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Abstract

Cieliebak & Fukaya & Latschev proposed to twist the canonical IBL-
structure on cyclic cochains of Har (M) for a closed oriented manifold M
with a Maurer-Cartan element n built up from Chern-Simons like integrals
associated to trivalent ribbon graphs. They conjectured that this construc-
tion gives a chain model for Chas-Sullivan string topology. In this text, we
assume that the integrals converge and explicitly compute the case of S™,
supporting the conjecture. We generalize this computation and show that

the twist with n is often trivial.
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1 Introduction and summary

An IBL.-algebra is essentially a collection of multilinear operations gz, with &
inputs, [ outputs and “genus” g satisfying certain relations; in particular, qi19 is a
boundary operator, and the pair g219, q120 induces the structure of an involutive
Lie bialgebra on the homology of q119. It was introduced in [10] and applications
to string topology, symplectic field theory and higher genus Lagrangian Floer
theory were proposed.

This text is an attempt to understand the application to string topology.
The idea was to carry out some explicit computations according to the plan
sketched in |10, Section 13] and test the string topology conjecture (see below).

The following results from [10, Corollary 11.9] are our starting point (precise
definitions of all the notions will be given in Section [2j our IBL,-algebras will
be strict and filtered in the terminology of [10]):

(A) For a finite-dimensional cyclic cochain complex (V, P, m1) of degree 2 — n,
there is a canonical dIBL-structure pi10, P210, P120 of bidegree (n — 3,2)

on the degree shifted dual cyclic bar complex

C(V) 1= Biy V2= n] = (P (VI feye) ) 2 = nl,

k>1

where cyc stands for cyclic permutations with the Koszul sign, ’ denotes
the graded dual and [] the degree shift. This structure is denoted by
dIBL(C(V)).

(B) Let (H,P,m1) C (V,P,mq) be a subcomplex such that the restriction
of P to H[1] is non-degenerate. We apply (A) to (H,P,m1) to get the
canonical dIBL-algebra dIBL(C(H)) = (C(H),q110,9210,9120). Suppose
that 7 : V[1] = V[1] is a projection to H[1] which satisfies

mom; =mponm and
P(m(v1),v2) = P(v1,7(v2))

for all vy, vy € V[1], and let ¢ : H[1] — V1] be the inclusion. A linear map
G : V[1] — V1] of degree —1 such that

mlog+gom1:Lo7r—]lV[1] and

|v1] (1)
P(G(v1),v2) = (=1)"""'P(v1,G(v2))

for all vy, vo € V[1] induces the IBL,-homotopy equivalence
f= (frig) : AIBL(C(V)) — dIBL(C(H))

such that f110 : C(V)[1] = C(#H)[1] is the map given by the precomposition



with ¢ in every component. We recall from [10] that fu : ExC(V) —

E;C(H) is a linear map between exterior powers.

The map fii, is constructed as a sum of contributions coming from iso-
morphism classes of ribbon graphs (=: multigraphs with a cyclic ordering of
half-edges at every internal vertex) with k internal vertices, [ boundary compo-
nents and genus g. To compute the contribution of a labeled ribbon graph I' to
the value

frig(U1 ® - @ Up) (W1 @ -+ ® Wy)

for Wy, ..., Uy € BE, V[3—n] and Wy, ..., W; € BY“H[3 — n], we decorate
the i-th internal vertex of I' with ¥, external vertices lying on the i-th boundary
component with components v;1, ..., v;s, € V[1] of W; =s(vi1 ® -+ - ® vy, /Cyc),
where s is a formal symbol of degree n — 3, and internal edges with the Schwartz
kernel G of G with respect to P. Decorated ribbon graphs are then evaluated
in a consistent way to obtain real numbers (see Appendix |A|for an invariant
formalism or |10, Section 10] for a coordinate version of this construction).

We will also use the following results from [10, Proposition 12.5 and Theo-

rem 12.9] about deformations of IBL-algebras:

(C) If in addition to (A) there is the product msg : V[1] ® V[1] — V[1] making
(V,m1, ms) into a cyclic dga, then (—1)"~2mg defines a canonical Maurer-
Cartan element m := (myg) for AIBL(C(V)). The twisted IBL-algebra is
again a dIBL-algebra of bidegree (n — 3,2); it is denoted by dIBL™(C(V))
and satisfies

m
dIBL™(C(V)) @

= (C(V),pT0 = P110 + P210 01 Mig, P519 = P210, Plro = P120)-

(D) The IBLo-morphism § from (B) can be used to pushforward m and obtain
the Maurer-Cartan element n = (n,) for dIBL(C(#)). The twist by n is
an IBLyo-algebra of bidegree (n — 3,2); it is denoted by dIBL"(C(H)) and
satisfies

dIBL™(C/(H))
= (C(H), 110 = 9110 + d210 ©1 M0, 9510 = 92105 9120 = G120

+ 210 01 Moo, plus the higher operations q‘flg = (210 01 nl_q).

This IBL-algebra is IBLo,-homotopy equivalent to dIBL™(C(V)) via the
twisted IBL,-morphism

™ = (fig) : AIBL™(C(V)) — dIBL*(C(H)).

The pushforward Maurer-Cartan element n = f,m can be expressed as a



sum of contributions of isomorphism classes of trivalent ribbon graphs (mér has

namely three inputs), where a labeled ribbon graph I' is decorated with m2+ at
internal vertices, with the components of the i-th argument of n;g, i.e., elements
of H(V)[1], at the i-th boundary component and with G at internal edges. Note
that whereas (A) — (C) can be formulated without completions, infinite sums
appear in n;4, and hence filtration and completions necessarily come into play.

The application to string topology of an oriented closed manifold M of
dimension n comes from studying generalizations of (A) — (D) to the infinite-
dimensional cyclic dga (2*(M), P, m1, mz). Here Q*(M) is the de Rham complex
of M and the maps P : Q(M)[1]®? — R, m; : Q(M)[1] — Q(M)[1] and
ma : Q(M)[1]%? — Q(M)[1] are defined for all 1, 01, 72 € Q(M) as follows:

P(On1,0n2) == (=1)™ / 1 A 12,
M

de Rham cyc. dga (6n) = 0dn, (3)

where d is the de Rham differential, A the wedge product, 6 a formal symbol of
degree —1 and 7; in the exponent denotes the form-degree of 1;. By picking a

Riemannian metric on M, we obtain the subcomplex of harmonic forms
(H* (M), P,m1 = 0)

with the projection 7y : Q(M) — H(M) coming from the Hodge decomposition.
This cyclic cochain complex shall be taken as the subcomplex in (B).

From technical reasons stemming from the fact that the non-degenerate
pairing P on Q(M)[1] is not perfect, one has to restrict the construction in
(A) to the subspace B .Q(M)s of elements with a smooth Schwartz kernel.
Then (A) and (B) work in the setting of the so called Fréchet IBL.-algebras
introduced in [10, Section 13]. However, the element mio € B Q(M)[3 — n],

which translates into the Chern-Simons term

m3 (61, 0n2,6n3) == (—1)" / m Anz Ang for all ny,m2,m3 € QM),
M

does not define the canonical Maurer-Cartan element m in (C) directly because
my ¢ BzYCQ(M )oo- This also means that one cannot use (D) to conclude the
existence of the pushforward Maurer-Cartan element n.

Nevertheless, it was proposed to define n formally using the summation over

trivalent ribbon graphs as in the finite-dimensional case. We call such n a formal

pushforward Maurer-Cartan element. In order to compute the contribution of a

labeled trivalent ribbon graph I' with k£ internal vertices, [ boundary components



and genus g to the value
(R ®--- ),

where Q; = sw; for wy, ..., w; € BYY“H(M), one starts by decorating internal
vertices with integration variables x1, ..., xx on the k-fold product M x ---x M,
external vertices on the i-th boundary component with the components «;1, ...,
ais;, € H(M)[1] of w; and internal edges with the Green kernel G. In this
setting, G becomes the Schwartz kernel of G in the sense of pseudo-differential
operators; this G is necessarily singular at the diagonal A, so that we have
only G € Q" 1(M x M\A). One then takes the wedge product of all forms in
the decorated graph in the order and with the sign deduced from the labeling
of I' and computes the integral over =i, ..., xx. Similar integrals appear in
perturbative Chern-Simons quantum field theory.

Because of the singularity of G at A, the integrand described above is smooth
only on the k-th configuration space of M. It is not clear that all the integrals
converge and that the resulting n;, are well-defined and satisfy the Maurer-
Cartan equation. The idea of work in progress [12] of K. Cieliebak and E. Volkov
is to use iterated spherical blow-ups of the diagonals to resolve the singularities
and obtain integrals of smooth forms on compact manifolds with corners; this
guarantees integrability. The Maurer-Cartan equation for n = (n,) is then
proven with the help of Stokes’ formula and by showing that the contributions
of hidden codimension-1 faces cancel. This method is similar to the method
from [2] and [3], where Feynman integrals of perturbative Chern-Simons theory
were considered.

Having n, the twisted IBLy-algebra dIBL"(C(H(M))), which can be equiv-
alently written as dIBL"(C(Hgg(M))) using the Hodge isomorphism H (M) ~
Hyr (M), should satisfy the following conjecture:

String topology conjecture (Conjecture 1.12 in [10]). Let M be a closed
oriented manifold of dimension n and Hqr (M) its de Rham cohomology. Then

*
cyc

homology equals the cyclic cohomology of the de Rham complex of M.

there exists an IBLo-structure on (a suitable version of) B Hggr[2 — n] whose

The idea is that the S'-equivariant homology of the free loop space Hfl (LM)

is isomorphic to a version of Connes’ cyclic cohomology of the de Rham algebra

HX (Q*(M)), at least for simply-connected M. The precise relation will be estab-
lished in yet another work in progress [12] of K. Cieliebak and E. Volkov using
a chain-map coming from a cyclic version of Chen’s iterated integrals. Now, a
suitable degree shift of H} (2*(M)) is isomorphic to the homology of the bound-
ary operator q}, of the only formally defined dIBL-algebra dIBL™(C(2(M))),
which is according to (D) (formally) quasi-isomorphic to dIBL"(C(H(M))) via
the twisted IBL,,-morphism ™.

The space H§1 (LM) is equipped with an IBL-structure coming from the Chas-



Sullivan string bracket my and string cobracket cs; these operations were defined
geometrically on suitably transverse smooth chains in [9] and [§], respectivelyﬂ
The natural question is: How is the IBL-structure ms, ¢5 related to the IBL-
structure g8, g}y induced on HS' (LM) via the isomorphism from the string

topology conjecture? The extended string topology conjecture asserts that

these structures agree, and hence the operations g5y, q}y, defined on cyclic
cochains provide a chain model for my, ¢3. Based on our observations and
explicit computations, we formulate an up-to-date version of the string topology
conjecture for simply-connected manifolds (see Conjecture .

A large part of this text consists of setting up the algebraic base for the
work with dIBL"(C'(H(M))). In addition to repeating the theory from [10] in a

slightly different formalism, we also include the following topics:

e A formula for the partial composition oy in terms of operations of the
canonical associative bialgebra on the symmetric algebra (Definition [2.15]);
formulas for qj,; (Proposition [2.45)).

e Definition of the cyclic cohomology of A..-algebras (Definition [2.34)) and
its relation to the homology of qf;, (Proposition [2.47)); definitions of the
reduced versions (Definitions [2.37] .48 and 2.49)) and their relation to the

unreduced versions (Propositions and [2.38)).

e An invariant formulation of the evaluation of labeled ribbon graphs (Defi-
nition and Proposition [A.2); formal analogy of the finite-dimensional
and the de Rham case which we use to obtain signs for the definition of n

(Proposition |A.6]).

e Definition of the Green kernel (Definition[3.5) and of the formal pushforward
Maurer-Cartan element n (Definition [3.19)).

Our first result is an explicit computation of dIBL"(C(Hqr(S™))) by finding
a particular Green kernel and showing that all integrals which contribute to n
vanish for n > 3; for n = 1, there is a non-vanishing integral whose value we
compute (see Section ; for n = 2, the existence of a non-vanishing integral

remains open.

Theorem A (Explicit computation for S™). Consider the round sphere S™ C
R"1. Define 1 := 01, v := OVol € Har (S™)[1], where Vol is the volume form, 1
the constant one and 0 a formal symbol of degree —1. The following holds for

1n fact, ¢o is geometrically defined only on the homology relative to constant loops and ma
does not always restrict to it.



the homology of the twisted boundary operator qf:

H" (C(Har(S™)))[1] == H(B{, Har (S")[3 — 7], ai10)
(svi* 512071 | 4,5 > 1) forn >3 odd,
= q (svZl* g1 2071 |45 > 1) for n even,

(s 121 ¢ e R, j > 1) forn=1.

Here (-) denotes the linear span over R, * the dual and s is a formal symbol of
degree n — 3. The product q5,, vanishes on H" except for the following relations
forn >3 odd

0310(51° @ sv™) = (v @ 51%) = —(k — v

and the following relations for n = 1:

o0 o0

4310 (51* ®s Z Cka*) = -5 Z kcpy1vh*.
k=1 k=1

The coproduct qiyq as well as all higher operations q‘l‘lg vanish on H" in every

dimension n. For S, we have qTo0 # qi20 on the chain level; i.e., the twisting is

non-trivial. For n # 2, all higher operations vanish on the chain level.

2j=1x je., if we consider the point-reduced version, then,

If we mod out s1
after dropping s, the results agree with the string topology of M relative to one
constant loop and with Chas-Sullivan operations. The only exception is M = S*.
This supports the string topology conjecture for simply-connected manifolds and
provides a counterexample for non-simply connected manifolds.

Our second result generalizes the previous explicit computation and shows
that in many cases, the twists with n and m coincide. Its proof is a combination

of facts from Section [3.4]

Theorem B (Triviality of the twist with n on the chain level). Let M be a
closed oriented n-manifold. There exists a Green kernel G such that the following

holds for the twisted IBLyo-structure dAIBL"(C(Hgr(M))):

(1) For the basic operations qi;y = 210 ©1 M10, 9510 = 9210, qie0 = G120 +
210 ©1 Moo, we have:
(a) IfHig(M) =0, then ngg = 0, and hence qfsy = qi20-
(b) If M is geometrically formal, then nyg = myg, and hence q¥5 = qfY,-
(In fact, if in addition Hig (M) = 0, then n = m, at least for n # 2.)
(2) For the higher operations qY;, = q210 01 n20 with (I, g) # (1,0), (2,0), we

have wy = 0, and hence q3;, = 0 with the possible exception of surfaces
and 3-manifolds with Hig (M) # 0.



In our future work, we plan to concentrate on the following:

(1) We would like to improve Theorem by showing that the higher operations
for S? vanish. If this is the case, then the statement that all higher

operations vanish for every manifold M with H}y (M) = 0 is true.

(2) For a formal simply-connected manifold M, we would like to investi-
gate whether dIBL"(C'(Hqr(M))) and dIBL™(C'(Har(M))) are homotopy
equivalent as IBL.-algebras. If not, we would like to understand the

obstruction.

(3) We would like to compute dIBL"(C'(Hqr(M))) for surfaces ¥, with g >
1 and formulate a string topology conjecture for non-simply connected
manifolds.

(4) We would like to know whether the Schwartz kernel Ggiq of Gstq = —d* A1
(the so called standard Green kernel), where d* is the codifferential and A
the Hodge-de Rham Laplacian, extends smoothly to a blow-up. If yes,

then it is a canonical Green kernel for which the statement of Theorem [B]
holds.

(5) We would like to define a generalization of an IBL,-algebra—a weak, non-
reduced IBL,-algebra with a gauge group—and understand its precise

relation to perturbative Chern-Simons theory within the BV-formalism.

In the end, let us summarize some existing work on IBL.-algebras which
helped us to understand IBL.-algebras in broader context: In [30], they find
an IBL.-structure in open-closed string field theory. In [14], they view IBL -
algebras as algebras over a certain Frobenius properad. In [26], they consider

IBL.-algebras as a particular case of BV - or, more generally, MV-algebras.
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2 Algebraic structures

In Section we recall weight-grading (Definition , Koszul sign (Defini-
tion[2.2)), degree shift (Definition [2.3)), filtrations (Definition [2.8) and completions
(Definition . We prove the Kiinneth formula for completed symmetric coho-
mology (Proposition .

In Section we review basics of IBL,-algebras from . We define the
exterior algebra EC' over a graded vector space C as the symmetric algebra S
over C[1] (Definition and use the operations g and A of the structure
of an associative bialgebra on S(C[1]) to give explicit formulas for the partial
compositions op,  p, (Definition . We use the compositions to define
the notion of an IBLc-algebra (qxiy) on C' (Definition , a Maurer-Cartan
element (ny) (Deﬁnition and twisted operations (q;,) (Deﬁnition. We
mention that an IBL-algebra according to our definition is an odd degree shift of
a classical IBL-algebra (Proposition . We define the induced IBL-structure
on homology (Definition , briefly discuss the BV-formalism (Remark
and mention weak IBL,-algebras (Remark . Finally, we summarize the
situation for twisted dIBL-algebras (Proposition and briefly discuss higher
operations (Remark [2.25)).

In Section we define the (weight-reduced) dual cyclic bar-complex Bf .V
of a graded vector space V (Definition [2.26)) and introduce some notation
(Notation . We then summarize some facts about the completions B .V

and Eszch (Proposition . We define the notion of a cyclic Aoo—struc‘jure
on V (Definition 2:32) and its Hochschild and cyclic cohomology (Definition [2.34).
We recall strict units and strict augmentations (Definition , define the
reduced dual cyclic bar complex B .4V (Definition and sketch a proof
of the fact that the cyclic cohomology is a direct sum of the reduced cyclic
cohomology and the cyclic cohomology of the ground field (Proposition .
We relate our version of the cyclic cohomology for dga’s to the classical version
from (Proposition . We also show that the reduced spaces for a simply
connected and connected V' are complete (Proposition [2.40)).

In Section [2.4] we review the construction of the canonical dIBL-structure
dIBL(C(V)) (Definition and the canonical Maurer-Cartan element m (Def-
inition starting from a cyclic dga (V, P, m1, mq). We give formulas for
the operations (qf;,) of the IBLoc-algebra dIBL"(C(V)) twisted by a Maurer-
Cartan element n (Proposition [2.45)). We consider the A..-structure induced
on V by nyg (Definition and relate its cyclic cohomology to the homol-
ogy of q},, (Proposition . We define the reduced canonical dIBL-algebra
dIBL(Cieqa(V)) (Definition and the notion of a strictly reduced Maurer-
Cartan element (Definition . The twisted IBL-structure then splits into
the reduced part and the part generated by 1%*, which we can explicitly compute

(Proposition [2.51)).
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2.1 Gradings, degree shifts and completions

We will work with vector spaces over R, possibly infinite-dimensional, graded by
the degree d € Z and the weight k € Np.

Definition 2.1 (Weight-graded vector spaces). A graded vector space is a vector
space W together with a collection of subspaces W& C W for all d € Z such that

W:@Wd.

deZ

Elements of W% are called homogenous of degree d; given w € W<, we denote
the degree of w by |w| := d.

A linear map of graded vector spaces f : W1 — Wy is called homogenous of
degree |f| € Z if it holds

Fvdy c WL for all d € 7. (4)

A weight-graded vector space is a graded vector space W together with a
collection of subspaces W C W for all k € Ny and d € Z such that

W= Wi foralldeZ.
keNg

We define the weight-k component by

W, =@ Wi for all k € No.
deZ

If W¢ = 0 for all d € Z, we say that W is weight-reduced. We define the
weight-reduced subspace of a weight-graded vector space W by

W::@@Wg.

deZ keN

We consider the following versions of the dual space of W :

W*:={y: W — R linear} ... linear dual,
. d*
W' = @ H Wy* ... graded dual, (5)
deZ keNy
w" = @ @ W ... weight-graded dual.
d€Z keNy

We identify W' with the subspace of W* generated by homogenous maps and W

with the subspace of W* generated by maps which are non-zero only on finitely

11



many W,‘j; hence, we have
W' cw cWw*.
The grading convention for W' is the cohomological grading convention,
which differs from the convention for maps f : W — R by the degree reversal

(see Definition [2.3)).

Definition 2.2 (Koszul sign). Let k > 1, and let o € Si, be a permutation on k

elements. Fori=1, ..., k, let a; and b; be graded symbols of degrees |a;| and |b;|,

respectively. We denote by
e(o,a) and e(a,b)
the Koszul signs of the transformations
a1 ... Qg — a,- el and aq...apby...by —> a1by...apbyg,

respectively. Here O'i_l := 0~ 1(i). The Koszul sign is computed by permuting
the left-hand side to the right-hand side using transpositions of two adjacent
elements such that whenever we transpose two graded symbols, e.g., a; <— a;,

jaillay|

we multiply with (—1)

We emphasize that the Koszul sign depends only on the initial and the final

order of the graded symbols; not on the sequence of transpositions.

Definition 2.3 (Degree shift and grading reversal). Let A € Z. The degree shift
by A is a functor which associates to a graded vector space W the graded vector
space WA] with

WAL .= WA for all d € Z.

There is the canonical degree shift morphism
W — W[A] (6)

of degree —A mapping W identically to W[A]4=4. We view this morphism as
multiplication from the left with a formal symbol sa of degree |sa] = —A, so
that (6) s given by w € W — syw € W[A].

Given graded vector spaces W1, Wo and constants Ay, As € Z, we associate
to a morphism f: Wy — Wa its degree shift f : W1[A1] — Wa[Aa] by defining

f(sa,w) =584, f(w) for allw e Wy. (7)
Notice that if f : W1 — Wa has degree |f|, then f: W1[A1] — W3[As] has degree

|f]+ A1 — As.
The grading reversal v is a functor which associates to a graded vector space W

12



the graded vector space r(W) with
r(W):=Ww~=¢  for all d € Z.

There is the canonical morphism W — r(W) mapping W identically to W =< for
every d € Z. The degree reversal of a morphism f: Wy — Wy is the morphism
fir(Wy) = r(Wa) defined by conjugating f with the canonical morphism. If | f|
is the degree of f: W1 — Wa, then —|f| is the degree of f : r(W71) — r(Wa).

In our main reference |10], they view W and W[A] as one vector space with
two different gradings deg(-) and | - |, respectively; these are related by

|w| = deg(w) — A for all homogenous w € W.

On the other hand, we think of W and W[A] as of two different graded vector
spaces and never use the same symbol for an element w € W and its degree
shift sqw € W[A]. It allows us to use just one notation | - | for the gradings on
both W and W[A]. However, in order to preserve compatibility with [10], we
will also sometimes use the notation deg(w) (in the exponent just (—1)") for
the degrees on W.

For graded vector spaces Wy, ..., Wy and constants Ay, ..., A € Z, we
identify

WilA1]) @ @ Wi[Ag] ~ (W1 ® -+ - @ Wi)[A1 + - - + Ag]

using the Koszul convention for the tensor product; for homogenous elements
wy € Wh, ..., wi € Wy, it reads

SA, WL Q- QSh, WE = 6(8,4,711) SA; -+-S4, W1 Q- Q Wg. (8)
—_———
=ISAi4-+Ap
If Ay =--- = Ay =: A is fixed in the context, which is our usual case, we omit

the subscript A and write just s.

In the case of the multilinear map f: W1 ® --- W, - V1 ®---® V], the
combination of (7)) and (§) gives for f: Wi[4;]®@ - @ Wi[Ax] = Vi[B1]® - ®
Vi[Bi] the following:

Fa ot a, w1 @ @wg) =8p, g, fwr @+ @ wg). 9)

Remark 2.4 (Why is this sign convention bad?). Let us illustrate that @D is not

compatible with the following standard Koszul rule:

(K):  (fi® fo)(wr ®ws) = (1)1 fy(w1) © fo(ws).

13



On one hand, we get

=]

s*(f1 ® fa) (w1 © wy)
V)l 2 (1) @ fows)

(_1)\lelw1|+A(|f1\+\w1|)sf1 (w1) @ sfa(ws).

(f1 ® fo)(s*w1 @ ws)

—

K

On the other hand, we get

(— I)Alwll(fl ® f2)(sw1 ® swy)
(LAl I AH D £ (1) @ fo(sws)

(—1)Alwrl Rl Dg £ (1)) @ s fo(ws).

(fi® fz)(S wy & wz)

=

[=]

The results differ by (—1)4U/11+172D) Therefore, we can not use (K) to identify
Hom(W7, Vi) ® Hom(Ws, V,) with a subspace of Hom(W; @ Wa, Vi ® V3) in
general. We will rather define an ad-hoc pairing in the case where we need it
(see Definition [2.29).

Another caveat is that in the case of the tensor product, the degree shift
by A; followed by the degree shift by As is not the same as the degree shift by
Ay + As. Indeed, we compute

SA2SA1w1) ® (SAzsAle)
1)A2 A1+|w1|) 2 (

(SAI +Az wl) ® (SA1 +Az w2)

(

( SAlwl) ® (SA1w2)
( 1)A2A1+(A1+A2)|w1| 2
(—

,54, (w1 ® wo)

1)A2A1+(A1+A2)|w1|52(A +A2)(w1 ® w2)7
which differs by (—1)4142 from the direct degree shift by A; + Ay. Therefore,
we have to always remember the vector spaces which we started with and the
sequence of degree shifts.

Note that we also have the unnatural sa,s4, = 54,54, due to (§). <

Remark 2.5 (Is there a better sign convention?). The author originally respected
the Koszul rule for the algebra with formal symbols and considered the following
map sLs%* f : W[A]®*F — V[A]®! as the degree shift of f: W&k — V&L

(L ) (sFwr @ -+ @ wy) = (—1)FHIATSEE-DAL f ) @ @) (10)

Here § denotes the “inverse” of s with [§| = —|s|, sLf = s' o f is the post-

composition, 5% f = (—1)F4l/1 f 0 % the pre-composition, and the sign (s, 5) =

(71)%“’“*1)‘4 comes from the “collision” §7...8gS1...8g —> 5181 . .. SgSk.
However, the author did not manage to reprove the theory in [10] using

(because of too many “external” signs appearing and a problem with disconnected
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graphs). A motivation to try a different sign convention was to explain some
artificial signs in [10] and formulate their coordinate constructions invariantly in
order to generalize them to the “continuous” de Rham case.

It might be possible to deduce a “universal” sign convention “respecting”
the Koszul rules by considering the category of chain complexes and graded
morphisms C as the category enriched in the closed monoidal category of chain
complexes and chain maps of degree 0. One can then define the enriched degree
shift functor s4 : C — C, embed C®* C C using (K) and study enriched natural
transformations in the algebra of functors consisting of tensor products and

compositions of s4, Hom(-,-) and the dual *. <

Definition 2.6 (Permutations). For k > 1 and o € Sy, (:=the group of permu-

tations on k elements), we define the action of o on W®* by
o(wy ® - Quwy) 1= s(a,w)wgfl R @ Wy (11)

for all homogenous wy, ..., w, € W.

Notice that the i-th vector is permuted to the o;-th place — this is the

“active” convention for permutations.

Definition 2.7 (Symmetric algebra). Let T(V) := @5, VEE be the tensor
algebra over a graded vector space V. The symmetric algebra over V is defined
by S(V) := @Dy Sk(V), where

Sk(V) == V&) Z Im(1 — o) (=: Sg-coinvariants).

oESE

It is a weight-graded vector space with components denoted by (SxV)? for all
d €7Z and k € Ny. Note that SoV = R has degree 0 by definition. Consider the

canonical projection
m: T(V) — S(V)

V1 Q- QU —> V1 -+ Vg.
The dot - indicates the symmetric product. If v; € V' are homogenous, we call

v1 - Uk @ generating word; we have

vy - v = €(o, U)’Uo_l—l U for every o € Sy.

Let v : S(V) — T(V) be the section of © defined by

1
L(Ul ...'Uk) = E Z 5(0-71))1)0'1_1 ® e ®UO_’€—1.

T oeSk
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We use it to identify S(V') with the subspace of symmetric tensors

1(Sp(V)) = ﬂ ker(1 — o) C Tx(V) (=: Sk-invariants).

oESE

Definition 2.8 (Filtrations). Let W be a graded vector space. A filtration of W
is a collection of linear subspaces FA\W C W for A € R such that we have either

o Fan, W CF\,W forall \y < )Xo <= increasing filtration, or

o Fn, WD F\,W forall \y <)o <= decreasing filtration.

We will assume that our filtrations are graded in the following sense:

VAER: AW =AW, where W :=FWnW.

dez
A filtration FAW is called:
e exhaustive = Urer AW =W;
e Hausdorff = (Naer FAW =0;
e Z-gapped = AW =F\ W forall N € R;
e bounded from below <= 3INER:F\W =0;
e bounded from above <= INER:F\W=W.

Given a graded vector space W filtered by a Z-gapped filtration F\W , we
associate to it the bi-graded vector space

gr(W) = PP er()s

deZ ez
called the graded module whose components are given as follows:

FAWLFrx_ W2 for increasing FAW,

VA NeZ: gr(W)§ =
I AW FAWe  for decreasing FAW.

We naturally extend a filtration over degree shifts, graded duals, direct sums,

tensor products and symmetric products as follows:

FAW[AY = Ry w4,
.F)\(W/)d = {'l,[} S Wd* | ¢|]:/\W = 0}7

AP W) = PARW,

i€l iel
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AWie -oW)t= P Yo AW e R Wi,

di,...,dLEZ A1y A ER
dit+-tdg=d Ai+-F+A=A

Fa(SeV)?:= m(Fr(VEF)),

where w: T(V) — S(V) is the canonical projection. If (W, 0) is a filtered chain

complex, we filter the homology as follows:
VAER,dE€Z: F\Hy(W,0) :={acHy(C,0)|Iwec a:we FAW}.

Definition 2.9 (Completions). Let W be a graded vector space filtered by a
decreasing filtration FA\W . The filtration degree of w € W is defined by

lw|| :==sup{\ e R | w e FAW}.
The filtration degree of a linear map f : W1 — Way is defined by
1F1]:= sup{A € R | [|f(w)]| = [Jw[| + A Vw € W1}

We say that the filtration degree is finite if || f|| > —oo. Note that ||0]| = oco.
The completion of W is the graded vector space

W= @@,

deZ

where for all d € 7 we define

0o
Wd = {Z wj
i=0

Here 7% gwi ~ Y202 wh if and only if || Y21 o (w; —w})|| = 0o as n — cof’| The
completion W is canonically filtered by the filtration FAW defined as follows:

ViENo:wiEWd;||wi||—>ooasi—)oo}/w.

V)\GR,dGZ: .F,\WdSZ{Z’LUZ‘EWd’ViENolwiE.F,\Wd}.
i=0
We denote the completion of W1 ® - -- @ Wy by Wi® - - ®Wy, and the completion
of SV by SV
A map f: W1 — Wy of finite filtration degree extends continuously to a

2In fact, W is the inverse limit @ir(W/fA W) in the category of graded vector spaces

and W the inverse limit {El /\(Wd JFAW%) in the category of vector spaces. As a side-remark,
if we forget the grading on W, we might also consider l{iLnA(W/]-'AW), which would be a vector

space containing W as a subspace.
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linear map f : Wy — Wa; this extension is defined by

f(i wz) = if(wz) for all iwl cw.
i=0 i=0 i=0

Remark 2.10 (Completed tensor product). Using Proposition below, one can
show that the completed tensor product & is associative and that Wi &Wy =~

W1&Ws. By refining this argument, one can show that S,V ~ S,V for any
k e N. <

A weight-graded vector space W is canonically filtered by weights:

VAER, deZ: FW*:=PwWi (12)
E<A

This filtration is Z-gapped, exhaustive, Hausdorff, increasing and bounded from
below. The induced filtration on the graded dual W' is Z-gapped, Hausdorft,
decreasing and bounded from above (and thus automatically exhaustive). It holds
gr(W) ~ W, and it is easy to see from that the canonical map W" — W’
induces the isomorphism

W~ W',

We also see that the condition
(WG0): VYdeZ3JCNy,|J|<ocoVkeN\J: We=0
is equivalent to W/ = W',
A useful tool to compare completions is the following proposition:

Proposition 2.11 (|15 Proposition 7.3.7], Isomorphism criterion). Let W;
and Wy be graded vector spaces filtered by Z-gapped filtrations which are decreasing
and bounded from above. Suppose that f: Wy — Wy is a filtration preserving
homogenous linear map. Then the continuous extension f : Wy — Wa is
an isomorphism if and only if the induced map f : gr(W7) — gr(Wa) is an

isomorphism.

Proof. The implication from the right to the left is obtained from the diagram

0—— gr(Wl),\ —> Wl/]:}\Wl e Wl/f)\_lwl — 0

I I I

0 ——r gr(WQ))\ — Wg/]:,\Wg — WQ/]:)\71W2 — 0

by induction using the definition of W as the inverse limit of W/F\W (see
Footnote [2[ on page . O

For a graded vector space W filtered by a Z-gapped filtration, consider the
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following conditions:

(WG@G1) -
(W@G2) :

YA€Z I CZ,|I| <ooVdeZ\ : gr(W)§ =0,
Vd,\EZ:

Lemma 2.12 (Completion of symmetric powers of the graded dual). Let W be
a graded vector space filtered by an exhaustive Z-gapped filtration F\W which is
increasing and bounded from below. If (WG1) & (WG2) are satisfied, then the

natural map Sp(W') — (SgW)’ induces the isomorphism

Sk(W') ~ (SyW)  for every k € N.

Note that we filter graded duals by the induced filtration from Definition [2.8

Proof. The natural map S (W') —
hence it extends continuously to a map of completions. The target space (SW)’

(SkW)' is clearly filtration preserving, and

is already complete (the dual space W' is complete, provided that the filtration
(SeW)'.
to Proposition this map is an isomorphism if and only if the induced map
er(Skg (W) — gr((SkW)’) is. This is shown by the following computation (the

maps involved are natural in at least one direction):

of W is exhaustive), and thus we obtain the map Sj(W’) — According

fA(W®k’)d N Fa(Wek)ds 2<]-‘>\+1<W®k)d)*
./—"A+1(W®k/)d ‘/—-')\+1(W®k)d* f}\(W®k)d
~ @IJ\:dZm:AHRIWdl®~--®A,€de *
T\ Bima Zxjer W B @ @ Fy W
~ Z\XI i P W @@ Fy W\
- Z\M A‘FMW 1 ®.7:)\de1‘=
N( @ DVl Pl
B CF W F, Wik
|d]= dIM A
~ (D @ D™ M)
- CFaWi F Wik
IX|= A\d\ d
Z—gapped ) "
& bounded below — @ @ (J"],\;Jr‘l/‘%l %)
& (WG1) K= |dl=d A e
Fra W Frpp1 Wk«
e @@(del ) ®'”®(W)
IX|=X|d]=d
~D D+ T (V)% Fo (W)
Frorr (W Fro (W
dl=d |X|=A Pl A1 (W)
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N ]:)\(W/®k)d
- Firit (W/®k)d :

In fact, this computation shows that Ty (W') ~ (TxW)’. The conclusion for S

follows by checking that the maps above are Sg-equivariant. O

Given a chain complex (W, 9), the boundary operator 0 induces the boundary
operator Oy, : W®* — W®* for all k € N; for all wy, ..., wy € W, it is defined by

k
8k(w1 ®- & wk) = Z(_1)|w1|+~'+\w171|w1 Q- QRQOW; ® -+ R wy. (14)
=1

The map 0y, is clearly Si-equivariant, and thus induces the boundary operator
8k : SkW — SkW.

Proposition 2.13 (Kiinneth formula for completed symmetric cohomology).
Let (W, 0) be a Z-graded chain complex over R filtered by an exhaustive Z-gapped
filtration F\W which is increasing and bounded from below. Consider the dual
cochain complex (W', d := 0*). Suppose that d has finite filtration degree, so
that dy, : Sg(W') — Sp(W') extends continuously to dy : Sk(W’) — gk(W’)
for every k € N. If (WG1) & (WG2) are satisfied, then the natural map
SKH(W',d) — H(Sx(W'),ds) induces the isomorphism

SKH(W',d) ~ H(Sx(W'),ds,) for all k € N.

Proof. The natural map SH(W’,d) — H(SW’,dy) is clearly filtration preserv-
ing, and hence it extends continuously to a map of completions. The target space
H(ékW’ ,dg) is already complete (the homology of a complete space is complete),
and hence we obtain the map SH(W’, d) — H(S,W’,d;). The following facts
are easy to verify:

(1) The isomorphism from Lemma is an isomorphism of cochain complexes
(SkW',d) ~ ((SkW)', 07).

(2) If the filtration on W satisfies (WG1) and (WG2), then the filtration
on H(W) also satisfies (WG1) and (WG2), respectively. Consequently,
Lemma holds for symmetric powers of H(W,9)" as well.

(3) The Kiinneth formula H(W®*) ~ H(W)®* implies H(S, W) ~ S H(W) for
any Z-graded chain complex W over R.

(4) We have (H(W))’ ~ H(W') over R by the universal coefficient theorem.
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Now, we compute

H(SW', dy,) ~ H((SKkW)', ;) ~ H(SpW,8,) =~ (SpH(W,9))’

T T T
@) (4) (3)
~ S,(H(W,0)) ~ S HW',d).
T T
(2) (4)
This proves the proposition. 0

2.2 Basics of IBL-algebras

Definition 2.14 (Exterior algebra). Given a graded vector space C over R, we

define the exterior algebra over C' by
EC := S(C[1]).

The weight-k component is denoted by E,C and the weight-reduced part by EC.
If C is in addition filtered, then EiC is filtered by the induced filtration and its
completion is denoted by E.C.

We have the product p : EC ® EC — EC and coproduct A : EC - EC @ EC
defined by

,[L(Cll L Cp®Cor .. Cgk/) =C11..-C1kC21 . ..Cok’ and

Aley...cx) = Z Z e(o, 0)001_1 o G ®c,-1

e 0_—1
k1,k2>0 0€Sky ky ky+1 Ky -tk
ki+ko=k
for all homogenous ¢;;, ¢; € C[1] and k, k" > 0, respectively, where Sk, , C
Sk, +k, denotes the set of shuffle permutations with blocks of lengths k; and k;.

These operations satisfy relations of an associative bialgebra (see [25]):

po(l®p)=po(p®l),
Ass. bialg. (1®A)cA=(A®1)oA, (15)
Aop=@peupe(lerel)e(A®A).

Here 7: C1 ®@Cy — Co®CY, ¢c1 Qca — (—1)‘C1H02|02 ® c1 denotes the twist map.
We will use the bialgebra calculus (:=relations (15])) to write down explicit

formulas for the operations o, ., which were briefly introduced in [10]; these

operations take symmetric maps fi, ..., fr and connect hy, ..., h, of their
outputs to the inputs of a symmetric map f in all possible ways, so that the
result, which we denote by f op,.. . (f1,.-., fr), becomes a symmetric map

again.
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Definition 2.15 (Partial compositions). Let C' be a graded vector space. For i,
7 >0, we denote by

m; : EC — EiC, 1 E;C — EC,
]]-i : EZC — EZC, Tij - EZC X EJO — EJC@) EZC

the components of the canonical projection m, the canonical inclusion ¢, the
identity 1 and the twist map T, respectively. We also set

Ai,j = (7Ti ®7Tj) oAo Litj and Wi j 1= Ti4j O[O (Li &® Lj).

For k', ki, U, 11 >0, let f : ExC — EpC and f1 : Ex,C — E, C be linear maps,
and let 0 < h < min(k',ly). We set

k=K +k—h and 1:=U'+11—-h

and define the composition of f and fi at h common outputs to be the linear

map fop f1: ExC — EC given by

fonfri=prp—no(f@Ly—n)o (np—-n@Ly—p)o(Ln®@7, 4,0 ) (16)

o (Apy—n @ Li—p) o (f1 @ Ly—p) 0 Aky kr—h-

More generally, we define the composition of f : Ex — Ep with r > 1 linear
maps fi + By, = B, with ki, l; >0 fori=1, ..., r at 0 < h; <I; common
outputs such that h := hy + -+ h, <k’ as follows. We set

ki=K+ki+-+k—h and =0+l + -+l —h
and define fop, _p,. (f1,...,fr)  ExC — E,C by

fohl,‘..,hr (flv"‘vfr)
=po(fel)o(pel)e(ler)
o ([(W™ @ u™)o (Fyy,. ., ®1%) 00, 0 A®] @ 1)

o(fi® @ fr®1)o AT,

(17)

where we have:

o The operation u") is the “product with r inputs” and the operation A"

the “coproduct with r outputs”; they are defined by

p = pl@p) (12 ep),  ph =1,
A = 1% 2@ A)... (10 A)A, AD.=1,

22



hy = (thy Thy) @ = @ (Lh, Th,)-

.....

e The permutation o, € Sy, is given by

or:(1,2,...,2r = 1,2r) — (L,r+1,...,7,2r).

e The symbols [ and f; inside the formula denote the trivial extensions of f

and f;, respectively; we extend a linear map f : B C — EpC trivially to
f:EC = EC by defining f(E;C) =0 fori#k'.

Remark 2.16 (On partial compositions). (i) Defining f op,, n, (f1,..., fr):
ErC — E;C using makes sense because the right hand side is a trivial
extension of its component ExC — E;C. In fact, all u, A, 7, ¢ in can be
replaced with p; ;, A; ;, m;, t; for unique 4, j, so that trivial extensions do not
have to be used at all. In this way, it can be seen that is indeed a special

case of .
(ii) If h =k =14, then f oy f1 = fo f1.

(iii) It holds foq f1 = (=1)l/IIf1l f; og f and

fohl,...,hr (fl?' . 'afT) = 5(0-’ f)f Ohgl—lwwha;l (fafl’ o .7f0:1).

(iv) Consider the (“non-trivial”) extension f := u(f ® 1)A : EC — EC and
the symmetric product f; ® ---® f, := p(fi ® --- ® f,)A") : EC — EC.
The proof of the following formulas appearing in [10] is now an exercise on the

bialgebra calculus:

Fonyhe0(fiyoo s fr) = Fonyny (f1ye ooy fro1) © fo,
min(k’,l1) .
fofi= Fon fu,
1 }; 1 (18)

fo(fi@---0f) Yo S omn, (fryeees fr).

h1 ,4..,h7«20
hi+-+h.=k

We also have the “weak associativity”

> fion, (f20n, f3) = > (fion f2)on, f3 (19)

0<hy<min(f; ,f5) 0<hy <min(f;,f5)
0<hy <min(f;",f5 +f5 —h2) 0<ha<min(fF + £ —h1,f5)
hi+ho=h hi+ho=h

for every 0 < h < min(ky + k2 + k3,11 + I2 + I3), where f* denotes the number
of inputs and f~ the number of outputs of f. The weak associativity of o; can
be proven using the associativity of * and the second relation of . <
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If C is filtered by a decreasing filtration, then the bialgebra operations extend
continuously to

p: By, C&F, C — By, 44,C and
A:EC— P E,CEE,C
11,l2>0
Litla=k
for all ky, ko, k € Ny because they preserve the filtration degree (see [15] for a
similar construction). Next, if fi : Ele — EllC and fo : Esz — ElzC have
finite filtration degrees, then f; ® fy : By, C ® E,C — E;,C ® E;,C has finite
filtration degree too, and hence it extends continuously to f1® f : ]:]k1 C®l:]k20 —
E;, C&E,;,C. Using these facts, we can canonically extend Definition to
maps [ : Ek/C — Eer and f; : EkiC — EliC’ of finite filtration degrees. The
resulting map f op, . p,. (f1,---, fr) ¢ ELC — E,C will have finite filtration
degree too. Moreover, the formulas in Remark [2.16] will still hold.
We will now rephrase the definitions of an IBL-algebra, a Maurer-Cartan

element and twisted operations from [10] in terms of o, . 3

e

Definition 2.17 (IBL.-algebra). Let C be a graded vector space equipped with a
decreasing filtration, and let d € Z and v > 0 be fived constants. An IBL-algebra
of bidegree (d,~) on C is a collection of linear maps quiq : E.C = E.C for all

k,1>1, g > 0 which are homogenous, of finite filtration degree and satisfy the
following conditions:

1) arig|l = —2d(k +g—1) — 1.
2) llarigll = vXkig, where Xi1g =2 —29 —k — 1.
3) The IBL-relations hold: for all k,1 > 1, g > 0, we have

g+1

Z Z Qkalags Oh Akiligr = 0. (20)

h=1 k1,k2,l1,l2>1
91,9220
k1+ko=k+h
l1+lo=Il+h
g1t+g2=g+1-h

We denote a given IBLy-algebra structure on C by IBL(C); i.e., we write
IBL(C) = (C, (akig))-

If quig =0 for all (k,1,9) # (1,1,0), (2,1,0), (1,2,0), then we call IBL(C)
a dIBL-algebra and denote it by dAIBL(C). If in addition q110 = 0, then we have
an IBL-algebra IBL(C). If the operations on the completed exterior powers E.C
arise as continuous extensions of operations qiig : ExC — E;C, then we call
the IBLy-algebra completion-free and denote C together with the operations
Qrig : ErC — E,C by IBLY (O).

24



The acronym IBL stands for an involutive Lie bialgebra. It follows namely
from the IBL.-relations that for IBL(C) = (C,q210, q120) the following
holds:

0 = 9210 °1 q210 < Jacobi id.
Lie blalg 0= 120 ©1 q120 <« co-Jacobi id.
0 = q120 ©1 q210 + 9210 ©1 120 < Drinfeld id.

0 = q210 °2 q120 <+ Involutivity
Proposition 2.18 (Odd degree shift of an IBL-algebra). Let (C, q210,q120) be

an IBL-algebra of degree d from Deﬁm’tion and let o109 : C®% — C and
G120 : C — C®? be the linear maps defined by

0d210(z1 ®@ z2) = CI210(7T(92331 ®x2)) and

21
0%q120(x) := t(q120(0)) 2y

for all 1, xa, x € C, where 1 : So(C[1]) — C[1]%? is the section of w : C[1]%? —
Sa(C[1]) from Deﬁnition and 0 is a formal symbol of degree || = —1. Then
the degrees satisfy

d210] = [g210] =1 =~2d =2 and |d120] = [q120] +1 =0,
the operations G219 and 4120 are graded antisymmetric, i.e., we have
421007 = —q210 and T oqi20 = —q120
for the twist map T, and the relations

0 = G210 © (G210 ® 1) 0 (1¥3 4¢3 + 13),
0= (1%%+t3+13) o (120 ® 1) 0 da20,

1T

0 =21 qi20(z2) — (—=1)"**222 - G120(x1) — Gr20(g210(21, 22)),

0 = g210 © 9120,

hold for all x1, xo € C'. Hhere t3 € S3 denotes the cyclic permutation with
t3(1) = 2 acting on C®3 and we define

- (y1 ®y2) = Garo(x, y1) @ Yo + (—=1)"" 1 ® Go10(2, Y2)

forall x, y1, yo € C.

Proof. The proof is a lengthy but straightforward computation. O

Definition 2.19 (Maurer-Cartan element). A Maurer-Cartan element for an
IBL o -algebra IBLo (C) from Definition is a collection n := (ng)1>1,9>0 Of
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Okaolags <=

(a) The term qkyisgy O Gkyiygy in the IBLoo-equation (20)).

(b) The term qyy7g Ohy,....n, (Wiygys- -, Mg, ) in the Maurer-Cartan equation (22). We
remark that the contour of the surface corresponding to q/;/y starts on the left and
continues to the right along the dotted line behind the two trivial cylinders.

_ e Ny gy

~ S < T T T T S e
qrrirg’
2R G2 LR G A S <

(c) The term qurirgr 01y,...1, (Wygys -, Mg, ) in the twisted operation (23). The remark
to Figure (b) applies too.

Figure 1: Graphical representation of compositions appearing in Definitions
and as gluing of connected Riemannian surfaces. The figure is to be
read from the top to the bottom, the empty cylinder represents the identity, and
the resulting surface must be connected. We emphasize that the gluing is not
associative (c.f., weak associativity (19)).

elements nyy € E,C which are homogenous, of finite filtration degree and satisfy

the following conditions:
1) |ng| = —2d(g — 1).
2) |Ingll = vxo01g with > for (1,9) = (1,0), (2,0) (see Deﬁnitionfor Xkig)-

3) The Maurer-Cartan equation holds: for alll>1, g > 0, we have

1
E ﬁ E Ak’ g’ Ohy,...,h, (nllgU' .- ’nlrgr) =0,

r>1 " Uk e >1
9" ,g15e,9r >0 (22)
hi,...,hr>1

Iyl =K =1
g1t tgrtg +k'=g+r
hi+-+h,.—k'=0

where we view wg as a linear map nyg : EgC = R — E;C with ng(1) = ny.
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Definition 2.20 (Twisted operations). In the setting of Deﬁnitz’on the
twisted operations qy, : E.C = EC for k,1>1, g >0 are defined by

1
qZZg = Z ﬁ Z qk’'g’ Ohy,...,hy (nllgl’ s 7nl7‘g7‘)' (23)

r>0 " LN PR S |
g',91,.,9r>0
1yeeesllrZ
Ty S
gr+-tgrtg +K =g+r+k
hi++h.—k'=—k

In [10, Proposition 9.3], they prove that (q3;,)k,i1>1,9>0 s again an IBLo-algebra
of bidegree (d,~) on C — the twisted IBL-algebra. We denote it by IBLY (C).

Let (qxig) be an IBL-algebra on C. The boundary operator gq10 : C[1] —
C[1] induces the boundary operator 9y, : E,C — EjC for every k € N (see (14))).
Because of the finite filtration degree, J; continuously extends to Jy : EkC —
EiC. The following is easy to see using (16):

dkig ©1 9110 = qkig © Ok,

q110 ©1 Grlg = 01 © Qrig-

Because (g are odd (:=have odd degree), we have

[0, dkig] 1= 0y 0 g — (—1)!711Mislgyy 0 0y
= 01 © qrig + qrig © Ok
= q110 ©1 Ykig + qkig ©1 g110-
With this notation, the IBL,-relations for (k,1,9) = (2,1,0) and (1,2,0)

become [0, q210] = 0 and [0, q120] = 0, respectively. Therefore, qa219 and qia9
descend to the homology.

Definition 2.21 (Homology and the induced IBL-algebra). We define the
homology of an IBLy,-algebra IBL (C) by
H(C)[1] := H(C[1], g110)-

It is a graded wvector space with the induced filtration. If the canonical map
EH(C) — H(ELC, ;) induces the isomorphism B H(C) ~ H(ExC, ), then

the induced maps
(210 : EQH(O) — ElH(C) and q120 ElH(C) — EQH(C)

define an IBL-structure on H(C) — the induced IBL-algebra on homology.
If n is a Maurer-Cartan element for IBLo(C), we denote by H"(C') the
homology of IBLY, (C).
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Remark 2.22 (BV-formalism). Consider the weight-reduced exterior algebra
EC. Let EC[[hH and EC((fL)) be the spaces of power and Laurent series in
a formal variable i of degree |i| = 2d with coefficients in EC, respectively,
where EC is a suitable completion of EC. Operations of an IBL.-algebra on
C can be encoded in a degree —1 operator A : EC[[hH — EC[[E]] called the
BV -operator, while the data of a Maurer-Cartan element (n;4) give rise to an
operator e" : EC[[h]] — EC((ﬁ)) called the exponential of n. These operators
are given by
A= ZAthi and e":= Z(e“)jhj,

i>0 JEZ

where the maps A,;, (e"), : ﬁ]C — EC’ for i > 1, j € Z are defined by

Az’ = Z ZCAIklg and

E>1,g>0 1>1
k+g=i
(oo}
0 1
(e )] :z :ﬁ Z : : : nll.‘h@'..@nlrgr'
r=0""  g1,...,g->0 l1,...0.>1

g1t tgr—r=j

It can be shown that the IBL,-relations and the Maurer-Cartan equa-
tion are equivalent to

AoA=0 and Aoce" =0, (24)

respectively, and that the BV -operator A" for the twisted IBL,-structure
(dp;,) satisties

A" =e" "o Ao (e"). (25)
The notation (e":) means that we take the input - and multiply it, using the
extension of y to EC[[R]], with e" evaluated at 1 € EqC' = R. These facts were
shown in [10] using (I8) [ <
Remark 2.23 (Weak IBLy-algebras). A possible generalization of the IBL-

theory above is to allow k£ = 0 and [ = 0, so that EC must be used instead of
EC in Remark Such structures would be called weak IBL,-algebras. <

In our application in string topology, a canonical dIBL-algebra dIBL(C) with
a natural Maurer-Cartan element n are given, and we want to study dIBL"(C);
in particular, we are interested in H"(C), IBL(H"(C)) and possible higher
operations on H"(C) induced by qj;, (these are not chain maps in general). The

following proposition summarizes some observations in this situation:

Proposition 2.24 (Twist of a dIBL-algebra). Let dIBL(C) = (C, q110, 9210, 9120)

30ne has to check that the compositions and (25) are well-defined and pick a suitable

completion EC so that all the constructions work. The details will be discussed in |19].
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be a dIBL-algebra, and let w = (n4) be a Maurer-Cartan element. The Maurer-
Cartan equation reduces to the following:

0 = g110 ©1 Nyg + g120 ©1 M—1,9 + G210 ©2 Ny41,9—1

1
T3 Z 210 01,1 (N, g, Mg,) VI2>1,9>0.

l1,l22>1
91,9220
l1+lo=1+1
g1+g92=9g

In particular, the “lowest” equation is given bﬁ

1
(l,9) =(1,0) : gi10(nio0) + §q210(ﬂ10,1‘l10) =0. (26)

This can be visualized as

The twisted 1BLy,-algebra dIBL"(C) consists of the operations q%14, 9510
and qtyg, which we call the basic operations, and of the operations 114 for(l,g) €
N x No\{(1,0), (2,0)}, which we call the higher operations. These operations are

given by
n
q110 = 9110 + q210 °1 N10,

n —

q210 = 9210,

n

q120 = 9120 + g210 ©1 N20,
n

q11g = 9210 01 Nig-

This can be visualized as

n — <~
q110 —

n _ <~
d210 = ‘! I"

4In |10l Definition 2.4.], they define a partial ordering on the signatures (k, [, g).
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The IBL-relations satisfied by (qglg) read for alll > 1, g > 0 as follows:

(3,1,0) : 0 =4qz10 1 93105

(27 lvg) 0= q‘{lg o1 qglO + q;lO o1 q?lg?

27
(LlLg): 0= Z 1119y ©1 UT1g, + 9310 ©2 A7 141,91 @7)
l1,l2>1
91,9220

li+lo=l+1
g1+g92=9

We call the relations for (k,l,g) = (1,1,0), (2,1,0), (1,2,0), (3,1,0), (1,3,0),
(2,2,0), (1,1,1) basic relations because they contain all compositions of basic

operations. In the order above, they read:

0 = q110 ©1 q110;

0 = q¥10 ©1 4310 + 9210 ©1 9110

0 = d110 ©1 9120 + 4120 ©1 d1105

0 = q210 ©1 9210s <+ Jacobi identity

0 = qya0 ©1 120 + d¥10 ©1 d130 + G130 ©1 d110, ¢ co-Jacobi id. up to hipy.
0 = q120 ©1 9310 + 9210 ©1 A120- < Drinfeld identity

0 =950 22950 + 9711 °1 97110 + 9110 ©1 9111- < Involutivity up to htpy.

The last four equations can be visualized as
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Proof. The proof is clear by specializing , and . O

Remark 2.25 (Higher operations). We see from Proposition that if gy, 01
qi20 = 0 and q314 02 qfyo = 0, then [0, qf30] = 0 and [0", q{1;] = 0, respectively,
and hence the operations qs : E H" — EsH" and a1 B H" — E;H" are well-
defined (provided that the assumption of Definition holds). Likewise, the
higher operation q7;, defines a map By H" — EZH“, provided that the following
equation holds:

4210 ©2 91 ,141,9-1 T Z Ui gy O1 Aitng, = 0
l1,l22>1
91,9220
I1+1o=1+1
g1+9g2=g
(li,9:)#(1,0)

This expression is just the left-over after subtracting the commutator [q7;/, q¥;0] =
qtlll() 01 qI]:llg + q‘11lg o1 qtlll() from ' <
2.3 Dual cyclic bar complex and cyclic cohomology

Definition 2.26 (Bar complexes). Let V be a graded vector space. The bar-
and dual bar-complex of V are the weight-graded vector spaces defined by

B.V:=T(V[l]) and B*V :=(B.V)",

respectively, where TV = D, V®F s the weight-reduced tensor algebra. For
every k € N, let ty, € S be the cyclic permutation ty : (1,...,k) — (2,...,k,1),
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so that for all vy, ..., vy € V[1] we have
th(n ® - @ug) = (_1)|Uk|("U1‘+"'+|'Uk—1|)vk QU R @ V1.

We set

= Ztk :B,V — B.V.
k=1

The cyclic bar-complez is defined by

BYYV = B,V/Im(1 —t).

We denote the image of v1 ® --- ®@ vy, € B,V under the canonical projection
m: BV — BIV by vy ... vk, If v; € V[1] are homogenous, then vy ... vy is

called a generating word; we have
V.. U = (—l)lvk‘(|”1|+‘”+|”’°*1ka1}1 e Uk—1-

We define the section v : BV — B,V of ™ by

k—1
W(vr ... o) = Z th (1 ®--- @)
izov

=:tp0---0ty i1-times

| =

and use it to identify BV with the subspace Im 1 = ker(1—t) C B,V consisting
of cyclic symmetric tensors.

We define the dual cyclic bar-complex by

BV i={yp e BV [¢Yot =1}

Remark 2.27 (Non-weight-reduced bar complex). In fact, our BY, .V is weight-
reduced. The non-weight-reduced version would be Bf .V &R with R of degree 0.
This might play a role in the theory of weak A -algebras (:=operation ug added;
c.f., Definition , and it might also be possible to consider IBL,-algebras on
non-weight-reduced cyclic cochains (c.f., Section . This may be discussed
more in [19]. <

Notice that ¢ € B*V is homogenous of degree |¢| € Z if and only if for all
homogenous vy, ..., vx € V[1] the following implication holds:

o1+ + ok £ Y] = Y1 @ --®@v) =0.

This is the cohomological grading convention.

Notation 2.28 (Degree shifts of bar complexes). Let A € Z. In the following,
we write BL, V', but the convention applies to all complezes from Deﬁnition@.
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We denote by sy and 0 the formal symbols of degrees
[sal =—A and 6] =-1,

respectively. The degree shift V — V1] will be realized as multiplication with 0
and the degree shift B:,.V — B V[A] as multiplication with s4. In addition,

cyc cyc

the following notation will be used consistently:

e eV —v=00¢e V][]

To clarify this, given © € V, then v automatically means v = 00 € V[1], and
the other way round. Recall that the degree of © € V is denoted by deg(v)

ol

or simply by ¥ in the exponent, e.g., (—1)".

o ) €BX.V ¢+ U =su1) € B V[A].

cyc cyc

o A generating word of BY°V of weight k will be denoted by the symbol w
and written as w = vy ... v, where v; = 09; € V[1]. A generating word
of ExBYV is an element wy ---wy € ELBYV such that each w; s a

generating word of BY V.
e weBYV+— w=sswe BIV[A]

We abbreviate
B!, .V[4] := (BL..V)[A].

cyc cyc

In contrast to this, we would write B .(V[A]) for the dual cyclic bar-complex

of V[A]. We also identify (B%, V[A])[1] = BE V[A + 1] in EBY  V[A].

cyc cyc

Definition 2.29 (Pairing of tensor powers of bar complexes). For every A € Z
and k € N, we define the pairing as follows:

(B*V[A)** © (B.V[A])®F — R
(\I/1®"'®\Ifk,W1®"'®Wk)>—>’¢1(w1)...’l/)(wk). (28)
—_—
(T @ @UL) (W ® - @ W) =

This means that we evaluate elements from the left-hand side on the elements
from the right-hand side in this way without any signs (see the discussion in
Remark . We extend the pairing by 0 if the number of V;’s and the number
of W;’s differ.

Remark 2.30 (Dual bar complex and dual of the bar complex). Because the
pairing is non-degenerate, we can embed the space on the left into the the
linear dual of the space on the right. From Definition we have By, .V C B*V,

and BV is identified with Im: C B,V. Therefore, we can restrict to
obtain the pairing of B¥ .V and BV It is easy to see that for any v € B} .V

cyc cyc
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and any generating word vy ...v; € BYV, we have

w(vl...vk) :¢(01®'~'®Uk).

The subspace of (B&“V)* corresponding to B,V is then precisely (BY°V)”.
More generally, for every k € N, the spaces E;B* .V and E;By°V are

cyc
embedded into (Bf, V[1])®* and (BY“V[1])®*, respectively, using ¢ and 7 from
Definition Therefore, the restriction of gives the pairing of ExBg .V

and E B V. It is easy to see that for any generating word wy - - - wy, € ExBYV
and any ¢y -+ - € EgBgV, we have

(- ) (wr - wy,) = % > (o, w1 (Wo—1) .. Vg (w,—1).

T oeSk

The subspace of (ExB“V)* corresponding to ExBf,  V lies in (ExBYV)”; it is

cyc

equal to (ExB V)", provided that V is ﬁnite—dimensionalﬂ <
The weight-graded vector spaces B,V and B{Y°V are canonically filtered by

the filtration by weights (12). Their weight-graded duals B*V and BgyV are

filtered by the dual filtrations and the exterior powers ExB*V and E;BZ, .V by

the induced filtration from Definition

Proposition 2.31 (Completed dual cyclic bar complex). Let V' be a graded
vector space and A € Z. The filtration of BZ, V' dual to the weight-filtration of
BV is Z-gapped, Hausdorff, decreasing and bounded from above. Moreover,

the following holds:
dim(V)<oo = (WG1) & (WG2) are satisfied.

The same holds for the induced filtration of ExB%, V[A].
In the sense of Remark [2.30, we have

BV ~ (BY¥VY and E.B!.V[A] C (ExBYV][A+1]),

cyc cyc

where “=" holds if V is finite-dimensional.
The filtration degree of ¥ € EmBzch[A] satisfies

||| = min{k € No | 3w € (EnBYV[A])x : U(W) £ 0}

Proof. The proof is clear. O

Definition 2.32 (Cyclic A-algebra). A graded vector space V together with a
pairing
P:V[1]@V[l]] =R

5The problem is that if dim(V) = oo, then (V ® V)* # V* @ V*.
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of degree d € Z and a collection of homogenous linear maps
pr VIR = V(1] fork >1

1s called a cyclic Aso-algebra of degree d if the following conditions are satisfied:

(1) The pairing P is non-degenerate and graded antisymmetric; i.e., we have

P(v1,v2) = (71)1“”1””2‘73(1)2,1)1) for all vi,ve € V[1].

(2) The degrees satisfy |ux] =1 for all k > 1.

(8) The A -relations are satisfied: for all k > 1, we have

k1
Z Z My O? Hky = 0, (29)

ki,k2>1 p=1

k1 +ha=k+1
where for allp=1, ..., k and vy, ..., vy € V[1] we define
(:uktl O{ ng)(vla cee 7’Uk) = (_1)\U1|+~~+\Up,1|'ukl (vla <y Up—1,

Mo (Up> s 7’Up+k?271)7 Uptkg -« -+ ,'Uk).
(4) The operations p : V[1]®**1 — R defined by
+._
py ==Po (e ®1)
for all k > 1 are cyclic symmetric; i.e., we have
pf oty =

We denote by P: V@V — R and i, : VEF — R the operations before the degree
shift; i.e., for all k > 1 and ¥y, ..., O € V with v; = 00;, we have

P (01, 02) := (=1)*P(v1,v2) and
bk (01, ..., 0x) == e(0,0)pr(v1, . . ., vE).

We define fif : VEEFFL 5 R similarly.
If u, =0 for all k > 2, then (V, P, 1) is called a cyclic cochain complex. If
wr =0 for all k > 3, then (V, P, 1, u2) is called a cyclic dga. We use the same

terminology but omit “cyclic” if there is no pairing P and 1) and 4) are thus

irrelevant.

Remark 2.33 (A difference in sign conventions). Our definition of 4, differs from

the definition of m,j in [10, Definition 12.1] by a sign. To compensate this, we
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have to add this artificial sign in the definitions of Maurer-Cartan elements later;

e.g., in Definition or in the formula (100]). <

Definition 2.34 (Cyclic (co)homology of A -algebras). Let A = (V, (ux)) be
an As-algebra. For every k > 1, we consider the maps b’k, RE:V[1]®F - B,V
given by

o
|
<

Z thojr 0 ( © 1) ot and
j=1

<.
= o

(30)

k
ZZ,U‘]@]]‘ Otk7

=1 1i=

]
KL .

<.
=

respectively, and define the following maps B,V — B,V :
= Zb'k, R = ZRk and b:=b' +R.
= k=2
We denote by b* : B*V = (B, V)" — B*V the dual map to b : B,V — B, V. The
following holdsﬂ

Ibl=1(b*| = —1), bob=0 and bl—t)=(1—t)b. (31

From the last equation we see that b restricts to BV = B, V/Im(1 —t). We
define the following graded vector spaces:

D.(V):=rB.V)1], D*(V):=rBV)[1,

DX(V) = r(BYV)[1], Di(V):=r(BiV)[L].

cyc

For instance, we have

DI(V) =r(B:, V)T = (B V)7L forallqeZ.

cyc cyc

Then (D«(V),b) and (D}(V),b) are chain complezes and (D*(V),b*) and
(D3(V),b*) the dual cochain complexes, respectively. We define the following

(co)homologies:
HH, (A;R) := H(D.(V),b), HH(AR) i= H(D"(V),b"),
H(A;R) = H(DX(V),b),  H}(AR), = H(D}(V), b").

We call HH,, the Hochschild homology and H) the cyclic homology of the A -
algebra A. We call HH* the Hochschild cohomology and H the cyclic cohomology
of A.

6The facts are generally known in some form (see [27] or [23]). We also show them in
|19] using a graphical formalism which simplifies computations.
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For a dga A = (V, u1, p2), we have for all vy, ..., vy € V[1] the formula

k
b(vy...v) = Z(—l)lle“'H”i—llvl coopr(vg) g
=1
k—1
+ Z(—1)|v1|+m+‘vi_l‘1}1 ce ,ug(?}i, Ui+1) . UE
i=1

+ (_1)‘Ukl(l'ul‘+"'+|vk*1|)lu2(vk7’()1)’[)2 e Uk—1-

Definition 2.35 (Strict units and strict augmentations). Let A = (V, (ur)) be
an A-algebra. A non-zero homogenous element 1 € V[1] with |1| = —1 is called
a strict unit for A if the following holds:

/142(1,1}) = (_1)|U|+1;U'2(va 1) =v Vv e V[]-]v

Lk (V1o 021, 1, Vi1, o, V) =0 VEkE#2 1<i<k, v;e V[1].

The pair (A, 1) is called a strictly unital A -algebra.

A strictly unital Ao -algebra (A, 1) is called strictly augmented if it is equipped
with a linear map € : V1] — R[1] which satisfies

e(ry)=1r, ecopu; =0 and eopuy=pso(eRe),

where 1r s the strict unit for R endowed with the standard multiplication. The
map € is called a strict augmentation..

If the homological dga H(A) := (H(V, fi1), p1 = 0, u2) of A is strictly unital
and strictly augmented, then A is called homologically unital and homologically

augmented, respectively. A strictly unital and strictly augmented cochain complex

(V, 1, 1,€) is called just augmented.

We denote by u : R[1] — V'[1] the injective linear map defined by u(1g) := 1v,

and by u* : B, .V — BZ (R and €* : B ;R — B V' the precompositions with
u®* and e®* in every weight-k component, respectively.
Remark 2.36 (On units and augmentations). (i) A strict unit 1y for A in-
duces an A,-morphism (uy) : R — V given by w1 (1r) := 1y and u, = 0 for all
k > 2. A (general) augmentation of (A, 1y) is by definition any A.,-morphism
(ex) : V — R such that (gx) o (ux) = 1 as A-morphisms (see [20]). Strict
augmentations are precisely the maps €1 coming from augmentations () with
e =0 for all k£ > 2.

(ii) As for (V, u1,1,¢), we need the chain map € to provide the splitting of the
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short exact sequence of chain complexes

0 R[1] —— V[1] coker(u) — 0,
N S

€

so that we get H(V) ~ Hyeqa(V) ® R, where Hyeq (V') := H(coker(u)). If (V, 1) is
non-negatively graded and we are given an injective chain map w : R[1] — V[1]

(=:the classical augmentation), then one can show that such € always exists. <

Definition 2.37 (Reduced dual cyclic bar complex). Let (A, 1) be a strictly
unital Ao-algebra. Consider the injection v, : B,V — B, V, 11 ® - Q v —
10U ®- - ug. We define the reduced dual cyclic bar-complex by

B:yc,redv = {w € B,V ‘ w Ol = O}

cyc

*

Under the assumption of strict unitality, b* preserves Blye re

4V, and hence we

can consider the reduced cyclic cochain complex

Dj\,red(v) = T(B* V)[l]

cyc

and define the reduced cyclic cohomology of A by

>;,red (A7 R) = H(Df\,red(V% b*)

Proposition 2.38 (Reduction to the reduced cyclic cohomology). Let A =
(V, (ux)) be an A -algebra with a strict unit 1 and a strict augmentation €.
Then the inclusions By .qV, €"(BgyR) C Bg, V' induce the decomposition

cyc cyc
H(A;R) ~ HY oq (A R) © HY(R; R).
Here we have

(1971%)  for ¢ > 0 even,

H{(R;R) =
0 for ¢ >0 odd and q < 0,

where 1% : R[1]®% — R is defined by 1*(1°) := 1.

Sketch of the proof. The maps €* : Dy(R) — Dx(V) and u* : Dy(V) — Dy (R)
are chain maps with u* o ¢* = 1. Therefore, we have the sequence of cochain

complexes

0 — D rea(V) —— Dy(V) =~ Dy(R) — 0,

NS

e*
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which is exact everywhere except for the middle, and where €* is a splitting map.
The idea of [24] is to replace these cochain complexes with quasi-isomorphic
bicomplexes consisting of normalized Hochschild cochains D(V') such that the
sequence becomes exact. The work then reduces to proving that D(V) computes
HH(A;R); a variant of this result for A-algebras was proven in [23]. A detailed
proof in our formalism will be provided in [19)]. O

We will now compare our version of the cyclic cohomology of a dga (V, p1, u2)
to a version based on 24} Section 5.3.2]. Let b, d : TV — TV be the linear maps
defined for all o1, ..., 0 € V by

]5(171 ® @ Ug) 1= (1) @ @ fin(0s, Vig1) @ - - - @ Ty,

+ (—1)k71+1~)k(ﬁl+"'+ﬁk71)ﬂ2(6k,61) R R ® 'Ekfl,

S
A~
S
o
X
®
<
&
N~—
Il
-

(=1)TH 015 @ @ iy (F) @ -+ D T

Dy -+ Tg) = b(Dy -+ - Tp) + (=1)*FE5(0y - - - Tp).

It can be checked that 9o d = 0 and d(Im(1 — #)) C Im(1 — ), so that d induces
a boundary operator on the chain complexes

D.(V) =@ Dy(V) and DXV):=D.(V)/Im(1 —1).
qE€L

Here, we have () --- ) = (—=1)FHoel(Olt+0aDg 5, .. 5,1, We call
(D,(V),d) the classical Hochschild complex and (D}(V),d) the classical cyclic
complex of the dga (V,u1, ). The chain complex (D,(V),d) is the total
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complex of the bicomplex

—— (VER)L —— (V)0 (V)1

[ T
Vi 5 Vo s -1 ,

which differs from the bicomplex |24, Equation (5.3.2.1)] by the reversed grading
and by the fact that it lies in the whole upper half-plane and not just in the
first quadrant. Their convention for a dga is namely |fi;| = —1, whereas ours is

|@1] = 1, and they consider Ny-grading, whereas we have Z-grading.

Proposition 2.39 (The classical case). Let A= (V,u1, p2) be a dga. Then the

degree shift map
U:Dyg(V) — Dg(V),

R QU —>e(0,0)v1 -+ ® v,
where we denote v; = 07;, is an isomorphism of the chain complezes (D, (V'),d) ~
(D.(V),b) and (DX}(V),d) ~ (D)(V),b), respectively.
Proof. First of all, for the degrees holds |fi;| = 2 — j for every j > 1. For every
4, k, 1 > 1 such that j +1 < k+ 1 and for every o1, ..., 0 € V, we compute
U117 @ py @ 1M U (- - - Or)
= (=)l U@ A Dbl D O 1 fij (g Oy j1)Biay - Oy
(U, U] (01 -+ Og) = (= 1)F Loy - - - i,
where we use the Koszul convention (i ® fa) (v ®vy) = (=1)1211U11 £ (01) @ fo (o).

Using this, we obtain

k k—1
v = Z Z(_l)iﬂ(”kﬂ) 27j+1(/7j ® ﬂkfj)t,;i and
j=11i=0
k-1
UTRMU = 305 (1) D0 (5 ¢ 189

114

<.
Il
Il
—

It is now easy to check that U=t obo U = 4.
If £ € Nis a weight and d € Z a degree such that £k —d — 1 = g for some
q € Z, we have schematically U : (k,d) — (k,d — k) = (k, —q — 1). Therefore, U

preserves the grading of chain complexes. This finishes the proof. O
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Proposition 2.40 (Reduced cochains are complete in 0, 1-connected case).
Suppose that V = @ 450 V¢ is a non-negatively graded vector space with VO = (1)
for some 1 € V (::‘7/ is connected) and V! = 0 (=:V is simply-connected).
Then for all m > 1, we have

E B*yc redV E B cyc, redV

Proof. Let V := = @4y VY We clearly have B, .4V =~ B;,.V. Since V1]
is positively graded, we have (B.V)¢ = 0 whenever k > d. Therefore, a map
U e Em‘_/, which is non-zero only on finitely many homogenous components of
B&V[1]®™, will be non-zero only on finitely many weights. This implies that

v ek,V. O

Remark 2.41 (Universal coefficient theorem). Because (D}(V),b*) is dual to
(D2(V),b) as a chain complex and because we work over R, the universal
coefficient theorem gives

H{(A,b") ~ [H:]\(A, b)]* for all g € Z.

Suppose that we have found closed homogenous elements (w;);c; C D} (V) for
some index set I which induce a basis of H}(A;R). For every i € I, we define

the linear map w; : DX)(V) — R by prescribing
wy (wj) = 645 forall jeI

and w} = 0 on Imb and on a complement of ker(b) in D} (V). Then (w});er C
D3 (V) are closed homogenous elements which generate linearly independent
cohomology classes in H} (A; R); if we denote I, :={i € I | w; € C}(V)}, then

we can write

H{(A;R) = {Zaz ’-kfaieR} for all ¢ € Z. <
i€ly

2.4 Canonical dIBL-structure on cyclic cochains

In this section, we will consider a finite-dimensional cyclic dga (V,P,mq, ms2)

of degree 2 — n for some n € N.This means that for all vy, vy, vs € V[1], the
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following relations holds:

P(vi,vz) = (—1) 1 1021P 0y, vp), ] cye.
mi(mq(v1)) =0, cochain
v v 1
mi (v1,v2) = (1)1 P2l (vg,0p), | COPIEE
cyc. dga my(ma(vy,v2)) = — ma(mq(v1),v2) (32)

— (=D vy, my (v2)),
ma(ma(vi, v2),v3) = (=1)1" gy (01, ma (ve, v3)),

my (v1,v2,v3) = (1)1l 2D F (4 0y 0,).

The facts (A) and (C) from the Introduction apply, and we get the canonical
dIBL-algebra dIBL(BZ, . V[2—n]) of bidegree (n—3,2) and the canonical Maurer-
Cartan element m = (myg). We will denote

C(V) =B, V]2 - n]

cyc

and call it the space of cyclic cochains on V. If V is fixed, we will write just C.

Definition 2.42 (The canonical dIBL-algebra). Let (V,P,m1) be a cyclic
cochain complex of degree 2 — n which is finite-dimensional. Let (eq,...,en) C
V(1] be a basis of V[1], and let (e°,...,e™) be the dual basis with respect to P;
this means that

Plei,el) =6;; foralli,j=0,...,m

We define the tensor T =Y " _(Te; @ ej € V[1]®? b@ﬂ

T9 = (=1)llP(et,e?)  foralli,j=0,...,m. (33)

The canonical dIBL-algebra on C(V) is the quadruple

dIBL(C(V)) = (C(V), 110, C|2107q120),

V and
generating words w = vy ...V, W] = V1] ...V, Wo = Va1 ... V2k, € BLV with
k, k1, ko > 1 as follows:

where the operations q110, G210, q120 are defined for all 1, ¥y, s € B

cyc

e The dIBL-boundary operator qi1o : E,C — B C of degree |q110| = —1 is
defined by

qllo(S’(/J SU} _SZ ‘Ul|+ Hlvi- 1|’(/J( .vi,lml(vi)viJrl...vk).
=1

"See Appendix for the invariant meaning of 7" as the Schwartz kernel of +1.
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e The product qz219 : E.C —s E,.C of degree |qa10| = —2(n—3) — 1 is written

schematically as
G210(5%1 @ o) (sw) == Y e(w > w'w?) (= 1)1 T (e b (e;0?)

and defined “algorithmically” as follows:

For every cyclic permutation o € S, consider the tensor
o(w) := E(O’,w)’l)o_l—1 ®: - ®u,1,

and split it into two parts w' and w? of possibly zero length such that

V1@ QU o1 = w! @ w?. Feed w' and w? into ¢ and 1o preceded
1 k
by e; and e;, respectively, and multiply the result with the sign (71)‘61““’1‘,

which is the Koszul sign to order
eiejwle — eiwleij.

Finally, sum over all o € S, all splittings of o(w) and all indices i,j =

0, ..., m. The sign e(o,w) is denoted by e(w — wlw?) to indicate the
splitting.

e The coproduct q120 : ElC — EQC of degree |q120| = —1 is written schemat-
ically as

q120 (s¢)(s2w1 ® ws)

1 g
=3 Zs(wl > wi e (wg w%)(—l)lei”“’%IT”w(eiw%ejw%)

and defined “algorithmically” as follows:

For all cyclic permutations o € Sk, and p € Sg,, denote wi := o(wy) and
wd = p(wz) and let e(wy — wi) and e(wy — wl) be the corresponding
Koszul signs, respectively. Feed wi and wi into v in the indicated order
interleaved by e; and e; and multiply the result with the sign (—1)'61”“’%',

which is the Koszul sign to order
eiejw%w% — eiw%ejw%.
Finally, sum over all o € Sg,, p € Sg, and all indices i, j =0, ..., m.

The operations are extended continuously to the completion.

Definition 2.43 (The canonical Maurer-Cartan element). Let (V,P,my, ms)

be a finite-dimensional cyclic dga of degree 2 —n. The canonical Maurer-Cartan

element m for AIBL(C(V)) consists of only one element myy € BE1C of degree
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|mig| = 2(n — 3) which is defined by

mio(sv1vev3) 1= (—=1)""2ud (v1,v2,v3)  for all vy, ve,v3 € V1]
on the weight-three component of BYY“V[3—n] and extended by 0 to other weight-k

components.

Remark 2.44 (On canonical dIBL-structure). (i) Elements of the completion
C(V) which are not in C(V) will be called long cyclic cochains. Because there
are no infinite sums in Definition dIBL(C) is completion-free. Clearly, the
twist dIBL"(C) remains completion-free as long as n, € E;C for all [, g.

(ii) The constructions of ga19 and qi20 do not depend on the choice of a

basis and can be rephrased in terms of summation over ribbon graphs (see

Example [A.5)).

(iii) According to Proposition the filtration on C(V') satisfies (WG1) &
(WG2), and hence the IBL-structures IBL(H(C)) and IBL(H™(C)) are well-
defined (see Definition [2.21)). <

Proposition 2.45 (Formulas for twisted operations). Let dIBL(C(V)) be the
canonical AIBL-algebra for a finite-dimensional cyclic cochain complez (V, P, m;)
of degree 2 —n, and let n = (ny,) be a Maurer-Cartan element. Then for all
1>1,9>0,¥eBr V[3—n] and generating words w1, ..., w; € BYV[3—n],

cyc

we have
[(9210 01 M) (W)} (W1 @ - - @ W)
= zl: Zs’s(u)j — wjl-wjz-)Tab\Il(seawjl-)nlg(Wl @ Wi ® (Sebwjz-)
j=1
® W1 ® -+ Q@ W),
(35)

where the sum without limits is the sum in Deﬁnitionfor q210 and €' is the

Koszul sign of the following operation:

(seqep) Wy ... Wj,l(sw;w?) Wit1... Wi

— (seawjl-)Wl ... Wj,l(sebw?) Wit ... Wi
In particular, for 1l =1, g >0 and w € BP°V[3 — n], we have

(q210 01 11g) (W) = (—1)"_3 ZT“bs(w — wlwz)nlg(seawl)w(ebwg), (36)
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and for 1 =2, g >0 and Wy, Wa € BYV[3 — n], we have

[(9210 ©1 2g) ()] (W1 @ Wa)

= (=1)(=H ¥+ {Z T% (wy — wiwd)(—1)l 1 (sequw!)
(37)
ngo(sepw? © W) + (—1) Wil Wel ZT“ba(wg > Waws)

(=1)leo w21 (seqwl )ngg (sepw? @ wr)|.

Proof. Let us first discuss the completions. Given ny, € E,C, we can write
it as njg = > .0, @} - @} with generating words @} --- &} € E;C of weights
approaching co. The canonical extension of o, to maps with finite filtration
degree commutes with convergent infinite sums, and hence we have g4 o, g =
> oo Akigon (P4 - - - @f). Therefore, it suffices to prove the formulas for generating
words ®f --- @} € E;C.

From , we get for every U, ®q, ..., &; € C the equation

l
(4210 01 (@1 -+ @)|(T) = > _(~)ITlUTr I HPmtDgy ) (0, @)Dy - By @y

i=1
where @1 - - ®; on the left-hand-side is considered as a map EoC = R — E;C
mapping 1 to 1 ---®;. For Wy, ..., W; € BPV[3 —n] and ¢ € S}, we use
[0(@1®-- @) (W1 ®-- QW) = (D1 @@ B0 (W, @ ©W,)]
and Definition to get

(la210 01 (®1--- @)](P)) (W1 @ --- @ W) =

l
= Z(,l)\¢i|(|q>1|+m+|¢i—1Dll! Z 5(071,W)[q210(‘11,‘I)i)](Wnl)

i=1 oES;
D1(Wo,) -+ Di(0) -+ Dr(Wo,)
l

= Z(_l)\«1>7a|<|<1>1|+~.+|<1>i71\>% S c(o ! w) (=)

i=1 oES;
3 elwy, = wh,w? ) (=) T (e w] Dy (epu?,)
By (Way) ... Di(0)... 51 (Wy,)
=: (%),
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where @1(@) means omission of the corresponding term. Consider the bijection
I:{l,...,l} X S *){1,,1} X Sy
) . 1 ... ¢—1 ¢ ¢+1 ... 1
(i,0) — | j =01, p:= .
(o)) o; g1 Oi+1 ... O]
Given (i,0) € {1,...,l} x S;and b € {1,...,m}, let (j,u) := I(i,0) and
Wi=W; Q@ @W,_1 ®(S€bwj2')®wj+1®"'®wl~

Suppose that (®; @ --- ® ®;)(W') # 0. We compute the Koszul sign (=1, w’)

in the following way:

1 A
W (_1)(|wj|+\€b|+\Wj|)(|W1\+“'+\Wj—1|)(Sebwf_)wl W W

s (1) DWW 1) (50 ) (s )Wy, ... Wer

=&

= e1e(o™, W) (=) ®lU®ltH il w0, (sewaZA)VV(,i+1 c W,

=e(u~1,W) =W/, .. W’

B1t Hy

Using this, we can rewrite (x) as

l
() = (IS TS 7wy e wjud) (=1) 13T (equ))

1 _
ey ZS e(u LW RL (W, ) ... By(W],)
HEDS]

l
Z Z e(wj wjlw.?)(_1)ISH‘P\+I%H1D}\+(|w,1-\+|6b|)(\W1|+~-+\WJ—1\)Tab
Jj=1

U(sequi)(Pr---B)(W1 @ @ Wj_1 ® (sepw?) @ Witg @ -+ @ Wp).

Finally, we use
T 40 = |eq| +|es| =n—2

to write
1 1
[s|[@] = [s|(|w;] + |ea]) = (n = 3)(lwj[ + 71 —2 — |es])

= [s|(lwj| + les]) mod 2,

and the formula follows.
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As for , we first compute €’ for [ = 1 as follows:

In_y(¢") = |willey| + (es| + [wi])]s] = |w[[w?| + |s||es|
2(n—3)=[n10|=|s|+es|+|w?|
= |w1||w2| + |ealles] mod 2.

leal+les]=]s|+1

Using this, we obtain

[(q210 01 1) (¥)](W) = ZE’E(w = wlw?) TV (sewh)ng g (sepw?)
= (1)l Za(w = wiwh) TPy 4 (sepw?) U (seqwt),

Tab:(,l)\slﬂﬂa\leblTba

1002
e(w—wlw?)=(—1)1v 11 g (wisww!)

which implies .
The proof of is a combination of the same arguments. O

We will now relate homology of the twisted boundary operator qj;, to

cohomology of an A -algebra on V' induced by nyg.

Definition 2.46 (A -operations and compatible Maurer-Cartan element). Let
(V,P,m1) be a finite-dimensional cyclic cochain complex of degree 2 —n, and let
n = (ny) be a Maurer-Cartan element for dAIBL(C(V')). We define the operations
w s V18 = V1] for all k > 1 by

pr(v1, .. op) = (=1)"73 ZT”nlo(seivl . UE)E;
4,J
for all vy, ..., vy € V[1], where T is the matriz from Definition .
If (V,P,m1,msa) is in addition a cyclic dga and m the canonical Maurer-
Cartan element for AIBL(C(V)), then we say that n is compatible with m if

10 (sv1vavs) = myg(svivgus)  for all vi,ve,vs € V[1].

Proposition 2.47 (Twisted boundary operator q};, and A.-cyclic cohomology).
In the setting of Definition the triple An(V) := (V,P,(ur)) is a cyclic
A -algebra. We always have py = myq, and if n is compatible with m for a cyclic
dga (V,P,my,ms), then also pg = mo.

The following holds for the homologies:

H(C(V)) = r(HX(Au(V); R))[3 = n].

Proof. First of all, according to Definition we must have [|njof| > 2, and
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hence
ny9(sv1ve) = nyp(svy) =0 for all vy, vy € V[1].
This implies 1 =
Now, let eq, ..., e, be a basis of V[1] and let €%, ..., e™ be the dual basis
with respect to P. For all k > 2 and vy, ..., v € V[1], we compute the following:

P(Mk(vl,---w;c) Vkt1)
= ) 32 Dleilpel, e nyg(sesvr . . vg)P(ej, V1)

. .
=(-1)"" E Dlehngg(seivr - .. vp)P(ed, vgyn)
YveV([1]: Z P(v,e )SJ_U

T " BZ D000 (sv1 .. vpes)P (e, vpg1)

(Jvlr-- vk e |=
(Insol+Isl+les)leil=(]s |+1)|8i|

=(-1)" ano(svl o vge; ) P(vgg, €)
i
It|vpgalle’ =1+ (le] +2—n) e
=1+(3—n) ¢ |=1+(3—n)lei]

= (—1)”721110(81}1 . Uk+1).

Therefore, we have

no = (=1)"2Y

k>2
In this case, [10, Proposition 12.3] asserts that the A -relations for (pr)r>1

are equivalent to the “lowest” Maurer-Cartan equation for nyg. The degree

condition |uk| = 1 and the cyclic symmetry of ,ug are easy to check. Therefore,
An(V) is a cyclic A-algebra.
As for the compatibility with m, we have for all v1, vo € V[1] the following:

ma(v1,v2) = Z Pes, ma(vy,v2))e"

. Z Iez\TZJ’p e mg(ULU?))

T

TH=(-1)l ‘P(e e’)

=Y (=) INNATE Py (01, 09),€4) ¢
> —

n—2
Plonoa) ()OI () (TDT m0(SU10261)
= (—1)”7‘3 Z Tijmlo(seivlm)ej
,J
(lvil+lvzDleil=(lmio|—[s|—lei|)]eil
=(n—2)|e]
= /~L2(’U1,’U2)'
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We will now clarify the relation to the cyclic cohomology of A, (V). Recall
from Propositionthat q%10(¥) = q110(¥) +g210(n10, ¥) for ¥ € Ezch[Z’)—n],
where the first term is given by and the second by . Consider now b’"
and R* from , whose sum gives the Hochschild boundary operator b. Using
the cyclic symmetry, we can rewrite a summand of b’ * for j=1,..., kand

1=0, ..., k—j applied to a generating word v; ...v; € BZ°V as follows:

, i
[thejir o (@17 ) ot (v ... vx) =

=w
= (—1)|v1‘+m+|vi"l}1 Y LA S ’UiJrj)’UiJerr] VR (38)

= e(w = W) (Vi1 -+ Vigs) Vigjat -« VgL - - . V;

=wl =w?

Clearly, summing over j=1andi=0, ..., k— 1 gives the dual to qi1o.
For j =2, ..., k, we can write as

(-1 Z e(w = ww?)Tnyg(se;w' )ejw?.,
i,J

Therefore, the sum over j =2, ..., kand ¢ =0, ..., k — j gives the part of
the dual to g210(n10, ¥) corresponding to the cyclic permutations o € Sy with
o1=1,7+1, ..., k. The rest, i.e., the cyclic permutations with o1 =2, ..., j, is
obtained analogously from the summands (u; ® 1¥77) ot of R* for j =2, ...,k

A~

andi=1, ..., j — 1. We conclude that q}y, : B% . V[3 —n] — B%, V[3—n] is a

cyc cyc

degree shift of b* : B .V — B* V. As for the gradings, we have:

cyc cyc

r(DA(V))[3 = n]'

T(D)\(V))H-B—n _ (D)\(V))_i_3+n _ (Ezycv)i—ki’)—n—l
Bl V(2 —nl'.

This finishes the proof. O
We will now turn to units and augmentations.

Definition 2.48 (Reduced canonical dIBL-algebra). Let (V,P,mq,1,¢) be an
augmented cyclic cochain complez of degree 2—n from Definition[2.35 We define

the space of reduced cyclic cochains on V' by

C(red(‘/) = B:yc,red‘/[2 - ’I’L}

We define the reduced canonical dIBL-algebra by

dIBL(Crea(V)) == (Crea(V), q110, 9210, 9120),

where q110, 210, G120 are restrictions of the operations of AIBL(C(V)).
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Definition 2.49 (Strictly reduced Maurer-Cartan element). In the setting of
Definition we call a Maurer-Cartan element n = (n) for dIBL(C(V))
strictly reduced if g € EiCrea(V) for all (1,g) # (1,0) and if the A-algebra
(An(V),1,¢) induced by nyg is strictly unital and strictly augmented. Given a

strictly reduced Maurer-Cartan element n, we can define the twisted IBL-algebra

dIBL"(Crea(V)) = (Crea(V); (d1g)),

where qy, are the restrictions of the operations of dAIBL"(C(V)). We denote the
homology of AIBL"(Creq) by H"(Chrea) or H"’red(C)ﬂ

Remark 2.50 (On strictly reduced Maurer-Cartan element). (i) We see that
the IBLoo-algebra dIBL"(Cieq) is a subalgebra of dIBL"(C'), which means that
the inclusion Ci.q < C induces the following commutative diagram for all
k,1>1,¢9g>0:

n
Akig

EkC _— ElC

J J

N q;lg £
EkCred - ElCred~

We denote this fact by dIBL"(Creq) C dIBL"(C).

(ii) The canonical Maurer-Cartan element m of a strictly augmented strictly
unital dga (V, mq1,ma, 1, ) is strictly reduced (this follows from Proposition [2.47]).

(iii) In the situation of Definition we denote

V(1] := ker(e),

sothat V=V @ (1). We use the canonical projection 7 : V — V to identify
Bzycf/ = BzycvredV via the componentwise pullback 7*. In this way, we obtain

the IBLo.-algebras dIBL(C(V)) and dIBL"(C(V)), which are isomorphic to
dIBL(Cea(V)) and dIBL"(Creq(V)), respectively. <

In the following list, we sum up our main reasons for considering units,
augmentations and reduced Maurer-Cartan elements. Suppose that we are in
the situation of Definition [2:49] then:

e Proposition [2.38] implies the splitting
H*(O)[1] = H*(Crea)[1] ® (51171 | ¢ € N). (39)

Here 1 € BZ,V is the componentwise pullback e* of 1”* € Bf, .(R). To

8The latter option suggests that it might be possible to define the reduced homology
with the induced IBL-algebra even if n is not strictly reducible, e.g., if (An(V), 1,€) is only
homologically unital and augmented.
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get this, we used
H:(Cred) = T(H§\7red("4n))[3 - n]’

which can be seen by redoing the proof of Proposition [2.47] with reduced

cochains.

e The subalgebra dIBL"(Ceq) C dIBL"(C) induces the subalgebra
IBL(H"(Cyeq)) € IBL(H"(C)),

and any higher operation qj;, which induces a map E\H(C) — EH(C)
induces a map ElH(Cmd) — ElH(C’er) as well.

e If V is non-negatively graded, connected and simply-connected, then we
have ExCreq ~ ExCreq for all k € Ny by Proposition and hence
dIBL"(Cyeq) is completion-free.

Proposition 2.51 (Operations on units). Suppose that (V, P, m,1,€) is a finite-
dimensional augmented cyclic cochain complex of degree 2 — n such that n > 1,
and let n be a strictly reduced Maurer-Cartan element for AIBL(C(V)). The
following relations are the only relations containing 1% which may be non-zero
on the homology H"(C):

For all U € Ciea(V) and 1 > 1, g > 0, we have

Ga10(s1* @ W) = (=)D gy (T @ s1%) = (~1)" *W o, and

qllllg(ka) = —Nyg O Ly,

where ty is defined as follows:

e The element v € VI1] is the unique vector such that P(1,v) = 1 and
v L V[1] with respect to P. Note that |v| = n — 1 and that such v always

exists due to non-degeneracy.
o We start by defining v, : BYV — BV by

k
ty(v1 .. vg) = Z(—l)‘vl(lvl‘+"'+|”"*1|)Ul V1V .. U
i=1
for all generating words vy ... v, € BY°V. Next, for all k > 1, we define
Ly (BYCV)®F 5 (BYV)®F by
k

wlwy @ @wy) = (=1)VEY ()bt @ @ w;
j=1

® ty(wj) @ wjp1 ® -+ ® wy
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for all generating words w1, ..., w, € BY°V. Finally, we take the degree
shift 1y« (BSV[3—n])®F — (BYV[3 —n])®* according to the degree shift
convention .

Proof. Pick a basis (e, ..., en) of V[1] such that eg = 1 and V[1] = (eq, ..., em).
If (€%,...,e™) is the dual basis, then we have v = €. We will often use the
following relation:

Zleej = Z(—l)lll’P(v,ej)ej = —v. (40)

Jj=0 Jj=0

We consider only those generating words w = vy ...v, of BV with either
v; € V for each i (shortly w € B&¥°V) or v; = 1 for each i with k odd (i.e.,
w = 1%~ for some j). Let wy, ..., w; with w; = vj1...v;, denote such
generating words. Clearly, if ® € E;C (V) is a g4 -closed element which vanishes
on all w; ® - - - ® wy, then implies that [®] = 0 in E;H(C).

For U € Cieq(V) and g > 1 odd, we compute using the following:

G210(5°1%" @ ) (sw) = Y e(w = w'w?) (= 1) ITH L w' (e u?)

=— Za(w — wlwg)(—l)("_l)lwll1q*(1w1)¢(vw2)

k
= _ Z(_l)\vl(lvl\+~-+|vj—1\)w(vl U AVO T . o)

~(Wou)(w) = (=1)"7*(T o 1y)(W),

or ¢ > 1 odd and w = 197!, in which case

(6) = _e(wr w w? )17 (1)p(v)

Next, because n > 1, we get T'' = 0, and hence

q120(17") =0 forallgeN
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on the chain level. Therefore, we have q'flg = (o001 g foralll > 1, g >0, and
using Proposition and , we obtain

[(9210 01 "gg)(lq*)](wl ® - @ W)

= - Z ZE’E(wj = wiwd )1 (1w g (Wi @ - @ W1 @ (svay)
j=1

®Wj+1®"'®wl)

=: (¥x).

In order to get (*x) # 0, we need either ¢ = 1 and w; € BV for all j, in which
case

U kj
(o) = = S5 (LMW W el oDy (-

J=1i=1
QW1 ® (sm...vi_lvvi...vkj) Q Wit ®®Wl)

= *(nlg o LV)(Wl Q- Wl),

or ¢ > 1 odd and w; = 1971 for some j, in which case

()= = 3 (Y elwy o w) wd AT (wh) g (Wr @ -
——
w]‘;ﬂ’l =0
QOW,;_1® (sv) QW1 ®- - ® W)
q—1
- ¢ (Z(—l)i)%(wl ® QW1 @ (V) O W1 ®

1<5<1 i=1
wj=19"" \_:,0_./ "'®Wl)

=0.
The only relation left to check is

go10(s19*,819*) =0 for all ¢1,¢g2 € N.

However, this is easy to see, and the proof is done. O
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3 Twisted IBL,-structure and string topology

In Section we consider the cyclic dga’s Q(M), Har(M) and H(M) for
a closed oriented n-manifold M (Proposition and apply the theory from
Section to the last two, which are finite-dimensional.

In Section we define the Green kernel G (Definition . It is a primitive
to the Schwartz kernel H of the harmonic projection 73 (see Proposition |3.8))
outside the diagonal and extends smoothly to the spherical blow-up of the
diagonal. These ideas come from an early version of [12]. We consider conditions
(G1)—(G5) on a linear operator G and its Schwartz kernel G (see p. [63)) and show
that G satisfying all these conditions always exists (Proposition . We also
mention the standard Green kernel Ggq (see (55)), which might be a canonical
Green kernel satisfying (G1)—(G5).

In Section we review ribbon graphs, labelings, compatibility of the
order and orientation of internal edges, and the edge and vertex order from [10]
(Definitions [3.14] [3.16] [3.17] and |3.18). We then define n as a signed sum of
integrals of products of Green kernels and harmonic forms which are associated
to labeled trivalent ribbon graphs (Definition . We do not show that
these integrals converge and that n satisfies the Maurer-Cartan equation, but
we do show all other properties of a Maurer-Cartan element (Lemma and
Proposition. We define the Y-graph, trees, circular graphs, vertices of types
A, B, C and their contributions A, a,, Ba, C, respectively (Definitions
and .

In Section [3:4] we observe that vanishing of some special vertices in the

graphs implies n;, = m,;,. For example, if all graphs, except for the Y-graph,
with 1 at an external vertex vanish, which holds if G satisfies (G4) and (G5)
(Proposition , then all higher operations q7;, vanish on the chain level
in dimensions n > 3 (Proposition . Next, if all graphs with an A-vertex
vanish, then njg = myg, and hence ¢}, = q}, (Proposition . We show
that n = m for simply-connected geometrically formal manifolds with n # 2
(Proposition [3.29). Using the results of [12], we argue that the chain complexes
of qfY, and qf;, are quasi-isomorphic provided M is simply-connected and formal
(Proposition [3.31)).

In Section [3.5] we recall basic facts about the Chas-Sullivan operations mo
and co on the S'-equivariant homology of the free loop space and formulate

a version of the string topology conjecture for simply-connected manifolds

(Conjecture [3.33)).
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3.1 Canonical dIBL-structures on C(Hyr(M))

Let M be an oriented closed Riemannian manifold of dimension n. We consider
the following graded vector spaces:

Q" (M) ... smooth de Rham forms,
H*(M) ... harmonic forms,
Hjr (M) ... de Rham cohomology.

Since M is fixed, we often write just 2, H and Hyqg. We consider the Hodge
decomposition 2 = H ®Imd ®Im d*, where d is the de Rham differential and d*
the codifferential. We call the corresponding projection

s (M) —s H* (M) (41)

the harmonic projection and the induced isomorphism 73 : Hgg — H mapping a

cohomology class into its unique harmonic representative the Hodge isomorphism.

Notation 3.1 (Updated notation for bar complexes). We use Notation for
V =Q, H, Hgr and A =n — 3 with the following changes:

b~mneV, v~a€eV[l], w~weBPV, wW~QeBPVn-3.

We use the formal symbols s and 6 with |s| =n —3 and |0] = —1, so that o = On
and Q = sw.

Proposition 3.2 (De Rham cyclic dga’s). Let M be an oriented closed Rie-
mannian manifold of dimension n. The quadruple (Q(M), P, m1,ms) with the
operations from s a cyclic dga of degree 2 —n. For the operations before the

degree shift, we have
() = dm,
ma(n1,m2) = M A nz,

P, m2) = /M A ng =: (N1,n2),

where d is the de Rham differential, A the wedge product and P the intersection
pairing. The operations restrict to Hag (M) and make (Har (M), P,m1 = 0,mz2)
into a cyclic dga. If we define py =0 and

pa(ar, as) = my(ma(ar, az))  for all ar,as € H(M)[1], (42)

then (H(M),P, p1,p2) is a cyclic dga as well, and 7y : Haqg — H is an iso-
morphism of cyclic dga’s. All three dga’s 2, Har and H are strictly unital and

strictly augmented with the unit 1 := 01 € Q[1], where 1 is the constant one.
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Proof. The relations follow from the classical properties of d and A and
from the Stokes’ theorem for oriented closed manifolds. The Poincaré duality
asserts that (-,-) is non-degenerate on Hgr and #H, and thus they are cyclic
dga’s as well. The fact that my : Hgg — H is an isomorphism of vector spaces
follows from the Hodge theory. As for compatibility with the product, given
n, N2 € H, then 11 A 19 is closed, and since kerd = H @ Imd, we see that
w3 (m An2) = m Anz + dn for some n € Q is a harmonic representative of the
cohomology class [1 Anz] = [71] A[n2]. Unitality is obvious, and the construction
of an augmentation map clear. Note that a strict augmentation for Q(M) is the

evaluation at a point, for instance. O

The facts (A) and (C) from the Introduction apply to the cyclic dga’s H
and Hgr (not to © because it is infinite-dimensional!), and we get the canonical
dIBL-algebras dIBL(C(#)) and dIBL(C(Hqr)) of bidegrees (n — 3,2) with the
canonical Maurer-Cartan element m = (myg). The Hodge isomorphism induces
an isomorphism of these dIBL-algebras, and hence we can use H and Hggr
interchangeably. We have q1190 = 0, and hence dIBL(C(#)) is, in fact, an
IBL-algebra. However, we will denote it by dIBL and call it a dIBL algebra
as a reminder of the canonical dIBL-structure. The canonical Maurer-Cartan

element m satisfies
mig(sayanag) = (—1)" 21 / m Ane Ans  for all ai,as, a3 € H[1]. (43)
M

We get the canonical twisted dIBL-algebra dIBL™(C(#)) from (£2)) with, in gen-
eral, non-trivial boundary operator qf}, whose homology is the cyclic homology

of Hqr up to degree shifts.

3.2 Green kernel GG
We will use fiberwise integration and spherical blow-ups, which we now recall.

Definition 3.3 (Fiberwise integration). Let pr: E — B be a smooth oriented
fiber bundle with an oriented fiber F' over an oriented manifold B with 0B = ).
We orient E as F x B. Let Q.(B) denote the space of forms with compact
support and Qey(E) the space of forms with compact vertical support. For any
K € Qey(E), let fF k € Q(B) be the unique smooth form such that

/}EmApr*nz/Jg(/Fn)An for all n € Q.(B).

Definition 3.4 (Spherical blow-up). Let X be a smooth n-dimensional manifold
and Y C X a smooth k-dimensional submanifold. The blow-up of X at'Y is as
a set defined by

Bly X := X\Y U PTNY,
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where PYNY is the real oriented projectivization of the normal bundle NY of Y
in X . This means that PTNY is the quotient of {v € NY |v # 0} by the relation
v~ av for all a € (0,00). The blow-down map is defined by

m:Bly X — X
pe X\Y —p,
[v], € PTNY — p.

In the following, we will equip the blow-up with the structure of a smooth
manifold with boundary such that its interior becomes diffeomorphic to X\Y via
the blow-down map and the boundary becomes PTNY. Consider an adapted
chart (U, %) for Y in X with ¢(U) = R" and (U NY) = {(0,y) | y € R*}. Tt
induces the bijection

¥ : BlynyU — [0,00) x S"F=1 x R¥

m1¢Y(p)
pe UV — (Imv()l, 20 mav p)).
my dy(v)
o] € PENY — (0, g mes mu ().

where 7, and 75 are the canonical projections to the factors of R»~* x R¥. Notice
that we have the canonical inclusion BlynyU C Bly X. It can be checked that
for any two overlapping adapted charts (U, 1) and (Us,2), the transition
function 1 o 1&5 !is a diffeomorphism of manifolds with boundary. Therefore,
we can use the charts (BlUmyU,i) to define a smooth atlas on Bly X. If X
is oriented, we orient Bly X so that 7 restricts to an orientation preserving
diffeomorphism of the interior.

An important fact is that if X is compact, then Bly X is compact.

We are interested in the case when X = M x M for an oriented closed
manifold M and Y = A := {(m,m) | m € M} is the diagonal. Given a chart
@ :U — R™ on M, the following is a smooth chart on Bla (M x M):

@ :BIa(U xU) — [0,00) x S""! x R

(@,y) € (U x UNA — (r,w,u) = (%W(x) — ), M’
1 (44)
5 (@) +6)).
[0, =)y — (0, m, #(@)).

The inverse relations for » > 0 read

o) =u+wr and ¢(y)=u—wr.
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We will denote by M; the i-th factor of M x M; i.e., we will write M x M =
M7 x Ms. We denote the corresponding projection by pr;. We define pr, := pr; om,
where 7 : BIa(M x M) — M x M is the blow-down map. We also identify
(M x M)\A with the interior of BIao (M x M) via .

The map pry : BIA(M x M) — Ms is an oriented fiber bundle with fiber
Bl (M), which is the blow-up of M; at a point (we shall assume that M is

connected). The fiberwise integration along pr, will be denoted by [ Bl My

Definition 3.5 (Green kernel). Let M be an oriented closed n-dimensional
Riemannian manifold. Consider the harmonic projection my from , and let
Ly H(M) — QM) be the inclusion. A smooth (n —1)-form G on (M x M)\A
is called a Green kernel if the following conditions are satisfied:

(1) The form G admits a smooth extension to Bla(M x M). More precisely,
the pullback (7T|im)*G along the blow-down map restricted to the interior
is a restriction of a smooth form on BIa(M x M). We denote this form

by G again by uniqueness.

(2) The operator G : Q*(M) — Q*~1(M) defined by

BL. M,
Gg(n) = / G Aprin  for alln € Q(M) (45)

satisfies
doG+God =1y 0my — 1. (46)
Any homogenous linear operator G : Q*(M) — Q*~Y(M) satisfying

will be called a Green operator.

(8) For the twist map 7 : M X M — M x M defined by (z,y) — (y,x), the
following symmetry property holds:

G = (—1)"G. (47)

Remark 3.6 (On Green kernel). (i) Given a homogenous linear operator G :
Q* (M) — Q*=Y(M), if there is a G € Q""1(Bla(M x M)) such that holds,
then it is unique.

(ii) Because 7 : M x M — M x M preserves A, it extends to a diffeomorphism
7 of BIA(M x M). The condition is then equivalent to 7*G = (—1)"G for
the extension G of G to Bla(M x M). We denote both extensions by 7 and G,

respectively.
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(iii) Using the intersection pairing (-,-), we have
(G(m),n2) = / G A DPrim A Pran:
Bla (M xM)
= (=" ./131 ) T"G A Prym A Pring
A X

and

(M,G(n2)) = (=1)m"2=1(G(na),m)
— (~m / G A Bt A Bt
Bla (M x M)

for all ny, ne € Q(M). This implies the following:

TG =(-1)"G = (Gm),n2) = (=1)"(m,G(n2)) (48)
Vi, ne € Q(M).

(iv) Because Bla(M x M) is compact, G € Q(BIa(M x M)) induces an L!-
integrable form on M x M.

(v) In the literature, the term “Green operator” often denotes a generalized
inverse of an elliptic pseudo-differential operator, e.g., of the Laplacian A. This
is not what we mean here. <

We will now prove three propositions which will allow us to rewrite
equivalently as a differential equation for G on M x M\A.

Proposition 3.7 (Identities for fiberwise integration). In the situation of Def-
inition assume that F' has a boundary OF. We orient OF using T,F =
N(p) & T,0F for p € OF, where N is an outward pointing normal vector field.
The following formulas hold for all k € Qo (E) and n € Q(B):

e The projection formula

/F(n/\ﬂ*n) (/Fﬁ)/\n,

e Stokes’ formula

(—1)Fd/Fn:/Fdf-i—/6F/1,

where F in the exponent denotes the dimension of F.

Proof. The projection formula is proven by a straightforward calculation from
the definition.
As for Stokes’ formula, we get the oriented fiber bundle 0F — B with

fiber OF by restricting an oriented trivialization of E. There are two orientations
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on OF — as the total space of 9 — B and as the boundary of E. They agree

due to our orientation convention. Using standard Stokes’ theorem, we get

(—1)F/Bd</F/<a) AN = (—1)”“/3(/Fn) Adn
=(—1)”+1/E/<;/\d7r*77

= /E(d/ﬁ/\ﬂ'*n—d(,‘i/\ﬂ’*n))

/JB(/:dH>AnaF/f’EHAW*n
([ e [T

This proves the proposition. L]

In what comes next, we will view the canonical projection pry : My x My — Mo
as an oriented fiber bundle such that the orientation of the total space agrees

with the product orientation. The fiberwise integration for this bundle will be
M,
denoted by [7.

Proposition 3.8 (Schwartz kernel of the harmonic projection). Let M be
an oriented closed n-dimensional Riemannian manifold. Let vy, ..., vy be a
homogenous basis of H(M) which is orthonormal with respect to the L?-inner
product

(n1,m2) 12 :=/ m A*ng for mi,na € Q(M),
M

where * denotes the Hodge star. The smooth form H € Q™(M x M) defined by

H = Z(—l)"”" pry(x1;) A pra(v;) (49)
i=1
satisfies the following properties:

(a) For alln € Q(M), we have

My
™ (n) = H A pryn.

(b) The form H is closed and Poincaré dual to A C M x M.

(¢) The following symmetry condition is satisfied:
T H = (~1)"H. (50)
Proof. (a) For the purpose of the proof, we denote H(n) := fMl H Apryn. For
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every k=1, ..., m, we use the projection formula to compute

m

M,
H(vg) = z:(—l)”i”"'l’MC / pry(xv; A vg) A prs(v;)

i=1
= Z(—l)yi(n+yk)+'/"("+yi) (/ v A *Vi)m
- M

i=1

I
N

k-

It is easy to see that H(n) € H(M) for all n € Q(M). Therefore, H is a projection
to H(M). Relations H(dn) = H(d*n) = 0 for all n € Q(M) follow from the
second line of the computation above with vy replaced by dn and d*n using that
Imd* @ Imd is L?-orthogonal to H(M). We see that H = my,.

(b) Using doH = H od = 0 and Stokes’ theorem, we get

M,y
/ dH Aprin=(=1)"dH(n) —H(dn) =0 for all n € Q(M).

It follows that dH = 0. Using the Kiinneth formula, we can write a given
Kk € Q(M x M) with dk = 0 as k = pr} n; A prins + dn for some 11, 72 € H(M)
and n € Q(M). Then

/ HAH:/ H Aprim Aprsmne
MxM MxM

= / H(m) A2
M

:/ 771/\7]2=/l<3-
M A

This shows that H is Poincaré dual to A.

(¢) It follows from the Hodge decomposition that

(m3(m),m2) = (2 (), T3 (12)) = (1,72 (n2))  for all ny,mp € Q(M). (51)
As in (iii) of Remark one shows that this is equivalent to (50). O

Proposition 3.9 (Differential condition). Let M be an oriented closed n-
dimensional Riemannian manifold. For G € Q" Y(Bla(M x M)), the following

claims are equivalent:

(1) The operator G : ¥*(M) — Q*~1(M) defined by G(n) := fBl*Ml G A prin
forn € Q(M) is a Green operator.

(2) It holds
dG = (-1)"H on (M x M)\A. (52)
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Proof. Before we begin, note that is equivalent to the equation dG =
(=1)*7*H on Bla(M x M) for the extension G of G; we denote G' by G and
7*H by H by uniqueness.

We will first prove 2) = 1). Using Stokes’ formula, we get for every
n € Q(M) the following:

Bl. M
agm—d [ Gnpiy
Bl. M1 OBL. M,
Co([ T aGam - [ 6 i)

OBl My
wmmfgmm+/‘ (—1)"*1G A pE}n.

Since pry = pry on OBla (M x M), we get with the help of the projection formula
the following;:

OBl My OBl My OBl My
/ GAﬁr’{n:/ GAp?Enz(/ G)An-

We will show that the O-form [ OBl-Mi s constant (—1)". Stokes’ formula

implies
P 9Bl M Bl M, Bl M,
/ G:/ 4G = (—1)"/ I8

Using that H is Poincaré dual to A, we get for every n € Q"(M) the following:

BL.M;
/(/ H)/\n:/ H A pran
M Bla (M x M)
:/ H Npryn
MxM

=/ pr§77=/ LAn.
A M
The implication follows.

We will now prove 1) = 2). Assume that holds and that G extends
smoothly to the blow-up. Denote

OBL. (M)
K:=(-1)"dG—H and L:=-1 —|—/ (-H)"G.

Notice that L is a function on M. From the previous computations, we deduce
that

BL. (M)
/ K Aprin= Ln for alln € Q(M),
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and hence
/ KAﬁr’{(m)AﬁrS(nz)=/ Ly Amg - for all 1,2 € Q(M).
Bla (M x M) M

If K(z,y) # 0 for some (z,y) € (M x M)\A, we can choose 1y, 72 with
disjoint supports such that the left-hand side is non-zero. This is a contradiction.
Consequently, we have K = 0. O

In general, the Schwartz kernel of a linear operator G : Q(M) — Q(M) is a
distributional form G on M x M which satisfied’]

Gn)(x) = /EM G(y,z)n(y) forallne Q(M) and x € Ms.

We consider the following conditions on G and G:

(G1) The Schwartz kernel G of G is a restriction of a smooth form on
BIa(M x M).

(GQ) d0g+g0d:LHO7TH—]]..
(G3) (G(m),n2) = (=1)™ (11, G(n2)) for all ny, n2 € Q(M).
(G4) gO’inH :WHOQZO.

(G5) GoG = 0.

Clearly, (G1)—(G3) are equivalent to G being a Green kernel from Definition [3.5]
Conditions (G4) and (G5) play a crucial role in the vanishing results for the formal
pushforward Maurer-Cartan element n in Section [3.4]— the more conditions are
satisfied, the more vanishing we get.

The following lemma will be used in the proof of the upcoming proposition.

Lemma 3.10. Let G, Go be two linear operators (M) — Q(M) with Schwartz
kernels Gy, G3 € Q(BIA(M x M)). Then G := Gy 0§y is a smoothing operator,
i.e., its Schwartz kernel G is a smooth form on M x M.

Proof. Tt holds G(z1,22) = :I:fm Gao(z1,2)G1(x,22). The lemma follows from
properties of convolution. See |19] for details. O

A version of the following proposition can be found in [7].

Proposition 3.11 (Existence of special Green operator). Every oriented closed
Riemannian manifold M admits an operator G : Q(M) — Q(M) which satisfies
(G1)-(G5).

9We may consider such class of G’s, e.g., pseudo-differential operators, such that G exists
and is unique (c.f., the well-known Schwartz kernel theorem).
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Proof of Proposition[3.11 Because H is Poincaré dual to A, we have for any
closed k € Q.((M x M)\A) the following:

/ H/\Ii=/ H/\m://-ezo.
(M xM))\A M x M A

Poincaré duality for non-compact oriented manifolds (see [5]) implies that H is
exact on (M x M)\A. Because a manifold with boundary is homotopy equivalent
to its interior, the restriction of the blow-down map induces an isomorphism
7 Hag (M x M)\A) — Hag (Bla (M x M)). It follows that (—1)"n* H admits a
primitive G € Q(Bla(M x M)). According to Proposition the corresponding
G satisfies (G1) and (G2).

If we define

G = %(G + (=1)"7*G) € Q" Y(BIA(M x M)),
then G satisfies 7*G = (—1)"G and is still a primitive to (—1)"7*H. Proposi-
tion and imply that the corresponding G satisfies (G1)—(G3).
Given G satisfying (G1)—(G3), we will now show that we can arrange (G4).
Let us define
G:=(1—my)oGo(l —my).

Then Q is a Green operator because
doG+God=(1—-my)o(doG+God)o (1l —my)=1—my.

Using and , we see that G satisfies (G3). Using the intersection pairing

and Proposition [3.8] we can write

m

mu(n) =D (=) (kv )y for all n € Q(M),

i=1

and hence we have for all 11, 72 € Q(M) the following:

(g(ﬁy(nl))7 772) = Z(_l)(n+7]1)m(*yi, nl)(g(l/i), 772)
= (e [ pri) A pri(@(0) A prim) A ()

It follows that the Schwartz kernel of G oy is the smooth form

m

Kgomy = 3 (1) D% prf (ss) A prs (G(w)).

i=1
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Moreover, if we replace G with my o G, we get the smooth Schwartz kernel
K06 omy Of (73 0 G) 0 mgy. In the same way, but now using in addition 7

we can write

(m2(G(m)),m2) = (=1)" (1, G (73 (n2))) = (=)™ (G(m2(12)), m)

(—1ymuet i / pry (xi) Aprs(G(vi)) A pri(nz) Apra(m)
M x M

i

I
<M3

Il
_

(—1)(m+ vt / P () A pri(G(v4)) A pri (i) A pri(na),

i MxM

where in the last equality we pulled back the integral along the twist map. It
follows that the Schwartz kernel of 74 o G is the smooth form

m

Koo = 3 (~1)" pri(G(13)) A prs(sns).

i=1

The Schwartz kernel of G = G —my 0 G — G oy + Ty © G omyy is then

G=G- W*/Cg omy W*KWHOQ + '/T*ICWHOQ o

which is a smooth form on Bla (M x M). Therefore, G satisfies (G1)—(G4).
Given G satisfying (G1)—(G4), we will show that we can arrange (G5). The
trick from [7] is to define

G=Gdg.

Applying (G1) and (G2) repeatedly, we compute

dGggd=dgG-dggdg=dgG-dgG+dgdgg

(53)
=dGgG—-ddgGgG=dGgG=G-Gdg,
and hence
G=6G-dgggd.
Clearly, G satisfies (G1) and (G2). As for (G3), we compute
(m1,Gm2) = (=)™ (G m1,dGma) = (AGm, Gm2) = (=1)" (G, ma).-
As for (G5), we have
GG=0dG(6d)G=6dGG-Gd(Gd)GG (54)

=Gdgg-Gdgg+6Gddgg =0.

In order to show (G4), we have to compute the Schwartz kernel of dG G Gd. By
Lemma the Schwartz kernel T of T := GG G is a smooth form on M x M.
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Therefore, Stokes’ formula without the boundary term applies, and we get

(de)nd/MlT/\dﬂ‘(n) /Ml AT Adri(n) = (—=1)T /Ml didT A 75 (n).

Here d; : Q(M x M) — Q(M x M) is the operator defined in local coordinates
by

of
oz’

dq (f(x, y) dx! dyJ) = Z (z,y) dx' dx! dy” .

i=1
It follows that the Schwartz kernel G of G satisfies

G =G+ (~-1)"dydT

and is a smooth (n — 1)-form on BIa(M x M). Conditions (G1)—(G5) are
satisfied. O

Remark 3.12 (Property (G5) in dimensions 1 and 2). In dimension 1, every
operator of degree —1 satisfies (G5) from degree reasons. In dimension 2, every
operator satisfying (G1) and (G2) satisfies (G5) as well, which follows from
and . <
Remark 3.13 (The standard Green kernel). Consider the Hodge-de Rham Lapla-
clan A = dod*4+d*od: Q(M) — Q(M) and its “Green operator” Ga of degree 0
(see (v) of Remark [3.6] for the collision of terminology) which was defined in |33,
Definition 6.9] by
Ga = (A|H(M)L)7l O Ty (ML)

where L denotes the L?-orthogonal complement. We introduce the standard

Green operator by
Gstd := —d*Ga. (55)

Using the properties of Ga, d and d*, one can show that Gsiq satisfies (G2)—(G5)
(this will be shown in [19]).

As for (G1), the author was able to show it for flat manifolds (:= locally
isometric to R™) by transforming the following formula inspired by [16] to blow-up

coordinates and explicitly computing the integral and limit:
1
Gua = —Jim [ 50K, dr.
where K;(z,y) = Y_;(=1)"¢e Nt (xe;)(x) A e;(y) is the heat kernel of A and e;

the L2-orthonormal eigenbasis of A with eigenvalues )\; (the signs come from
our convention for fiberwise integration, c.f., (49)). <
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3.3 Formal pushforward Maurer-Cartan element n

We first recall ribbon graphs and their labelings based on [10].

Definition 3.14 (Ribbon graph). A graphT is a quadruple (V, H,V,E), where V
is a finite set of vertices, H a finite set of half-edges, V : H — V the “vertex
map” and £ : H — H with £ o & = 1 and without fized points the “edge map”.
The preimage €1 (hy) = {h1, ha} for some hi, ha € H is called an edge; the set
of edges is denoted by E. We assume that the graphs are connected, i.e., that
for any vi, vo € V there exists a path in E connecting vi to vs.

A ribbon graph is a graph I' which is equipped with a free transitive action
Ly C V=L(v) for every v € V, where

is the valency of v. We denote by N : H — H the bijection induced by 1 € Zqg(y)
for everyve V.
For a ribbon graph T', consider the set of sequences (hy)necz C H such that

the following conditions holds:

E(hyn) n even,

VneZ: hpp1=
N(hy,) n odd.

Two such sequences (hp)nez and (hl)nez are equivalent if and only if there
exist ng, ng € Z both even or both odd such that hn, = h, . An equivalence
class [(hn)nez) is called a boundary (or a boundary component) of T. The set of
boundaries of T is denoted by OT".

An IE ribbon graph is a ribbon graph I' together with the decomposition

V' = VintUWVext into internal and external vertices Viny and Ve such that d(v) =1

for all v € Viy, respectively. This decomposition induces the decomposition
E = Eint U Eoxt, where an edge e is internal if it connects two internal vertices

and is external otherwise. We allow only graphs with at least one internal vertez.

We often identify an external vertex with its unique adjacent half-edge or the
unique adjacent external edge; we call either of these an external leg. For any
b € 0", we define the valency of b by

5(b) := |V(b) N Vet

where V(b) = {V(hn) | n € Z}. We also have the free transitive Zg)-action on
V(b) N Vext mapping v € V(b) N Vet to the next external vertex in the sequence
(V(hy))nez- We will denote this action by N again.

We say that an IE ribbon graph T is reduced if s(b) > 1 for allb € OT.

The following letters will be used to denote the numerical invariants of a
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graph:

k ... the number of internal vertices,

S ... —r— external vertices.

I ... — boundary components,
e ... —— internal edges.

Moreover, we define the genus g € Ny so that the following Euler formula holds:
k—e+1=2-2g. (56)

We denote by RGyyq the set of isomorphism classes of connected IE ribbon
graphs with fized k, 1, g. We let @klg C RGyyqg be the subset of reduced graphs.
For m € Ny, we denote by RG,&Z‘]) C RGyq the set of isomorphism classes of
connected IE ribbon graphs with all internal vertices m-valent, i.e., with

d(v)=m for all v € Viy.

The notation I € RGyyy means that I' is a representative of an equivalence class
[F} S Rleg.
Remark 3.15 (On ribbon graphs). (i) An m-valent ribbon graph with m > 2

has a unique decomposition V' = Vi L Veye, and hence we can omit writing TE.

(ii) In this text, we will use only reduced ribbon graphs. Non-reduced ribbon
graphs may play a role in the extension of the theory of dIBL"(C(H)) to
non-reduced cyclic cochains or in the weak IBL,-theory (see Remarks

and [2.27)). <

Definition 3.16 (Labeling). A labeling of an IE ribbon graph T' is the triple
L = (L1, Lo, Ls), where L; have the following meanings:

e The symbol Ly represents an ordering of internal vertices (=: LY ), and
of boundary components (=: L%). Given Ly, we write Voxy = {v1,...,Vr},

OI' = {by,...,b;} and denote
d; :==d(v;) and s;:=s(b;).

e The symbol Lo represents an ordering and orientation of internal edges.
Given Lo, we write By, = {e1,...,ec} and ¢; = {h;1,hi2} for hia, hi2 €
H.

e The symbol L3 represents an ordering of half-edges at every internal vertex
(=: LY) and of external vertices at every boundary component (=: L),
both compatible with the ribbon structure (:=the Zny,-actions). Given Ls,
we write V7H(v) = {hy,1, s hyaey} and V(b) N Vexe = {vb 1, .., Vi,sb) }
with N (hy ;) = hy 41 and N (v, j) = vp j+1 for all i, j, respectively.
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We sometimes call L; partial labelings and L a full labeling. A ribbon graph T’
together with a labeling L s called o labeled ribbon graph.

Given a ribbon graph I', one can construct an oriented surface with bound-
ary Xp — the thickening of I' — in the obvious way and a closed oriented
surface S by gluing oriented disks to the oriented boundaries of ¥p. If partial
labelings L; and Lo are given, we obtain the following chain complex with
oriented chain groups (vector spaces over R):

Cy o= (b1, ..., b)) =2 Oy = (e1, ... e0) =2 Co = (vi,...,v1). (57
Here b; stands for the oriented disc glued to the i-th boundary component of ¥p
and now being mapped into $r, e; stands for the 1-simplex in Sr corresponding
to the i-th internal edge, v; stands for the 0-simplex in 3 corresponding to
the i-th internal vertex, and the boundary map 9 is the “geometric” boundary
operator. The homology of this chain complex is isomorphic to the singular
homology H(S) := H(Sr; R).

The orientation of C; (:= the order of generators in (57))) induces naturally
an orientation of H(ip) The construction from |10, Appendix A] is as follows.
We pick complements H; of Im(9;41) in ker(9;) and complements V; of ker(9;)

in C; and write

Co=Va® Hy —2+ Cy = Vi ® Hy & Im(8s) —2 Cp = Im(8y) @& Ho.

We orient V; arbitrarily and transfer the orientation to Im(d;) via 9; : V; =
Im(9;). Then, assuming the direct sum orientation, orienting H; is equivalent to
orienting C;, and we obtain the orientation of Hl(ir‘) via the canonical projection
7 Hy S Hy(Sr) = ker(d;)/Im(diy1). This construction does not depend on
the choices of complements and orientations of V;.

Definition 3.17 (Compatibility of Ly and Ls). Given a ribbon graph T' with
partial labelings L1 and Lo, we say that Ly is compatible with Ly if the orientation
on H(flp) induced by agrees with the canonical orientation

~

H(Xr) = <V1—i—..-—|—vk>GSHl(/iF)@ﬂ)l_|_..._|_bl>7

where Hl(ip) is oriented using the canonical symplectic intersection form.

Given a labeled IE ribbon graph I, the set of half-edges adjacent to internal

vertices V1 (Viy) can be ordered in two ways corresponding to writing
2e+ (514 +s)=di+ -+ di.

This leads to the following definition.
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Definition 3.18 (Edge order and vertex order). For a labeled IE ribbon graph T,
we define the following two orders on the set of half-edges H :

e Edge order: The first 2e half-edges hi ; are the ones from internal edges;
they are ordered according to Lo. They are followed by blocks of s1, ...,
sy half-edges h?’j which come from the boundary components i =1, ...,
I, respectively, and which are ordered according to Lg inside the blocks.

Schematically, we have
(RS 1hS2) - (W e o) (RY g - BT ) o (R By,)
o Vertex order: It consists of blocks of du, ..., di half-edges hy ; which come

from internal vertices 1, ..., k, and which are ordered according to Lj

inside the blocks. Schematically, we have
(hY 1 hg)-(Pgq-hga)

We denote by o1, € S| the permutation from the edge to the vertex order

which is constructed such that the i-th half-edge in the edge order is the same as
the or,(i)-th half-edge in the vertex order.

From now on, we will consider only reduced trivalent ribbon graphs m,(j;
with k, 1 > 1, g > 0. We will often use the equation

2e + s = 3k. (58)

Definition 3.19 (Formal pushforward Maurer-Cartan element). Let M be an
oriented closed Riemannian manifold, and let G € Q"1 (Bla(M x M)) be a Green
kernel from Definition @ The formal pushforward Maurer-Cartan element n

is the collection of
n, € BICH(M))  foralll >1,9>0

defined on generating words w; = ;1 . .. s, € B H(M), where o = 0n;j with
nij € H(M) for s; > 1 andi=1,...,1, by the formula

nlg(slwl ®- - Quwy)
1
> e(k )4P(w) 1) I (o (59)
S Z | Au t( )|( Z

[MeRGY}), Ly, L
which we explain as follows:

o The second sum is over all partial labelings L, and Lg of a representative I'

of [T]. In every summand, we complete Ly and LY to a full labeling
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L = (L1, Lo, Lg) by picking an arbitrary LY and an arbitrary Le compatible

e Suppose that I' and Ly are admissible with respect to the input w1, ..., w;
this means that I' has | boundary components and that the i-th boundary
component has valency s; for everyi =1, ..., 1. In this case, denoting

o = oy, we define

I(op) = / G(Te(01)s Te(o)) G Te(09e_1) Te(0ae)) (60)
Tlye Tk
U11($5(02e+1)) sy (x5(02e+s))’

where € : {1,...,3k} — {1,...,k} is the function defined by

£33 —2)=¢€0Bj—1)=£Bj) =

forallj =1,...)k, s = s1+ -+ s, n(x;) denotes the pullback of n
along the canonical projection m; : M** — M to the i-th component M,
G(x;, ;) denotes the pullback of G along m; x m; : M>*¥ — M; x M;, and

Jov....

If T and Ly are not admissible, then we set I(op) := 0.

o denotes the integral of an nk-form over k copies of M.

o s(k,0):==k+kl(n—1)+ 3k(k—1)n mod 2.

L] P(w) = 22:1 25;1(8 — 81 — = Si—1 — j)nij mod 2.

In order to show that ny, is well-defined and that the collection (n;,) satisfies
Definition for dAIBL(C(H(M))), there are several things to check:

(1) The integral I(oy) converges.
(2) The sums are finite.

(3) The product (—1)?I(oy) is independent of the choice of LY and Lo
compatible with L.

(4) The sum over labelings is independent of the chosen representative I' in an

isomorphism class from m,(j;

(5) The map ny, : BE“H(M)[3 — n]®" — R is graded symmetric on permuta-
tions of its inputs sw;.

(6) The map ny4 is graded symmetric on cyclic permutations of the components

a; of each w;.
(7) The degree condition 1) from Definition holds with d = n — 3.

(8) The filtration-degree condition 2) from Definition holds with v = 2.
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(9) The Maurer-Cartan equation holds.

Conditions 1) and 9) will be proven in [12] using the theory of iterated
blow-ups. In this text, we will take 1) and 9) for granted.

Lemma 3.20. Assuming 1), the conditions 2) — 8) hold.

Proof. As for 2), the fixed input wy, ..., w; fixes the number s of external vertices
of I by admissibility. Expressing e from and plugging it in gives

k=s+2l+4g—4. (61)

We see that all parameters are fixed. Now, there is only finitely many ele-
ments with fixed s in mg;, and each of them has only finitely many labelings.
Therefore, the sums are finite.

As for 3), we have to consider the orientation of the complex . Clearly,
if two Lo’s are compatible with L;, then they differ by an even number of
the following operations: a transposition of two internal edges or a change
of the orientation of an internal edge. The former operation introduces no

n—1

sign in (—1)°% but generates the sign (—1) in I(or) from swapping the
corresponding G’s. The latter operation induces the sign —1 in (—1)?F and the
sign (—1)" in I(o) from the symmetry G(z,y) = (—=1)"G(y,x). Because the
overall signs in (—1)?£1(oy) are the same, an even number of these operations
preserves (—1)?L1(oz). This implies the independence of an Lo, compatible
with L;. A change in L} produces no sign in (—1)7* because every internal
vertex is trivalent and a cyclic permutation of an odd number of elements is even.
The integral I(oy) remains unchanged because the change in oy, is compensated
by the composition with £. Independence of the choice of L§ follows.

As for 4), every isomorphism of ribbon graphs I' — I" induces the bijection
L — L’ of compatible labelings such that oy, = o/ (L’ is the “pushforward”
labeling). The independence of the choice of a representative of [I'] follows.

As for 5), let u € S; be a permutation of the inputs swy, ..., sw;. The set of
graphs which admit an admissible labeling is the same for both ny, (sl ®- - ®@wy)
and nlg(slwgl—l - ® OJo_l—l); we will pick one such I' and study the admissible
labelings L and L', respectively. We write 7; = m;1 ... 1;s, and Q; = sw; for all i,
4, and denote by I'(or/) the integral in the definition of nlg(slwlq1 ® --® wﬂfl).
Let fi € S3 be the permutation which acts as the identity on 1, ..., 2e and
as the block permutation determined by p on 2e + 1, ..., 2e + s divided into [
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blocks of lengths s1, ..., s;. For any o € Sz, we have

I'(0) = / G(Te(or)s Te(o)) * G(Te(0ae1)r Te(oae))
T Tk

.....

npfll(xf(026+1)) s n#l’lsu,l (x5(02e+s))
1

e(psm) / G(Ze((oom)n) Te((oopm)2) " G(Te((0op)ae—1)s Te((o0fi)ae))
xrq T

yeeny

M1(Te((oo)zesn)) - - Mot (Te((oop)zers))
=e(u,n)I(o o f).

The precomposition with fi corresponds to a bijection (L, L8) ~ (LY, Lg/) of
partial labelings for nlg(slwl ...wy) and nlg(slwufl R ® WM;1)7 respectively.
However, if Ly is compatible with L;, then in order to get an LY compatible
with L}, the labeling Lo has to be altered by as many operations of switching
two internal edges or changing the orientation of an internal edge as there are
transpositions in p. We explained in the proof of 3) that this produces the
sign (—1)("=Yr in (=1)°2'I(or,). Therefore, after the choice of compatible Lo
and L), we have

(~)7 (o) = (=) DR (=1)e(p, n)(~1) I (o1).

If we view 7 as 911 . . . s, we can understand (—1)7(“) as the Koszul sign (6, n).
Similarly, we write (—1)7(#(«) = £(6, u(n)), where we first view n as m ®--- @1
to apply p and then as the list of components 7;; to compute the Koszul sign
(this is a little ambiguity in our notation). If we denote by fi the permutation of
1, ..., s permuting the [ blocks of lengths s1, ..., s; according to u, then 1z has
the same sign as fi, and the decomposition of (6, u(n)) into the moves

1 (2
91 e 9577“;11 . T]H—l Q) Gﬁl e eﬁsnu e Misy —)) eﬁlnu e Hﬁsmsl

1 Sul—l
(3)
— 9177;{11 . 9577“;18[

shows that

(=1)PEED) = (“1)Pe(p,n) (-1)7“) e, w).
M & 6

Using this, we write

(—)PHEN(—1)7 (o) = e(p,w)(=1) VA (=1)PE) (~1)7 I(o1),
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and compute

nlg(Qul_l R Q Qﬂl_l)
nlg(slwufl ®- & w#;1)
(_1)|8|”5(N7w)ﬂ19(51w1 ® - Quwp)
(= 1), w) es,w) g (swy @ - - - @ swy)
——r
(1) (2) (3)
= e Yy @ - @ ).

A/é\/-\
~— — —
—_— — —

We used |s| =n — 1 mod 2, and the last equality follows from the decomposition
of e(u, Q) into the moves

(3) (2
S1W1 ...81W; —> 81 ...85W1...W| —>SM;1"'S —-1W, —1...W, ~1

Hy My Hq
ﬂ) S —1W, -1 S —1W, -1
Wt S
This proves the symmetry of n,.
Asfor6), fixani =1, ...,land let u € S, be a cyclic permutation permuting

the components of w; = a1 ... qys,. Similarly to the previous case, we denote
by ji the corresponding permutation of 1, ..., 3k and get a bijection (L, L}) —
(L} = Ly, Lg/) of admissible labelings of a given graph I' for nj,(slw; ® -+ ®
Qi1 ... Qis; @+ - Quwy) and nlg(slwl Q- ®aw1_1 F Oy ®---Quwy), respectively.
This time, there is no change in L;, and thus we can take L} = Lo, producing

no sign. Therefore, we have
(=17 I'(or) = (=1)"e(u,m)(=1)7"I(o1),

where (p, ;) comes from permuting the forms in I’(oz/). Further, we deduce
(=1) P = (=1)e (i) (= 1) 7 e (1, w9),

and hence

l
nzg(swl®...®aw;1...amil ®"'®Wl)

= ey, wi)nlg(slwl ® @A .. s, @ @ wy).

This shows the symmetry of n;4 on cyclic permutations of the components of w;.
As for 7), suppose that n,(s'w; ® -+ @ w;) # 0, and let D denote the total
form-degree of the input 711, ..., s, € H(M); i.e., we define

D= deg(mu) + - + deg(ns,) + - - + deg(m1) + - - - + deg(ms,)-
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Clearly, we must have
nk=(n—1)e+ D, (62)

where the left-hand side is the dimension of M ** and the right-hand side the
form-degree of the integrand of I(o). If we plug in e from and k from ,

we get
D

nk —(n—1)e
=nk—(n—-1)(k+1+29—2)

k- (n—1)(+2 - 2)
s+20+49—-4—(n—1)(1+29—2)
=s—(n—3)(+29—2).

It follows that
[ngg| = |sl| +lwi|+ -+ |w|=ln—=3)+D—s=-2(n—3)(g—1).

This is exactly the degree from Definition [2.19
As for 8), if njy(slw; ® -+ ® w;) # 0, then

s=k—-21—49—-4>14+2(2—-29—-1) =1+ 2x014,

and hence ny, € ]-'Hngyl:ZlC for the filtration induced from the dual of the
filtration of BYY“H by weights. Therefore, we get

[ngll > 1+ 2x01g > 2x01g foralll>1,9 >0.

This finishes the proof. O

Definition 3.21 (Vertices of types A, B, C and some special graphs). Let
I'e RG,(;Z be a trivalent ribbon graph and v its internal verter. We say that v
is of type A, B or C if it is connected to precisely 1, 2 or 3 internal vertices,
respectively (see Figure . The graph T is called (see Figures|d and @)

o a tree if [['] € RGyio for some k > 1;

e circular if [T] € RGgao for some k > 1;

e the Y -graph is the unique tree with k = 1;

e an Og-graph if T is circular with k internal vertices and no A-vertex.

We denote the Y -graph simply by Y .

Remark 3.22 (On A, B, C vertices and special graphs). We observe the following;:

(i) A trivalent graph I" # Y has each internal vertex of type A, B or C.
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Figure 2: A tree and a circular graph. Internal vertices are denoted with a full
dot and external vertices with an empty dot.

Figure 3: The Y-graph and an Og-graph.

(ii) The term njq is a sum over trees, and the term myg is the contribution of
the Y-graph to nig (see Proposition below). The term nyg is a sum over
circular graphs. <

Wee will also denote by A, B, C' the numbers of internal vertices of the

corresponding type. Under the change of variables

s=2A+ B,

1 3
=B+-A+-C 63
e —|-2 +2 , (63)
k=A+B+C,

the trivalent formula becomes trivial and the Euler formula becomes
C—A=2—-4+4g. (64)

Proposition 3.23 (Formal pushforward Maurer-Cartan element). The push-
forward Maurer-Cartan element n = (nyg) is a Maurer-Cartan element for
dIBL(H(M)) which is compatible with m. In particular, the Ao -algebra H(M ),

is homologically unital and augmented.

Proof. The fact that n is a Maurer-Cartan element for dIBL(#(M)) follows from
Lemma [3.20] assuming 1) and 9) from [12].

As for the compatibility with m, the only graph contributing to nyo(sa;aaag)
is the Y-graph with & = 1. The group Aut(Y") consists of three rotations, and
there is only one possible Ly, no Ly and three L§. In Definition we get
s(1,1) =n—2, (—1)°% = 1 because a cyclic permutation of an odd number of
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ai o 0
|
Aay s (Y) Ba(yl,yz)/L C(yl,yz,ys)/‘\
ay XNy NN ) Y2~ X S ys

Figure 4: Trivalent vertices of types A, B and C with the corresponding forms
Aoy an> Ba and C, respectively.

elements is even, and also P(ajasas) = 1. Finally, we compute

o
no(sarazas) = 5 (=1) G Z/O‘l(536(01))0‘2(xé(frz))o‘?)(xé(rfz))
Ly 7T

= (—1)rtm / mAn2 A3
M

= mlo(SOélolgag). O

Definition 3.24 (Contributions of A, B, C vertices). Consider an internal
vertez of type A, B or C as in Figure[}) We define the following smooth forms
on M, M*? and M*3, Tespectivelym

&mdw?/Gw@m@m@,
m@wg:/e@wmwmwm

m%mwg:/Gmmmmmmm%»

3.4 Results about vanishing of n

In the situation of Definition let T € mfj’; be a reduced trivalent ribbon
graph, L = (L1, Lo, L3) its labeling, x; the integration variable associated to
the i-th internal vertex, G(z;,x;) the Green kernel on the oriented internal
edge between z; and z;, and «;; € H(M)[1] the harmonic form on the j-th
external vertex on the i-th boundary component. Recall that we denote by
w; = SQy1 ... 4, the i-th input of n;, and by D the total form-degree of all
inputs.

By saying “a graph vanishes” we mean that I(o) = 0 in the given context.

Proposition 3.25 (Vanishing of graphs with 1). In the setting of Deﬁnition

suppose that the following condition is satisfied:

10The definitions can be made precise in local coordinates. Smoothness of Aq, a4 is clear,
smoothness of B, follows from Lemma m and smoothness of C' can be shown by a similar
argument.
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(V1) Every graph T’ € m,(j;, I' #Y which has 1 = 01 € H(M)[1] at an external
vertex vanishes.

Then n is strictly reduced, and the following holds depending on the dimension n:

(a) For n > 3: All graphs which are not trees or circular vanish. There-
fore, wg = 0 for all (I,g9) # (1,0), (2,0), and it follows that all higher
operations qY;, vanish on the chain level.

(b) Forn=3: A tree vanishes unless all 1, ..., ns are one-forms. Therefore,

nyp(say ... as) # 0 implies deg(n;) =1 for all i.

(c) For n < 3: All trees except for Y wvanish. Therefore, we have njgp = myg,

and consequently qt1, = qTi0-
Moreover, we have

(d) A circular graph vanishes unless all ni1, ..., n2s, are one-forms. Therefore,

noo (st ... s, @ Qo1 ... as,) # 0 implies deg(n;;) = 1 for all i, j.
In addition to (V.), suppose that Hiz (M) = 0. Then:

(e) All circular graphs vanish. Therefore, we have nyg = 0, and consequently

n —
9120 = 9120-

(f) For n < 6: All trees except for Y wanish. Therefore, we have njgp = myg,

and consequently q%,o = qT0-

Proof. The proof is just combinatorics with D. Suppose that a trivalent ribbon
graph I' # Y does not vanish on the input wy, ..., w;. Because all external
vertices of T' are adjacent to an A-vertex or a B-vertex, the assumption (V;)

implies D > s, where s is the total number of external vertices. A combination

of and yields
nk—(n—1e=D>s=3k—2 <= (n—3)k>(n—3)e.

(a) For n > 3, we get k > e, which implies that I" is either a tree or a circular

graph.

(b) If T is a tree, then s = k+ 2 and e = k — 1. From (62) we get
D=nk—(n-1)(k-1)=k+n—1. (65)

Now D is the sum of s = k + 2 form-degrees deg(n;;) > 0, and hence for
n = 3 implies that deg(n;;) = 1 for all ¢, j.

(¢) For n < 3, we get e > k, which implies that I" is not a tree.
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(d) If I' is a circular graph, then e = k = s, and we get using that
D=nk—(n—-1k=k.

Here D is the sum of s = k form-degrees deg(7;;) > 0, and hence deg(n;;) =1
for all 4, j.

We will now assume, in addition, that H!(M) ~ Hig (M) = 0.

(e) We must have D > 2s, which is in contradiction with D = s for a circular

graph. Therefore, nyg = 0.

(f) Finally, for a tree I # Y, we have
k+n—-1=D>2s=2(k+2) < n-5>k.

This finishes the proof of the proposition. O

Proposition 3.26 (Green kernel with (G4) and (G5)). In the setting of Defini-
tion[3.19, suppose that the Green kernel G satisfies (G4) and (G5). Then the
condition (V,), and hence Proposition[3.25 holds.

Proof. 1t is easy to see that Ay, o, = G(m A n2) for all g, as € H(M)[1],
and that —B, is the Schwartz kernel of G o G. Therefore, (G4) and (G5) imply
Aq,» =0 and B, =0, respectively.

As for the integral I(oy,), one has to apply the Fubini theorem in order to
integrate out single vertices A,, , and B,. This step relies on L!-integrability of
the integrand which follows from [12] (the integrand comes from a smooth form

on a compact manifold with corners). O

Proposition 3.27 (Vanishing of A-vertices). In the setting of Deﬁnitz’on

suppose that the following condition is satisfied:
(Va) Every graph with an A-vertex vanishes.

Then we have nyy = myg, and the only contribution to ngo(SQOéu...Oqsl ®

Qo1 ... Qag,) comes from Oy-graphs with k = s1 + so = D.

Proof. The only trees and circular graphs which are not excluded by the assump-
tion are the Y-graph and Og-graphs, respectively (the external branches contract).
The condition on form-degrees is obtained as in the proof of Proposition [3.25]
To argue that I(or) = 0, we again need L!-integrability as in the proof of
Proposition [3.26] O

Remark 3.28 (Integrability for trees). Given a tree, we can start at a leaf and
write I(or) as an iterative integral of contributions Aq, o, for aq, as € Q(M).
These are smooth forms, and hence integrability is guaranteed. Therefore, the

result njg = myo is independent of the convergence results from [12]. <
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Proposition 3.29 (1-connected geometrically formal manifolds). Let M be a
geometrically formal n-manifold and G a Green kernel satisfying (G4) and (G5)
(it exists by Proposition . If Hig (M) = 0, then the following holds:

(n#2) ALY #T € RGpyy with k, 1 > 1, g > 0 vanish, and hence n = m.

(n=2) AlY # T' € RGyo with k, I > 1 vanish, and hence ny = my for
alll>1.

Proof. Given 11, 12 € H, geometric formality implies 71 A 2 € H, and hence
Aayas =G Amz) = 0. We see that (V) and (V) are satisfied, and hence the
implications of Propositions and hold. The claim for n > 3 follows.
As for n = 3, Poincaré duality implies H3, (M;R) = 0. Therefore, the total
form-degree D satisfies D = nB, where B is the number of B-vertices. We see

using that is equivalent to

1 1
B—|—§(3—n)C’:D:nB = (n—l)B:§(3—n)C. (66)
It follows that B = 0, and hence all reduced graphs vanish.

As for n = 2, we get from and that B > [ is equivalent to g > 1. [

Remark 3.30 (As-homotopy transfer). In [12], it will be shown that the A..-
algebra H(M)n = (H(M), (ur)) induced by nio agrees with the A-algebra
obtained by the A,.-homotopy transfer

< ﬂi(,]\/;[r)bz > - ( p1 =0, pg = W/}:?(?%]\j()by,m)a M3, >

using the homotopy retract (see [32])

gC QM) my) T (H(M),my = 0).

The operation uy of the transferred A, -structure is computed as a sum over
planar trees with a root and k leaves decorated by 1ty at the leaves, my at the
root and G at the internal edges (see [1]). The result of [12] is plausible because
the part of nyg contributing to py is a sum over trivalent ribbon trees with &k + 1
leaves.

In [12], they will also show that ¢1 := 1y : H — Q extends to an A,,-quasi-
isomorphism (tx)r>1 from (H, (ux)) to (Q,m1,ma). The induced chain map on
the dual cyclic bar complexes is then the map 1}, coming from the IBL,-theory

in the Introduction. <
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Proposition 3.31 (Twisted boundary operator for formal manifolds). In the
setting of Definition |3.19, suppose that M is formal in the sense of rational

homotopy theory. Then there is a quasi-isomorphism
B110 (BzycHdR(M)[S —n},q7) — (132ycH(M)[3 —nl,q%10)-

Proof. Formality of M is equivalent to the existence of a zig-zag of dga-quasi-
isomorphisms (see [32])

(Har(M),m1 = 0,m3) ~~~> @ -+ @ bonne (Q(M), M1, m2).

Because a dga-quasi-isomorphism has a homotopy inverse in the category of
A -algebras, we get a direct A ,-quasi-isomorphism

(gr) : (M), mq1,mg) ~~r (Hgr(M),m1 = 0,m2).
Precomposing with (¢x) from Remark we get the A-isomorphism
(hi) = (H(M), (pr)) ~~~~> (Har(M),my = 0,my2).

This induces the quasi-isomorphism h11¢ of the corresponding cyclic cochain
complexes (see [19] for details). O

Remark 3.32 (On formality). Geometrically formal manifolds include S™, CP"
and Lie groups (see [22]). Any geometrically formal manifold is formal. Every

simply-connected manifold of dimension at most 6 is formal (see |28]). <

3.5 Conjectured relation to string topology

Given a smooth connected oriented n-dimensional manifold M, we consider the
equivariant homology of the free loop space LM := {v : S! — M continuous}
with respect to the reparametrization action of S'. It is defined as the singular

homology of the Borel construction
Lg1 M :=ES! xg1 LM := (ES' x LM)/S",

where ES! = S*° — BS! = CP* is a model for the universal bundle for S!, and

we quotient out the diagonal action. We denote this homology by
HS' (LM) = H,(Lg: M).

The “geometric versions” of the homologies were defined in 9] as the degree
shifts
H(LM) := H(LM)[n] and H(LM):=HS (LM)[n].
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There is the loop product e : H(LM)®2 — H(LM) of degree 0 which makes
H(LM) into a graded commutative dga. There is also the loop coproduct
7 H(LM) — H(LM)®? of degree 1 — 2n which is graded cocommutative and
coassociative and is a derivation of e. The geometric construction of e and 7 on
transverse smooth chains in LM was described in [9] and [4], respectively. Here,
the symbol H(LM ) stands for the degree shifted relative homology

H(LM) := H(LM, M)[n]

with respect to constant loops M < LM. The geometric construction of 7 does
not work on the whole H(LM) because of the phenomenon of “vanishing of small
loops” depicted in [11, Figure 4, p.13].

The projection ES' x LM — Lg1 M is an S*-principal bundle and thus induces

a Gysin sequence. This sequence written using the geometric versions reads

H, —5— Hi 2% Hi oy M5 H

o (67)

where the map M adds a marked point in each string in a family in all possible
positions, the map & erases the marked point of each string in a family, ¢ €
H§1 (LM) is the Euler class of the circle bundle and N the cap product.

The string bracket my : H(LM)®? — H(LM) and the string cobracket
&9 : H(LM) — H(LM)®? are defined by

My :=EoeoM® and & :=E%ovoM.

Here, the symbol H(LM) stands for the degree shifted relative S'-equivariant
homology
H(LM) := HS (ES! xgt LM,ES! x5 M)[n).

= 0 (LM)

Because |[M| = 1 and |£| = 0, we have for all £ € H(LM) and &, & € H the

relations

(&1, &) = (1)ISIEM(&) 0 M(&)),
€5 =Y W) ®EW),

where we write v(M(€)) = 3. v! ® v2. The operations thy and &, have degrees 2

(68)

and 2 — 2n with respect to the grading on H(LM), respectively. In fact, we
will consider my and €5 given by as operations on the even degree shift
HS' (LM)[2—n] = H(LM)[2—2n], which have degrees 2(2—n) and 0, respectively.
The symbols ms and ¢ will denote their degree shifts to HS' (LM)[3 — n], which
have degrees of an IBL-algebra from Definition 2.17]
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In work in progress [13], they consider the map
Iy. Y, (@ (M) — i (LM R)

defined on the chain level as a cyclic version of Chen’s iterated integrals. Recall
that HY, |(Q*) = H.(B%,.Q*,b%), where b : B,Q = @, Q[1]®* — B.Q is
the Hochschild differential of the de Rham dga (2*,mq,ms2), and the grading
on H}(2*) was chosen such that H(*) ~ HY(Q*) for the classical cyclic
homology of a dga. They prove in [13] that if M is simply-connected, then the
map Iy, induces an isomorphism H*% (Q*(M))) ~ HE1 oq(LM), where

—*x—1
HZi Leq(LM) := H5 (ES' xgt LM,ES' xg1 {x0})

is the reduced S'-equivariant cohomology with respect to a base point ¢ € M

(the constant loop at z(). Dualizing their map, we obtain the isomorphism
Hy fod (Q7(M) o HE " (LM R). (69)

Suppose from now on that M is closed. Pick a Riemannian metric and a
Green kernel G € Q" 1(Bla (M x M)). We will assume that G satisfes (G1)—(Gb)
from Section [3.2] so that the formal pushforward Maurer-Cartan element n is
strictly reduced, and hence the twisted reduced IBL.-algebra dIBL" (Cred(H))
and the induced IBL-algebra IBL(H"™4(C(H))) are well-defined. Recall that
HY(C(H)) = H)_5_,(Hn), where H, is the A.-algebra on H twisted by nyo.
From [12], we have

H (1 (M)) = H3 (2 (M), (70)

A combination of and gives the following version of the string
topology conjecture from the Introduction.

Conjecture 3.33 (String topology conjecture for simply-connected manifold).
Let M be an oriented closed manifold of dimension n. There is a chain map

(CT"8(Lgr M R), 0) — (Bl H(M), ),

where C3™8 denotes the (smooth) singular chain complex and O the standard

boundary operator, which, if M is simply-connected, satisfies the following:
e It induces an isomorphism Hil’red(LM; R)[2 —n] ~ HI™ (C(H(M))).
o [t intertwines sy on gs' (LM;R) and q210-

o The pullback of qtyy to HS' red (LM;R) is compatible with co on g (LM;R)
under the morphism induced by the inclusion (LM, xo) — (LM, M).

Remark 3.34 (On string topology conjecture). (i) The conjecture can be in-
terpreted as follows. There is an IBL-structure on HS'red (LM;R) compatible

83



with Chas-Sullivan operations, and the IBL-algebra dIBL" (Cheq(H(M))) is its
chain model.

(ii) The loop coproduct 7 is geometrically defined only on aS' (LM); the
conjecture thus provides an extension of ¢y to HS **4(LM). In [4], it is shown
that the geometric definition of 7 can be extended to H(LM) for manifolds with
zero Euler characteristic, i.e., x(M) = 0. This extension depends on the choice
of a non-vanishing vector field on M. By homotopy invariance (see (v) below),

our extension of €5 should not depend on the Green kernel G.

(iii) The loop product e is geometrically defined on H(LM); however, it does
not always induce an associative product on H**4(LM) = H(LM, x¢). Indeed,
the examples of T? (see [4]) and S? (see [9]) show that H(zo;R) C H(LM;R) is
not an ideal with respect to e. By [31], this does not happen when x(M) # 0,
and hence, in this case, e restricts to H(LM, z; R).

(iv) The computation for S™ with n > 2 and the computation for CP™ in
Sectionsupport the conjecture. The computation for S! in Section provides
a counterexample for non-simply-connected M. In [19], surfaces of genus g > 1
will be considered.

(v) We expect that if M; and Ms are homotopy equivalent, then the IBL -
algebras dIBL"(C(Hggr(M1))) and dIBL"(C(Hgqr(Mz))) are IBLs-homotopy
equivalent. <
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4 Explicit computations

In Section we solve the differential equation for the Green kernel G for S™
(Proposition using the Relative Poincaré Lemma (Lemma . In the rest
of the section, we will be showing that G satisfies all properties of the Green
kernel (Proposition ; the most work is to show that G extends smoothly to
the blow-up (Proposition . Another Green kernel for S' can be obtained in
an alternative simple way by writing S' = R/Z, and there are nice geometric
formulas for G for S? (Example .

In Section [£:2] we use G from Section [£.1] to compute the formal pushfor-
ward Maurer-Cartan element n for S™ (Proposition . We first prove that
the condition (V;) from Proposition is satisfied (Lemma and then
perform combinatorics with degrees to show vanishing of some more integrals
(Proposition [4.13)). In fact, all the integrals vanish for S" with n > 3, and the
only non-vanishing integrals for S! are the O-graphs with even k. We compute
these integrals explicitly together with all signs and combinatorial coefficients
required to obtain ngy (Lemmas [4.16} [4.17] [4.18| and [4.19). There might be

some non-vanishing integrals associated to reduced graphs for S? as well as some

non-vanishing integrals associated to graphs without external vertices for S3;
however, the simplest examples vanish (Remarks and .

In the remaining Sections [4.3] and we compute IBL(H"(C(H(M)))) and
the higher operations q7;, on H" for M = S", CP". As soon as we argue that
n1p = myo due to geometric formality, the computation of H™(C(H(S™))) and
H™(C(H(CP™))) is an easy exercise in cyclic homology. The operations for 2™
and CP” vanish for degree reasons (Remark . Therefore, the integrals from
Section help only in the case of S?”~!. We compare our results to Chas-
Sullivan string topology from [4] and confirm Conjecture for S™ with n > 2
and for CP™.

4.1 Computation of G for S”

The standard Riemannian volume form on the round sphere S C R"*! is the
restriction of the following closed form on R"+1\{0}:

1 n+1 e
VOI(J?) = W Z(—1)1+1.’El dX1 s dXi ce an+1 .
i=1

Here CT); means that dx; is omitted. We denote the Riemannian volume of S™ by

V= Vol.
Sn
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The n-form H from Proposition [3.8] reads

1
H= v (pr} Vol + (—1)" pr} Vol).

According to Proposition the equation which we want to solve reads

dG = = ((—1)" pr} Vol + prj Vol). (71)

</~

We denote
G:=VG and H:=VH.

The following lemma will be used to construct a solution to .

Lemma 4.1 (Relative Poincaré Lemma). Let M be a smooth oriented manifold
and ¢ : [0,1) x M — M a smooth map. Consider the operator T : Q* (M) —
Q*~Y(M) defined by

[0,1]

T(n) == Y for alln € QM),

where we integrate along the fiber of the oriented fiber bundle pry : [0,1]x M — M.
Then we have
doT—l—Tod:wT —wg

Proof. Stokes’ formula from Proposition [3.7] gives

(0,1]

[0,1] 0[0,1] [0,1]
d Y = —(/ dw*n—/ w*n) =— Y dn 4 Yin —Pon
for all n € Q(M). O

Proposition 4.2 (Solution to (71))). For all (z,y) € (S™ x S")\A, let

G,y = (~1)" 3" gl )z, ), (72)
k=0
where (I ) B /1 tk(t o 1)n71*k & (73)
Pl ¥ = o 2tt—-1D(1+z-y)+ l)nTJrl
and
wi(z,y) == %7@ — 11_ B Z (—=1)7z% %2 dx3 - - - dx 72+ (74)

" 0€Snt1
dyo'3+k - dy0'n+1

The form is a smoooth solution to on (S™ x S")\A.
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—ZT

Figure 5: Retraction 1y = (¢},1?2). A point of S® x S" is visualized as a pair of
points on S™.

Proof. Define the set
N := (R;gl x R;Zgl)\{(x,ax) |z € R"™ a > 0}.

It is an open thickening of (S™ x S?)\A in R**! x R**1\ A. Consider the smooth

deformation retraction

$:[0,1] x N— N
(t,z,y) — Pz, y) = (2, (1 - t)y — tx)

with
7/’0(x7y) = (‘T7y) and 1/}1($,y) = (I? 7‘1‘1) for all (LE, y) € N.

The retraction is depicted in Figure |5 Denote by A : R**! - R**1 21— —g¢
the antipodal map. It is easy to see that

A*Vol = (—=1)""Vol,
and hence
YH = ¢} pr} Vol + (=1)"47 prj Vol = pr} Vol 4 (—1)" pr; A*Vol = 0.

Define
[0,1]

G:=(—1)"*! Y H. (75)
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Let T : Q*(N) — Q*71(N) be the cochain homotopy from Lemma associated
to . Because dH = 0, we get

dG = (-1)"AT(H) = (-1)""N(dT+Td)H = (-1)" (7 —y5)H = (-1)"H.
For every i =1, ..., n+ 1, we have
P*(dx') =dx' and *(dy') = (1 —t)dy' —tdx' —(y* + 2%)dt.
We compute
01 [0,1]
(=1t V' H = f/ ™ prj Vol

[0,1) A1 (1 =)y — ta?) —~

_ 1 * 1 i n+1

= [ e e ™)
=1

O gyt dyt e dyd - dy
— 1) (e — td
> oty -y [ e i

1<i<j<n+1
n—1 1 4k n—1—*k
(¢ — 1) T
= oy (f ) Y () )
k=0 0 (1 =)y — tz| 1<i<j<n+1

Z(—l)” dxt - dxk dy Tkt - dy Tt

o’:{1,...,n71}~>{1,..‘,%,...,5,.“,n+1}
1< <0k
Op41<-<On-1

The formulas and are obtained from this by writing
(1 =ty —tx|> =2t(t — 1)1 +z-y)+1

in the denominator of the integrand and by simple combinatorics in the form part,
respectively. Smoothness of G on (S™ x S™)\A follows from the expression (75)).
O

Note that gi are smooth functions on (S™ x S™)\A.
Example 4.3 (Green kernel for St and S?). (a) Let

a: (St x SH\A — (0,27)
be the smooth function assigning to a pair (x,y) € (S! x S)\A the counterclock-

wise angle from x to y. Let a1, as € [0, 27) be such that x = cos(ay )e; +sin(aq )es
and y = cos(az)e; + sin(az)ey for the standard Euclidean basis eq, ep of R2. It
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is easy to see that

( ) gy — (1 if g < a9,
al\r,y) =
as —aq + 27 if ag > as.

Therefore, we get
da = dag —day = —27H on (S x SH)\A.

On the other hand, we can compute G from as follows. Using the substitution
uw =2t — 1, we get for all z, y € S' with = # +y the following:

(@ )_/1 ds 1 /1 du
NI 2D va ) +1 1wy ), TErne g

1—x-y
2 1 .
= 7arctan< M)
V1= (x-y)? Vi—z-y

m —arccos(xz-y) w—arccos(z-y) w—a(z,y)

T V(g WPy 2ty oyt

The third from last equality can be obtained by trigonometric considerations and
the second from last equality by an algebraic manipulation with the denominator.

We will explain the last equality. Consider the matrix

0 -1
R =
10
representing the counterclockwise rotation by 7. The function arccos : (—-1,1) —
(0,7) satisfies

a(z,y) if y- Rx > 0,
arccos(x - y) =
2r —afz,y) ify-Rx<O.

The last equality becomes clear when we notice that z'y? — 2%y! =y - Ra.

Finally, we have wq(z,y) = v'y? — 22y, and hence
27TG(£L’,y) = 790(‘%3 y)wﬂ(xay) = Oé(xa y) - T =T = Oé(y,l’).

(b) For n =2, we get the formulas

1

90(z,y) = —g1(x,y) = zy—1 and

wo(z,y) = (z%y° — 2%y°) dy' +(2%y" — 2'y®) dy® +(2'y® — 2%y") dy®
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3
= (zxy)dy.
1=1

The formula for wy (z,y) is obtained from the formula for wy(x, y) by replacing dy
with dx. <
Consider the diagonal action of the orthogonal group O(n+1) on R+ x R"*1

by matrix multiplication.

Proposition 4.4 (Symmetries of G). Consider G from Proposition[{.4 For all
R e O(n+1), we have
RG = (-1)*a,

where (—1)F = det(R). Moreover, if T denotes the twist map, then
G = (-1)"G.

Proof. We will use the thickening N, the antipodal map A and the expression
for G from the proof of Proposition

It is easy to check that both 7 and R preserve N. Let 7 and R be the
isomorphisms of the fiber bundle pr, : [0,1] x N — N given by

7(t,z,y) = (1 —t,y,z) and R(t,z,y):= (t, Rz, Ry)

for all (t,x,y) € [0,1] x N. Then 7 covers 7 and R covers R. A simple
computation directly from Definition [3.3] shows that the fiberwise integration
commutes with the pullback along a bundle morphism if the bundle map and
the base map are both either orientation preserving or reversing. In our case,

we have

(-1)™" =—1 and (-1t =1,

Using this and the equation
pryoty o7 = Ao pry o1,
we get firstly

01 [0,1]
T* Y H = —/ 7*p* prj Vol

(0,1]

=— ¥* pry A*Vol
[0,1]

=(-1)" ™ prj Vol
[0,1] B

e A
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and secondly

[0,1] [0,1] _ [0,1] [0,1]
R* Y H = / RY*H = Y*R*H = (—1)" Y*H.

This proves the proposition. [

Both diffeomorphisms R and 7 preserve A, and hence they extend to diffeomor-
phisms of BIa (S™ x S™). If also G extends, then the statement of Proposition
holds for G on BIA(S™ x S").

In the rest of the section, we will be proving that G extends smoothly to
BIA(S™ x S™). This is a local problem at the boundary, where we introduce the

following radial coordinates. Define the set
X = {(7",’}’]7.’1,‘) I~ [0700) x §™ x §™ | n-x= O},

and let k : X — BIA(S™ x S™) be the map defined by

(m, v ) € (S™ x S"\A for r > 0,
w(ra) =4~ o

[(_77, 77)] € P+N(I7£D)A for r = 0.

For the upcoming computations, it is convention to define the map v : R — (—1,1)
by

r
r)i= ———— forallr e R
) VIi+r2 41
It is a diffeomorphism with inverse r = 13“1/2.

Lemma 4.5 (Parametrization of the collar neighborhood). The subset X C R x
R xR s a submanifold with boundary, and the map k : X — Bla(S"xS")
is an embedding onto a neighborhood of OBIA(S™ x S™).

Proof. The set X is a Cartesian product of [0, c0) and a regular level set; therefore,
it is a submanifold with boundary. The inclusion S x S* ¢ R**! x R"*! induces
an embedding of manifolds with boundary Bla (S™ x S"*) C BIa(R**! x R**1),
Consider the global chart 1 : BIa (R x R™*1) — [0, 00) x S” x R**! from
induced by the identity. We have

Y := 1(BIa(S™ x S"))
= {(7,w,u) € [0,00) x S" x R"™ | [u|* +7#* =1, w-u =0},

where we denote r on Y by 7 in order to distinguish it from r on X. It suffices to
prove the claim for the map p:= 1ok : X — Y. For (r,n,z) € X, we compute

o 1 1 )
r,N,T) = , r—n),——@+ .
p(r,m, ) ( e 1+v2(7 s Tz @+
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Figure 6: The curve ¢ := o (' is given by ((r) = (en+1, %) for r > 0.

This formula defines a smooth map of R x R**1 x R**!, It is a local diffeomor-
phism because its Jacobian is non-vanishing;:

or /10w du  Ow Ou n 48;y

Dl =97 )" = ()
BI=%r 8n8m_8x8n T 7 or

Moreover, the map p is injective, maps X into Y and dX onto 0Y. The claim
follows. 0

Consider the action of O(n + 1) on X defined by
R (r,n,x):= (r,Rn,Rx) for all (r,n,2) € X and R € O(n+1).
Via k, this agrees with the diagonal action of O(n + 1) on Bl (S™ x S™). Denote
G' = Kk*G € Q" (Int(X)).
From Proposition [£.4] we get
R*G' = (-1)!'G" forall R O(n+1). (76)
Consider the smooth curve (see Figure @

¢ :[0,00) — X
r— (T, en, ent1).
We have the following lemma.

Lemma 4.6 (Smooth extension along the curve). The form G’ extends smoothly
to X if and only if the map G’ o (' : (0,00) — A" YT*X extends smoothly to the

interval [0, 00).

Proof. As for the non-trivial implication, let (0,79, 2o) € X be a boundary point.

Pick vectors v1, ..., vn—1 € R™"! so that the vectors v1, ..., vp_1, Mo, To are
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linearly independent, and define the set
U:={(r,n,z)€ X |v1, ..., p_1, n, x are linearly independent}.

It is an open neighborhood of (0,79,x0) in X. Applying the Gram-Schmidt
orthogonalization to vy, ..., v,—1, 1, ¢, we find a smooth map R: U — O(n+1)
such that

The equation implies
G/(Tv , ],‘) = (_I)RR(Ta m, l‘)* (G/(Ta €n, en-‘rl)) for all (Tv m, JZ‘) € IIlt(U),

where R(r,n,z)* : A*T*X — A*T*X is the smooth cotangential map which is
induced by the diffeomorphism R(r,n,z) : X — X, and which maps the fiber
over z € X to the fiber over R(r,n,z)"'z. By the assumption, all maps in the
composition are smooth in their arguments. The lemma follows. O

Lemma 4.7 (Local expression at the boundary). On the interval (0,00), we
have

n—1
G'o¢' = (—1)" (14927 Y 4" (ko) (k0 0,
k=0

where the functions hy : (0,1) — R are defined by

1 2\k(y — 1)1k
B () ;:/ (“+(72) (“2)721 du  for all v € (0,1)
-1 us+y°) 2

and the forms vy, € Q(X) are defined by
1

Kl(n—1—k)! > (-1)7dxr xR dyTe e dy T
Uesn—l

vi(r, ,n) =

Proof. We start with the following formula from the proof of Proposition [4.2

. o . rloa] dtqp*(dyl...g}?i...(f;j...dyn+1)
G = Z (—1)Z+J (xlyj _ yli) / |(1 — t) — tm|"+1 .
1<i<j<n+1 Y

We restrict to the points (z,y) = &(r, ep, €n41) with r > 0. There, we have
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Under the substitution v = 2t — 1, we get

4t(t—1) u? + 42
1—t)y — ta]? = t1= ,

We make the following preliminary computations:

:Eiyj—yiszo forl<i<m—landi<j<n+1,

2y
+1 n, n+l _
xnyn _yl‘n __1+,y27
k*(dy') = T2 (1—+*)dx' +2vdy') for1<i<n-—1.

We plug these in the formula for G and get

é,(gl(r)) = 27(1 + 72) 2 (’LL2 i 72)7z;1

- /[‘1’” g et ((+9%) dxl +y(u — 1) dof)

a1 /[0’11 o [ (1 = t)w*(dy') — tdx)

:_1n+l,yl+ 2—2 _
(-1 191 +72) e

n—1 1 2\ k n—1—k
_ (_1\n+l 2y— 2t n—k (u+7%)"(u—1)
= UM Y ([ e

The lemma follows. O
Lemma 4.8 (Integrals depending on parameter). Letn € N, andlet! =0,1, ...,

n—1. The function F,,; : (0,00) — R defined by

1 =iyt
Fn,l(t) = \/71 m du fOT all t € (0, OO) (77)

extends smoothly to R.
Proof. We have
1
Fio(t) = 2arctan(;) = — 2arctan(¢) for all t € (0, 00).

The right-hand side is a smooth function on R.

For n > 2, we deduce the recursive formula

1 212
Fuolt) = ——((n = 2)Fua0(t) + W)

1
2

If I is odd, then Fj,; = 0 for all n because the integrand of is odd as a
function of wu.
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For n > 3 and even 2 <[ <n — 1, we deduce yet another recursive formula

n—1

(L2

n—l
Fn,l(t) = % ((l - I)Fn,l—z(t) - 2t )

The claim for all F,; follows by induction. O

Proposition 4.9 (Smooth extension to the boundary). The form G from
extends smoothly to BIA(S™ x S™).

Proof. According to Lemmas [£.5] and [£.6] it suffices to show that the curve
G' o' :(0,00) = A""IT* X extends smoothly to [0, 00). Lemma gives an
expression for G’ o ¢’ as a linear combination of smooth forms vy, € Q"~1(X)
with coefficients ¥"~*(hy, o y) for k = 0, ..., n — 1 multiplied by the overall
coefficient (—1)™(1 + 72)*"771. We expand

n—1—k 1 _
_ L k n—1—k ,yn+k 2aua+b
n—=k _ n—1—k—b
Vo) =) Y (—1) (a)( . )/ ————r du

a=0 b=0 -1 (u? +192) 2

and notice that we can write

L ynth—2a, 0+ P
/ T o nyr AU =7 (Fn,a+b07)
()
for the function F;, ; from with [ :=a+b. Because 0 <1 <n-—1, Lemma
asserts that F),; extends smoothly to [0, 0). Because k —a + b > 0, the entire
coefficient at vy extends smoothly to [0,00) for every k =0, ..., n — 1. The
lemma follows. O

We summarize our results in the following proposition:

Proposition 4.10 (Green kernel for S*). The form G from defines a Green
kernel for S™ satisfying Definition[3.5, Moreover, we have the symmetries

R*G = (-1)®G forall R€ O(n+1) and
™G = (-1)"G.

Proof. The proposition is a summary of Propositions [£.2] [£-4] and [£.9] O

Remark 4.11 (Better notation due to R. Bryant, see [6]). Pick an oriented
basis €1, ..., e,r1 of R"T! as generators of the exterior algebra A*(R"*1),
and view x, y, dx, dy as A*(R"*!)-valued forms on R"*!. For example, we
view x as the map z € R"! — Y7 aie; € AY(R™) and dx as the map
z e R s S (dx) e € AY(R™H1Y). There is a natural wedge product on

the space of A*(R™"1)-valued forms. If w is a top-form, we denote by [w] the
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Tl

Figure 7: The Y-graph for S™.

coefficient of w at e; A -+ A epq1. Then it holds

_ 1 1 k n—1—k
wk(x,y)—ﬁm[x/\y/\(dx) A (dy) I
Note that if we view e; as odd variables, then [-] corresponds to the odd
integration [ De(-). It would be interesting to know whether this notation
simplifies some proofs, especially if Lemma [£.12] can be deduced from abstract

algebraic facts or rules valid for odd integration. <

4.2 Computation of n for S"

We recall from Definition [3.19] that the formal pushforward Maurer-Cartan
element n is computed as a sum over trivalent ribbon graphs decorated with the
Green kernel G at internal edges, integration variables x; at internal vertices
and, in the case of S™, with 1 or v at external vertices.

The canonical Maurer-Cartan element m is the contribution of the Y-graph

(see Figure[7), and it is easy to see that
mip(svi1) = (—=1)"myg(s1v1) = myg(s11v) = (—=1)"2.

Throughout this section, we will be in the setting of Definition[3.19] In particular,
T'e RGSZ’; is a ribbon graph, L its compatible labeling admissible with respect

to an input wy, ..., w; and I(or) the corresponding integral.

Lemma 4.12 (Condition (V;) holds). Consider S™ with the Green kernel G
from . Then every graph I' Y with 1 at an external vertex vanishes.

Proof. The only contribution of an A-vertex which does not vanish for degree

reasons is

Ay (y) :/G(x,y)Vol(x).

From the symmetry of G and Vol under the action of O(n + 1), we get
R*A,, = (-1)fA,, forall Re O(n+1).

Therefore, it suffices to check that A, ,(e1) =0, where eq, ..., e,41 denotes the

96



standard basis of R"*!. Evaluation of at (z,e1) gives

wo(z,e1) =

Z (=1)72 dy?? - - - dy7n+* .

0ESp+1
oo=1

(n—1)!
Therefore, we get

Avi(er) = (—1)”/90(30 - e1)wo(z, e1)Vol(x)
n+1

= Z(—l)”““ (/ go(xl)zjVOl(x)) dy? - &}} e dy™
j=2 @
where we view gg as a function of = - y. For every j =2, ..., n+ 1, consider the

orientation reversing diffeomorphism

IjSSnHSn

(. ™) e (2t =2 2T,

Then we have

/%wnwwm=—/ﬁwwwﬂwmw=—/%wwﬂﬂewmw

x

and it follows that A, ,(e1) = 0.
Let us now consider the contribution of a B-vertex with 1:

&ma=/ammma@=hw/bmmmﬁw

For n = 1, the degree of G(y, 2)G(z, z) is 0, and hence B, = 0 trivially. Suppose
that n > 2. As in the case of A ,, we get that

R*B, = (-1)®B, forall R€ O(n+1).

Therefore, it suffices to check that B, (e, cie; + czeq) = 0 for all (c1,co) € St
We have

n—1
B, (e1,c1e1 + caeg) = (—1)" Z/ga(ojl)gn_a(cll‘l + c22?)wq (z, €1)
a=177%
Wn—a(x,cre1 + C2€2).

We will show that for every a =1, ..., n — 1 we can write

n+1
() = wa(x,e1)wn_q(T,c1e1 + cre0) = (Z :l:xiVol(x)>77a(y, 2) (78)
i=3
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for some form 7, (y, z). Then, using the same argument as for A ,, we will have

/ga(gjl)gn—a(cll’l + CQ$2)ZEiV01(13)
= / I} (ga()gn-a(cra’ + ca2®)a"Vol())
= */ga(zl)gn_a(clzrl + coz?)(—z")(—Vol(z))

for all 3 <i <n+1, and hence B, (e1,c1e1 + caez) = 0.
In order to show , we have to study the product of w;’s. From we
get

Wq (.2?, y)w"_a(x’ Z)
1
= 71)G+Hzglxﬂlya2zu2
1 — — | _ | _ | Z (
a.(n 1 a)(n a).(a 1)' o, WES 11 (79)

dXUB .. dXo'2+a dXMS .. dXU/2+nfa dyo'3+a . dy(7'n+1

dzsn=e . dghn it

In order to simplify this expression, we decompose o € S, 11 as
c=0"0c'cc’ 00?00l (80)

1

where o', ..., 0% € S, 41 are permutations defined as follows:

lis a shuffle permutation o' € Sota,n—a—1 such that

e The permutation o
its first block denoted by ¢'(1) = (of,...,03,,) is equal to the or-
dered set {o1,...,09:4}. The second block o!(2) is then the ordered

set {0344, .-,0n+1}, which will be denoted by J,.

e The permutation o2 acts on the block o!(1) by moving o3 in front. We
denote the new block o' (1)\{02} by I, so that we can write 02 : o*(1) —
(0’27 Ig).

e The permutation o2 acts on the block I, by moving o7 in front. Together

with the previous step we get o1(1) — (02,01, I,\{01}).

4

e The permutation o* is a transposition of o; and o,.

e The permutation o® is determined by the pair (0°!,0%?) € S, x S,,_1_4

51

of permutations o°! and 52 acting on blocks I,\{o1} and J, to get

(03,...,02+q) and (0344, - --,0n+1), respectively.

We define the decomposition u!, ..., u® for p € S,41 from analogously
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with a replaced by n — a. Using , the product can be written as

1
alln—1—a)l(n —a)l(a—1)!

1, ... 5 1, ... 5 ’
§ : (_1)0 et pt et xtﬁmmyozzw
O e, O
pti,w®

dx”™ IAD) g™ L)) 4y0™ o) 4% ()
= (X Y (e gy s
Ul,ﬂl 0.2,”2 O'S,MS

dXI“\{al} dxllb\{ﬂl}) dyJa dzJu7

where —1 comes from (—1)"4 and o° is compensated by permutations of forms.
For fixed ¢! and p', consider the coefficient at dy”?” dz”7* in the brackets. If we
evaluate it at y = ey, 2 = c1e1 + caes, we get
=1
c1 Z (—1)03+"3x"1x“1 dxlo Mot g lu el
3, #3

=1
po=1
=11
+ (—1)“202 Z (_1)o3+u3$01xm dxc?o Mo} gy T\ }
3 #3
02’:1
p2=2

where (—1)“2 =—lifand only if 1 € I,.
More generally, for multiindices Iy, Is C {1,...,n + 1} of lengths a + 1 and
n — a + 1, respectively, consider the sum

S(Iy, L) =Y (=1) IRl gh iz gyl gl 2], (81)

1€l
io€l2

where (¢;,1;) is the number of transpositions required to move ¢; in front of I;.
The following implication holds:

5(11712)750 — 1§|]10[2|§2.
We distinguish the two cases left:
Case I N 1o = {i,j} withi < j: We get

S(Ih, L) = (=1)@I0+012) 3100 i\ i f2\ U}
+ (_1)(j,11)+(i,12)x]‘mi dx MY gl M
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— (_1)(1'»11)+(j112)+(j’11)+1+(ia12)xixj dx? dxcfr a1}

dx® dXI2\{iaj} +(_1)(J'»11)+(i»12)+(i»11)+(j,12)+1xi1.j
dx? dxPr it qxd qxf2\Méad
= +(—1+ 1)a'e? dx’ dx" M) dxd dx 2\

where in the last step we switched dx’ <> dx’ in the first summand.
Therefore, it holds S(I1,I3) = 0.

Case Iy N Is = {i}: We must have U, = {1,...,n+1}. A non-zero summand
in has either 41 = ¢ and i5 € I3, in which case

IN\{ir} UL\{is} = {1,...,i2,...,n+ 1},

or i =i and iy € I; with i; # 4, in which case
L\{ir}UL\{is} = {1,...,41,...,n+1}.

Indices i5 from the first case and i; from the second case constitute

{1,...,n + 1}. Therefore, for some signs +, we can write
n+1 /-\
S(Iy, Ip) =2y dad dx' - odxd - dx™F
j=1

We will prove that the signs alternate, and hence S(Iy, I>) = +z*Vol(z).
Suppose that j, j + 1 € I for some j € {1,...,n}. The two summands
in with (i1,i2) = (4,4) and (i1,42) = (j + 1,4), respectively, give
(_1)(j,11)+(i712)xjxi dx MY g2\ i} +(_1)(j+1,l1)+(i712)$j+1x1'
dxc M1} g f2\Méd
— (_1)(i,12)xjxi dxd L QMo +1} gy f2 i}
4 (1)1 T2) g+ g Qe dx MBI+ g T2\

— (_1)(1'-,12)3;1'(33]' dxd Tl i+l de) dx I +1} g T \Med

The signs clearly alternate. A symmetric argument holds when j, j+1 € I5.
Now assume that j € I; and j + 1 € I,. The two summands in which
have (i1,42) = (j,4) and (i1,42) = (4,5 + 1), respectively, give
(,1)(J}11)+(i’12)xjxi dx i \MIE gy L2 \éd +(,1)(i’11)+(j+1,12)xixj+1
dxc M gy 2\ +1}
— (_1)(1',11)+(i,11\{j})+(a+1)xjmi dx i} g2

+ (_1)(i,h)-‘r(j-‘rl,fz)+(j,I1\{i})xi$j+1 dx? dx P Mt gy f2\Mi+1}
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= (=1)@I+EIIHTEHLE) gi i g+ dscltMEdd gy 2 \Ma+1}
+ (=) G FEIAGDHG+L2) g+ gy Al MEad gy 2\ a+1}
= (=) IHGINGD L) i (g g+ i+ )
dx P MEd} g2\ +11

The signs alternate again. A symmetric argument holds for j € I and
j+1lel.

Back to the original problem, we have I = S(I,,I,) with I,,I, C {2,...,n+
1}. It follows that the first case applies, and hence I = 0. We have II = S(I,, I,,)
with I, € {2,...,n+ 1} and [, C {1,§, ...,n+ 1}. Tt follows that either the
first case or the second case with ¢ > 3 applies. This proves . Consequently,
we get B, = 0 also for n > 2.

The last paragraph of the proof of Proposition finishes the proof. [

We summarize the consequences in the following proposition. The main
argument is the same as in the proof of Proposition (3.29)).

Proposition 4.13 (Vanishing of graphs for S™). Consider S™ with the Green
kernel . Only the following trivalent ribbon graphs T' Y do not necessarily
vanish:

(n =1): The Ok-graph with k € 2N internal vertices of type B with v at the
external vertex (see Figure .

(n=2): It must hold A =0, C = 2B and all B vertices must have v at the

external vertex. Moreover, if I is reduced, it must have g > 1.
(n =3): There is no external vertex and 4 | C' holds.

(n > 3): All graphs vanish.

Proof. Lemma[f.12)implies that A = 0 and that the total form-degree D satisfies
D = nB. Therefore, we get from the following: for n > 3 there is neither
a B-vertex nor a C-vertex; for n = 3, there is no B-vertex; for n = 2, we have
C = 2B; and for n = 1, there is no C-vertex.

Consider the pullback of I(cr) along the (multi)diagonal action of an R €
O(n + 1) with det(R) = —1 on (S™)**¥. We get schematically

/ GVol® = (—1)kFets / G°Vol®.
EOR

(Sn)xk

Therefore, k + e 4+ s has to be even. If we plug-in from , we get

3B forn=1,
k+e+s=48B forn=2,
%C for n = 3.
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Figure 8: Graphs P; with (I,g) = (1,1) and P, with (I,g) = (2,1) for n = 2.

A non-vanishing reduced graph must have B > [. For n = 2, so that C' = 2B,
the formula gives g > 1. O

Remark 4.14 (Graphs for S?). The simplest possibly non-vanishing graph for S?
has A=0, B=1, C = 2. If it is reduced, we must have [ = g = 1, and hence
it will contribute to ny;. Up to an isomorphism, there is only one such graph,
which we denote by P; (see Figure . However, we see that the pair of internal
vertices 1 and o is connected by two edges, which implies that P; = 0. Indeed,
G(z,y) has odd degree, and hence we havdE

G(z,y)G(y,z) = G(z,y)* =0

by the symmetry on the pullback along the twist map. It follows that n;; = 0.
The second simplest possibly non-vanishing reduced graph is the graph P»
from Figure[§ Let

T](l‘l, x2,T3,T4, 1'5) = G(xh $2)G(x17 x3)G(x47 x2)G(x47 $3)G($3, 1'5)

G(x2,x5)Vol(zs)

denote the form in the integrand coming from the part of the graph on the
right-hand side of the vertical axis going through z;, x4. If 71 4 denotes the

exchange of x1 and z4, then clearly 77,7 = 1 because the graph is symmetric

1'We recall from Section that the notation G(x;, ;) means (m; X 7;)*G and not just
the evaluation at (z;, ;).

102



with respect to the horizontal axis going through x5, . Using this, we compute
/ V(xG)G(J}'l,$6)G($4,$6)n($17Z‘Q,x37$47$5)
L1,22,T3,24,T5,T6

:/ Tf,4(V(fU6)G(CU1,$6)G($4,=’C6)77($1,$2,$3,$4,9€5))
71,4(901,902,903,14@5;936)

= / v(26)G (x4, x6)G (21, x6)n(24, T2, T3, 21, T5)
L4,T2,T3,T1,T5,T6

= —/ V(z6)G(x1, 26)G (x4, w6)n(T1, T2, T3, T4, T5),

Z1,22,23,L4,T5,L6

where the minus sign comes from switching the first two G’s. We see that P
vanishes. The other variants with x5 moved on the edge x3, x4 and x2, x4
vanish by a similar argument using the compositions 713 0 75,6 and 712 © 756,
respectively. We conclude that ny; = 0, and hence qfy; = 0.

We sum up some general observations about the integrals for S?:

e We have B, # 0 and C # 0 for the corresponding forms.
e We have the multiplication formula (c.f., Example
wi(z,y)wr (z,2) =z - (y x 2)Vol(x).
e The number (—1)?2 (o) does not depend on the choice of L; provided a
compatible Ly is chosen.

e It holds ZLg(—l)”LI(UL) = 0 whenever there is a boundary component

with even number of v’s.

e If there is a B-vertex x such that the underlying graph (after forgetting
the ribbon structure) is symmetric on the reflection along an axis going
through z, then I(or) = 0. <

Remark 4.15 (Graphs for S*). For S3, we consider the non-reduced graphs K;
and K5 and the tadpole graph from Figure[0] The graphs K7 and K5 appear in
the definition of the Chern-Simons topological invariant in [21] (with a gauge
group). The corresponding integrals from our theory vanish “algebraically”, i.e.,
at the level of wedge products of w;. Indeed, every summand in K; contains

wa(z1,21) =0 for some a =0,1,2,
and, for degree reasons, the form part of K5 can contain only

wl(xl,zg)?’ =0 or wo(xy,x2)wi(x1,x2)wse(x1,29) =0.
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T3

I T2

(¢) Tadpole

Figure 9: Graphs K; and K5 from the Chern-Simons theory and the tadpole
graph with (I, g) = (2,0) for n = 3.

The tadpole graph contains only
wa (71, 23)wi (1, T2)wa (T2, 3) = 0. <

Equations in Remarks [£.14] and [£.15] were checked by the computer. The
program for Wolfram Mathematica 10.4 will be made available at [18§].

We will now compute nyg for S', which according to Proposition consists
only of contributions from the Og-graphs with k£ even. By analogy with the finite
dimensional case (see Appendix [A]), we expect that the number (—1)7%I(op,)
does not depend on L. All inputs are namely the same and the degrees even,
ie., |mg|=-2,|0°G| = -2 and |v| = 0.

We fix s1, so > 1 such that & = s1 + s5 is even and make the ansatz
N2o(sv™ ® sv°?) 1= e(s1, $2)C(s1, s2)I(k),

where I(k) is the integral

. / Glar, @)~ Glan_1,28)G(wg, x1)Vol(zr) - Vol(z),  (82)
T1 e
(s1, s2) a sign and C(s1, s2) a combinatorial coefficient to be determined.

We fix a circle in the plane with k& points (= internal vertices) and denote by
O(s1, $2) the set of ribbon graphs constructed by attaching external legs from
which s; points in the interior and so in the exterior, or the other way round,
so that O(s1, s2) = O(s2, s1) (see Figure [1T). Recall that the ribbon structure

is induced from the counterclockwise orientation of the plane. It is easy to see
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that all graphs in O(s1, s2) admit a labeling which is admissible with respect to
sv®t @ sv®2 and that O(sy, s2) contains a representative of every such Og-graph.

Lemma 4.16 (Integral for the Og-graph for S!). For every even k > 2, the
integral I(k) is equal to

11 s " .
D% 2 o~ YVarnraagr ®

i=2.4,....k i1t i =k—i
1yeeyir €2N, rEN

Proof. Denote é(l’, y) := —27G. For all k, | > 1, we consider the more general

integral
I(k,1) = / G(x1, ) Gxp_1, )G (), 1) Vol(zy) - - - Vol (zy,).

Taking the pullback along (x1,z2,...,2x-1,2%) — (Tk,Tk—1,...,T2,21) and
using the antisymmetry of G(z,y), we get I(k,1) = 0 whenever k + [ is even.
We will compute I(k,1) for k € 2N from a recursive relation which arises from
successive integration.

For the recursion step, we need to evaluate the integral

/G(x, y)G(y, 2)'Vol(y)

Y

for fixed (z,2) € (S' x S')\A. Pick the chart g : S'\{z} — (—m, 7) defined by

9(y) = Gly,z) =7 —a(y,z) forye S"\{z},

where the angle a was defined in Example It holds dg(y) = Vol(y) and

G(z,y) = C:;(m,Z) —g(y) —7 for —7 < g(y) < G(x,2),

G(z,2) —gly) +m for G(z,2) < gly) < .

We compute

/G'(x,y)é(y,z)l\/ol(y) = / (G(z,2) — g)g' dg —77/ g'dg
Y - -7
+ 7T/_ g'dg
G(z,z)
7' G(z,2) — G(z,2)"* for [ even,
27
AT I s .
_ +1 f .
2 G(z,2) or [ odd

From now on, [ will stand for the Riemannian integral, i.e., [ f := [ fVol
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for a function f. We compute
1(271) = / é(ml,xg)é(xg,xl)l = —/
T1,T2 Yz —T
0 for [ even,

47.rl+3
142

for [ odd.

For k > 4 even and [ odd, we compute

21

/ G(z1,22) - G(Tp_o,Tp_1)
L1,y Tho—1

7.[.H—l B 141
<l+2 — G(xp—1,71) )

— 472

ST Lo, G Ol i

(w”lé(xmm 1) = Glap-2, fl)m)

472
(I+1D){l+2) (

—m T (k- 2,1) + I(k — 2,1+ 2)).

For the second equality, we used fwl G(z1,22) = 0 to show that the term
multiplied by % vanishes. It follows that

_ (em)k? (272)k—1
I(k,1) = ml(z k—1)— 122’;&72 m[(z, 1)
_ k(2772)k (27r2)k_l B
- _m - 1:27;7]@_2 m](h 1) forall k=24, ...

This is a recursive equation of the form a, = ¢ + Z;:ll di_ja;. Its solution is
ay = Zle ¢;Di—; with Dy :=1 and D; = d;, ---d;., where we sum over all
r=1,...,%and i, ..., % € Nsuch that iy + -+ + i, = i. Therefore, we get

2 i r 1
Ik == >, w0y 2 OV arpraaor

i=24,....k D etia=k—i
11,0, €2N,7EN

The result has to be multiplied by (—1)*(27)~2* in order to get I(k). O

Lemma 4.17 (Independence of labeling). The summand (—1)°“1(or) in the
definition of nag(sv®t @ sv®?) for St is independent of the choice of T' € O(s1, s2)

and its labeling L which is compatible and admissible with respect to the input.

Proof. Pick T' € O(s1,s2) and its admissible labeling L. Let L’ be an other
admissible labeling of I'. We distinguish the following situations:
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Figure 10: Swapping adjacent legs.

Suppose that L and L’ differ by a permutation p in L. A similar argu-
ment as in the proof of Lemma [3.20] shows that (—1)7r = (—1)#(—1)7%
and I(o}) = (=1)"I(oL), where the sign in the integral comes from the
permutation of Vol’s, which have form-degree 1. Hence (—1)7" I(or/) =
(=1)7rI(oL).

Suppose that the boundaries are permuted, i.e., that L and L’ differ
in 4. Notice that s; = sy because otherwise one of L or L’ would not be

admissible. The sign from changing L% cancels as in the previous case.

Suppose that L and L' differ in Ls. It was explained in the proof of
Lemma that a single change of Ly induces the sign (—1)""! =1 in
(—1)72 (o).

A cyclic permutation in L} induces a sign neither in (—1)?% nor in (o).

A permutation g in LY induces (—1)* in (—1)°% and a change in I(oy,),
which can be realized by taking the pullback along p : (21,...,2%) —
(®pys .- @y, ). However, the sign of the Jacobian is (—1)#, which cancels
the sign from (—1)7%.

Next, we prove the independence of T' € O(s1, s3). Let L be an admissible

and compatible labeling of I". Pick two adjacent internal vertices with external

legs pointing to different regions, i.e., one to the interior of the circle and the

other to the exterior. Suppose that the vertices are labeled by v; and vo and

the legs by Iy and ls, respectively. Let IV € O(sy,s2) be the graph with the

two legs turned inside out (see Figure . We can construct an admissible and

compatible labeling L’ of IV by making the following changes to L: The new leg

at vi will be labeled by ls and the new leg at vo by [;. The cyclic orderings at

v1 and va, respectively, have to be modified by a transposition in order to get

compatibility with the new ribbon structure. All other labelings can be copied

from L. In total, we get

(—1)7=o0 = 1.

This sign is compensated by swapping the one-forms in I(op):

Vol(zy,) ... Vol(zy,) <— Vol(zy,)...Vol(xy,).
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g, Gr-s V141

Figure 11: The graph I'* with the labeling L*. It can be checked that L; and Lo
are compatible.

The independence of T' € O(s1, s2) follows from the fact that we can span the

entire O(s1, s2) by repeating the swap-of-legs operation. O

Lemma 4.18 (Sign). We have
5(81752) = (—1)81+1.

Proof. By Lemma 4.17] in order to compute (—1)?%1(or), we can pick I'* €
O(s1,s2) and its admissible and compatible labeling L* from Figure We
abbreviate g = or«. The corresponding integral reads

1

I(oo) = — / Glan1,an) -+ Ga1,29)C an, 21)Vol(zs, ) - - Vol(z1)

Vol(xg,+1) - - - Vol(xg).

It differs from I(k) from in the order of G’s and Vol’s. A reordering produces

the sign
(_1)%51(81—1).

We will compute (—1)?° by ordering half-edges from the edge order back to the
vertex order while looking at Figure The steps are as follows:

e Transpose half-edges at internal vertices so that the first half-edge goes
inside the vertex and the third outside with respect to the counterclockwise

orientation. This gives (—1)%.
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Figure 12: The mirror isomorphism M : 1...k+ k...1 is a composition of the
inversion and the counterclockwise rotation by one place.

e Permute external legs so that v; is at x; for all e =1, ..., k. This gives
(_1)%51(51—1)'
e Permute internal edges so that G; starts at the third half-edge of x; and

ends at the first half-edge of ;41 for all i =1, ..., k — 1. This does not

produce any sign as swapping of two G’s requires two transpositions.

e At this point, we have the permutation

12 ... 2e—1)—1 2(e—1) 2¢—1 2 2e+1 ... 3k
34 ... 3%k-3 3k-2 3k 1 2 .. 3k-1)

We interpret the last line as G71...Ggvy...v, and permute it to the

sequence v1G1v2Gs . .. vip G, which does not produce any sign. We end

) 1 2 3 ... 3k—1 3k
gn = .
0 2 3 4 ... 3k 1

It is now easy to see that

up with

(1) = (~1),

In total, we get
(71)00 _ (71)81+%51(8171)+k‘+1.

As for the other signs in Definition we have s(k,l) = k+ 1k(k — 1) and

P(vF) = $k(k—1). There is no sign from s*v®1 @ v*2 = sv*! @sv*2 since |s| = —2.
Multiplying everything together, we get €(s1, s2). O

Lemma 4.19 (Combinatorial coefficient). It holds

C(s1,82) = ;ak!<k B 1).

51
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Proof. Every isomorphism of ribbon graphs I" and TV from O(sy, $2) is a compo-
sition of the clockwise rotation (r) for r € Z and the mirror operation M defined
as follows: If 1, ..., k label internal vertices in the clockwise direction starting
from the north-pole, then the result of M is k, ..., I, where i means that the
external leg is reversed (see Figure . These operations satisfy

(r+k)=(r), (r)(=r)=1, M* =1, (r)M = M(-r),

and hence generate a group G which is isomorphic to the dihedral group Zj x Zs.
The orbit space O(s1,s2)/G isin 1 : 1 correspondence with isomorphism classes
of admissible Og-graphs and Aut(T") is in 1 : 1 correspondence with Stab(T').
From the orbit-stabilizer formula, we get

> T TS 1
[Ig adnliss}. | Aut(T)] [F1€0(s1,52)/G [Stab(D)] reO(s1,s2) |Orb(I')[[Stab(I)|
k. —graph

|0(s1,82)] _ 1<k) « 1 for 51 = s2,
|G 2k \s1 2 for s1 # so.

The two cases are compensated in the sum over labelings: For s; = so, both
labelings L% are admissible, and hence we get the factor 2.
Next, we multiply by k!s;(k — s1), which is the number of LY and L$. There

is also the factor % = 1. Multiplying everything together, we get C(s1,s2). O

Before we summarize the results of our computations (see Proposition m

below), we show directly that n is a Maurer-Cartan element.

Lemma 4.20 (Maurer-Cartan equation for S™). Consider S™ with the Green
kernel from . The collection (ng) satisfies the Maurer-Cartan equation
for AIBL(C(H(S™))).

Proof. We will show that for every [ > 1, g > 0 all summands in the relation
corresponding to (I, g) vanish. The summands for (I,g) = (1,0) are q110(n10)
and %Clzlo(nm,ﬂw), and the summand for (I, g) = (2,0) is q120(n1p). The first
term vanishes trivially as qi19 = 0, while the other two terms vanish by [10}
Proposition 12.5] because nyp = myg is the canonical Maurer-Cartan element.
For (I,g) # (1,0), we have the following four situations:

4210 02 Mg, { > 2: Let ¥ =W, ... ¥; € E;C be a summand of n;,. From Propo-
sition [£.13] it follows that the summands can be chosen such that Uy, ...,
U € B¢ 1eaH(S™)[3 — 7], ie., such that ¥; evaluates to 0 whenever 1 is a
part of its argument. From Definition we compute

q210 02 (U1 -+ ¥y) = Z e(0, W)a210(Vyrr - Wpmn) - Womn - Wt
0E€S2,1—2
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We clearly have q210(¥,-1 - ¥_-1) = 0 because 210 feeds 1 into one of its
inputs. It follows that g219 02 1y = 0.

210 01,1 (N, g, © Niygs)s (L gi) # (1,0): A similar argument as above.

q120 01 g, (1,9) # (1,0): A similar argument as above using that g0 also
feeds 1 into its input.

q210 ©1,1 (N0 @ nyy), (I,9) # (1,0): As in the case of qo19 02 Mgy, let Ty, ...,
U € BY . eaH(S™)[3—n]. Recall that we write Q; = sw; € BYH(S™)[3—n]
and Q = O ® -+ ® Q. From Definition 2.15 we compute

[9210 011 (N0 @ V)] (1 ® - - @ )
l

= [Z(_l)\‘l’il(l%\+~--+|\Ifz~—1I)qﬂo(nlo\pi)\pl e \/11: S,

i=1
(e -0
= Z %(_1)\‘111z|(|‘1/1\+~~+|‘lf7:—1|)5(u7 Q) (g210(n10 - ) Q¥ @ - - -
HES;
i=1,...,0 @.,,@\Ijl)(gufl ®...®QM1)_
For every i =1, ..., [, we have

g210(n10 - ¥;)(2) = ga210(n10 ® ¥;)(22)
= =Y e(wr wlw?) (1) g (s100") Wy (svw?)
+ (= 1) g (svi! ) Wy (s100?)]
==Y elw i wlw?) (DI g (s10 ) Wy (svw?).

This can be non-zero only if w = 1v*~! for some s > 2 (up to a cyclic
permutation). For this input, we get

q210(n10 - W;)(s1v° )
= — (v = v g (s1av) Py (svi )
+e(1v* ! = vave T ) ngo(s1va) Wy (sve )]

(1) 31 (1) W v ),

The prefactor in brackets is 0 for n odd or s even, whereas v®~! = 0 for n

even and s odd. Therefore, we have q219 01,1 (10 © ny9) = 0. O]

Proposition 4.21 (Formal pushforward Maurer-Cartan element for S™). Con-
sider the round sphere S™ with the Green kernel . The formal pushfor-
ward Maurer-Cartan element n is a strictly reduced Maurer-Cartan element for
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dIBL(C(H(S™))) which satisfies
Nnig = Myg fO’f’ alln € N

plus the following properties depending on the dimension:
(n=1): It holds wjg =0 for all 1 > 1, g > 0 such that (I,g9) # (1,0), (2,0); the

only non-trivial relation for nyg is

ngo(sv™ ® sv?) = (1)51+1;81k!(k8_ 1) I(k), (84)
1

where s1, so > 1 are such that k = s1 + so is even, and I(k) is given
by .
(n=2): It holds nyg =0 for alll > 2. We also have ny; = 0.

(n>3): It holds njg =0 for alll > 1, g > 0 such that (I,g) # (1,0).

Notice that nog & EoC(H(S1)), i.e. nag is a long cochain, because it is non-zero

in infinitely many weights.

4.3 Twisted IBL,-structure for S"

Let eg, e1 be the basis of H(S™)[1] defined by

The degrees satisty
1]=-1, |v|=n-1

The matrix of the pairing P with respect to the basis ey, e; reads

It follows that the matrix (7%) from satisfies

() - - (g 3)).
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We clearly have

B:yc,redH(Sl) = {Z Ckvk*
k=1

Ck ER},

*

where v** is the dual to the cyclic word v¥ = v...v of length k. Observe that

the cyclic symmetry gives
vi= (=) DDyt forall i > 1.

Therefore, v¥* = 0 holds if both n and i are even.

For n > 2, the vector space H(S") is connected and simply-connected, and
Proposition implies that there are no long reduced cyclic cochains (i.e., we
have only finite sums of v**’s).

The product s : H[1]®2 — H[1] from has the following matrix with
respect to the basis 1, v:

Because pa(v,v) =0, we get

(svi* | i >1) for n > 3 odd,
H™(Crea(H(S™)))[1] = § (sv¥ =1 | i > 1) for n even,
{s¥i vk e e R} forn=1.

Because we are in the strictly unital and strictly augmented case, we obtain

(svi* 512071 | 4,5 > 1) for n > 3 odd,
H™(C)[1] = < (svZ=1* 51271 | 45 > 1) for n even, (85)

(s>ope  cpvi* 1?27 | ¢ € R, j > 1) forn=1.
The canonical IBL-operations can be written as

Go10(s%01 ® ¥)(5w) = — Y e(w = wlw?)[(=1) "D e (eqw?)
Pa(erw?) + (=)l (ew! o (egw?)],
diao(s0)(s%r Bn) = = 3 3 elwn o @il = wh) (1)

Yleowierwd) + (—1)ily(ewleowd )]

for all ¥, 91, Yo € BZyCH and generating words w, wy, we € BY°H. For all k,

113



k1, ko > 1, we have
QQlo((SVkl*) . (svk"’*)) =0 and qlgo(svk*) =0

because both g219 and 120 feed 1 into their inputs. For the canonically twisted

reduced IBL-algebra, this implies the following:

IBL(Hm(Cred)) = (Hm(Cred), q210 = 0, q120 = O) for all n € N.
By Proposition the only possibly non-zero relation of IBL(H™(C)) is

qglo(Sl* X SVk*)
2

= (~1)" s o 1)

k—1 k—1x%
, —(k—1)sv for n odd,
— (_1)71,—2 (_1)z\v| Svk—l* —
(ZZ:; ) 0 for n even.

The reason for 0 for even n is that either k is odd, in which case Zi:ll(—l)i =0,

kx

or k is even, in which case v®* = 0. Therefore, for the canonically twisted

IBL-algebra, we have
IBL(H™(C)) = (H™(C), 4210, 4120 = 0) for all n € N,

where H™(C) is given by and qs219 satisfies the following:
(n even): q210 = 0.

(n >3 odd): The non-trivial relations are

qglo(Sl* ® SVk*) = qglo(SVk* ® Sl*) = 7(]{3 — l)Vkih< for k > 2.

(n = 1): The non-trivial relations are

o0 o0
4210 (51* ® SZ ckvk*) = —SZ kcpyvE* for ¢ € R.
k=1 k=1

Recall that the twist by m does not produce any higher operation qyj.
We will now consider dIBL"(C(H(S"))). Recall that g%, = ¢210 01 N0,

4510 = q210 and gl = g120+q210 01 N20. By Proposition [.21] we have nig = myg
for all n € N and ngp = 0 for all n > 2. It follows that qf;; = qfyo for alln € N
and that the only non-trivial twist may occur in qly, for St. Using , we get
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for all ¢ € BZyC’H(S”) and generating words wy, wy € BYH(S™) the following:

(9210 01 n20)(57) (sw1 @ sw)

= (_1)n—2 [Z 5(w1 — w}wf)whw%)ngo(svwf & SUJQ)
86
+ (,1)(n73+\w1\)(n73+|w2|) ZE(WQ — waw?)Y(1wi) (86)

Moo (vag X swl)] .

In this paragraph, we suppose that n = 1 and compute qf,,. Clearly,
(9210 01 M20) (svF*) = 0 for all k£ > 1 since 1 is fed into v¥*. A non-zero evaluation
of (qa10 01 Nag)(s1%*) for some k& > 1 odd is possible only on s1*~1v¥1 @ svF2 for
k1, ko > 0 (up to a transposition of arguments and their cyclic permutation). If
k > 1, only the first summand of contributes, and we get

(4210 01 Ng0) (51%%) (s1F 7 1vM @ svh2)
= (—=1)" 2 Ze(lk_lvkl — wlwg)lk*(lwl)ngo(SVWQ ® svh?)
= (—1)" 2P (1P g (svvh @ svh?)
= —ngo(sv ! @ svh?).

According to Proposition this is non-zero if and only if k1 + ko is odd. It
follows that

4720 # 9150 = 9120 on the chain level for st.

However, the chains s1*~!'v*1 ® sv¥2 for k > 1 do not survive to the homology
(cf., ) The only possibility is thus £ = 1. In this case, both summands
of contribute, and using , we get for all k1, ko > 1 the following;:
(4210 01 N20) (51%) (svF! @ svk2)
= (=12 {Z e(vF = vOVR) 1% (1) ng (svP T @ svh?)
+ (_1)(n—3+k1(n—l))(n—3+k2(n—1)) ZE(VkZ — VOVkQ)l*(l)
Nog (Svk2+1 X SVkl)}

= 7]611120 (SVlirl X SVkQ) — kzngo (SVszrl & SVkl)

1 ki +k
= — gkt + DU (ks + 2 £ 1) [(—1)’f1k1(k1 +1) ( kll L f)
ky +k
_ 1\k2 1 2
+ s () )]

ki + ko
k1

= _%(/ﬁ + ko + 1)!k’1k2( ) I(ky + k2 + D[(=D)M + (=1)™].

=:(x)

Denoting k := k; + ko + 1, we have that (—1)¥ + (—=1)¥2 = 0 for k even and
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I(k) = 0 for k odd. Therefore, () = 0 for any k1, ko > 1. This implies that
490 = 475 = qi20 on the homology for S*.

We conclude that the twisted IBL-algebra satisfies

IBL(H"(C(H(S™)))) = IBL(H™(C(H(S™)))) for all n € N.

As for the higher twisted operations, combining Proposition [2.24] and Propo-
sition [4.21} we see that for S” with n € N\{2} all higher operations q7;, vanish
already on the chain level. For n = 2, we have that q};, = 0 for all [ > 3 and

q%t1; = 0 on the chain level. However, we did not prove that all higher operations
vanish on the chain level. As for the operations induced on the homology, the
graded vector space H"(C(H(S?))) is concentrated in even degrees and qf;,
are odd (see Definition . Therefore, all higher operations vanish also on
H*(C(H(S?))).

The string topology H§1 (S™) and the string operations ms and ¢y were
computed in [4] for all n € N. We review their results and basic ideas below:

We will consider even spheres first. The minimal model for the Borel con-
struction LgiS*™ for m € N is denoted by ASI(2,m) — it is the free graded
commutative dga (=:cdga) over R generated by homogenous vectors 1, y1, 22,

Y2, u of degrees
lzi] =2m, |yi|=2m—1, |zl =4m—1, [yo| =202m—1), |u]=2,
whose differential d satisfies
dy; =0, dxi; =yu, dy: = —2z1y1, das = x% + you.

The minimal model for the loop space LS*™ is the dga A(2,m) which is obtained
from AS'(2,m) by setting u = 0. A computation (see [4, Theorem 3.6]) gives
the following for all m € N:

H*(LS*™;R) ~ H,(A(2,m),d) = (ybz; — 2iy112y§_1,y1y%, 111,75 € Np),

H3: (LS R) ~ H, (A% (2,m), d) = (i34, v’ | i, € No), 0
where y9 := u® := 1 is the unit in AS1(2, m) and (-) denotes the linear span over R.
Clearly, the cohomology groups are degree-wise finite-dimensional, and hence,
using the universal coefficient theorem, they are isomorphic to the corresponding
homology groups. We can thus identify H, (LS?>™;R) and HS' (LS?™; R) with the
vector spaces on the right hand side of . We have Hg,lC = (u*) for all k € Ny,
and hence the multiplication with « induces an isomorphism Hg; ~ Hg; 4o- This

corresponds to the cap product with the Euler class in @, and exactness of the
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sequence implies M(Hg;) =& (Hg;) = 0. Using this and degree considerations,
we get gy = ¢ = 0.

We will now consider odd spheres with n > 3. The minimal model for
Lgi1S?™*1 for m € N is denoted simply by A(x,y,u) — it is the free cdga on

homogenous vectors z, y, u of degrees
|z =2m+1, |y|=2m, |u]=2,

such that
de =yu, dy=du=0.

We get immediately

H*(LS*™ L R) ~ (2,97 | 4,7 € Np),

HE (LSP L R) ~ (yf u? | 4,5 € No),
and we can again identify H, and H§1 with the vector spaces on the right hand
side. Clearly, Hg;q =0 for all £ € N, and hence my = ¢4 = 0 for degree reasons
(the operations are odd).

We will now consider the circle S'. For every i € Z, let o; : S' — S! and
0; : S' — LS! be the maps defined by

ai(z) == 2" and 60;(w):=wa; forallw,zeS'cC.

By examining the equivariant homology of connected components of LS' con-

taining «; separately as in [4, Section 2.1.4], we get

H.(LSYR) = (4,0 | i,j € Z),
HS' (LSY; R) = (uf, fou?, ay, | i, j € No, k € Z\{0}),

where u corresponds to the Euler class and
lul=2, |0i|=1, |os|=0

are the degrees in the singular chain complex. On |4, p. 21] they show that the
string cobracket ¢5 is 0 and that all non-trivial relations for the string bracket
m, : HS' (LS1)[2]®2 — HS'(LS')[2] are the following:

my(say, sa_y) = k*sfy  Vk € N.

We will now compare the reduced IBL-structures motivated by Conjec-
ture @ The point-reduced versions H§, ’rEd(LS”) for n > 2 are obtained from
H§1 (LS™) by deleting u’. We have the following isomorphisms of graded vector
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spaces:

H (Crea(H(S™)))[1] — HE r°d(LS™)[3 — n]
svi — sy’ for n > 1 odd,

sv2H s syiyh for n even.

Because all operations are trivial, it induces the isomorphism
IBL (H® (Crea(H(S™)))) ~ IBL(HS "d(LS™)[2 — n]) for n > 2.

For n = 1, the reduced homology is seemingly different.

Remark 4.22 (Triviality for degree reasons). Both HS'(LS?™~1)[3 — n] and
H"(C(H(S*™)))[1] are concentrated in even degrees, and hence any IBL-
structure must be trivial for degree reasons. On the other hand, Hil (LS*™) and
H® (C(H(S?*™~1)))[1] have both even and odd degrees, and hence an additional
argument is needed to prove vanishing of the IBL-structure. This is not the case

of the reduced homology, which is again concentrated in even degree. <

4.4 Twisted IBL,-structure for CP"

Let K € Q?(CP™) be the Fubini-Study Kihler form on CP™ (see |17, Examples
3.1.9]). The powers of K are harmonicB and we get easily

H(CP™) = (1,K,...,K").
We denote the Riemannian volume of CP™ by

1
V= —K".
cpn n'

Consider the basis eq, ..., e, of H(CP™)[1] defined for all i =0, ..., n by

Kk , ,
€; 1= —, where k':=0K"
(n!V)w
The matrix of the pairing P from with respect to the basis ey, ..., e, reads:
0 --- 1
(Ph=1: -
1 .- 0

12This follows by induction on the power of K using the fact that, on a general Kahler
manifold M, the Lefschetz operator L : Q(M) — Q(M) defined by L(n) := n A K for all
n € Q(M) commutes with the Hodge-de Rham Laplacian A (see |17, Chapter 3]).
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The basis €, ..., e dual to eg, ..., e, with respect to P thus satisfies
et =e,_; foralli=0,...,n
Therefore, the following holds for the matrix (7) from (33)):
(7'9) = ~(PY).
For all 1 <14, 5,k <n, we have
po(ei,ej) =eir; and myg(seiejer) = Oiyjtkon-

For v, 1, 1o € ]%é‘yc’}-[ and generating words w, wy, we € BY“H, we chave

1
q210(5*P1 ® a)(sw) ZZ e(w = w'w?) (=D gy (e o (en—iw?),
G120 (1) (s%w1 ® wo) ZZ e(wy = wi)e(ws — w2)(71)‘w1‘w(eiw%en_iw%).

The cyclic homology of H(CP™) is that of the truncated polynomial algebra
A:=R[z]/(z") with deg(z) = 2.

The computation of H*'(A) for x| = 0 over a field is the goal of |24, Exercise
4.1.8.] or [34, Exercise 9.1.1]. The case of |z| = d can be solved by taking suitable
degree shifts in the proposed projective resolution which is used to compute
HH(A). Unfortunately, using a non-canonical projective resolution, we lose the
concrete form of the cyclic cycles and obtain just the following result (the full
computation will be provided in [19]):

Foralli=1, ..., n and k € Ny, there are cycles for4 1, € D,(A) of weights
2k + 1 and degrees d(i + (n + 1)k) which form a basis of H2**'(4). We apply the
degree shift U : D,(A) — D, (A) from Proposition m to get the generators

tw,i = U(Ew,i) € Di\(rH((CPn))
of weights w and degrees 2i + (w — 1)n — 1, so that
H*(H(CP™)) = (ty,1" |w € Nodd,i =1,...,n).

By the universal coefficient theorem we have H; = (H?)’ with respect to the

grading by the degree. Given d € Z, the equation d = 2i + (w — 1)n — 1 has only

finitely many solution (w,i) € N x {1,...,n}, and hence we get
H™(C(H(CP™))) = (sty,;»51"" |w € Nodd,i =1,...,n), (88)
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where t; ; and 1** € By H are the duals to t,,; and 1%, respectively (see
Remark . Notice that both [st, ;| and [s1"*| are even since |s| = 2n — 3.

Because CP"™ is geometrically formal, Proposition [3.29|implies that n;g = myg.
Because H™(C') is concentrated in even degrees and because a general IBL -
operation qx, is odd, all operations vanish on the homology. Therefore, for the
twisted IBL-algebras we have

IBL(H“(C)) = IBL(Hm(C)) = (Hm(C), J210 = O, Ji20 = 0),

where H™(C) is given by (88).
According to [4, Section 3.1.2], the minimal model for the Borel construction
LgiCP™ is the cdga Asl(n + 1,1), which is freely generated (over R) by the

homogenous vectors =1, 2, Y1, Y2, u of degrees
|£U1| =2, |x2|:2n+1, |y1| =1, |y2| = 2n, |u| =2,

and whose differential d satisfies

dy1 =0, dai=giu, dy2=—(n+1)afy, dze= SU?_H + 2.

By [4, Theorem 3.6], the string cohomology HZ, (LCP™; R) ~ H, (ASl(n +1,1),d)
satisfies for all m € Ny the following:

(u?) if m = 2j,
HZ (LCP™;R) =
(el |0<q<n—-1,p>0;q+np=j) ifm=2j+1

The right-hand side can be identified with HS' (LCP™;R) by the universal coeffi-
cient theorem. According to [4, Proposition 3.7], we have ms = 0 and ¢z = 0.
We conclude that the map

HY (Crea(H(CP™)))[1] — HS **4(LCP"™; R)[3 — 1]

Stogp1,0 syrysal? fork>0andl=1,...,n

induces an isomorphism of IBL-algebras

IBL(H"(Cheq (H(CP™)))) ~ IBL(HS "4 (LCP™; R)[3 — n]).
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A Evaluation of labeled ribbon graphs

In this appendix, we define the propagator P and the graph pairing (,-)&
(Definition , which encapsulates the contribution of a ribbon graph I" to the
map frig : (BiyV)®* — (B, V)® defined as a sum of contributions of ribbon
graphs (Proposition . Such maps were already defined in |10, Section 11]
using coordinates; here we use an invariant framework inspired by [29]. As an
example, we work out in details expressions for the canonical dIBL-operations
g210 and 120 (Example . We also explain the technicality of identifying
symmetric maps with maps on symmetric powers (Remark .

Next, we define the notion of an algebraic Schwartz kernel (Definition
and show that the matrix (7%) from Definition corresponds to the Schwartz
kernel of the identity 1 up to a sign. Assuming that the Green kernel G from
Definition [3.5] is algebraic, we deduce the signs in Definition using the
formula from [10, Remark 12.10] for the genuine pushforward Maurer-Cartan
element n in the finite-dimensional case. Establishing the formal analogy between
the de Rham case and the finite-dimensional case is our main application of
the invariant framework. Finally, we sketch how to obtain signs for the Fréchet
dIBL-structure on Q(M) (Remark [A.7).

Throughout this appendix, we will use Notation 2.28 without further remarks.

Definition A.1 (Propagator & graph pairing). Let V be a graded vector space.
The tensor P € V[1]%? is called a propagator if it satisfies the following symmetry
condition:

7(P) = (-1)IPIP. (89)

The map T is the twist map defined by T(vy @ vy) = (—1)I"I1V2lvy @ vy for all vy,
Vo € V[l]

For a ribbon graph T € mklg and its labeling L, consider the permutation oy,
from Definition[3.18, It acts on tensor powers according to Definition [2.6 and
thus defines the map

o (V1]®H®e @ V[1]®*" @---@ V1] — V[1]®4 @ ... @ V[1]%%,

where d; and s; are the valencies of internal vertices 1, ..., k and boundary

components 1, ..., l, respectively, and e is the number of internal edges. We

extend oy, by 0 to other combinations of tensor powers. The graph pairing
()F 0 (BLV)®F @ (BIV) — R

cyc

is defined for all ¢y, ..., ¥p € B,V and generating words w; = vi1 ... Vi,
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with v;; € V1] form; e Nand i =1, ..., l by the following formula:

<w1®"'®¢k,w1®"'®wl>f“}

=) (1@ @) (oL(PP @ (11 ® @ Vi, ) @
Li, L}
® (v @+ @ Uim,)),

where we use the pairing from Definition [2.29 and in every summand an Lo
compatible with Ly and an LY are chosen arbitrarily to get a full labeling L of T'.
The graph pairing extends to (-, )£ : TB:.V @ TBYV — R.

cyc

Proposition A.2. In the setting of Definition[A 1], we denote w = w; ®- - - ®@wy
and P =11 @ --- @ Yy, and have the following:

(a) The number (o, (P®°®@w)) does not depend on the choice of LY and an Lo
compatible with Ly. Moreover, (-, >113 does not depend on the representative

Of [P] S mklg,
1s finite-dimensional, then for every k, [ > 1, g > 0 there is a unique
b) If V is fi d l, then f k,1>1 0 th
linear map
frig : (Bl V)®F = (Bi, V)
such that
Trig(h1 @ -+ @ Py) (w1 ® -+ - @ wy)
1 1
T2 TRw@ M ® e ® ot
. [[1€ERG iy

(c) The following holds for the map friy from b):

e [t is homogenous of degree
| frigl = —|P|(k+1— 2+ 2g). (90)
e The filtration degree satisfies
[ frigll = =2(k +1 =24 2g). (91)
o Foralln €Sy and p € S, we have
no frgop= (=110 fy,. (92)

Proof. (a) Let us denote by i and 45 the operations on Lo given by e; — —e;
and e; <> e;, respectively. An even number of these operations does not change
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the orientation of . Their effect in o7, acting on P®¢ @ w is
i: P 7(P)=(-1)PIP, and ij:Pi...P;— ()PP P,

Therefore, an even number of them does not change o (P®¢ ® w). This proves
the independence of the choice of a compatible L. The independence of the

choice of Lj is clear since 1); are cyclic symmetric.

An isomorphism of ribbon graphs n : I' — I'" induces the map of compatible
labelings L — L' = n, L such that o = o7.. The independence of the choice of
a representative of [I'] follows.

(b) Suppose that ¢ = 91 @ - -+ @ ¢y, with ¢; € (BZ, V)5, where r; € N and

c; €Zfori=1,..., k. A general element of (B:yCV)‘g’k is then a finite linear
combination of such ¥’s.

First of all, let us argue that the sum me is finite. The number of
internal edges e is fixed from . Therefore, the number of contributing graphs
(Vint, Eint) is finite. In order to bound the number of external vertices, we
notice that d; = rq, ..., dx = 7, must hold for (o (P®® ® w)) to be non-zero.

Therefore, the sum is finite.

We now have the linear functional

1 1
frig(¥) == i ; TAut(D)| @] : (BIFV)® 5 R
[F]ERGMQ

and need to show that fi,(¢) € (Bi, V)®' C (B&V)®*. Because V is finite-
dimensional, the weight-filtration of Bi¥“V satisfies (WG1) & (WG2) (see (13)
and Proposition [2.31)), and hence we have

(Bl V)™ = (BXV)"®! = ((BFV)®!)"
for the weight-graded duals. Therefore, it suffices to show that fi;4(¢)) vanishes
on all but finitely many degrees and weights of (BS*“V)®*. However, the relation
fr1g (1) (w) # 0 for a generating word w € (B&°V)®* implies

lw| = || —e[P| and

93
k(w) = k() — 2e, 93)

where k denotes the weight, and hence fii4(¢) € (BZ,.V)®! indeed holds.

cyc

(¢) The formulas and follow from and (56)).

As for the symmetry , suppose that L and L’ are compatible labelings
of the same graph T' such that L} differs from L; by a permutation p € Sy of

internal vertices and a permutation n € S; of boundary components. Viewing p
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and 7 as block permutations in the vertex and edge order, respectively, we get
o1 (P @w) = (=) (o (P2 @ n(w))).

The sign comes from the difference of Ly and L) which compensates the change
of the orientation of caused by p and 7. O

Given peSpand Yy =91 ® - @Yy, € (B:yCV)‘X’k, it is easy to see that

e(p, W) = e(p(s), u())e(n, 8)e(s, ¥)e(p, ),

where W = (sy1) - --®(sef) € (B2, VIA)® and e(,5) = (~1)loh. T A = — [P,
then we get from that the degree shift fiq : (B, V[A])®* — (BE, V[A])®

cyc

has the following symmetries:
Vp € Sp,n eSSt nofrgop = kg (94)
Note that the degrees satisfy

‘fklg| = |fk;lg| + (k—-DA. (95)

Remark A.3 (Symmetric maps versus maps on symmetric powers). In the
situation above, we define ﬁlg as the unique map such that the solid lines

of the following diagram commute:

(B, VAP L2y (Br V]A])®!

cyc cyc

- s
Lo T e

SiBr, VIA] —2 §,B:, V(A].

cyc

The symmetry condition provides the existence of f4, and implies commu-
tativity of the dotted diagram as well. Moreover, for all ¥y, ..., ¢ € BL, V

and wy, ..., w; € BYV, we have

Frtg ("1 - ) (s'wr - wi) = g ("1 @ - @ 4y) (s'wn @ - - @ wy),
where we use the pairing from Definition We denote fklg again by frg. <

Definition A.4 (Algebraic Schwartz kernel). Let V' be a graded vector space and
P: V@V — R anon-degenerate pairing on V. We extend P to a non-degenerate
pairing P : VO @ VO 5 R for k > 1 by setting

P11 @ - @ Vg, V21 @ - - - ® Vag) = €(v1,v2)P(v11,v21) . . . P(V1k, Vak)

for all vi1, ..., vk, Vo1, ..., vag € V, where € is the Koszul sign (see Defini-
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tion . For k=0, welet P: R®R — R be the multiplication on R.
For k, 1 >0, we say that Ky, € V®F+! is the algebraic Schwartz kernel of a
linear operator L : VEF — VO if the following is satisfied:

Vw, € VO wy e VO . P(L(wy), ws) = P(KL, w1 @ wy). (96)

We usually omit writing “algebraic” if it is clear from the context (i.e., if we do

not consider any “extensions” of VEF ).

In the situation of Definition let (e;) C V be a basis and (e?) its dual
basis such that P(e;, e/) = d;;. We define the coordinates K/ € R and LY € R
by

KL= ZKijei ®e; and LY :=7P(L(e"),e’).
]
From we have
K5 = (=1)IEFDUAPIHeD L for all i, 5. (97)

From now on, we will be in the situation of (A) and (B) in the Introduction;
in particular, we put V[1] in place of V in Definition Let Ky € V[1]®2
be the Schwartz kernel of the identity 1 : V[1] — V[1] and Kg € V[1]®? the
Schwartz kernel of the cochain homotopy G : V[1] — V/[1]. From (97), we get

ng =GY and K;Y = (-1)elHPIpel ef)  for all 4, .
We see that the tensor T =3, . TYe; ® ¢; from can be expressed as
T=(-1)""2K;.
This is the invariant meaning of T. Note that the degrees satisfy
IT|=n—-2 and |[Kg|=n—-3.

The assumption on G is equivalent to graded antisymmetry of the bilinear
form Gt := P o (G®1): V[1]®? — R. This is further equivalent to

7(Kg) = (-1)*9Kg.

Therefore, g satisfies 7 and hence it can be used as a propagator for the
construction of fi, for every k, [ > 1, g > 0. We have from that the
degree shift fg, : (B, V[3 —n])®* — (BX, . V[3 — n])® is symmetric. Moreover,

*
cyc cyc
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using , and , we obtain

[frigl = —2d(k +g — 1),
frigll = v(2 —29 —k —1),

where (d,v) = (n — 3,2). These are the degree and filtration conditions on an

IBLoo-morphism from [10, Definition 2.8 and (8.3)]. As a matter of fact, our

f = (frig)k,i>1,9>0 is precisely the IBL-homotopy from [10, Theorem 11.3].
Graded antisymmetry of P is equivalent to

7(T) = (=1)ITHIT.

Visibly, T does not satisfy . Nevertheless, we can still use it to define fa19
and f190 since the corresponding graphs I' (see Figure have only one internal
edge e, and, for a given Li, there is a unique compatible Lo determined by the
orientation of e (see Example for the compatibility condition). As for the
symmetry of the resulting maps, a transposition of internal vertices or boundary
components in can be compensated only by e — —e, which produces
(—=1)ITIH1 (c.f., the proof of Proposition[A.2] (a)). Therefore, if we shift the degrees
by A = —|T|+ 1 = n — 3, we obtain symmetric maps q219 : (B}, V[A4])®? —

cyc

Bz, V[A] and q190 : B, V[A] — (B:, V[A])®2. We show in Example below

cyc cyc cyc

that these operations agree with those defined in Definition [2.42

Ezample A.5 (The canonical dIBL-operations). We have

fa10(th1 @ o) (w) = % > m«h ®¢p | w)  and
' [[€RG210 (98)
1 1

flgo(i/})(’wl &® wg) = 5 Z m(lp | w1 & 'lU2>I[:)
' [F]Gﬁlzo

We parametrize RGai9 by the ribbon graphs I'y, 1, with 1 < k; < ke and
RG129 by the ribbon graphs I'*1:2 with 0 < 51 < s9; these graphs are depicted in
Figure We have RGa19 = RGa10\{[['1.1]} and RG129 = RG120\{[['*°], [T%1]}.
We also have

1 if ky # ko,

|Aut(rk1,k2)| =
2 if ky = ky,

and likewise for T'*2. We fix labelings LY and parametrize L} by ¢ =1, ...,
ki+ky—2forI'y, p, and by ci =1, ..., s1and co =1, ..., s for I'**°2 as it is
indicated in Figure [T3]

There are two possible labelings L} for Ty, , and two possible labelings L}
for I'*1-52; this is the only freedom in choosing a full labeling L because L3 is

fixed and Lo is just the orientation of the single internal edge, which is uniquely
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c c+ki1+ka—3

2 ko
hg 1 1
AN
: C2
k1 2
. . ~s1+s2+2
ct+ki1—2 ct+kyi—1 R co+s2—1

Figure 13: Graphs I'y, x, and I'***2 with fixed labelings Ls.

determined by L;. For both I', 1, and I'****2, we will denote the two possible
full labelings by L' and L?. They can be depicted as follows:

‘ Tk, ks 51,52

I 1 —— 2 2—1
Sforxor

Let us check that the indicated Ly and Lo are compatible. For the complexes
Cy — Cy — Cy from , we have the following:

(99)

Thoks (D) 2% (e) 2 (va —v1) @ (v1 + va),
D% 0 (by — ba) @ (by +ba) 2 () 2% (v).

As for I'y, x,, the basis vo — v1, v1 + va of Cj is positively oriented with respect
to the basis vo, vi. Therefore, e has to be oriented such that d1e = vy — vy;
i.e., it is a path from v to vo. As for I'*1:%2 the basis by — by, by + bs of C5 is
positively oriented with respect to by, by. Therefore, e has to be oriented such
that e = 02(b; — by). Recall that we orient the boundary of a 2-simplex by the
“outer normal first” convention. We conclude that the labelings from are
indeed compatible.

As for fo19, the permutations o1 := o1 and oy := o2 corresponding to the
labelings L' and L2, respectively, read

1 2 .oc+2 L
= and
1 ki+171 ... 2
ki1 + k1 —2
<1 2 .ooc+2 >
09 = .
1 ko4+1| ... kat+2 ...
ki + ko —2
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The underbracket marks the block which represents a cyclic permutation of the

remaining indices. We see that

01 : VO @Ves VO g Ok eje;w — eiwleij,

00 VO Q VO Ok g Ok eiejw — einejwl,

1

2 o
where W™ = We ... Wetky —2, W = Wetky—1 - - - Wetky+hy—3 a0d 8 1=k + kg — 2.

Defining @' := w? and @? := w', The Koszul sign of oy can be written as
e(w > ww?) (=1) W T — gy oy ) (1)1 e,
We use these facts to rewrite as follows:

f210(11 @ o) (w) =
Z Z Tz]( Z s(w — w1w2)(—1)|w1||5j|¢1(6iu)1)1/12(6jw2)

1<ki<ks i,j E(w!)=k,—1

1 Z (w w1w2)(71)|w2”ej|+|w1||w2‘w1(eiw2)¢2(ejw1))

k}(’wl):k2—1

1

Y 50X ctwm we?) ) I (e i o)
1<ki=ks k(wl)=k;—1

Y we wle?) (D) Iy (e eju) )
k(wl):szl

= > Y Tewe we?) (D)l () (eju?).
k1,k2>1 k(w')=k,—1
kitk2>2 g (w?)=ky -1

This coincides with the formula from Definition 2.42
As for fi99, the permutations o1 := o1 and o9 := o2 corresponding to the

labelings L' and L2, respectively, read

]. 2 Cl+2 CQ+81+2 )
o] = and
1 s14+2] ... 2 s1+3
S1 §2
< 1 2 CQ+2 Cl+82—|—2 )
092 = s
So S1

where the underbracketed blocks denote cyclic permutations of consecutive

indices on the corresponding boundary component. We see that

o1 : VI RVET@VE2 — VO eiejwiwy — ejwiejwy,

00 VO @ VO @ VO YOk €;ejWiwy — ejw%eiw%,
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where w} denotes a cyclic permutation and k := s; + s3 + 2. The Koszul sign

of o5 can be written as

(_1)|€z‘H€j\+|w1||w2|+|ei||w2|5(w1 — w})g(wz — w%)

— (= 1)U HwaDes Hwa Dt les o (s w0 )e(wy -5 w)).

We use this fact and the cyclic symmetry of ¥ to rewrite as follows:

fr20(¥) (w1 @ w2)
= Y (5GZ) DT e(wn > whe(ws > wh)(—1)
0<s1<s2
Y(eiwiejwg) + 6(:%332?) Z Te(wy — wi)e(wy — wl)

(71)|e1-\\e]-\+|wz||w1|+|ei||wz|w(ejw%6iw%))
k(wi)=k(w1)=s 1 i
+ Z 5(,€Ew;§:k5w3:$)§ (ZT Je(wy — wi)e(wy — wi)
0<s1=s2
(—1)|wl”ej|¢(eiw%ejw%) + ZTijs(wl = wi)e(wy — w3)

(_1)\ei\|ej\+\w2|\w1\+|ei|\w2|¢(ejw;eiw%))

Fwy)=s ij wil|le;
- Z 5(k§w3:5;) ZTJE(wl w1 )e(wy w%)(f1)| 1llesl
55114’;9522%% ’l/} ( ei w% ej w% ) )

This coincides with the formula from Definition 2.42 <

We will now establish a formal analogy between the finite-dimensional and
the de Rham case, which will explain the signs in Definition [3.19]

The finite-dimensional case. Consider the situation of (A) — (D) in
the Introduction. To recall briefly, we have a finite-dimensional cyclic dga
(V,P,m1,mg) and a subcomplex H C V such that there is a projection 7 : V[1] —
H[1] chain homotopic to 1 via a chain homotopy G : V[1] — V[1]. Using maq, one
constructs the canonical Maurer-Cartan element m for dIBL(C(V)). Using the
algebraic Schwartz kernel KCg of G, one constructs the IBL-quasi-isomorphism
f = (frig) : AIBL(C(V)) — dIBL(C(#)). The Maurer-Cartan element m is
then pushed forward along f to obtain the Maurer-Cartan element n := f,m for
dIBL(C(H)) (see |10, Lemma 9.5]). The formula for n given in [10, Remark 12.10]

reads

nlg(slwl ® - @)

1 1 . .
=7 2 Tammy YT w e @) (100)
[[JeRGy),

Here the artificial sign (—1)*("~2) is added because our sign conventions for my

differ (see Remark [2.33)).
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The de Rham case. We are in the setting of Definition [3.19] To recall
briefly, we have the cyclic dga (2(M), P, m1,ms), the subspace of harmonic
forms H C €2, the harmonic projection 73 : 2 — H and a Green kernel G €
Q(BIa(M x M)), which is the Schwartz kernel of a chain homotopy G : § — Q
between 7y and 1. In analogy with the finite-dimensional case, the canonical
Maurer-Cartan element for dIBL(H) satisfies mig = (—1)""2mg with
m3 = P(my @ 1). Because dim(f2) = oo, Definition does not give the
canonical dIBL-structure on C(2), and hence we have neither f nor n in the
standard sense.

In order to deduce the formal analogy, we embed Q(M)®? into Q(Bla (M x M))
using the external wedge product (11, 72) — 7im A 7312 and suppose that the
Green kernel G satisfies G € 292, This never happens, so what follows is just a

formal computation.

Proposition A.6. In the de Rham case, suppose that G € Q(M)®2. Then (100)
reduces to .

Proof. Consider the intersection pairing P and its degree shift P (see Proposi-
tion . According to Definition they extend to pairings on Q(M)®* and
Q(M)[1]®* for all k > 1, respectively. For all 711, m12, 121, 722 € Q(M), we have:

P(6°n11 @ M2, 07121 @ 122)

(=1)M 2P (O @ Oz, 021 @ On2z)

= (—1ymatret Um) (20D (G, Oy )P (0112, 02 (101)
(_1)1+n12n21F)(W1177721)75(7712,7722)

= _75(7711 ® M2, M21 @ 122)-

One can also check that

P(ni1 @ iz, n21 @ 122) = / (@) n12(y)n21 ()02 (y).
Ty

)

For the Green operator G : (M) — Q(M) and its Green kernel G € Q(M)®2,
we have the following;:

Ve € QM)+ P(G(m),m2) = / Gz, y)m (z)n2(y) = P(G,m @ n2).

z,Y

From this and (101]), we obtain

P(G(Om),m2) = P(0G(m),0n2) = (1) P(G (1), 12)
= (=) P(G,m @ n2) = (—1)"P(6°G,6°n @ 1)
= P(0*G, 0, @ s12).
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Therefore, the element §2G € V[1]®? corresponds to the Schwartz kernel Kg of
G : V[1] — V[1]. We write this correspondence as

Kg € V[11®? ~ 6°G € Bla(M x M)[2].

Let us check that §2G satisfies (89). First of all, if we embed Q(M)®* into
Q(M*k) using the external wedge product 71 ® - -+ ® ny = T A -+ A TEmy =:
m(z1) A+ Anp(zk), then for all 5y, ..., g € Q(M) we have

0(771 & - ®77k)(x17""1'k) = 771(%1) /\"'/\nk(xﬂk)’

where the action on the left-hand side is given by . Now, the symmetry
property implies

7(02G) = —027%(G) = (—1)"*102G = (-1)!*Clg2a.

Therefore, the symmetry condition is indeed satisfied.

Let ' € mfl’;, and let L be a labeling of I'. We abbreviate 0 := oy, € Sgg.
Given n;; € Q(M) for j =1, ..., s; and ¢ =1, ..., [, where s; is the valency
of the i-th boundary component, we set 7, =11 @ - Q@ Nig;, N =M @ - - D 1My,
Qi = 0N, wi = ;1 ®- - Qay,, and w = w1 ®- - -Qw;. We denote s := s1+---+57,
so that 3k = 2e + s, where e is the number of internal edges. We have

(m3)**(a((0°G)** @ w))

(0, 1) (m)** (o ((6°G)* @ 0°))
(1)< D (0, 0) () P (o (6% GO @ 1)
()75 De(0, ) (mf ) (0% (GO ),

=1

where €(0,7n) is the Koszul sign to order 6°nyy ... 15, — 0n11 ... 05, and m;' :
Q(M)[1]®3 — R is given by mg = P(ms ® 1). We denote x := G®* @1 =
K1 ® - Q Kag, ki € Q(M)[1] and compute

(m3)*(0° o (x))
e(o, ) (M) (0% ks @ - @ k1)
jmif |=3—n
= (—1)%“’“*1)"5(0, K)(mg)®* (03(110;1 ® K,-1 ® Kggl) ® -
® 8 (vgpr , @ Rgmr | @ Roo))

=:eg

Tk(k— 1)n+n 1+t
= (-1) 2 “oh— 1¢(o, li)(m;)(@k((gligl—l ® 0k,

®0k,-1)®- @ (Ok,-1 @0k,-1 @0k -1)).
3 3k—2 3k—1 3k
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Next, using the formula for m3, we get

(m§)®k((9m0;1 & 9&02—1 & 9/{03—1) X ® (9/‘60;;_2 & ng;kl_l ® 9/‘605;))

N071+"'+H —1

= (=1) 2 Tak—1 (/x HU;1(1’1)/{0;1(1'1);103,1(;510

([ Fomr mdmogy @, (a)
Koy
o5 Toh—1 / K1 (1’1)“0*1 (xl),‘io—l(lj) s
T1y..3Tk . 2 3
(zk)

= (-1)

KG;k1_2 (mk)ligs—kl_l (,Ilk)lia,;kl

=€3

R
2 sk-1g(o, ’i)/ K1(Te(01) ) R2(Te (00) )3 (Te(oq)) -
T Tk

yees T

= (-1
K3k—2(Te (031, 0) ) 3k —1(Tg(0ai_1) ) K3k (Te(031) )

where £(3j —2) =€(3j — 1) =&(3j) =j for j =1, ..., k (see Definition [3.19)).
In total, we have

(m$)®* (0((0°G)®*° @ w))
= €162€3 / G(Te(01), Te(02))  G(Te(0501)s Te(2))
L1y

all(xf(‘726+l)) T Qs ($£(025+5))v

where
£16963 = (_1)o+se(n—1)+%k(k—l)n5(97 ,'7)

Using (6], and £(0,n) = (—1)7“), we get the total sign

(_1)k(n72)615253 _ (_1)S(k,l)+o+P(w)

i

where (—1)¥("=2) is the artificial sign from (T00]). This proves the proposition. []

Remark A.7 (Signs for the Fréchet dIBL-structure on Q(M)). In [10, Section 13],
they consider the weight-graded nuclear Fréchet space BX, (M )s C B, Q(M)

cyc cyc

generated by ¢ € BX Q(M) which have a smooth Schwartz kernel k, € Q(M*F);

cyc

they showed that there is a canonical Fréchet dIBL-structure on B Q(M)[2 —

cyc

n]. In order to deduce the signs, we can consider the subspace By, Q(M)ag C

By Q(M)o generated by ¢ € BX Q(M) with an algebraic Schwartz kernel

cyc

Ky, € Q(M)[1]%F, rewrite in terms of Ky, and extend the obtained formulas
to BZ, Q(M)oo. This may be done in [19]. <

cyc
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