2, . . . , xk−1, xk) 7→ (xk, xk−1, . . . , x2, x1) and
using the antisymmetry of Ḡ(x, y), we get I(k, l) = 0 whenever k + l is even.
We will compute I(k, 1) for k ∈ 2N from a recursive relation which arises from
successive integration.

For the recursion step, we need to evaluate the integral∫
y

Ḡ(x, y)Ḡ(y, z)lVol(y)

for fixed (x, z) ∈ (S1 × S1)\∆. Pick the chart g : S1\{z} → (−π, π) defined by

g(y) = Ḡ(y, z) = π − α(y, z) for y ∈ S1\{z},

where the angle α was defined in Example 4.3. It holds dg(y) = Vol(y) and

Ḡ(x, y) =

Ḡ(x, z)− g(y)− π for − π < g(y) < Ḡ(x, z),

Ḡ(x, z)− g(y) + π for Ḡ(x, z) < g(y) < π.

We compute∫
y

Ḡ(x, y)Ḡ(y, z)lVol(y) =
∫ π

−π
(Ḡ(x, z)− g)gl dg−π

∫ Ḡ(x,z)

−π
gl dg

+ π

∫ π

Ḡ(x,z)
gl dg

= 2π
l + 1


πlḠ(x, z)− Ḡ(x, z)l+1 for l even,

πl+1

l + 2 − Ḡ(x, z)l+1 for l odd.

From now on,
∫
will stand for the Riemannian integral, i.e.,

∫
f :=

∫
fVol
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for a function f . We compute

I(2, l) =
∫
x1,x2

Ḡ(x1, x2)Ḡ(x2, x1)l = −
∫
yz

Ḡ(y, z)l+1 = −2π
∫ π

−π
gl+1 dg

=


0 for l even,

−4πl+3

l + 2 for l odd.

For k ≥ 4 even and l odd, we compute

I(k, l) = 2π
l + 1

∫
x1,...,xk−1

Ḡ(x1, x2) · · · Ḡ(xk−2, xk−1)

( πl+1

l + 2 − Ḡ(xk−1, x1)l+1
)

= −4π2

(l + 1)(l + 2)

∫
x1,...,xk−2

Ḡ(x1, x2) · · · Ḡ(xk−3, xk−2)(
πl+1Ḡ(xk−2, x1)− Ḡ(xk−2, x1)l+2

)
= 4π2

(l + 1)(l + 2)
(
−πl+1I(k − 2, 1) + I(k − 2, l + 2)

)
.

For the second equality, we used
∫
x1
Ḡ(x1, x2) = 0 to show that the term

multiplied by πl+1

l+2 vanishes. It follows that

I(k, 1) = (2π)k−2

(k − 1)! I(2, k − 1)−
∑

l=2,4,...,k−2

(2π2)k−l

(k − l + 1)!I(l, 1)

= −k(2π2)k

(k + 1)! −
∑

l=2,4,...,k−2

(2π2)k−l

(k − l + 1)!I(l, 1) for all k = 2, 4, . . .

This is a recursive equation of the form ak = ck +
∑k−1
l=1 dk−lal. Its solution is

ak =
∑k
i=1 ciDk−i with D0 := 1 and Di =

∑
di1 · · · dir , where we sum over all

r = 1, . . . , i and i1, . . . , ir ∈ N such that i1 + · · ·+ ir = i. Therefore, we get

I(k, 1) = −(2π2)k
∑

i=2,4,...,k

i

(i+ 1)!
∑

i1+···+ir=k−i
i1,...,ir∈2N,r∈N

(−1)r 1
(i1 + 1)! · · · (ir + 1)! .

The result has to be multiplied by (−1)k(2π)−2k in order to get I(k).

Lemma 4.17 (Independence of labeling). The summand (−1)σLI(σL) in the
definition of n20(svs1 ⊗ svs2) for S1 is independent of the choice of Γ ∈ O(s1, s2)
and its labeling L which is compatible and admissible with respect to the input.

Proof. Pick Γ ∈ O(s1, s2) and its admissible labeling L. Let L′ be an other
admissible labeling of Γ. We distinguish the following situations:
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Figure 10: Swapping adjacent legs.

• Suppose that L and L′ differ by a permutation µ in Lb3. A similar argu-
ment as in the proof of Lemma 3.20 shows that (−1)σL′ = (−1)µ(−1)σL
and I(σ′L) = (−1)µI(σL), where the sign in the integral comes from the
permutation of Vol’s, which have form-degree 1. Hence (−1)σL′ I(σL′) =
(−1)σLI(σL).

• Suppose that the boundaries are permuted, i.e., that L and L′ differ
in Lb1. Notice that s1 = s2 because otherwise one of L or L′ would not be
admissible. The sign from changing Lb1 cancels as in the previous case.

• Suppose that L and L′ differ in L2. It was explained in the proof of
Lemma 3.20 that a single change of L2 induces the sign (−1)n−1 = 1 in
(−1)σLI(σL).

• A cyclic permutation in Lv3 induces a sign neither in (−1)σL nor in I(σL).

• A permutation µ in Lv1 induces (−1)µ in (−1)σL and a change in I(σL),
which can be realized by taking the pullback along µ : (x1, . . . , xk) 7→
(xµ1 , . . . , xµk). However, the sign of the Jacobian is (−1)µ, which cancels
the sign from (−1)σL .

Next, we prove the independence of Γ ∈ O(s1, s2). Let L be an admissible
and compatible labeling of Γ. Pick two adjacent internal vertices with external
legs pointing to different regions, i.e., one to the interior of the circle and the
other to the exterior. Suppose that the vertices are labeled by v1 and v2 and
the legs by l1 and l2, respectively. Let Γ′ ∈ O(s1, s2) be the graph with the
two legs turned inside out (see Figure 10). We can construct an admissible and
compatible labeling L′ of Γ′ by making the following changes to L: The new leg
at v1 will be labeled by l2 and the new leg at v2 by l1. The cyclic orderings at
v1 and v2, respectively, have to be modified by a transposition in order to get
compatibility with the new ribbon structure. All other labelings can be copied
from L. In total, we get

(−1)σL−σL′ = −1.

This sign is compensated by swapping the one-forms in I(σL):

Vol(xv1) . . .Vol(xv2) ←→ Vol(xv2) . . .Vol(xv1).
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Figure 11: The graph Γ∗ with the labeling L∗. It can be checked that L1 and L2
are compatible.

The independence of Γ ∈ O(s1, s2) follows from the fact that we can span the
entire O(s1, s2) by repeating the swap-of-legs operation.

Lemma 4.18 (Sign). We have

ε(s1, s2) = (−1)s1+1.

Proof. By Lemma 4.17, in order to compute (−1)σLI(σL), we can pick Γ∗ ∈
O(s1, s2) and its admissible and compatible labeling L∗ from Figure 11. We
abbreviate σ0 = σL∗ . The corresponding integral (60) reads

I(σ0) = 1
V k

∫
x1,...,xk

G(xk−1, xk) · · ·G(x1, x2)G(xk, x1)Vol(xs1) · · ·Vol(x1)

Vol(xs1+1) · · ·Vol(xk).

It differs from I(k) from (82) in the order of G’s and Vol’s. A reordering produces
the sign

(−1) 1
2 s1(s1−1).

We will compute (−1)σ0 by ordering half-edges from the edge order back to the
vertex order while looking at Figure 11. The steps are as follows:

• Transpose half-edges at internal vertices so that the first half-edge goes
inside the vertex and the third outside with respect to the counterclockwise
orientation. This gives (−1)a.
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1 2
k

1̄
k̄

2̄

k̄

1̄

2̄

Inv (-1)

Figure 12: The mirror isomorphism M : 1 . . . k 7→ k̄ . . . 1̄ is a composition of the
inversion and the counterclockwise rotation by one place.

• Permute external legs so that vi is at xi for all i = 1, . . . , k. This gives

(−1) 1
2 s1(s1−1).

• Permute internal edges so that Gi starts at the third half-edge of xi and
ends at the first half-edge of xi+1 for all i = 1, . . . , k − 1. This does not
produce any sign as swapping of two G’s requires two transpositions.

• At this point, we have the permutation(
1 2 . . . 2(e− 1)− 1 2(e− 1) 2e− 1 2e 2e+ 1 . . . 3k
3 4 . . . 3k − 3 3k − 2 3k 1 2 . . . 3k − 1

)
.

We interpret the last line as G1 . . . Gkv1 . . . vk and permute it to the
sequence v1G1v2G2 . . . vkGk, which does not produce any sign. We end
up with

σ′0 =
(

1 2 3 . . . 3k − 1 3k
2 3 4 . . . 3k 1

)
.

It is now easy to see that

(−1)σ
′
0 = (−1)3k−1.

In total, we get
(−1)σ0 = (−1)s1+ 1

2 s1(s1−1)+k+1.

As for the other signs in Definition 3.19, we have s(k, l) = k + 1
2k(k − 1) and

P (vk) = 1
2k(k−1). There is no sign from s2vs1⊗vs2 = svs1⊗ svs2 since |s| = −2.

Multiplying everything together, we get ε(s1, s2).

Lemma 4.19 (Combinatorial coefficient). It holds

C(s1, s2) = 1
2ak!

(
k − 1
s1

)
.
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Proof. Every isomorphism of ribbon graphs Γ and Γ′ from O(s1, s2) is a compo-
sition of the clockwise rotation (r) for r ∈ Z and the mirror operation M defined
as follows: If 1, . . . , k label internal vertices in the clockwise direction starting
from the north-pole, then the result of M is k̄, . . . , 1̄, where ī means that the
external leg is reversed (see Figure 12). These operations satisfy

(r + k) = (r), (r)(−r) = 1, M2 = 1, (r)M = M(−r),

and hence generate a group G which is isomorphic to the dihedral group ZkoZ2.
The orbit space O(s1, s2)/G is in 1 : 1 correspondence with isomorphism classes
of admissible Ok-graphs and Aut(Γ) is in 1 : 1 correspondence with Stab(Γ).
From the orbit-stabilizer formula, we get∑

[Γ] admiss.
Ok−graph

1
|Aut(Γ)| =

∑
[Γ]∈O(s1,s2)/G

1
|Stab(Γ)| =

∑
Γ∈O(s1,s2)

1
|Orb(Γ)||Stab(Γ)|

= |O(s1, s2)|
|G| = 1

2k

(
k

s1

)
×

1 for s1 = s2,

2 for s1 6= s2.

The two cases are compensated in the sum over labelings: For s1 = s2, both
labelings Lb1 are admissible, and hence we get the factor 2.

Next, we multiply by k!s1(k− s1), which is the number of Lv1 and Lb3. There
is also the factor 1

l! = 1
2 . Multiplying everything together, we get C(s1, s2).

Before we summarize the results of our computations (see Proposition 4.21
below), we show directly that n is a Maurer-Cartan element.

Lemma 4.20 (Maurer-Cartan equation for Sn). Consider Sn with the Green
kernel from (72). The collection (nlg) satisfies the Maurer-Cartan equation (22)
for dIBL(C(H(Sn))).

Proof. We will show that for every l ≥ 1, g ≥ 0 all summands in the relation
corresponding to (l, g) vanish. The summands for (l, g) = (1, 0) are q110(n10)
and 1

2q210(n10, n10), and the summand for (l, g) = (2, 0) is q120(n10). The first
term vanishes trivially as q110 = 0, while the other two terms vanish by [10,
Proposition 12.5] because n10 = m10 is the canonical Maurer-Cartan element.
For (l, g) 6= (1, 0), we have the following four situations:

q210 ◦2 nlg, l ≥ 2: Let Ψ = Ψ1 · · ·Ψl ∈ ElC be a summand of nlg. From Propo-
sition 4.13 it follows that the summands can be chosen such that Ψ1, . . . ,
Ψl ∈ B∗cyc,redH(Sn)[3− n], i.e., such that Ψi evaluates to 0 whenever 1 is a
part of its argument. From Definition 2.15, we compute

q210 ◦2 (Ψ1 · · ·Ψl) =
∑

σ∈S2,l−2

ε(σ,Ψ)q210(Ψσ−1
1
·Ψσ−1

2
) ·Ψσ−1

3
· · ·Ψσ−l

l
.
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We clearly have q210(Ψσ−1
1
·Ψσ−1

2
) = 0 because q210 feeds 1 into one of its

inputs. It follows that q210 ◦2 nlg = 0.

q210 ◦1,1 (nl1g1 � nl2g2), (li, gi) 6= (1, 0): A similar argument as above.

q120 ◦1 nlg, (l, g) 6= (1, 0): A similar argument as above using that q120 also
feeds 1 into its input.

q210 ◦1,1 (n10 � nlg), (l, g) 6= (1, 0): As in the case of q210 ◦2 nlg, let Ψ1, . . . ,
Ψl ∈ B∗cyc,redH(Sn)[3−n]. Recall that we write Ωi = sωi ∈ Bcyc

∗ H(Sn)[3−n]
and Ω = Ω1 ⊗ · · · ⊗ Ωl. From Definition 2.15, we compute

[q210 ◦1,1 (n10 �Ψ)](Ω1 ⊗ · · · ⊗ Ωl)

=
[ l∑
i=1

(−1)|Ψi|(|Ψ1|+···+|Ψi−1|)q210(n10Ψi)Ψ1 · · · Ψ̂i · · ·Ψl

]
(Ω1 ⊗ · · · ⊗ Ωl)

=
∑
µ∈Sl
i=1,...,l

1
l! (−1)|Ψi|(|Ψ1|+···+|Ψi−1|)ε(µ,Ω)(q210(n10 ·Ψi)⊗Ψ1 ⊗ · · ·

Ψ̂i · · · ⊗Ψl)(Ωµ−1
1
⊗ · · · ⊗ Ωµ−1

l
).

For every i = 1, . . . , l, we have

q210(n10 ·Ψi)(Ω) = q210(n10 ⊗Ψi)(Ω)

= −
∑

ε(ω 7→ ω1ω2)[(−1)(n−1)|ω1|n10(s1ω1)Ψi(svω2)

+ (−1)|ω
1|n10(svω1)Ψi(s1ω2)]

= −
∑

ε(ω 7→ ω1ω2)(−1)(n−1)|ω1|n10(s1ω1)Ψi(svω2).

This can be non-zero only if ω = 1vs−1 for some s ≥ 2 (up to a cyclic
permutation). For this input, we get

q210(n10 ·Ψi)(s1vs−1)

= − [ε(1vs−1 7→ 1vs−1)n10(s11v)Ψi(svs−1)
+ ε(1vs−1 7→ v1vs−2)n10(s1v1)Ψi(svs−1)]

= (−1)n−3[1 + (−1)ns+s−1]Ψi(svs−1).

The prefactor in brackets is 0 for n odd or s even, whereas vs−1 = 0 for n
even and s odd. Therefore, we have q210 ◦1,1 (n10 � nlg) = 0.

Proposition 4.21 (Formal pushforward Maurer-Cartan element for Sn). Con-
sider the round sphere Sn with the Green kernel (72). The formal pushfor-
ward Maurer-Cartan element n is a strictly reduced Maurer-Cartan element for
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dIBL(C(H(Sn))) which satisfies

n10 = m10 for all n ∈ N

plus the following properties depending on the dimension:

(n = 1): It holds nlg = 0 for all l ≥ 1, g ≥ 0 such that (l, g) 6= (1, 0), (2, 0); the
only non-trivial relation for n20 is

n20(svs1 ⊗ svs2) = (−1)s1+1 1
2s1k!

(
k − 1
s1

)
I(k), (84)

where s1, s2 ≥ 1 are such that k = s1 + s2 is even, and I(k) is given
by (83).

(n = 2): It holds nl0 = 0 for all l ≥ 2. We also have n11 = 0.

(n ≥ 3): It holds nlg = 0 for all l ≥ 1, g ≥ 0 such that (l, g) 6= (1, 0).

Notice that n20 6∈ E2C(H(S1)), i.e. n20 is a long cochain, because it is non-zero
in infinitely many weights.

4.3 Twisted IBL∞-structure for Sn

Let e0, e1 be the basis of H(Sn)[1] defined by

e0 := 1 := θ1, e1 := v := 1
V
θVol.

The degrees satisfy
|1| = −1, |v| = n− 1.

The matrix of the pairing P with respect to the basis e0, e1 reads

P =
(

0 1
(−1)n 0

)
.

The dual basis e0, e1 to e0, e1 with respect to P is thus

e0 = v, e1 = (−1)n1.

It follows that the matrix (T ij) from (33) satisfies

(T ij) = −
(

0 1
1 0

)
.
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We clearly have

B̂∗cyc,redH(S1) =
{ ∞∑
k=1

ckvk∗
∣∣∣ ck ∈ R

}
,

where vk∗ is the dual to the cyclic word vk = v . . . v of length k. Observe that
the cyclic symmetry gives

vi = (−1)(n−1)(i−1)vi for all i ≥ 1.

Therefore, vi∗ = 0 holds if both n and i are even.
For n ≥ 2, the vector space H(Sn) is connected and simply-connected, and

Proposition 2.40 implies that there are no long reduced cyclic cochains (i.e., we
have only finite sums of vk∗’s).

The product µ2 : H[1]⊗2 → H[1] from (42) has the following matrix with
respect to the basis 1, v:

µ2 =
(

1 v
(−1)nv 0

)
.

Because µ2(v, v) = 0, we get

Hm(Cred(H(Sn)))[1] =


〈svi∗ | i ≥ 1〉 for n ≥ 3 odd,

〈sv2i−1∗ | i ≥ 1〉 for n even,{
s
∑∞
k=1 ckvk∗ | ck ∈ R

}
for n = 1.

Because we are in the strictly unital and strictly augmented case, we obtain

Hm(C)[1] =


〈svi∗, s12j−1∗ | i, j ≥ 1〉 for n ≥ 3 odd,

〈sv2i−1∗, s12j−1∗ | i, j ≥ 1〉 for n even,〈
s
∑∞
k=1 ckvk∗, s12j−1∗ | ck ∈ R, j ≥ 1

〉
for n = 1.

(85)

The canonical IBL-operations can be written as

q210(s2ψ1 ⊗ ψ2)(sω) = −
∑

ε(ω 7→ ω1ω2)[(−1)(n−1)|ω1|ψ1(e0ω
1)

ψ2(e1ω
2) + (−1)|ω1|ψ1(e1ω

1)ψ2(e0ω
2)],

q120(sψ)(s2ω1 ⊗ ω2) = − 1
2
∑

ε(ω1 7→ ω1
1)ε(ω2 7→ ω1

2)[(−1)(n−1)|ω1
1 |

ψ(e0ω
1
1e1ω

1
2) + (−1)|ω

1
1 |ψ(e1ω

1
1e0ω

1
2)]

for all ψ, ψ1, ψ2 ∈ B̂∗cycH and generating words ω, ω1, ω2 ∈ Bcyc
∗ H. For all k,
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k1, k2 ≥ 1, we have

q210((svk1∗) · (svk2∗)) = 0 and q120(svk∗) = 0

because both q210 and q120 feed 1 into their inputs. For the canonically twisted
reduced IBL-algebra, this implies the following:

IBL
(
Hm(Cred)

)
=
(
Hm(Cred), q210 ≡ 0, q120 ≡ 0

)
for all n ∈ N.

By Proposition 2.51, the only possibly non-zero relation of IBL(Hm(C)) is

q210(s1∗ ⊗ svk∗)

= (−1)n−2s(vk∗ ◦ ιv)

= (−1)n−2(k−1∑
i=1

(−1)i|v|
)
svk−1∗ =

−(k − 1)svk−1∗ for n odd,

0 for n even.

The reason for 0 for even n is that either k is odd, in which case
∑k−1
i=1 (−1)i = 0,

or k is even, in which case vk∗ = 0. Therefore, for the canonically twisted
IBL-algebra, we have

IBL
(
Hm(C)

)
=
(
Hm(C), q210, q120 ≡ 0

)
for all n ∈ N,

where Hm(C) is given by (85) and q210 satisfies the following:

(n even): q210 ≡ 0.

(n ≥ 3 odd): The non-trivial relations are

q210(s1∗ ⊗ svk∗) = q210(svk∗ ⊗ s1∗) = −(k − 1)vk−1∗ for k ≥ 2.

(n = 1): The non-trivial relations are

q210

(
s1∗ ⊗ s

∞∑
k=1

ckvk∗
)

= −s
∞∑
k=1

kck+1vk∗ for ck ∈ R.

Recall that the twist by m does not produce any higher operation qm1lg.
We will now consider dIBLn(C(H(Sn))). Recall that qn110 = q210 ◦1 n10,

qn210 = q210 and qn120 = q120 +q210 ◦1n20. By Proposition 4.21, we have n10 = m10

for all n ∈ N and n20 = 0 for all n ≥ 2. It follows that qn110 = qm110 for all n ∈ N
and that the only non-trivial twist may occur in qn120 for S1. Using (37), we get
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for all ψ ∈ B̂∗cycH(Sn) and generating words ω1, ω2 ∈ Bcyc
∗ H(Sn) the following:

(q210 ◦1 n20)(sψ)(sω1 ⊗ sω2)

= (−1)n−2
[∑

ε(ω1 7→ ω1
1ω

2
1)ψ(1ω1

1)n20(svω2
1 ⊗ sω2)

+ (−1)(n−3+|ω1|)(n−3+|ω2|)
∑

ε(ω2 7→ ω1
2ω

2
2)ψ(1ω1

2)

n20(svω2
2 ⊗ sω1)

]
.

(86)

In this paragraph, we suppose that n = 1 and compute qn120. Clearly,
(q210 ◦1 n20)(svk∗) = 0 for all k ≥ 1 since 1 is fed into vk∗. A non-zero evaluation
of (q210 ◦1 n20)(s1k∗) for some k ≥ 1 odd is possible only on s1k−1vk1 ⊗ svk2 for
k1, k2 ≥ 0 (up to a transposition of arguments and their cyclic permutation). If
k > 1, only the first summand of (86) contributes, and we get

(q210 ◦1 n20)(s1k∗)(s1k−1vk1 ⊗ svk2)

= (−1)n−2
∑

ε(1k−1vk1 7→ ω1ω2)1k∗(1ω1)n20(svω2 ⊗ svk2)

= (−1)n−21k∗(11k−1)n20(svvk1 ⊗ svk2)

= −n20(svk1+1 ⊗ svk2).

According to Proposition 4.21, this is non-zero if and only if k1 + k2 is odd. It
follows that

qn120 6= qm120 = q120 on the chain level for S1.

However, the chains s1k−1vk1 ⊗ svk2 for k > 1 do not survive to the homology
(c.f., (85)). The only possibility is thus k = 1. In this case, both summands
of (86) contribute, and using (84), we get for all k1, k2 ≥ 1 the following:

(q210 ◦1 n20)(s1∗)(svk1 ⊗ svk2)

= (−1)n−2
[∑

ε(vk1 7→ v0vk1)1∗(1)n20(svk1+1 ⊗ svk2)

+ (−1)(n−3+k1(n−1))(n−3+k2(n−1))
∑

ε(vk2 7→ v0vk2)1∗(1)

n20(svk2+1 ⊗ svk1)
]

= −k1n20(svk1+1 ⊗ svk2)− k2n20(svk2+1 ⊗ svk1)

= − 1
2(k1 + k2 + 1)!I(k1 + k2 + 1)

[
(−1)k1k1(k1 + 1)

(
k1 + k2

k1 + 1

)
+ (−1)k2k2(k2 + 1)

(
k1 + k2

k2 + 1

)]
= −1

2(k1 + k2 + 1)!k1k2

(
k1 + k2

k1

)
I(k1 + k2 + 1)[(−1)k1 + (−1)k2 ]︸ ︷︷ ︸

=:(∗)

.

Denoting k := k1 + k2 + 1, we have that (−1)k1 + (−1)k2 = 0 for k even and
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I(k) = 0 for k odd. Therefore, (∗) = 0 for any k1, k2 ≥ 1. This implies that

qn120 = qm120 = q120 on the homology for S1.

We conclude that the twisted IBL-algebra satisfies

IBL
(
Hn(C(H(Sn)))

)
= IBL

(
Hm(C(H(Sn)))

)
for all n ∈ N.

As for the higher twisted operations, combining Proposition 2.24 and Propo-
sition 4.21, we see that for Sn with n ∈ N\{2} all higher operations qn1lg vanish
already on the chain level. For n = 2, we have that qn1l0 = 0 for all l ≥ 3 and
qn111 = 0 on the chain level. However, we did not prove that all higher operations
vanish on the chain level. As for the operations induced on the homology, the
graded vector space Hn(C(H(S2))) is concentrated in even degrees and qn1lg
are odd (see Definition 2.17). Therefore, all higher operations vanish also on
Hn(C(H(S2))).

The string topology HS1

∗ (Sn) and the string operations m2 and c2 were
computed in [4] for all n ∈ N. We review their results and basic ideas below:

We will consider even spheres first. The minimal model for the Borel con-
struction LS1S2m for m ∈ N is denoted by ΛS1(2,m) — it is the free graded
commutative dga (=:cdga) over R generated by homogenous vectors x1, y1, x2,
y2, u of degrees

|x1| = 2m, |y1| = 2m− 1, |x2| = 4m− 1, |y2| = 2(2m− 1), |u| = 2,

whose differential d satisfies

dy1 = 0, dx1 = y1u, dy2 = −2x1y1, dx2 = x2
1 + y2u.

The minimal model for the loop space LS2m is the dga Λ(2,m) which is obtained
from ΛS1(2,m) by setting u = 0. A computation (see [4, Theorem 3.6]) gives
the following for all m ∈ N:

H∗(LS2m;R) ' H∗(Λ(2,m),d) = 〈yi2x1 − 2iy1x2y
i−1
2 , y1y

j
2, 1 | i, j ∈ N0〉,

H∗S1(LS2m;R) ' H∗(ΛS1
(2,m),d) = 〈y1y

i
2, u

j | i, j ∈ N0〉,
(87)

where y0
2 := u0 := 1 is the unit in ΛS1(2,m) and 〈·〉 denotes the linear span over R.

Clearly, the cohomology groups are degree-wise finite-dimensional, and hence,
using the universal coefficient theorem, they are isomorphic to the corresponding
homology groups. We can thus identify H∗(LS2m;R) and HS1

∗ (LS2m;R) with the
vector spaces on the right hand side of (87). We have HS1

2k = 〈uk〉 for all k ∈ N0,
and hence the multiplication with u induces an isomorphism HS1

2k ' HS1

2k+2. This
corresponds to the cap product with the Euler class in (67), and exactness of the
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sequence impliesM(HS1

2k) = E(HS1

2k) = 0. Using this and degree considerations,
we get m2 = c2 = 0.

We will now consider odd spheres with n ≥ 3. The minimal model for
LS1S2m+1 for m ∈ N is denoted simply by Λ(x, y, u) — it is the free cdga on
homogenous vectors x, y, u of degrees

|x| = 2m+ 1, |y| = 2m, |u| = 2,

such that
dx = yu, dy = du = 0.

We get immediately

H∗(LS2m+1;R) ' 〈xi, yj | i, j ∈ N0〉,

H∗S1(LS2m+1;R) ' 〈yi, uj | i, j ∈ N0〉,

and we can again identify H∗ and HS1

∗ with the vector spaces on the right hand
side. Clearly, HS1

2k−1 = 0 for all k ∈ N, and hence m2 = c2 = 0 for degree reasons
(the operations are odd).

We will now consider the circle S1. For every i ∈ Z, let αi : S1 → S1 and
θi : S1 → LS1 be the maps defined by

αi(z) := zi and θi(w) := wαi for all w, z ∈ S1 ⊂ C.

By examining the equivariant homology of connected components of LS1 con-
taining αi separately as in [4, Section 2.1.4], we get

H∗(LS1;R) = 〈αi, θj | i, j ∈ Z〉,

HS1

∗ (LS1;R) = 〈ui, θ0u
j , αk | i, j ∈ N0, k ∈ Z\{0}〉,

where u corresponds to the Euler class and

|u| = 2, |θi| = 1, |αi| = 0

are the degrees in the singular chain complex. On [4, p. 21] they show that the
string cobracket c2 is 0 and that all non-trivial relations for the string bracket
m2 : HS1(LS1)[2]⊗2 → HS1(LS1)[2] are the following:

m2(sαk, sα−k) = k2sθ0 ∀k ∈ N.

We will now compare the reduced IBL-structures motivated by Conjec-
ture 3.33. The point-reduced versions HS1,red

∗ (LSn) for n ≥ 2 are obtained from
HS1

∗ (LSn) by deleting ui. We have the following isomorphisms of graded vector
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spaces:

Hn
∗(Cred(H(Sn)))[1] −→ HS1,red

∗ (LSn)[3− n]

svi 7−→ syi for n > 1 odd,

sv2i+1 7−→ sy1y
i
2 for n even.

Because all operations are trivial, it induces the isomorphism

IBL
(
Hn
∗(Cred(H(Sn)))

)
' IBL

(
HS1,red
∗ (LSn)[2− n]

)
for n ≥ 2.

For n = 1, the reduced homology is seemingly different.

Remark 4.22 (Triviality for degree reasons). Both HS1

∗ (LS2m−1)[3 − n] and
Hn
∗(C(H(S2m)))[1] are concentrated in even degrees, and hence any IBL∞-

structure must be trivial for degree reasons. On the other hand, HS1

∗ (LS2m) and
Hn
∗(C(H(S2m−1)))[1] have both even and odd degrees, and hence an additional

argument is needed to prove vanishing of the IBL-structure. This is not the case
of the reduced homology, which is again concentrated in even degree. C

4.4 Twisted IBL∞-structure for CPn

Let K ∈ Ω2(CPn) be the Fubini–Study Kähler form on CPn (see [17, Examples
3.1.9]). The powers of K are harmonic,12 and we get easily

H(CPn) = 〈1,K, . . . ,Kn〉.

We denote the Riemannian volume of CPn by

V :=
∫
CPn

1
n!K

n.

Consider the basis e0, . . . , en of H(CPn)[1] defined for all i = 0, . . . , n by

ei := ki

(n!V ) in
, where ki := θKi.

The matrix of the pairing P from (3) with respect to the basis e0, . . . , en reads:

(Pij) =


0 · · · 1
... . .

. ...
1 · · · 0

 .

12This follows by induction on the power of K using the fact that, on a general Kähler
manifold M , the Lefschetz operator L : Ω(M) → Ω(M) defined by L(η) := η ∧ K for all
η ∈ Ω(M) commutes with the Hodge–de Rham Laplacian ∆ (see [17, Chapter 3]).

118



The basis e0, . . . , en dual to e0, . . . , en with respect to P thus satisfies

ei = en−i for all i = 0, . . . , n.

Therefore, the following holds for the matrix (T ij) from (33):

(T ij) = −(Pij).

For all 1 ≤ i, j, k ≤ n, we have

µ2(ei, ej) = ei+j and m10(seiejek) = δi+j+k,n.

For ψ, ψ1, ψ2 ∈ B̂∗cycH and generating words ω, ω1, ω2 ∈ Bcyc
∗ H, we chave

q210(s2ψ1 ⊗ ψ2)(sω) = −
n∑
i=0

∑
ε(ω 7→ ω1ω2)(−1)|ω

1|ψ1(eiω1)ψ2(en−iω2),

q120(sψ)(s2ω1 ⊗ ω2) = −
n∑
i=0

∑
ε(ω1 7→ ω1

1)ε(ω2 7→ ω1
2)(−1)|ω1|ψ(eiω1

1en−iω
1
2).

The cyclic homology of H(CPn) is that of the truncated polynomial algebra

A := R[x]/(xn+1) with deg(x) = 2.

The computation of Hλ,cl
∗ (A) for |x| = 0 over a field is the goal of [24, Exercise

4.1.8.] or [34, Exercise 9.1.1]. The case of |x| = d can be solved by taking suitable
degree shifts in the proposed projective resolution which is used to compute
HH(A). Unfortunately, using a non-canonical projective resolution, we lose the
concrete form of the cyclic cycles and obtain just the following result (the full
computation will be provided in [19]):

For all i = 1, . . . , n and k ∈ N0, there are cycles t̃2k+1,i ∈ D̃q(A) of weights
2k + 1 and degrees d(i+ (n+ 1)k) which form a basis of Hλ,cl

∗ (A). We apply the
degree shift U : D̃∗(A)→ D∗(A) from Proposition 2.39 to get the generators

tw,i := U(t̃w,i) ∈ Dλ
∗ (H(CPn))

of weights w and degrees 2i+ (w − 1)n− 1, so that

Hλ(H(CPn)) = 〈tw,i, 1w | w ∈ N odd, i = 1, . . . , n〉.

By the universal coefficient theorem we have H∗λ = (Hλ
∗ )′ with respect to the

grading by the degree. Given d ∈ Z, the equation d = 2i+ (w− 1)n− 1 has only
finitely many solution (w, i) ∈ N× {1, . . . , n}, and hence we get

Hm(C(H(CPn))) = 〈st∗w,i, s1w∗ | w ∈ N odd, i = 1, . . . , n〉, (88)
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where t∗w,i and 1w∗ ∈ B∗cycH are the duals to tw,i and 1w, respectively (see
Remark 2.41). Notice that both |st∗w,i| and |s1w∗| are even since |s| = 2n− 3.

Because CPn is geometrically formal, Proposition 3.29 implies that n10 = m10.
Because Hm(C) is concentrated in even degrees and because a general IBL∞-
operation qklg is odd, all operations vanish on the homology. Therefore, for the
twisted IBL-algebras we have

IBL(Hn(C)) = IBL(Hm(C)) = (Hm(C), q210 ≡ 0, q120 ≡ 0),

where Hm(C) is given by (88).
According to [4, Section 3.1.2], the minimal model for the Borel construction

LS1CPn is the cdga ΛS1(n + 1, 1), which is freely generated (over R) by the
homogenous vectors x1, x2, y1, y2, u of degrees

|x1| = 2, |x2| = 2n+ 1, |y1| = 1, |y2| = 2n, |u| = 2,

and whose differential d satisfies

dy1 = 0, dx1 = y1u, dy2 = −(n+ 1)xn1y1, dx2 = xn+1
1 + y2u.

By [4, Theorem 3.6], the string cohomology H∗S1(LCPn;R) ' H∗(ΛS1(n+ 1, 1), d)
satisfies for all m ∈ N0 the following:

Hm
S1(LCPn;R) =

〈uj〉 if m = 2j,

〈y1y
p
2x

q
1 | 0 ≤ q ≤ n− 1, p ≥ 0; q + np = j〉 if m = 2j + 1.

The right-hand side can be identified with HS1

∗ (LCPn;R) by the universal coeffi-
cient theorem. According to [4, Proposition 3.7], we have m2 = 0 and c2 = 0.
We conclude that the map

Hn
∗(Cred(H(CPn)))[1] −→ HS1,red

∗ (LCPn;R)[3− n]

st∗2k+1,l 7−→ sy1y
k
2x

l−1
1 for k ≥ 0 and l = 1, . . . , n

induces an isomorphism of IBL-algebras

IBL(Hn
∗(Cred(H(CPn)))) ' IBL(HS1,red

∗ (LCPn;R)[3− n]).
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A Evaluation of labeled ribbon graphs
In this appendix, we define the propagator P and the graph pairing 〈·, ·〉PΓ
(Definition A.1), which encapsulates the contribution of a ribbon graph Γ to the
map fklg : (B∗cycV )⊗k → (B∗cycV )⊗l defined as a sum of contributions of ribbon
graphs (Proposition A.2). Such maps were already defined in [10, Section 11]
using coordinates; here we use an invariant framework inspired by [29]. As an
example, we work out in details expressions for the canonical dIBL-operations
q210 and q120 (Example A.5). We also explain the technicality of identifying
symmetric maps with maps on symmetric powers (Remark A.3).

Next, we define the notion of an algebraic Schwartz kernel (Definition A.4)
and show that the matrix (T ij) from Definition 2.42 corresponds to the Schwartz
kernel of the identity 1 up to a sign. Assuming that the Green kernel G from
Definition 3.5 is algebraic, we deduce the signs in Definition 3.19 using the
formula from [10, Remark 12.10] for the genuine pushforward Maurer-Cartan
element n in the finite-dimensional case. Establishing the formal analogy between
the de Rham case and the finite-dimensional case is our main application of
the invariant framework. Finally, we sketch how to obtain signs for the Fréchet
dIBL-structure on Ω(M) (Remark A.7).

Throughout this appendix, we will use Notation 2.28 without further remarks.

Definition A.1 (Propagator & graph pairing). Let V be a graded vector space.
The tensor P ∈ V [1]⊗2 is called a propagator if it satisfies the following symmetry
condition:

τ(P ) = (−1)|P |P. (89)

The map τ is the twist map defined by τ(v1 ⊗ v2) = (−1)|v1||v2|v2 ⊗ v1 for all v1,
v2 ∈ V [1].

For a ribbon graph Γ ∈ RGklg and its labeling L, consider the permutation σL
from Definition 3.18. It acts on tensor powers according to Definition 2.6 and
thus defines the map

σL : (V [1]⊗2)⊗e ⊗ V [1]⊗s1 ⊗ · · · ⊗ V [1]⊗sl −→ V [1]⊗d1 ⊗ · · · ⊗ V [1]⊗dk ,

where di and si are the valencies of internal vertices 1, . . . , k and boundary
components 1, . . . , l, respectively, and e is the number of internal edges. We
extend σL by 0 to other combinations of tensor powers. The graph pairing

〈·, ·〉PΓ : (B∗cycV )⊗k ⊗ (Bcyc
∗ V )⊗l −→ R

is defined for all ψ1, . . . , ψk ∈ B∗cycV and generating words wi = vi1 . . . vimi
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with vij ∈ V [1] for mi ∈ N and i = 1, . . . , l by the following formula:

〈ψ1 ⊗ · · · ⊗ ψk, w1 ⊗ · · · ⊗ wl〉PΓ
:=

∑
L1, Lb3

(ψ1 ⊗ · · · ⊗ ψk)
(
σL(P⊗e ⊗ (v11 ⊗ · · · ⊗ v1m1)⊗ · · ·

⊗ (vl1 ⊗ · · · ⊗ vlml)
)
,

where we use the pairing from Definition 2.29 and in every summand an L2

compatible with L1 and an Lv3 are chosen arbitrarily to get a full labeling L of Γ.
The graph pairing extends to 〈·, ·〉PΓ : T̄B∗cycV ⊗ T̄Bcyc

∗ V → R.

Proposition A.2. In the setting of Definition A.1, we denote w = w1⊗· · ·⊗wl
and ψ = ψ1 ⊗ · · · ⊗ ψk and have the following:

(a) The number ψ(σL(P⊗e⊗w)) does not depend on the choice of Lv3 and an L2

compatible with L1. Moreover, 〈·, ·〉PΓ does not depend on the representative
of [Γ] ∈ RGklg.

(b) If V is finite-dimensional, then for every k, l ≥ 1, g ≥ 0 there is a unique
linear map

fklg : (B∗cycV )⊗k → (B∗cycV )⊗l

such that

fklg(ψ1 ⊗ · · · ⊗ ψk)(w1 ⊗ · · · ⊗ wl)

= 1
l!

∑
[Γ]∈RGklg

1
|Aut(Γ)| 〈ψ1 ⊗ · · · ⊗ ψk, w1 ⊗ · · · ⊗ wl〉PΓ .

(c) The following holds for the map fklg from b):

• It is homogenous of degree

|fklg| = −|P |(k + l − 2 + 2g). (90)

• The filtration degree satisfies

‖fklg‖ ≥ −2(k + l − 2 + 2g). (91)

• For all η ∈ Sl and µ ∈ Sk, we have

η ◦ fklg ◦ µ = (−1)|P |(η+µ)fklg. (92)

Proof. (a) Let us denote by ī and ij the operations on L2 given by ei 7→ −ei
and ei ↔ ej , respectively. An even number of these operations does not change
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the orientation of (57). Their effect in σL acting on P⊗e ⊗ w is

ī : Pi 7→ τ(Pi) = (−1)|P |Pi and ij : Pi . . . Pj 7→ (−1)|P |Pj . . . Pi.

Therefore, an even number of them does not change σL(P⊗e ⊗ w). This proves
the independence of the choice of a compatible L2. The independence of the
choice of Lv3 is clear since ψi are cyclic symmetric.

An isomorphism of ribbon graphs η : Γ→ Γ′ induces the map of compatible
labelings L 7→ L′ = η∗L such that σL = σL′ . The independence of the choice of
a representative of [Γ] follows.

(b) Suppose that ψ = ψ1 ⊗ · · · ⊗ ψk with ψi ∈ (B∗cycV )ciri , where ri ∈ N and
ci ∈ Z for i = 1, . . . , k. A general element of (B∗cycV )⊗k is then a finite linear
combination of such ψ’s.

First of all, let us argue that the sum
∑

RGklg is finite. The number of
internal edges e is fixed from (56). Therefore, the number of contributing graphs
(Vint, Eint) is finite. In order to bound the number of external vertices, we
notice that d1 = r1, . . . , dk = rk must hold for ψ(σL(P⊗e ⊗ w)) to be non-zero.
Therefore, the sum is finite.

We now have the linear functional

fklg(ψ) := 1
l!

∑
[Γ]∈RGklg

1
|Aut(Γ)| 〈ψ | ·〉

P
Γ : (Bcyc

∗ V )⊗l → R

and need to show that fklg(ψ) ∈ (B∗cycV )⊗l ⊂ (Bcyc
∗ V )⊗l∗. Because V is finite-

dimensional, the weight-filtration of Bcyc
∗ V satisfies (WG1) & (WG2) (see (13)

and Proposition 2.31), and hence we have

(B∗cycV )⊗l = (Bcyc
∗ V )′′⊗l =

(
(Bcyc
∗ V )⊗l

)′′
for the weight-graded duals. Therefore, it suffices to show that fklg(ψ) vanishes
on all but finitely many degrees and weights of (Bcyc

∗ V )⊗k. However, the relation
fklg(ψ)(w) 6= 0 for a generating word w ∈ (Bcyc

∗ V )⊗k implies

|w| = |ψ| − e|P | and

k(w) = k(ψ)− 2e,
(93)

where k denotes the weight, and hence fklg(ψ) ∈ (B∗cycV )⊗l indeed holds.

(c) The formulas (90) and (91) follow from (93) and (56).

As for the symmetry (92), suppose that L and L′ are compatible labelings
of the same graph Γ such that L′1 differs from L1 by a permutation µ ∈ Sk of
internal vertices and a permutation η ∈ Sl of boundary components. Viewing µ
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and η as block permutations in the vertex and edge order, respectively, we get

σL′(P⊗e ⊗ w) = (−1)|P |(η+µ)µ(σL(P⊗e ⊗ η(w))).

The sign comes from the difference of L2 and L′2 which compensates the change
of the orientation of (57) caused by µ and η.

Given µ ∈ Sk and ψ = ψ1 ⊗ · · · ⊗ ψk ∈ (B∗cycV )⊗k, it is easy to see that

ε(µ,Ψ) = ε(µ(s), µ(ψ))ε(µ, s)ε(s, ψ)ε(µ, ψ),

where Ψ = (sψ1)⊗· · ·⊗(sψk) ∈ (B∗cycV [A])⊗k and ε(µ, s) = (−1)|s|µ. If A = −|P |,
then we get from (92) that the degree shift fklg : (B∗cycV [A])⊗k → (B∗cycV [A])⊗l

has the following symmetries:

∀µ ∈ Sk, η ∈ Sl : η ◦ fklg ◦ µ = fklg. (94)

Note that the degrees satisfy

|fklg| = |fklg|+ (k − l)A. (95)

Remark A.3 (Symmetric maps versus maps on symmetric powers). In the
situation above, we define f̃klg as the unique map such that the solid lines
of the following diagram commute:

(B∗cycV [A])⊗k (B∗cycV [A])⊗l

SkB∗cycV [A] SlB∗cycV [A].

fklg

π πι

f̃klg

ι

The symmetry condition (94) provides the existence of f̃klg and implies commu-
tativity of the dotted diagram as well. Moreover, for all ψ1, . . . , ψk ∈ B∗cycV

and w1, . . . , wl ∈ Bcyc
∗ V , we have

f̃klg(skψ1 · · ·ψk)(slw1 · · ·wl) = fklg(skψ1 ⊗ · · · ⊗ ψk)(slw1 ⊗ · · · ⊗ wl),

where we use the pairing from Definition 2.29. We denote f̃klg again by fklg. C

Definition A.4 (Algebraic Schwartz kernel). Let V be a graded vector space and
P : V ⊗V → R a non-degenerate pairing on V . We extend P to a non-degenerate
pairing P : V ⊗k ⊗ V ⊗k → R for k ≥ 1 by setting

P(v11 ⊗ · · · ⊗ v1k, v21 ⊗ · · · ⊗ v2k) := ε(v1, v2)P(v11, v21) . . .P(v1k, v2k)

for all v11, . . . , v1k, v21, . . . , v2k ∈ V , where ε is the Koszul sign (see Defini-
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tion 2.2). For k = 0, we let P : R⊗ R→ R be the multiplication on R.
For k, l ≥ 0, we say that KL ∈ V ⊗k+l is the algebraic Schwartz kernel of a

linear operator L : V ⊗k → V ⊗l if the following is satisfied:

∀w1 ∈ V ⊗k, w2 ∈ V ⊗l : P(L(w1), w2) = P(KL, w1 ⊗ w2). (96)

We usually omit writing “algebraic” if it is clear from the context (i.e., if we do
not consider any “extensions” of V ⊗k).

In the situation of Definition A.4, let (ei) ⊂ V be a basis and (ei) its dual
basis such that P(ei, ej) = δij . We define the coordinates Kij

L ∈ R and Lij ∈ R
by

KL =
∑
i,j

Kij
L ei ⊗ ej and Lij := P(L(ei), ej).

From (96) we have

KijL = (−1)(|L|+1)(|P|+|ei|)Lij for all i, j. (97)

From now on, we will be in the situation of (A) and (B) in the Introduction;
in particular, we put V [1] in place of V in Definition A.4. Let K1 ∈ V [1]⊗2

be the Schwartz kernel of the identity 1 : V [1] → V [1] and KG ∈ V [1]⊗2 the
Schwartz kernel of the cochain homotopy G : V [1]→ V [1]. From (97), we get

KijG = Gij and K1ij = (−1)|ei|+|P|P(ei, ej) for all i, j.

We see that the tensor T =
∑
i,j Tijei ⊗ ej from (33) can be expressed as

T = (−1)n−2K1.

This is the invariant meaning of T. Note that the degrees satisfy

|T| = n− 2 and |KG | = n− 3.

The assumption (1) on G is equivalent to graded antisymmetry of the bilinear
form G+ := P ◦ (G ⊗1) : V [1]⊗2 → R. This is further equivalent to

τ(KG) = (−1)|KG |KG .

Therefore, KG satisfies (89), and hence it can be used as a propagator for the
construction of fklg for every k, l ≥ 1, g ≥ 0. We have from (92) that the
degree shift fklg : (B∗cycV [3− n])⊗k → (B∗cycV [3− n])⊗l is symmetric. Moreover,
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using (90), (91) and (95), we obtain

|fklg| = −2d(k + g − 1),

‖fklg‖ ≥ γ(2− 2g − k − l),

where (d, γ) = (n− 3, 2). These are the degree and filtration conditions on an
IBL∞-morphism from [10, Definition 2.8 and (8.3)]. As a matter of fact, our
f = (fklg)k,l≥1,g≥0 is precisely the IBL∞-homotopy from [10, Theorem 11.3].

Graded antisymmetry of P is equivalent to

τ(T) = (−1)|T|+1T.

Visibly, T does not satisfy (89). Nevertheless, we can still use it to define f210

and f120 since the corresponding graphs Γ (see Figure 13) have only one internal
edge e, and, for a given L1, there is a unique compatible L2 determined by the
orientation of e (see Example A.5 for the compatibility condition). As for the
symmetry of the resulting maps, a transposition of internal vertices or boundary
components in (57) can be compensated only by e 7→ −e, which produces
(−1)|T|+1 (c.f., the proof of Proposition A.2 (a)). Therefore, if we shift the degrees
by A = −|T| + 1 = n − 3, we obtain symmetric maps q210 : (B∗cycV [A])⊗2 →
B∗cycV [A] and q120 : B∗cycV [A]→ (B∗cycV [A])⊗2. We show in Example A.5 below
that these operations agree with those defined in Definition 2.42.

Example A.5 (The canonical dIBL-operations). We have

f210(ψ1 ⊗ ψ2)(w) = 1
1!

∑
[Γ]∈RG210

1
|Aut(Γ)| 〈ψ1 ⊗ ψ2 | w〉PΓ and

f120(ψ)(w1 ⊗ w2) = 1
2!

∑
[Γ]∈RG120

1
|Aut(Γ)| 〈ψ | w1 ⊗ w2〉PΓ .

(98)

We parametrize RG210 by the ribbon graphs Γk1,k2 with 1 ≤ k1 ≤ k2 and
RG120 by the ribbon graphs Γs1,s2 with 0 ≤ s1 ≤ s2; these graphs are depicted in
Figure 13. We have RG210 = RG210\{[Γ1,1]} and RG120 = RG120\{[Γ0,0], [Γ0,1]}.
We also have

|Aut(Γk1,k2)| =

1 if k1 6= k2,

2 if k1 = k2,

and likewise for Γs1,s2 . We fix labelings Lv3 and parametrize Lb3 by c = 1, . . . ,
k1 + k2 − 2 for Γk1,k2 and by c1 = 1, . . . , s1 and c2 = 1, . . . , s2 for Γs1,s2 as it is
indicated in Figure 13.

There are two possible labelings Lv1 for Γk1,k2 and two possible labelings Lb1
for Γs1,s2 ; this is the only freedom in choosing a full labeling L because L3 is
fixed and L2 is just the orientation of the single internal edge, which is uniquely
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s1+2
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s1+3

s1+s2+2

Figure 13: Graphs Γk1,k2 and Γs1,s2 with fixed labelings L3.

determined by L1. For both Γk1,k2 and Γs1,s2 , we will denote the two possible
full labelings by L1 and L2. They can be depicted as follows:

Γk1,k2 Γs1,s2

L1 1 2 12

L2 1 2 2 1

(99)

Let us check that the indicated L1 and L2 are compatible. For the complexes
C2 → C1 → C0 from (57), we have the following:

Γk1,k2 : 〈b〉 ∂2=0−−−→ 〈e〉 ∂1−→ 〈v2 − v1〉 ⊕ 〈v1 + v2〉,

Γs1,s2 : 〈b1 − b2〉 ⊕ 〈b1 + b2〉
∂2−→ 〈e〉 ∂1=0−−−→ 〈v〉.

As for Γk1,k2 , the basis v2 − v1, v1 + v2 of C0 is positively oriented with respect
to the basis v2, v1. Therefore, e has to be oriented such that ∂1e = v2 − v1;
i.e., it is a path from v1 to v2. As for Γs1,s2 , the basis b1 − b2, b1 + b2 of C2 is
positively oriented with respect to b1, b2. Therefore, e has to be oriented such
that e = ∂2(b1 − b2). Recall that we orient the boundary of a 2-simplex by the
“outer normal first” convention. We conclude that the labelings from (99) are
indeed compatible.

As for f210, the permutations σ1 := σL1 and σ2 := σL2 corresponding to the
labelings L1 and L2, respectively, read

σ1 =
(

1 2 . . . c+ 2 . . .

1 k1 + 1 ︸ ︷︷ ︸
k1 + k1 − 2

. . . 2 . . .

)
and

σ2 =
(

1 2 . . . c+ 2 . . .

1 k2 + 1 ︸ ︷︷ ︸
k1 + k2 − 2

. . . k2 + 2 . . .

)
.
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The underbracket marks the block which represents a cyclic permutation of the
remaining indices. We see that

σ1 : V ⊗2 ⊗ V ⊗s −→ V ⊗k1 ⊗ V ⊗k2 , eiejw 7−→ eiw
1ejw

2,

σ2 : V ⊗2 ⊗ V ⊗s −→ V ⊗k2 ⊗ V ⊗k1 , eiejw 7−→ eiw
2ejw

1,

where w1 = wc . . . wc+k1−2, w2 = wc+k1−1 . . . wc+k1+k2−3 and s := k1 + k2 − 2.
Defining w̃1 := w2 and w̃2 := w1, The Koszul sign of σ2 can be written as

ε(w 7→ w1w2)(−1)|w
2||ej |+|w1||w2| = ε(w 7→ w̃1w̃2)(−1)|w̃

1||ej |.

We use these facts to rewrite (98) as follows:

f210(ψ1 ⊗ ψ2)(w) =∑
1≤k1<k2

∑
i,j

Tij
( ∑
k(w1)=k1−1

ε(w 7→ w1w2)(−1)|w
1||ej |ψ1(eiw1)ψ2(ejw2)

+
∑

k(w1)=k2−1

ε(w 7→ w1w2)(−1)|w
2||ej |+|w1||w2|ψ1(eiw2)ψ2(ejw1)

)
+

∑
1<k1=k2

1
2

( ∑
k(w1)=k1−1

ε(w 7→ w1w2)(−1)|w
1||ej |ψ1(eiw1)ψ2(ejw2)

+
∑

k(w1)=k2−1

ε(w 7→ w1w2)(−1)|w
2||ej |+|w1||w2|ψ1(eiw2)ψ2(ejw1)

)
=

∑
k1,k2≥1
k1+k2>2

∑
k(w1)=k1−1
k(w2)=k2−1

Tijε(w 7→ w1w2)(−1)|w
1||ej |ψ1(eiw1)ψ2(ejw2).

This coincides with the formula from Definition 2.42.
As for f120, the permutations σ1 := σL1 and σ2 := σL2 corresponding to the

labelings L1 and L2, respectively, read

σ1 =
(

1 2 . . . c1 + 2 . . . . . . c2 + s1 + 2 . . .

1 s1 + 2 ︸ ︷︷ ︸
s1

. . . 2 . . . ︸ ︷︷ ︸
s2

. . . s1 + 3 . . .

)
and

σ2 =
(

1 2 . . . c2 + 2 . . . . . . c1 + s2 + 2 . . .

s1 + 2 1 ︸ ︷︷ ︸
s2

. . . s1 + 3 . . . ︸ ︷︷ ︸
s1

. . . 2 . . .

)
,

where the underbracketed blocks denote cyclic permutations of consecutive
indices on the corresponding boundary component. We see that

σ1 : V ⊗2 ⊗ V ⊗s1 ⊗ V ⊗s2 −→ V ⊗k, eiejw1w2 7−→ eiw
1
1ejw

1
2,

σ2 : V ⊗2 ⊗ V ⊗s2 ⊗ V ⊗s1 −→ V ⊗k, eiejw1w2 7−→ ejw
1
2eiw

1
1,
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where w1
i denotes a cyclic permutation and k := s1 + s2 + 2. The Koszul sign

of σ2 can be written as

(−1)|ei||ej |+|w1||w2|+|ei||w2|ε(w1 7→ w1
1)ε(w2 7→ w1

2)

= (−1)(|ei|+|w1|)(|ej |+|w2|)+|w1||ej |ε(w1 7→ w1
1)ε(w2 7→ w1

2).

We use this fact and the cyclic symmetry of ψ to rewrite (98) as follows:

f120(ψ)(w1 ⊗ w2)

=
∑

0≤s1<s2

(
δ
(k(w1)=s1
k(w2)=s2

)∑
Tijε(w1 7→ w1

1)ε(w2 7→ w1
2)(−1)|w1||ej |

ψ(eiw1
1ejw

1
2) + δ

(k(w1)=s2
k(w2)=s1

)∑
Tijε(w1 7→ w1

1)ε(w2 7→ w1
2)

(−1)|ei||ej |+|w2||w1|+|ei||w2|ψ(ejw1
2eiw

1
1)
)

+
∑

0<s1=s2

δ
(k(w1)=k(w1)=s1
k(w2)=k(w2)=s2

)1
2

(∑
Tijε(w1 7→ w1

1)ε(w2 7→ w1
2)

(−1)|w1||ej |ψ(eiw1
1ejw

1
2) +

∑
Tijε(w1 7→ w1

1)ε(w2 7→ w1
2)

(−1)|ei||ej |+|w2||w1|+|ei||w2|ψ(ejw1
2eiw

1
1)
)

=
∑

s1,s2≥0
s1+s2>0

δ
(k(w1)=s1
k(w2)=s2

)∑
Tijε(w1 7→ w1

1)ε(w2 7→ w1
2)(−1)|w1||ej |

ψ(eiw1
1ejw

1
2).

This coincides with the formula from Definition 2.42. C

We will now establish a formal analogy between the finite-dimensional and
the de Rham case, which will explain the signs in Definition 3.19.

The finite-dimensional case. Consider the situation of (A) – (D) in
the Introduction. To recall briefly, we have a finite-dimensional cyclic dga
(V,P,m1,m2) and a subcomplexH ⊂ V such that there is a projection π : V [1]→
H[1] chain homotopic to 1 via a chain homotopy G : V [1]→ V [1]. Using m2, one
constructs the canonical Maurer-Cartan element m for dIBL(C(V )). Using the
algebraic Schwartz kernel KG of G, one constructs the IBL∞-quasi-isomorphism
f = (fklg) : dIBL(C(V )) → dIBL(C(H)). The Maurer-Cartan element m is
then pushed forward along f to obtain the Maurer-Cartan element n := f∗m for
dIBL(C(H)) (see [10, Lemma 9.5]). The formula for n given in [10, Remark 12.10]
reads

nlg(slw1 ⊗ · · · ⊗ wl)

= 1
l!

∑
[Γ]∈RG(3)

klg

1
|Aut(Γ)| (−1)k(n−2)〈(m+

2 )⊗k, w1 ⊗ · · · ⊗ wl〉KGΓ . (100)

Here the artificial sign (−1)k(n−2) is added because our sign conventions for m+
2

differ (see Remark 2.33).
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The de Rham case. We are in the setting of Definition 3.19. To recall
briefly, we have the cyclic dga (Ω(M),P,m1,m2), the subspace of harmonic
forms H ⊂ Ω, the harmonic projection πH : Ω → H and a Green kernel G ∈
Ω(Bl∆(M ×M)), which is the Schwartz kernel of a chain homotopy G : Ω→ Ω
between πH and 1. In analogy with the finite-dimensional case, the canonical
Maurer-Cartan element (43) for dIBL(H) satisfies m10 = (−1)n−2m+

2 with
m+

2 = P(m2 ⊗ 1). Because dim(Ω) = ∞, Definition 2.42 does not give the
canonical dIBL-structure on C(Ω), and hence we have neither f nor n in the
standard sense.

In order to deduce the formal analogy, we embed Ω(M)⊗2 into Ω(Bl∆(M×M))
using the external wedge product (η1, η2) 7→ π̃∗1η1 ∧ π̃∗2η2 and suppose that the
Green kernel G satisfies G ∈ Ω⊗2. This never happens, so what follows is just a
formal computation.

Proposition A.6. In the de Rham case, suppose that G ∈ Ω(M)⊗2. Then (100)
reduces to (59).

Proof. Consider the intersection pairing P̃ and its degree shift P (see Proposi-
tion 3.2). According to Definition A.4, they extend to pairings on Ω(M)⊗k and
Ω(M)[1]⊗k for all k ≥ 1, respectively. For all η11, η12, η21, η22 ∈ Ω(M), we have:

P(θ2η11 ⊗ η12, θ
2η21 ⊗ η22)

= (−1)η11+η21P(θη11 ⊗ θη12, θη21 ⊗ θη22)

= (−1)η11+η21+(1+η12)(1+η21)P(θη11, θη21)P(θη12, θη22)

= (−1)1+η12η21 P̃ (η11, η21)P̃(η12, η22)

= −P̃(η11 ⊗ η12, η21 ⊗ η22).

(101)

One can also check that

P̃(η11 ⊗ η12, η21 ⊗ η22) =
∫
x,y

η11(x)η12(y)η21(x)η22(y).

For the Green operator G : Ω(M)→ Ω(M) and its Green kernel G ∈ Ω(M)⊗2,
we have the following:

∀η1, η2 ∈ Ω(M) : P̃(G(η1), η2) =
∫
x,y

G(x, y)η1(x)η2(y) = P̃(G, η1 ⊗ η2).

From this and (101), we obtain

P(G(θη1), η2) = P(θ G(η1), θη2) = (−1)1+η1P̃(G(η1), η2)

= (−1)1+η1P̃(G, η1 ⊗ η2) = (−1)η1P(θ2G, θ2η1 ⊗ η2)

= P(θ2G, θη1 ⊗ sη2).
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Therefore, the element θ2G ∈ V [1]⊗2 corresponds to the Schwartz kernel KG of
G : V [1]→ V [1]. We write this correspondence as

KG ∈ V [1]⊗2 ∼ θ2G ∈ Bl∆(M ×M)[2].

Let us check that θ2G satisfies (89). First of all, if we embed Ω(M)⊗k into
Ω(M×k) using the external wedge product η1 ⊗ · · · ⊗ ηk 7→ π∗1η1 ∧ · · · ∧ π∗kηk =:
η1(x1) ∧ · · · ∧ ηk(xk), then for all η1, . . . , ηk ∈ Ω(M) we have

σ(η1 ⊗ · · · ⊗ ηk)(x1, . . . , xk) = η1(xσ1) ∧ . . . ∧ ηk(xσk),

where the action on the left-hand side is given by (11). Now, the symmetry
property (47) implies

τ(θ2G) = −θ2τ∗(G) = (−1)n+1θ2G = (−1)|θ
2G|θ2G.

Therefore, the symmetry condition (89) is indeed satisfied.
Let Γ ∈ RG(3)

klg, and let L be a labeling of Γ. We abbreviate σ := σL ∈ S3k.
Given ηij ∈ Ω(M) for j = 1, . . . , si and i = 1, . . . , l, where si is the valency
of the i-th boundary component, we set ηi = ηi1 ⊗ · · · ⊗ ηisi , η = η1 ⊗ · · · ⊗ ηl,
αij = θηij , ωi = αi1⊗· · ·⊗αisi and ω = ω1⊗· · ·⊗ωl. We denote s := s1+· · ·+sl,
so that 3k = 2e+ s, where e is the number of internal edges. We have

(m+
2 )⊗k

(
σ((θ2G)⊗e ⊗ ω)

)
= ε(θ, η)(m+

2 )⊗k
(
σ((θ2G)⊗e ⊗ θsη)

)
= (−1)se(n−1)ε(θ, η)(m+

2 )⊗k
(
σ(θ2e+sG⊗e ⊗ η)

)
= (−1)σ+se(n−1)ε(θ, η)︸ ︷︷ ︸

=:ε1

(m+
2 )⊗k

(
θ2e+sσ(G⊗e ⊗ η)

)
,

where ε(θ, η) is the Koszul sign to order θsη11 . . . ηlsl 7→ θη11 . . . θηlsl and m+
2 :

Ω(M)[1]⊗3 → R is given by m+
2 = P(m2 ⊗ 1). We denote κ := G⊗e ⊗ η =

κ1 ⊗ · · · ⊗ κ3k, κi ∈ Ω(M)[1] and compute

(m+
2 )⊗k(θ3kσ(κ))

=
↑

|m+
2 |=3−n

ε(σ, κ)(m+
2 )⊗k(θ3kκσ−1

1
⊗ · · · ⊗ κσ−1

3k
)

= (−1) 1
2k(k−1)nε(σ, κ)(m+

2 )⊗k
(
θ3(κσ−1

1
⊗ κσ−1

2
⊗ κσ−1

3
)⊗ · · ·

⊗ θ3(κσ−1
3k−2
⊗ κσ−1

3k−1
⊗ κσ−1

3k
)
)

=

=:ε2︷ ︸︸ ︷
(−1)

1
2k(k−1)n+κ

σ
−1
2

+···+κ
σ
−1
3k−1 ε(σ, κ)(m+

2 )⊗k
(
(θκσ−1

1
⊗ θκσ−1

2

⊗ θκσ−1
3

)⊗ · · · ⊗ (θκσ−1
3k−2
⊗ θκσ−1

3k−1
⊗ θκσ−1

3k
)
)
.
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Next, using the formula (1) for m+
2 , we get

(m+
2 )⊗k

(
(θκσ−1

1
⊗ θκσ−1

2
⊗ θκσ−1

3
)⊗ · · · ⊗ (θκσ−1

3k−2
⊗ θκσ−1

3k−1
⊗ θκσ−1

3k
)
)

= (−1)
κ
σ
−1
2

+···+κ
σ
−1
3k−1

(∫
x1

κσ−1
1

(x1)κσ−1
2

(x1)κσ−1
3

(x1)
)
· · ·(∫

xk

κσ−1
3k−2

(xk)κσ−1
3k−1

(xk)κσ−1
3k

(xk)
)

= (−1)
κ
σ
−1
2

+···+κ
σ
−1
3k−1

∫
x1,...,xk

κσ−1
1

(x1)κσ−1
2

(x1)κσ−1
3

(x1) · · ·

κσ−1
3k−2

(xk)κσ−1
3k−1

(xk)κσ−1
3k

(xk)

=

=:ε3︷ ︸︸ ︷
(−1)

κ
σ
−1
2

+···+κ
σ
−1
3k−1 ε(σ, κ)

∫
x1,...,xk

κ1(xξ(σ1))κ2(xξ(σ2))κ3(xξ(σ3)) · · ·

κ3k−2(xξ(σ3k−2))κ3k−1(xξ(σ3k−1))κ3k(xξ(σ3k)),

where ξ(3j − 2) = ξ(3j − 1) = ξ(3j) = j for j = 1, . . . , k (see Definition 3.19).
In total, we have

(m+
2 )⊗k

(
σ((θ2G)⊗e ⊗ ω)

)
= ε1ε2ε3

∫
x1,...,xk

G(xξ(σ1), xξ(σ2)) · · ·G(xξ(σ2e−1), xξ(σ2e))

α11(xξ(σ2e+1)) · · ·αlsl(xξ(σ2e+s)),

where
ε1ε2ε3 = (−1)σ+se(n−1)+ 1

2k(k−1)nε(θ, η).

Using (56), (58) and ε(θ, η) = (−1)P (ω), we get the total sign

(−1)k(n−2)ε1ε2ε3 = (−1)s(k,l)+σ+P (ω),

where (−1)k(n−2) is the artificial sign from (100). This proves the proposition.

Remark A.7 (Signs for the Fréchet dIBL-structure on Ω(M)). In [10, Section 13],
they consider the weight-graded nuclear Fréchet space B∗cycΩ(M)∞ ⊂ B∗cycΩ(M)
generated by ϕ ∈ B∗cycΩ(M) which have a smooth Schwartz kernel kϕ ∈ Ω(M×k);
they showed that there is a canonical Fréchet dIBL-structure on B∗cycΩ(M)∞[2−
n]. In order to deduce the signs, we can consider the subspace B∗cycΩ(M)alg ⊂
B∗cycΩ(M)∞ generated by ϕ ∈ B∗cycΩ(M) with an algebraic Schwartz kernel
Kϕ ∈ Ω(M)[1]⊗k, rewrite (98) in terms of Kϕ and extend the obtained formulas
to B∗cycΩ(M)∞. This may be done in [19]. C

132



References
[1] M. Akaho. “Quasi-isomorphisms of A∞-algebras and oriented planar trees”.

In: Illinois J. Math. 51.2 (2007).

[2] S. Axelrod and I. M. Singer. Chern-Simons Perturbation Theory. Oct. 1991.
arXiv: hep-th/9110056.

[3] S. Axelrod and I. M. Singer. Chern-Simons Perturbation Theory II. Apr.
1993. arXiv: hep-th/9304087.

[4] S. Basu. “Transversal String Topology & Invariants of Manifolds”. PhD
thesis. Stony Brook University, 2011. url: http://www.math.stonybrook.
edu/alumni/2011-Somnath-Basu.pdf.

[5] R. Bott and L. W. Tu. Differential Forms in Algebraic Topology. New York:
Springer, 1982. doi: 10.1007/978-1-4757-3951-0.

[6] R. Bryant. A primitive to Vol(x)±Vol(y) on (Sn × Sn)\∆. Jan. 30, 2018.
url: https://mathoverflow.net/q/291535.

[7] A. S. Cattaneo and P. Mnev. Remarks on Chern-Simons invariants. Nov.
2008. arXiv: 0811.2045.

[8] M. Chas and D. Sullivan. Closed string operators in topology leading to Lie
bialgebras and higher string algebra. Dec. 2002. arXiv: math/0212358.

[9] M. Chas and D. Sullivan. String Topology. Nov. 1999. arXiv: math/9911159.

[10] K. Cieliebak, K. Fukaya and J. Latschev. Homological algebra related to
surfaces with boundary. Aug. 2015. arXiv: 1508.02741.

[11] K. Cieliebak and J. Latschev. The role of string topology in symplectic
field theory. June 2007. arXiv: 0706.3284.

[12] K. Cieliebak and E. Volkov. Chern-Simons theory and string topology. In
preparation.

[13] K. Cieliebak and E. Volkov. Cyclic homology and Chen’s iterated integrals.
In preparation.

[14] M. Doubek, B. Jurčo and L. Peksová. Properads and Homotopy Algebras
Related to Surfaces. Aug. 2017. arXiv: 1708.01195.

[15] B. Fresse. Homotopy of Operads and Grothendieck–Teichmüller Groups:
Parts 1 and 2. USA: AMS, 2017.

[16] B. Harris. Iterated integrals and cycles on algebraic manifolds. Singapore:
World Scientific Publishing, 2004. isbn: 981-238-720-X.

[17] D. Huybrechts. Complex Geometry: An Introduction. New York: Springer,
2004. isbn: 3-540-21290-6.

[18] P. Hájek. Program in Wolfram Mathematica 10.4 to compute the integrals
for Sn. 2018. url: https://github.com/p135246/Integrals_for_Sn.

133

http://arxiv.org/abs/hep-th/9110056
http://arxiv.org/abs/hep-th/9304087
http://www.math.stonybrook.edu/alumni/2011-Somnath-Basu.pdf
http://www.math.stonybrook.edu/alumni/2011-Somnath-Basu.pdf
http://dx.doi.org/10.1007/978-1-4757-3951-0
https://mathoverflow.net/q/291535
http://arxiv.org/abs/0811.2045
http://arxiv.org/abs/math/0212358
http://arxiv.org/abs/math/9911159
http://arxiv.org/abs/1508.02741
http://arxiv.org/abs/0706.3284
http://arxiv.org/abs/1708.01195
https://github.com/p135246/Integrals_for_Sn


[19] P. Hájek. “String topology and Chern-Simons theory”. PhD thesis. In
preparation.

[20] B. Keller. Introduction to A-infinity algebras and modules. Nov. 1999. arXiv:
math/9910179.

[21] T. Kohno. Conformal Field Theory and Topology. Oxford University Press,
2002. isbn: 978-0821821305.

[22] D. Kotschick. On products of harmonic forms. Apr. 2000. arXiv: math/
0004009.

[23] A. Lazarev. Hochschild cohomology and moduli spaces of strongly homotopy
associative algebras. Apr. 2003. arXiv: math/0204062.

[24] J.-L. Loday. Cyclic Homology. New York: Springer, 1992. isbn: 3-540-
53339-7.

[25] J.-L. Loday and B. Vallette. Algebraic Operads. Heidelberg: Springer, 2012.
doi: 10.1007/978-3-642-30362-3.

[26] M. Markl and A. A. Voronov. The MV formalism for IBL∞- and BV∞-
algebras. Nov. 2015. arXiv: 1511.01591.

[27] S. Mescher. A primer on A-infinity-algebras and their Hochschild homology.
Jan. 2016. arXiv: 1601.03963.

[28] T. J. Miller. “On the formality of k − 1 connected compact manifolds of
dimension less than or equal to 4k − 2”. In: Illinois J. Math. 23.2 (1979).

[29] P. Mnev. Lectures on Batalin-Vilkovisky formalism and its applications in
topological quantum field theory. July 2017. arXiv: 1707.08096.

[30] K. Münster and I. Sachs. Quantum Open-Closed Homotopy Algebra and
String Field Theory. Oct. 2011. arXiv: 1109.4101.

[31] H. Tamanoi. “Loop coproducts in string topology and triviality of higher
genus TQFT operations”. In: Journal of Pure and Applied Algebra 214.5
(June 2010), pp. 605–615. url: http://arxiv.org/abs/0706.1276.

[32] B. Vallette. Algebra+Homotopy=Operad. Feb. 2012. arXiv: 1202.3245.

[33] F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups.
Graduate Texts in Mathematics. New York: Springer, 1983. doi: 10.1007/
978-1-4757-1799-0.

[34] C. A. Weibel. An introduction to homological algebra. USA: Cambridge
University Press, 1994.

134

http://arxiv.org/abs/math/9910179
http://arxiv.org/abs/math/0004009
http://arxiv.org/abs/math/0004009
http://arxiv.org/abs/math/0204062
http://dx.doi.org/10.1007/978-3-642-30362-3
http://arxiv.org/abs/1511.01591
http://arxiv.org/abs/1601.03963
http://arxiv.org/abs/1707.08096
http://arxiv.org/abs/1109.4101
http://arxiv.org/abs/0706.1276
http://arxiv.org/abs/1202.3245
http://dx.doi.org/10.1007/978-1-4757-1799-0
http://dx.doi.org/10.1007/978-1-4757-1799-0

	1 Introduction and summary
	2 Algebraic structures
	2.1 Gradings, degree shifts and completions 
	2.2 Basics of IBL-infinity-algebras 
	2.3 Dual cyclic bar complex and cyclic cohomology 
	2.4 Canonical dIBL-structure on cyclic cochains 

	3 Twisted IBL-infinity-structure and string topology 
	3.1 Canonical dIBL-structures on C(HdR(M))
	3.2 Green kernel G
	3.3 Formal pushforward Maurer-Cartan element n
	3.4 Results about vanishing of n
	3.5 Conjectured relation to string topology

	4 Explicit computations
	4.1 Computation of G for Sn
	4.2 Computation of n for Sn
	4.3 Twisted IBL-infinity-structure for Sn 
	4.4 Twisted IBL-infinity structure for CPn 

	Appendix A Evaluation of labeled ribbon graphs
	References

