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Abstract

This monograph aims to build some new mathematical structures originated
from Dyson–Schwinger equations for the description of non-perturbative as-
pects of gauge field theories whenever bare or running coupling constants
are strong enough.
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PREFACE

The strength of Mathematics is its ability to create models

which are absolutely vital for producing physical parameters.

A mathematician is like a surrealist painter who can design

the purest portraits from known and unknown universes.

Recent discoveries in Science and Technology from the smallest to the
largest scales have approved clearly the importance of advanced research
activities in Basic Science which can bring a new package of fundamen-
tal knowledge for the analysis of complicated systems in natural phenom-
ena. To obtain a comprehensive description of those complexities requires
to build any possible interrelations among different fields in Mathematics
(as the purest mental production of human beings). The resulting connec-
tions can lead us to achieve some new theoretical methodologies which are
essential tools for scientists to build advanced practical models in dealing
with complexities of the nature. The designed models together with some
computational algorithms will lead scientists to solution procedures.

This research work has a multidisciplinary foundation in the context of
Mathematics, High Energy Theoretical Physics and Theoretical Computer
Science. It plans to discover some new knowledge about the most compli-
cated or unknown parts of Quantum Field Theories whenever the coupling
constants are strong enough in terms of building some new advanced mathe-
matical structures. The outstanding consequence of this research work is to
provide a new mathematical interpretation of the phenomenology of Quan-
tum Field Theory with strong coupling constants under discrete, analytic
and logical settings. If we study simultaneously these different but related
settings, then our mathematical outputs will be useful for the better under-
standing of the behavior of quantum physical systems in non-perturbative
situations. We study the phenomenology of non-perturbative aspects of
gauge field theories in terms of some new combinatorial, geometric and cat-
egorical tools. We apply graph limits to formulate a new analytic gener-
alization for solutions of Dyson–Schwinger equations which is useful for a
complete theory of renormalization for these non-perturbative equations.
We also show the use of Tutte polynomials for the combinatorial represen-
tation of solutions of Dyson–Schwinger equations. Then we propose a new
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concept of complexity for the study of Dyson–Schwinger equations under
different running coupling constants. The analytic behavior of these equa-
tions are also discussed via some new noncommutative geometric tools. We
finally apply graphon models of Dyson–Schwinger equations to build a new
theory of ordered algebraic sub-structures for the analysis of entanglement
in strongly coupled gauge field theories and a new topos model for the log-
ical description of topological regions of Feynman diagrams which encode
non-perturbative parameters. All these observations enable us to describe
non-perturbative phenomenology and intrinsic foundations of strongly cou-
pled gauge field theories under discrete, analytic and logical platforms.

The Lagrangian approach to Quantum Field Theory, which is on the
basis of the Feynman path integral formalism, has made extraordinary the-
oretical and experimental progress for the study of elementary particles and
their interactions at the highest level of energies and the smallest scales
under a perturbative setting. This approach encodes physical information
of a quantum system with infinite degrees of freedom in terms of Green’s
functions as infinite formal expansions of ill-defined iterated integrals and
powers of coupling constants.

Quantum Electrodynamics (QED) concerns interactions among matter
(electron, positron) and light (photons). Quantum Flavourdynamics (QFD)
concerns weak interactions inside the nucleus of an atom which change the
flavour or type of quarks to describe β− decay and β+ decay under W,Z
bosons. Quantum Chromodynamics (QCD) concerns strong interactions of
quarks and gluons inside the nucleus of an atom to build composite hadrons
such as protons and neutrons. Standard Model, as the most successful
experienced model, has provided a practical platform to collect quantum
field theories corresponding to electromagnetic, weak and strong interactions
into a united Quantum Field Theory model. The modified versions of the
Standard Model in the context of Noncommutative Geometry have also
provided a new updated (theoretical) model which is (minimally) coupled
to gravity as the weakest fundamental force in the nature. The constructions
of gauge field theories in Theoretical and Experimental High Energy Physics,
as updated Quantum Field Theory models, are on the basis of the modified
Standard Model of elementary particles. These gauge theories can analyze
electroweak and strong interactions of elementary particles in the scale of
distances down to the order of 10−16 centimeters while neutrino masses have
also been accounted. In addition, under a more theoretical setting, String
Theory as the other class of Quantum Field Theory models, which does not
have ultraviolet divergencies, has been introduced and developed to deal
with gravity in terms of Quantum Field Theories with matrix fields and
higher generalizations of matrix models. The classical one-loop Feynman
diagram should be replaced with its stringy counterpart which is a torus.
Other more general Feynman diagrams should be replaced with Riemann
surfaces and world sheets. This mathematical theory is capable of describing

4



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

Quantum Gravity in Space-Time.
The first fundamental challenge in perturbative setting is the appear-

ance of so complicated nested (sub-)divergencies which live in each term of
Green’s functions. These ill-defined terms, known as Feynman integrals, can
be theoretically reduced to some finite values as the result of the renormal-
ization machinery and many loop techniques. However some extra param-
eters (i.e. counterterms) should be added to the original Lagrangian of the
physical theory during the extraction of finite values. The discovery of a co-
multiplication structure hidden inside of the (Bogoliubov)–Zimmermann’s
forest formula has led us to understand the Bogoliubov–Parasiuk–Hepp–
Zimmermann perturbative renormalizaton in the language of the Connes–
Kreimer Hopf algebra of Feynman diagrams and the Riemann–Hilbert prob-
lem. Thanks to this setting, a geometric interpretation of Dimensional Reg-
ularization on the basis of flat equi-singular connections had been formu-
lated by Connes and Marcolli. This study was lifted immediately onto a
universal categorical setting where it is possible to associate a category of
Lie group representations to each renormalizable Quantum Field Theory.
Thanks to this platform, nowadays there exists a diverse spectrum of ad-
vanced mathematical techniques and tools to deal with ill-defined iterated
Feynman integrals in physical theories to generate finite values from infini-
ties.

The second fundamental challenge in perturbative setting is dealing with
complicated infinities originated from Green’s functions which encode quan-
tum motions in physical theories with strong couplings. The lack of a rig-
orous mathematical methodology for the study of aspects beyond pertur-
bation boundary has made so many difficulties to understand completely
Quantum Field Theory. In physical theories with strong (running or bare)
couplings, it is already impossible to study the full behavior of quantum
systems under perturbation series and in this situation, we need to con-
cern non-perturbative methods such as numerical methods, Borel summa-
tion method, theory of instantons and lattice model. In addition, the self-
similar nature of Green’s functions makes an alternative way for us to study
non-perturbative aspects in the context of fixed point equations of Green’s
functions. The resulting equations, which are known as Dyson–Schwinger
equations, contain an infinite collection of coupled integral equations de-
pended on the coupling constants. In QCD with higher energies and short
distances, the strength of couplings is small enough where we can expect the
asymptotic freedom behavior of the physical system. In this situation, we
can consider Dyson–Schwinger equations via some perturbative tools such as
many loop computational techniques. However in QCD with relatively lower
energies and long distances, the strength of couplings is more than or equal
to 1 where the physical system these equations behave non-perturbatively.
In this situation, we need to consider non-linear Dyson–Schwinger equations
via non-perturbative methods of computations. Work on the phenomenol-
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ogy of strong running couplings in QCD has been considered under a phys-
ical perspective to provide some computational methods in dealing with
non-perturbative parameters. Thanks to the applications of the Connes–
Kreimer renormalization Hopf algebra of Feynman diagrams to Quantum
Field Theory, we already have a combinatorial reformulation for Dyson–
Schwinger equations in the language of Hochschild cohomology theory. The
unique solution of each equation DSE determines a free commutative con-
nected graded Hopf subalgebra of the renormalization Hopf algebra. This
mathematical approach to Dyson–Schwinger equations has already provided
some new combinatorial and geometric tools for the computation of some
non-perturbative parameters. The foundations of a differential Galois the-
ory and a Tannakian formalism for the study of non-perturbative aspects of
Quantum Field Theories have been designed and developed by the author
on the basis of the Connes–Marcolli universal category of flat equi-singular
vector bundles. The author applied these platforms to clarify a new mo-
tivic method for the study of (systems of ) Dyson–Schwinger equations in
terms of sub-categories of mixed Tate motives. In addition, the author
has shown a new method for identifying the amount of non-computability
of non-perturbative parameters in the context of the renormalization Hopf
algebra of the Halting problem in the theory of computation.

This research work proposes some new applications of mathematical
tools originated from Combinatorics, Functional Analysis, Noncommutative
Geometry, Category Theory and Logic to deal with infinite graphs generated
by solutions of Dyson–Schwinger equations. These mathematical platforms
can provide some new techniques for the computation of non-perturbative
parameters. In addition, they suggest a new methodology for the description
of the intrinsic foundations of strongly coupled gauge field theories (such as
quantum entanglement and quantum logic) under a non-perturbative set-
ting. These investigations will help us to understand the indeterministic
nature of non-perturbative Quantum Field Theory models.

Generally speaking, the achievements of this research work can im-
prove our knowledge about the phenomenology of non-perturbative Quan-
tum Field Theory in terms of studying an individual Dyson–Schwinger equa-
tions or studying these equations with respect to each other.

In the first level, we focus on the mathematical foundations of Dyson–
Schwinger equations to bring some new computational tools in dealing with
non-perturbative parameters generated by large Feynman diagrams. At this
level, we consider each Dyson–Schwinger equation as an individual object in
the vector space SΦ,g generated by all Dyson–Schwinger equations derived
from Green’s functions of a given Quantum Field Theory Φ under different
scales λg of the bare coupling constant g where 0 < λ ≤ 1. We equip this
infinite dimensional vector space with a topological structure defined via
the graphon representations of Feynman diagrams. Under a combinatorial
setting, we discuss the structure of a new model for large Feynman diagrams
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in the language of combinatorial polynomials and random graphs. Further-
more, we discuss the complexity of non-perturbative parameters generated
by Dyson–Schwinger equations in the context of theory of computation.
In this direction we try to show the importance of a new multi-scale non-
perturbative Renormalization Group for the description of the Kolmogorov
complexity in dealing with Dyson–Schwinger equations. Under a geometric
setting, we explain the dynamics of non-perturbative aspects in a physical
theory with respect to the mathematical structures originated from Dyson–
Schwinger equations. We build a Noncommutative Geometry model for each
Dyson–Schwinger equation which leads us to interpret quantum motions in
the context of theory of spectral triples and noncommutative differential
forms. Under a Functional Analysis setting, we discuss the evolution of
fixed point equations of Green’s functions by defining a new generalized ver-
sion of the Fourier transformation on the Banach algebra L1(SΦ,g, µHaar)
with respect to a new Haar measure µHaar integration theory on the space
of solutions of Dyson–Schwinger equations.

In the second level, we focus on the mathematical foundations of non-
perturbative Quantum Field Theory where we must deal with all possible
Dyson–Schwinger equations under different running couplings. We explain
the construction of a new Hopf algebra structure SΦ

graphon on the topological
vector space of graphons which contribute to representations of Feynman
diagrams and their finite or infinite formal expansions. The resulting topo-
logical Hopf algebra is capable to encode large Feynman diagrams generated
by solutions of Dyson–Schwinger equations in different rescalings of the bare
coupling constant g. Therefore we can embed the space SΦ,g into SΦ

graphon.
This Hopf algebra leads us to formulate a new topological Hopf algebraic
renormalization theory for large Feynman diagrams via a topological gener-
alization of the Connes–Kreimer BPHZ renormalization program. We then
define a new multi-scale Renormalization Group on the collection SΦ,g to
control the simultaneously rescaling of the momentum parameter and the
bare coupling constant in Dyson–Schwinger equations of a given gauge field
theory Φ. This new Renormalization Group is useful to study the compu-
tational complexity of a strongly coupled equation DSE(g) in terms of the
computational complexities of a sequence of Dyson–Schwinger equations un-
der weaker running couplings. Furthermore, we explain the foundations of
a differential calculus theory on SΦ,g (as a separable Banach space with re-
spect to the cut-distance topology) where thanks to the Feynman graphon
models of Dyson–Schwinger equations and the theory of Gâteaux deriva-
tive, we formulate a new theory of differentiation and integration on SΦ,g.
Under an ordered algebraic setting, we organize Feynman graphon models
of solutions of Dyson–Schwinger equations into some lattices of substruc-
tures to provide a new interpretation for the quantum entanglement in in-
teracting gauge field theories. We explain mathematically the information
flow among elementary (virtual) particles in QFT models via a new class
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of topological Hopf algebras generated by Dyson–Schwinger equations. We
then lift this lattice models onto the level of Tannakian sub-categories of
the Connes–Marcolli category of flat equi-singular vector bundles to show
the importance of this universal category for the study of the geometry of
quantum entanglement. Under a categorical setting, we organize topologi-
cal Hopf subalgebras derived from solutions of Dyson–Schwinger equations
into a new small category to build a new topos model which can encode
the logical evaluations of non-perturbative situations. The structure of this
topos model is depended on the strength of running couplings to show the
importance of the phenomenology of strong running couplings in the deter-
mination of truth values of propositions about Dyson–Schwinger equations.

Thanks to these two levels of observations, we expect to provide a new
insight into the complicated problems of non-perturbative situations where
the strength of the coupling constants do really change the mathematics and
the logics of quantum theory models.
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Introduction

• Physical backgrounds

• Mathematical backgrounds

• Recent progress and objectives
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1.1 Physical backgrounds

Modern Theoretical and Experimental High Energy Physics have been estab-
lished on the basis of Quantum Field Theory models under the Lagrangian
setting which is (minimally) coupled to gravity via the incorporation of
massive neutrinos. The foundations of Quantum Field Theory were initi-
ated in terms of the interpretation of the quantized version of Electrody-
namics in the language of the Feynman path integral formalism under a
perturbation setting. The appearance of gauge field theories which include
Quantum Electrodynamics (QED), Electroweak theory, Quantum Chromo-
dynamics (QCD) and Quantum Gravity have developed rigorously our the-
oretical knowledge about the fundamental properties of elementary particles
before we could reach to appropriate empirical information. Thanks to these
backgrounds, mathematicians and theoretical physicists have already made
outstanding achievements for the description of interactions of elementary
particles under different settings in the context of advanced mathematical
models. For example, mathematical tools in Noncommutative Geometry, Al-
gebraic Geometry, Combinatorics and Category Theory have been applied
to formulate Standard Model and other extended theories which include su-
persymmetry, gravitational interactions or extended objects such as strings
and brane theory. We can also address tensor models as higher dimensional
generalizations of matrix models which aim to achieve a theory of random
geometries in dimensions higher than two. This class of theories helps us for
the construction of discrete approaches to quantizing gravity. [27, 28, 32,
40, 46, 55, 103, 104, 112, 117, 128, 138, 140, 147, 156, 157, 186, 194, 200]

The Lagrangian formalism enables us to understand Quantum Field The-
ory by working on Green’s functions as infinite formal expansions of Feyn-
man integrals or their corresponding diagrams where the amount of some
fundamental parameters such as the strength of the bare coupling constants
or the domain of momenta make the resulting series divergent or asymptotic
free. In perturbative physical theories we expect to have some convergent
series.

For example, in φ4 model the partition function is given by

Z[B] :=

∫
Dφ e−L(φ)+

∫
Bφ (1.1)

such that

L(φ) =

∫
d4x

(1
2
(∇φ)2 +

1

2
r0φ

2 +
1

4!
u0φ

4
)
, (1.2)

and B is an external field. If we set

Z0 :=

∫
Dφ e−L0(φ)+

∫
Bφ, L0(φ) :=

∫
d4x

(1
2
(∇φ)2 +

1

2
r0φ

2
)
, (1.3)
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then we can develop Z as a series in u0 around Z0 to achieve

Z =

∫
Dφ

(
1−

u0
4!

∫

x1

φ4(x1)+
1

2
(
u0
4!

)2
∫

x1,x2

φ4(x1)φ
4(x2)+...

)
e−L0(φ)+

∫
Bφ.

(1.4)
This expansion can be represented in the language of Feynman diagrams
which leads us to a combinatorial formulation for Green’s functions. For n
elementary particles we have

Gn(x1, ..., xn) =< φ(x1)...φ(xn) >=

∫
e−S[φ]φ(x1)...φ(xn)Dφ∫

e−S[φ]Dφ
(1.5)

such that S[φ] = S0[φ] + gSint[φ] where g is the (bare) coupling constant.
The fluctuations generated by the φ4 term around the Gaussian integral Z0

are large where they determine iterated integrals with the general form

∫ Λ

ddq1...d
dqL

∏

i

(propagator(qi)) (1.6)

such that the ultra-violet regulator Λ provides a cut-off at the upper bound
type of integral. The dependency of these integrals to the parameter Λ makes
a rigorous challenge for the computation of universal quantities. Theory of
perturbative renormalization provides the machinery to reparametrize the
perturbative expansion in such a way that the sensitive dependence on Λ
has been eliminated. In this situation, the renormalization group enables
us to partially resum the perturbative expansions to achieve some universal
computational results. [32, 40, 147, 197]

In general speaking, it is possible to investigate the situations beyond
perturbation theory in terms of some expressions such as

P (g) = X0 +X1g +X2g
2 + ...+Xng

n + ... (1.7)

such that g is the coupling constant and each term Xi represents the class
of Feynman diagrams which contribute to the i-order of perturbative ex-
pansion. It is obvious that physical theories with very small g could be
encoded by only some beginning finite number of terms from the above
expansion while physical theories with strong coupling g produce infinite
number of terms. These non-perturbative aspects have been concerned in
Theoretical Physics via Dyson–Schwinger equations as a quantized version
of the Euler–Lagrange equations of motion originated from the principal of
the least action. These equations, which can be determined by fixed point
equations of Green’s functions, have been studied under analytic and nu-
merical methods in Theoretical and Mathematical Physics such that we can
address standard techniques such as Borel summation, theory of instantons,
lattice models, etc in dealing with these equations to generate some esti-
mations for non-perturbative parameters. In physical theories with strong
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couplings such as Hadron Physics, we should deal with hadrons such as
protons and neutrons as the composite particles build up from quarks and
gluons (as elementary particles under strong interaction). In general, QCD,
as a nonabelian gauge theory with the symmetry group SU(3), has provided
a modern understanding of the complicated nature of hadrons and nuclei
where we study the strong interactions of quarks and gluons under confine-
ment and chiral symmetry breaking. The appearance of nuclear weak force
enables us to describe any change in quark’s flavour via W bosons. In fact,
the weak force is not only responsible for interactions between particles, but
it also allows heavy particles to decay by emitting or absorbing some of
the force carriers. We can describe QCD as a matrix-valued modification
of electromagnetic theory in terms of replacing photons by gluons and elec-
trons by quarks while quantum fluctuations of the fields could determine the
force law. The quantization of Chromodynamics involves the regularization
and renormalization of ultraviolet divergencies which generate a mass-scale
where mass-dimensionless quantities become dependent on a mass-scale.
The current quark-masses are the only evident scales in QCD. The main
experimental confirmations of QCD have been investigated at high energies
and high momentum transfers (or short distances) where the QCD coupling
is small and correspondingly the forces are weak. This situation, which is
known as asymptotic freedom property, enables us to detect the composite
structure of hadrons by scattering high energy electrons. The most diffi-
cult challenge in this model can be observed when perturbation theory fails
to describe the short range static potential obtained from quenched lattice
simulations where the difference between the non-perturbatively determined
potential and perturbation theory at short distance has been parameterized
by a linear term. In addition, there are also so many difficulties for the study
of the asymptotic behavior of QCD-perturbative series beyond the two-loop
level where the original effort is to find a way to subtract perturbative con-
tributions to a given physical process in order to isolate non-perturbative
terms. In the domain of relatively low energies and momentum transfers
such as Q2 ∼ 1 − 5 GeV2 while the proton’s mass is approximately 1 GeV,
the QCD coupling constants are larger where many loops perturbative cal-
culations should be applied. Because of the nontrivial vacuum structure of
QCD, in the domain of lower energies and momentum transfers (or large dis-
tances) such as Q2 ≤ 1 GeV2, the QCD coupling constants are stronger than
one. Under this condition, the analytic calculations do not useful but there
are some methods such as the chiral effective theory, lattice calculations,
large N limits and Dyson–Schwinger equations to provide some algorith-
mic computations. This situation, which is actually the failure to directly
observe coloured excitations in a detector, is the origin of the concept of
confinement as a fundamental challenge that we do not see free quarks or
gluons in nature but rather we only see colourless. The analytic descrip-
tion of confinement is one difficult task for the understanding of continuum
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QCD. The phenomenology of confinement can be studied in the context of
Dyson–Schwinger equations. [9, 40, 48, 136, 137, 138, 157]

The situations beyond perturbation boundary deal with divergencies
originated from Green’s functions under strong running coupling constants
where we might need to consider Feynman diagrams with many numbers
or infinite number of loops. What does this class of diagrams means and
how can we deal with infinite formal expansions of this class of diagrams?
Applying advanced mathematical structures is helpful for the better un-
derstanding of this class of divergencies. It is obvious that having strong
mathematical modelings is the initial step to make fundamental progress
in dealing with the complicated behavior of elementary particles inside of
the nuclei. We can address the mathematical foundations of the (modified)
Standard Model as a good theoretical methodology which led scientists to
obtain strong experimental investigations about elementary particles. String
Theory is another powerful mathematical platform which aims to provide
a unified theory for the study of elementary particles with respect to all
fundamental forces. The basic philosophy of this research work is to build
and develop the mathematical foundations of QFT models with strong cou-
plings where as the consequence, we expect to provide some new mathe-
matical tools for the better understanding of physical parameters beyond
perturbation theory. Our study suggests a new interpretation from the phe-
nomenology of strong couplings in the context of combinatorial, geometric
and categorical settings.

1.2 Mathematical backgrounds

The contributions of mathematical tools to Quantum Field Theories have
been extraordinary developed when the (Bogoliubov–)Zimmermann forest
formula was reinterpreted by Kreimer in the context of (co)algebraic com-
binatorial tools. This reinterpretation had been concerned by Connes and
Kreimer to build a new modern formulation for the Bogoliubov–Parasiuk–
Hepp–Zimmermann (BPHZ) perturbative renormalization in Quantum Field
Theory on the basis of the theory of Hopf algebras and the Riemann–Hilbert
problem. The Connes–Kreimer approach has become the main foundation
in many research efforts for the study of complicated Feynman integrals,
Green’s functions and Renormalization Group methods where it has led the
Theoretical Physics’s community to achieve some new mathematical tools
for the description of physical parameters in (renormalizable) gauge field
theories under algebraic, combinatorial and geometric settings. It is now
possible to encapsulate the machinery of perturbative renormalization in
terms of a connected graded free commutative non-cocommutative (finite
type) Hopf algebraic structure HFG(Φ) on Feynman diagrams of a physical
theory Φ which has a Lie algebraic nature determined by the insertion opera-
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tor. The compatibility of the fundamental identities such as Slavnov–Taylor
and Ward identities in QCD and QED with the renormalization coproduct
have been shown in the language of Hopf ideals. The phenomenology of
counterterms has been concerned underlying a geometric treatment to pro-
vide some alternative methods for the computation of these physical values
in the language of (singular) differential equations. In this setting, a new
class of equi-singular flat connections can govern the values of counterterms
with respect to the β-function. This setting has been lifted onto a uni-
versal Tannakian formalism where a renormalizable Quantum Field Theory
is studied via a category of geometric objects which can be recovered by
the neutral Tannakian category of finite dimensional representations of the
affine group scheme GΦ := Hom(HFG(Φ),−). [2, 3, 15, 16, 27, 28, 30, 33,
31, 35, 42, 43, 46, 77, 78, 105, 113, 114, 115, 116, 143, 178, 179, 193, 200]

One of the most fundamental result in this direction is actually the dis-
covery of a very deep interrelationship between Feynman integrals and the
theory of motives where a motivic renormalization machinery has been for-
mulated to deal with divergencies in the language of Picard–Fuchs equations
and other powerful tools. The theory of motives in Algebraic Geometry aims
to concern the existence of a universal cohomology theory for algebraic vari-
eties defined over a base field k while taking values into an abelian tensor cat-
egory. The construction of a category of motives (mixed motives) related to
general varieties is a difficult task. The noncommutative version of motivic
objects provides the motivic cohomology applied in the construction of a uni-
versal cohomology theory. The structure of mixed Tate motives as elements
of the subring Z[L] of the Grothendieck group K0(Vark) of k−varieties has
been considered where L := [A1] is the Grothendieck class of the affine line.
The application of motives enables us to develop a unified setting underly-
ing different cohomology theories such as Betti, de Rham, l-adic, crystalline
and etale. For this purpose, the construction of an abelian tensor category,
which provides a linearization of the category of algebraic varieties, has been
studied to provide some fundamental requirements of standard conjectures
of Grothendieck. The importance of motives in Quantum Field Theory
have been discussed in different settings. The Bloch–Esnault–Kreimer ap-
proach which informs interesting applications of Hodge type structures in
the calculation processes of Feynman integrals underlying graph polyno-
mials [21, 22, 115, 194]. The Aluffi–Marcolli approach, which builds the
motivic version of Feynman rules characters, applied Kirchhoff–Symanzik
polynomials to formulate a new version of algebro-geometric (dimension-
ally regularized) Feynman rules characters. These abstract characters send
classes in the Grothendieck ring of conical immersed affine varieties to the
classes in the Grothendieck ring of varieties spanned by the classes [XΓ].
This formalism, which is on the basis of the deletion–contraction operators
and the Tutte–Grothendieck polynomial, enables us to relate Feynman dia-
grams with periods of algebraic varieties. This framework provides a motivic
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treatment in the study of perturbative renormalization process at the level of
the universal motivic Feynman rules character [7, 8]. The Connes–Marcolli
approach deals with the geometric interpretation of counterterms on the ba-
sis of flat equi-singular connections such that these geometric objects have
been organized in a categorical structure EΦ which is recovered by the neu-
tral Tannakian category of finite dimensional representations of the affine
group scheme GΦ. This category has been embedded (as a sub-category)
into the universal category ECM of flat equi-singular vector bundles with the
corresponding universal affine group scheme U. Objects of this universal
category, which has Tannakian nature, address mixed Tate motives which
contribute to divergencies of renormalizable physical theories. In addition,
ECM determines the universal singular frame as the unique loop with val-
ues in U which provides the universal counterterm. The Lie algebra of the
universal affine group scheme leads us to formulate a particular shuffle type
Hopf algebra. [46, 134, 135]

A single Feynman diagram reports only a small piece of information
about a finite number of possible interactions among (virtual) elementary
particles where its on-shell part (i.e. incoming and outgoing particles) obeys
the mass-energy equation and the conservation of momenta while its off-shell
part (i.e. virtual particles) obeys no special rules or measurements. The it-
erated integral corresponding to a given Feynman diagram might contain
nested or overlapping sub-divergencies. Infinite formal expansions of Feyn-
man diagrams (as polynomials with respect to coupling constants), which are
organized in Green’s functions, have an essential role to encapsulate various
possible chains of interactions which could or might happen among elemen-
tary particles in a physical theory. These formal expansions can be studied
in terms of the self-similar nature of Green’s functions which allows us to for-
mulate fixed point equations known as Dyson–Schwinger equations. Numer-
ical methods, large N limit, Borel resummation, lattice models and theory
of instantons can provide some approximations for strongly coupled Dyson–
Schwinger equations ([136, 137, 138]) while the real time dynamics of these
non-perturbative equations require other advanced mathematical tools. In
addition, these non-perturbative equations in physical theories with strong
couplings have also been considered in the context of the Connes–Kreimer
renormalization Hopf algebra to provide some new advanced mathematical
tools for the computation of their solutions. This Hopf algebraic formalism
is one of the original motivations of this research program. In this direction
we need to formulate the Hochschild cohomology of (commutative) bial-
gebras as the dual notion of the Hochschild cohomology of (commutative)
algebras. For a given commutative Hopf algebra H, consider linear maps
T : H → H⊗n as n-cochains where the coboundary operator is defined by

bT := (id⊗ T )∆ +
n∑

i=1

(−1)i∆iT + (−1)n+1T ⊗ I (1.8)
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such that ∆i is the coproduct ∆ of H applied to the i-th factor in H⊗n. The
Kreimer’s renormalization coproduct on Feynman diagrams can be reformu-
lated recursively in terms of the linear operator B+ on Feynman diagrams,
known as the grafting operator, as the following way

∆FGB
+ = (id ⊗B+)∆FG +B+ ⊗ I. (1.9)

The operator B+, as a linear homogeneous endomorphism of degree one,
replaces a vertex in a given Feynman diagram with a whole graph in terms
of the type of the targeting vertex and the types of external edges of the
second graph. Thanks to (1.8) and (1.9), the grafting operator could de-
termine some generators of the first rank Hochschild cohomology group of
the Connes–Kreimer Hopf algebra of Feynman diagrams. For each primitive
Feynman diagram γ, B+

γ is a Hochschild one cocycle. [42, 65, 69, 108]
The first importance of the grafting operator is its role for the rooted tree

representation of any complicated Feynman diagram in terms of its primary
components (or its primitive Feynman subdiagrams). It is possible to embed
the Connes–Kreimer renormalization Hopf algebra of Feynman diagrams of
a given gauge field theory into a decorated version of the Connes–Kreimer
Hopf algebra of non-planar rooted trees. The grafting operator acts on each
forest t1...tn to deliver a rooted tree by adding a new vertex r as the root
and n new edges which connect the roots of tns to r. It is shown that
the pair (HCK, B

+) has a universal property with respect to the Hochschild
cohomology theory. This pair is actually the initial object for a particular
category of objects (H,T ) consisting of a commutative Hopf algebra H and
a Hochschild one cocycle T on H. The Hopf algebra homomorphisms which
commute with the cocycles are morphisms of this category. Decorations
on trees enable us to update HCK with respect to each physical theory.
For a given physical theory Φ, each 1PI Feynman diagram without any
sub-divergencies is a primitive element in the renormalization Hopf algebra
HFG(Φ). We can encode this class of objects via vertices in rooted trees
where edges can determine the positions of those primitive subgraphs inside
of a more complicated Feynman diagram. It is shown the existence of an
injective Hopf algebraic homomorphism from HFG(Φ) to the Hopf algebra
HCK(Φ) of decorated non-planar rooted trees. [16, 27, 28, 67, 68, 88, 105,
107, 109]

The second importance of the grafting operator is its fundamental role
in the reconstruction of Dyson–Schwinger equations under a combinatorial
setting. For a given family {γn}n≥1 of primitive (1PI) Feynman diagrams
with the corresponding Hochschild one cocycles {B+

γn}n≥1, a class of combi-
natorial Dyson–Schwinger equations in HFG(Φ)[[λg]] is defined by

X = I+
∑

n≥1

(λg)nωnB
+
γn(X

n+1) (1.10)

16



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

such that g is the bare coupling constant. This class of equations accepts
a unique solution X =

∑
n≥0(λg)

nXn as the formal expansion of finite
Feynman diagrams where for each n > 0, we have

Xn =
n∑

j=1

ωjB
+
γj (

∑

k1+...+kj+1=n−j, ki≥0

Xk1 ...Xkj+1
). (1.11)

X0 is the empty graph, each Xn is an object in the Hopf algebra HFG(Φ),
and the unique solution X lives in a completion of HFG(Φ)[[λg]] with re-
spect to the n-adic topology. The Cartier–Quillen–Milnor–Moore theorem
shows us that the unique solution of each Dyson–Schwinger equation DSE
can determine the generators of a Faa di Bruno type Hopf subalgebra HDSE

of the Connes–Kreimer renormalization Hopf algebra. It is a free commuta-
tive unitial counital (non-)cocommutative connected graded finite type Hopf
subalgebra where its coproduct on generators Xn does not depend on the
parameters ωj. The Mellin transform allows us to deform these combina-
torial type of equations to their original integral versions. It is possible to
lift this formalism onto the level of systems of Dyson–Schwinger equations
where we deal with a system (S) of a finite collection of equations with the
general form

(S) : ∀i ∈ I, xi =
∑

j∈Ji

B+
(i,j)(f

(i,j)(xk, k ∈ I)) (1.12)

such that I := {1, ..., n}, Ji is a graded connected set, B+
(i,j)s are Hochschild

one cocycles and f (i,j)s are formal series in K[[α1, ..., αn]]. It is shown that
the system (S) has a unique solution such that under some conditions it can
determine the Hopf subalgebra H(S) originated from the Hopf subalgebras
H1, ...,Hn generated by combinatorial Dyson–Schwinger equations in the
system. [19, 36, 64, 73, 74, 75, 108, 111]

The main skeleton of a combinatorial Dyson–Schwinger equation is ac-
tually a family of Hochschild one cocycles. There exists a surjective map
from the first rank Hochschild cohomology group to the space of primitive
Feynman diagrams of the renormalization Hopf algebra. It means that each
family {γn}n≥1 of primitive Feynman diagrams determines the correspond-
ing family {B+

γn}n≥1 of Hochschild one cocycles. It is important to note that
each 1PI Feynman diagram, which is free of sub-divergencies, is a primitive
element but they are not the only primitives in the renormalization Hopf
algebra. In other words, there are primitive Feynman diagrams in higher
degrees which can determine Hochschild one cocycles. [19, 42, 109]

1.3 Recent progress and objectives

The combinatorial reformulation of Dyson–Schwinger equations in terms of
the renormalization Hopf algebra and Hochschild cohomology theory has ap-
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plied recently for the construction of some new mathematical treatments in
dealing with the computations of non-perturbative parameters. These efforts
have already developed our knowledge about the mathematical foundations
of the phenomenology of non-perturbative parameters under different set-
tings. [34, 64, 75, 76, 108, 110, 111, 118, 121, 142, 167, 171, 172, 173, 187,
190, 195]

The Milnor–Moore theorem ([144]) allows us to determine the infinite
dimensional complex graded pro-unipotent Lie group GΦ(C) which is actu-
ally the complex points of the affine group scheme GΦ = Hom(HFG(Φ),−).
This Lie group, which is the projective limit of linear algebraic groups Gn
embedded as Zariski closed subsets in some GLmns, is rich enough to en-
code (dimensionally regularized) Feynman rules characters with respect to
the scale and angle dependence of amplitudes [31]. In addition, we can also
determine the infinite dimensional complex graded pro-unipotent Lie group

GDSE(C) := Hom(HDSE,C) (1.13)

for each given Dyson–Schwinger equation DSE. There exists a natural in-
jective Hopf algebra homomorphism ρ : HDSE → HFG(Φ). If we apply
Spec as a contravariant functor, then we can obtain a surjective morphism
ρ̃ : Spec(HFG(Φ)) → Spec(HDSE) between spaces of prime ideals in the com-
mutative algebras HFG(Φ) and HDSE equipped with the Zariski topology.
This map can be lifted onto the surjective group homomorphism

ρ : GΦ(C) −→ GDSE(C). (1.14)

The Hopf subalgebra HDSE is actually a Hopf ideal in HFG(Φ) and we
can consider its corresponding quotient Hopf algebra HFG(Φ)/HDSE. In
the dual setting, the associated sub-group scheme of this quotient Hopf
algebra can determine a Lie sub-group of GΦ(C). However the existence
of Lie (sub)groups GDSE(C) corresponding to Dyson–Schwinger equations
have been applied to bring a new geometric setting for the study of non-
perturbative parameters in the context of differential systems together with
singularities. The construction of a category of flat equi-singular GDSE(C)-
connections with respect to each equation DSE has been addressed to encode
the BPHZ renormalization of the unique solution XDSE in the context of dif-
ferential Galois theory. In other words, the Connes–Marcolli geometric in-
terpretation of counterterms and the Connes–Marcolli universal Tannakian
machinery in dealing with renormalizable physical theories have been de-
veloped for the study of Dyson–Schwinger equations. We can study the
geometry of any given equation DSE in terms of finite dimensional rep-
resentations of the Lie group GDSE(C) which is organized in the neutral
Tannakian category RepG∗

DSE
. This class of categories has been embedded

as subcategories into the Connes–Marcolli universal category ECM. Thanks
to these backgrounds, we already have the construction of a differential
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Galois theory for the computation of fundamental non-perturbative param-
eters such as global β-functions and non-perturbative counterterms in the
language of Picard–Fuchs equations. In addition, it is now possible to iden-
tify a class of mixed Tate motives with respect to each Dyson–Schwinger
equation. [160, 162, 163, 164]

On the first hand, under the Hopf algebraic renormalization platform,
Dyson–Schwinger equations are the fundamental tools to determine Hopf
subalgebras in Quantum Field Theory. On the second hand, ”substructure”
is a mutual fundamental concept in Galois Theory and Theory of Compu-
tation where intermediate algorithms have been studied recently in terms
of algebraic methods in Galois Theory. On the third hand, the Manin’s
program for the interpretation of the Halting problem in the context of the
Connes–Kreimer BPHZ renormalization machinery has initiated the foun-
dations of a brilliant interrelationship between the amount of computability
and the computation of counterterms encoded via the renormalization Hopf
algebra of the Halting problem. The combination of these achievements have
already led us to describe intermediate algorithms in terms of (systems of)
Dyson–Schwinger equations where we can understand the amount of non-
computability of non-perturbative renormalized values and their correspond-
ing non-perturbative counterterms in the language of the Halting problem,
Operad Theory and the theory of Hall sets. Results in this direction show
a new multidisciplinary bridge between Theoretical Computer Science and
non-perturbative Quantum Field Theory. [63, 131, 132, 133, 167, 198, 199]

Applications of the theory of graphons to Quantum Field Theory is an-
other output of the renormalization Hopf algebraic platform. The foun-
dations of a new combinatorial interpretation of Feynman diagrams and
their infinite formal expansions have been studied recently where we embed
(large) Feynman diagrams into a compact topological space obtained by an
enrichment of the Connes–Kreimer renormalization Hopf algebra with re-
spect to the cut-distance topology. The immediate consequence of this new
topological-combinatorial setting is the formulation of a generalization of
the BPHZ renormalization for solutions of Dyson–Schwinger equations. In
this direction, thanks to some tools in Measure Theory, a new differential
calculus machinery on Feynman diagrams was built which has led us to
study the evolution of Dyson–Schwinger equations in terms of their partial
sums. [168, 169]

Applications of non-commutative differential graded algebras to Quan-
tum Field Theory were also considered to study the geometry of quantum
motions where some new models of gauge theories have been obtained. In
this direction, the structure of a non-perturbative version of the Connes–
Kreimer renormalization group has been described in the language of in-
tegrable systems. In addition, recently, we have formulated a new class of
infinite dimensional spectral triples which encode the geometry of Dyson–
Schwinger equations. These observations enable us to clarify the essential
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role of Noncommutative Geometry in the future of non-perturbative Quan-
tum Field Theory models. [52, 53, 54, 56, 161, 166, 171]

Combinatorial Dyson–Schwinger equations, Connes–Kreimer–Marcolli Hopf
algebraic renormalization platform and the theory of graphons for sparse
graphs are the main motivational topics for us in this research to study
non-perturbative Quantum Field Theory. Our main attempt in this work is
to develop mathematical structures originated from Dyson–Schwinger equa-
tions to discover some new information about the complicated behavior of
Quantum Field Theories under strong coupling constants. This work aims
also to bring some new mathematical tools to deal with the computation of
non-perturbative parameters.

Under a combinatorial setting, we plan to apply the theory of graphon
representations of Feynman diagrams together with other combinatorial and
topological tools to provide a new Hopf algebraic machinery for the renor-
malization of solutions of Dyson–Schwinger equations under different run-
ning coupling constants. In a more general platform, we consider the cut-
distance topological vector space SΦ,g generated by all fixed point equations
of Green’s functions of a given strongly coupled gauge field theory Φ under
different running coupling constants λg with respect to the bare coupling
constant g such that 0 < λ ≤ 1. It is possible to topologically complete the
space SΦ,g to achieve a new Banach space where we need to work on equiva-
lence classes of Dyson–Schwinger equations up to the weakly isomorphic as
an equivalence relation. Equations DSE1,DSE2 are called weakly isomor-
phic (or weakly equivalent) if their corresponding solutions XDSE1 ,XDSE2

have weakly isomorphic Feynman graphon models. In other words,

DSE1 ≈ DSE2 ⇐⇒ WXDSE1
∼WXDSE2

. (1.15)

Up to this equivalence relation, we can define the distance

d(XDSE1 ,XDSE2) := dcut([WXDSE1
], [WXDSE2

]) (1.16)

between Dyson–Schwinger equations such that dcut is the metric structure on
unlabeled Feynman graphon classes. Each unlabeled Feynman graphon class
contains all weakly isomorphic Feynman graphons and all relabeled Feynman
graphons generated by invertible measure preserving transformations of the
base measure space (Ω, µΩ) of our graphon model. We then address some
new applications of combinatorial polynomials such as Kirchhoff–Symanzik
and Tutte polynomials to formulate a new parametric representation theory
for solutions of Dyson–Schwinger equations. This study is useful for the
construction of algebro-geometric Feynman rules on the topological Hopf
algebra SΦ

graphon of Feynman graphons. We also concern the concept of com-
plexity for the description of non-perturbative parameters where we explain
the construction of a new multi-scale Renormalization Group machinery on
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SΦ,g which is useful on two levels. Firstly, it can provide a mathematical ma-
chinery for the approximation of Dyson–Schwinger equations in strong cou-
plings via equations in weaker couplings. Secondly, it helps us to initiate a
new version of the Kolmogorov complexity in dealing with Dyson–Schwinger
equations.

Under a geometric setting, we show some new applications of Noncom-
mutative Geometry, Measure Theory and Functional Analysis to study the
geometry of non-perturbative Quantum Field Theory. We build the Gâteaux
differential calculus on the space SΦ,g which provides a global differential
geometry for the geometric description of strongly coupled gauge field the-
ories. In addition, we explain the concept of evolution on SΦ,g with respect
to a generalized version of the Fourier transformation. We also build the
theory of spectral triples for solutions of Dyson–Schwinger equations which
provides a local differential geometry in dealing with the quantum motions
in strongly coupled gauge field theories.

Under a foundational setting, we apply Feynman graphon models to
consider some intrinsic foundations of Quantum Field Theory models under
strong running coupling constants such as quantum entanglement and logical
concepts. In this direction, we offer a new mathematical methodology for the
description of quantum entanglement in interacting quantum physical the-
ories in the context of the theory of lattices and intermediate substructures
in the Theory of Computation. This mathematical formalism enables us to
explain information flow in physical theories with strong couplings on the
basis of lattices of topological Hopf algebras and Lie subgroups. We lift this
mathematical modeling onto a categorical setting to show that the universal
category ECM is suitable to encode the quantum entanglement process. At
this level, we expect to show a new application of motives in dealing with in-
formation flow. In addition, we put forward the construction of a new topos
of presheaves on a particular base category which encodes the logical evalua-
tions of propositions about the cut-distance topological regions of Feynman
diagrams. We try to show that how this topos model concerns the strength
of running coupling constants for the logical study of gauge field theories.
For this purpose, objects of the base category of the non-perturbative topos
encode all Dyson–Schwinger equations of a given gauge field theory under
different running coupling constants. The non-perturbative topos can eval-
uate the logical propositions about cut-distance topological regions which
are generated by solutions of Dyson–Schwinger equations.
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• A generalization of the BPHZ renormalization machinery for
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Having no comprehensive physical description of infinite formal expan-
sions of Feynman diagrams which contribute to polynomials with respect
to strong running coupling constants such as (1.7), it is indeed difficult
to analyze a renormalization program for these infinite expansions. The
major discourse in this situation is to find some meaningful mathematical
insights associated to fixed point equations of Green’s functions. Then these
mathematical reasonings serve to compel technical terms and models for the
explanation of the renormalization process for Dyson–Schwinger equations.

The original task in this chapter is to explain a renormalization pro-
gram on the space SΦ,g which consists of Dyson–Schwinger equations with
respect to running couplings λg in a given physical theory Φ with the bare
coupling constant g. For this purpose, we apply the theory of graphons
for sparse graphs to build a new theory of graph function representations
for Feynman diagrams and large Feynman diagrams which contribute to
solutions of Dyson–Schwinger equations. These new analytic generaliza-
tions of Feynman diagrams can be organized into a new graded topological
Hopf algebra SΦ

graphon which can lead us to formulate a new modification of
the Connes–Kreimer BPHZ renormalization program for the computation
of non-perturbative counterterms and non-perturbative renormalized val-
ues. The complex Lie group associated to the Hopf algebra SΦ

graphon is the
key tools for the formulation of a non-perturbative Renormalization Group
which encodes the required β-functions to govern the dynamics of strongly
coupled Dyson–Schwinger equations.

2.1 Quantum Field Theory

Suppose we have a quantized field theory with the general Lagrangian L =
L(φ, ∂µφ) which can contain the free part and the interaction part. The
typical free Lagrangian density is given by

Lfree :=
1

2

(
(∂µφ)(∂

µφ)−m2φ2
)

(2.1)

which leads us to the free Klein–Gordon equation of motion

(
∂µ∂

µ +m2
)
φ = 0. (2.2)

The interaction part Lint encodes interactions of elementary particles in
the physical theory. The transition amplitudes from initial states to all
finite states can be formulated under the S-Matrix setting. It is possible to
calculate these matrix elements in terms of a class of correlation functions
with the general form

Gn(x1, ..., xn) :=< 0|Tφ(x1)...φ(xn)|0 > (2.3)
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such that |0 > is the vacuum ground state. These equations, known as
Green’s functions, allow us to formulate perturbative Quantum Field Theory
in terms of formal expansions with the general form

Gn(x1, ..., xn) =

∞∑

j=1

(−1)j

j!

∫
d4y1...d

4yj < 0|Tφin(x1)...φin(xn)Lint(y1)...Lint(yj)|0 > (2.4)

such that φin is the initial state of φ in the infinite past. If we apply the
Wick’s Theorem and normal ordering, then the vacuum expectation value
can be described as the integrals of propagators that typically depend on
differences of space-time vectors. The rigorous challenge is the existence of
divergencies in these integrals with respect to the domains of integrations
where applying regularization machineries (such as Dimensional Regulariza-
tion) help us to study these integrals in the context of Laurent series with
finite pole parts. [32, 40]

Feynman diagrams in Quantum Field Theory are useful combinatorial
tools to encapsulate the summation over probability amplitudes correspond-
ing to all possible exchanges of virtual particles compatible with a process at
a given (loop) order. These decorated diagrams, as a set of edges and a set of
vertices, can simplify the description of interactions of elementary particles
in terms of the time parameter in a quantum system. Their decorations are
determined by fundamental parameters of the physical theory. Momentum
and position are actually Fourier transforms of each other where we can
translate diagrams with respect to momentum space to their correspond-
ing iterated integrals via Feynman rules. Each closed loop associates to
an integrate over the corresponding momentum. The whole diagram obeys
the conservation of momenta which tells us that the amount of momenta
of input particles in an interaction procedure is the same as the amount of
momenta of output particles.

For example, thanks to the Schwinger parameter t, we can consider

1

p2 +m2
=

∫ ∞

0
dt exp(−t(p2 +m2)) (2.5)

as the propagator for each edge and

∫
d4x exp(i

∑

j

pjx) (2.6)

as the propagator for each vertex. In this setting, each edge has a factor

G(x, y; t) =

∫
d4p

(2π)4
exp(ip.(x− y)− t(p2 +m2)). (2.7)
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We can combinatorially reformulate Green’s functions in terms of formal
expansions of Feynman diagrams. It clarifies the self-similar property of
these fundamental functions in Quantum Field Theory. We have

G := 1 +

∫
Iγ +

∫ ∫
IγIγ +

∫ ∫ ∫
IγIγIγ + ...

= 1 +

∫
Iγ(1 +

∫
Iγ +

∫ ∫
IγIγ + ...) (2.8)

such that Iγ is the Feynman integral corresponding to the primitive (1PI)
Feynman diagram γ. This can be encapsulated via equations such as

G = 1 +

∫
IγG (2.9)

such that its fixed point equations determine Dyson–Schwinger equations.
This formulation of Quantum Field Theory is the result of the path inte-
gral approach to Lagrangian formalism where we study the behavior of an
elementary particle in a system with infinite degrees of freedom in terms
of the sum over all possible situations (such as trajectories, interactions)
which could be selected by the particle. In terms of some conditions dic-
tated by physical theory, each possible situation has a particular weight
which should be considered in computational processes of Feynman inte-
grals. [32, 40, 147, 193]

For example, in QED we deal with interactions of electron and positron
(as matter) with photons (as electromagnetic waves with different quantized
sizes of energies). There exist six different fundamental interactions namely,
the emission of photon from electron or positron, absorbing a photon via
electron or positron, the creation of a photon via annihilation of the pair
(electron, positron), creation of a pair (electron, positron) via the annihila-
tion of a photon. All Feynman diagrams and Dyson–Schwinger equations in
QED, which might contain complicated off-shell interactions of virtual parti-
cles, are built on the basis of those six fundamental interactions. There exists
a class of elementary graphs which play the role of building blocks to make
all possible Feynman diagrams in a physical theory. These graphs, which are
called one particle irreducible Feynman diagrams, remain connected after re-
moving one internal edge. By induction we can define n-particle irreducible
Feynman diagrams which remain connected after removing n internal edges.
It is easy to see that each n-particle irreducible graph is a (n − 1)-particle
irreducible graph.

The coupling constants in Quantum Field Theory show the strength
of the interactions among elementary particles. The regularization of UV
divergent integrals and the renormalization procedure generate a scale de-
pendence. The UV cut-off dependence of the couplings can be eliminated
by allowing the couplings and masses (which appear in the Lagrangian) to
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acquire a scale dependence. Then we normalize them to a measured value at
a given scale. Generally speaking, there are two classes of couplings namely,
the bare coupling constant as the original strength of a fundamental force
and the running coupling constants or effective couplings as the result of
renormalization procedures. Quantum Chromodynamics (QCD) is known
as the most successful fundamental gauge theory of strong interactions. It
studies the hadronic interactions involving quarks and gluons at both long
and short distances. Its symmetry group is SU(3) where it includes Nf

family of quarks ψif and gluons Aiµ. Some experimental evidences inform
us that at a critical temperature around Tc ≈ 170 MeV, the QCD matter
undergoes a deconfining phase transition into quark-gluon plasma. Pertur-
bative QCD is a method based on expanding different physical quantities
with respect to the gauge coupling constant g which is applied in the region
T ≫ Tc where g is small. The phenomenology of the (bare and running)
coupling constants have been discussed in terms of the uncertainties in their
values at short distances which leads us to a total theoretical uncertainty in
Physics at large hadron collider such as Higgs production via gluon fusion.
In this situation we can still have hope to apply asymptotic freedom and
perturbative calculations of Renormalization Group equations. However at
high perturbative orders it becomes necessary to evaluate large numbers of
multi-loop Feynman diagrams in the effective theory. [9, 51, 137]

However the behavior of running coupling constants of the physical sys-
tems at long distances such as the scale of the proton mass in order to un-
derstand hadronic structure, quark confinement and hadronization processes
should be analyzed under non-perturbative platforms. In these cases we can
study the phenomenology of strong bare or running couplings in terms of the
mathematical foundations of quantum motions of physical systems namely,
Dyson–Schwinger equations. We can address recent theoretical progress for
the computation of non-perturbative parameters derived from solutions of
Dyson–Schwinger equations in the context of Combinatorics, Geometry and
Category Theory. [19, 34, 110, 136, 138, 157, 162, 163, 164, 190, 195]

The running of a coupling constant originates from the renormalization
procedure while predictions for observables should be determined indepen-
dent of the choice of renormalization map and regularization scheme. This
invariance with respect to the choice of renormalization program is encoded
via a symmetry group. The running coupling is an expansion parameter in
the perturbative series describing an observable and there exists the Landau
pole as the point where the perturbative expression of the running coupling
diverges. It means that the full perturbative expression is actually a non-
observable quantity. The observable is independent of the renormalization
scheme while the series’s coefficients and the running coupling are related to
the renormalization scheme. Under asymptotic freedom behavior at short
distances, we can get the first coefficient series as an independent parameter
while at very large distances dependency can not be neglected. This dis-
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cussion tells us that the running couplings are not observables because they
are strongly depended on the renormalization scheme at large distances.
In short, the running couplings have weak scale dependence at distances
smaller than 10−16 m such that this controllable weak behavior tends to a
strong scale dependence larger than a tenth of a Fermi. This dependency
on the scale is restored at larger distances due to the confinement of quarks
and gluons. [9, 51, 136]

The Ward–Takahashi identities on Feynman diagrams tell us that the
photon propagator is the only propagator in QED which contributes to
the running of the coupling constant. The Slavnov–Taylor identities on
Feynman diagrams tell us that intermediate gauge-dependent quantities in
non-abelian gauge theories provide final gauge-independent results for ob-
servables [117, 178]. Thanks to these facts, it is possible to rewrite Dyson–
Schwinger equations in terms of some running couplings to achieve some
intermediate quantities which are useful to simplify the original complicated
non-perturbative type of equations by some approximations. In a general
configuration, Dyson–Schwinger equations are polynomials with respect to
bare or running coupling constants which means that any change in the
amount of running couplings will make direct influence on the behavior of
these equations. Therefore these non-perturbative type of equations are
good tools for the study of the phenomenology of strong couplings.

Dimensional Regularization was introduced by ’t Hooft, Veltman, Bollini
and Gambiagi as a method to regularize ultraviolet divergencies in a gauge
invariant way to complete the proof of renormalizability. The method works
in D = 4− 2ǫ space-time dimensions where divergencies for D → 4 appears
as poles in 1/ǫ. This method also regulates infrared singularities where if
we remove the auxiliary IR regulator, the IR divergencies appear as poles in
1/ǫ. For ǫ > 0, we can obtain a well-defined result which we can be analyti-
cally extended to the whole complex D-plane. The only essential change in
the structure of Feynman rules is to replace the couplings in the Lagrangian
via the transformation g 7−→ gµǫ such that µ is an arbitrary mass scale.
Dimensional Regularization together with Minimal Subtraction can provide
a practical renormalization program for Feynman integrals with nested sub-
divergencies. These ill-defined parts can be eliminated step by step under
a forest formula setting where the Bogoliubov–Parasiuk–Hepp preparation
allows us to generate some finite values. This particular renormalization
program was reconsidered by Connes and Kreimer under a modern Hopf
algebraic setting to generate counterterms and renormalized values in terms
of the Riemann–Hilbert problem and the Birkhoff factorization. In this con-
text, Dimensional Regularization is encapsulated by the space of loops with
the domain of a punctured infinitesimal disk around zero and with values in
a pro-unipotent complex Lie group associated to the renormalization Hopf
algebra of Feynman diagrams. [43, 44, 69, 78, 116, 120]

While working on the applications of the BPHZ procedure to the level of
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many-loop graphs is one of the interesting topics in Quantum Field Theory,
the main information of a physical theory are encoded in (infinite) formal
expansions of Feynman diagrams. Thanks to the Connes–Kreimer–Marcolli
theory, the required mathematical tools for an extension of the BPHZ proce-
dure to the level of Dyson–Schwinger equations has already been considered
under geometric and algebraic settings. This platform enables us to study
any Dyson–Schwinger equation DSEin terms of its corresponding complex
Lie group GDSE(C) where the existence of the Hopf–Birkhoff factorization
on this Lie group has led us to determine counterterms (which contribute
to the unique solution of the equation DSE) in the language of differential
systems together with irregular singularities. These differential systems,
which are on the basis of equi-singular flat GDSE(C)-connections, determine
a new class of systems of Picard–Fuchs equations with regular singularities.
[164, 167]

2.2 Hochschild cohomology of the renormaliza-

tion Hopf algebra

The basic elements of the path integral method in Quantum Field Theory
are (divergent) iterated Feynman integrals over the momentum space such
that the integrands are determined from a definite collection of rules origi-
nated from the physical theory. We can encode these integrals in terms of a
class of combinatorial decorated finite diagrams which are known as Feyn-
man diagrams where sub-divergencies in the original integral are presented
in terms of the existence of nested or overlapping loops in the main diagram.
The Kreimer’s coproduct, which highlights the combinatorics of removing
sub-divergencies from integrals, enables us to factorize the original com-
plicated Feynman diagram into its basic sub-divergencies (as sub-graphs).
This factorization reduces several layers of complications in the computa-
tional processes of perturbative renormalization in terms of a certain graded
commutative non-cocommutative Hopf algebra denoted by HFG(Φ). It is
a graded Hopf algebra with respect to the first Betti number of Feynman
diagrams which means that HFG(Φ) =

⊕
n≥0Hn such that H0 = {I} and for

each n, Hn is the vector space of divergent 1PI n-loop Feynman diagrams
and products of Feynman diagrams with overall loop number n. There is
also another graduation parameter to build a graded Hopf algebra. We can
show that HFG(Φ) is a graded Hopf algebra with respect to the number of
internal edges of Feynman graphs such that the components of this grading
have finite dimensions as the vector spaces. [15, 46, 105, 113]

The original version of the Kreimer’s coproduct was defined in the lan-
guage of parenthesized words to characterize nested, independent or over-
lapped sub-divergencies via sequences of letters and their linear combina-
tions. It encapsulates the Bogoliubov–Zimmermann forest formula based on
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the formal expansion

∆FG(Γ) = Γ⊗ I+ I⊗ Γ +
∑

γ⊂Γ

γ ⊗ Γ/γ (2.10)

for each Feynman diagram Γ such that the sum is over all disjoint unions of
1PI divergent proper Feynman subgraphs. [42, 77, 78, 105]

Generally speaking, for a unital algebra (A,m, e) and a counital coal-
gebra (C,∆, ε) over a field K of characteristic zero, let Hom(C,A) be the
vector space of all K-linear maps from C to A. Equip this space with a
convolution product defined in terms of the following composition

C −→∆ C ⊗ C −→f∗g A⊗A −→m A (2.11)

to achieve an algebra with the unit e◦ε. A bialgebra (H,m, e,∆, ε) in which
the identity map idH is invertible under the convolution product is a Hopf
algebra. This particular inverse S which obeys the following property

idH ∗ S = S ∗ idH = e ◦ ε (2.12)

is called the antipode such that it is a unital algebra counital coalgebra
antihomomorphism. [36, 78]

There are natural graduation parameters on Feynman diagrams such as
number of internal edges or number of independent loops. The graduation
parameter and the coproduct (2.10) determine the required antipode for the
construction of a free commutative connected graded finite type Hopf algebra
on Feynman diagrams of a given physical theory Φ. The antipode deforms
Feynman rules characters to obtain renormalized values. The Hopf algebra
HFG(Φ) has a Lie algebraic origin and in addition, it can be simplified
via decorated rooted trees to provide a universal model for perturbative
renormalization. The rooted tree version of the renormalization coproduct
(2.10) can be defined in terms of the notion of ”admissible cuts” on trees.
[33, 65, 67, 68, 77, 143]

The factorization of a Feynman diagram into its primitive components
can be reversed under some conditions via the insertion operator which en-
ables us to glue subdiagrams. It is important to note that in gauge field
theories we should work on a quotient of the renormalization Hopf algebra
with respect to Ward identities and Slavnov–Taylor identities to achieve a
unique factorization for each Feynman diagram with respect to the insertion
operator. The insertion operator provides a Lie algebraic structure on Feyn-
man diagrams such that the graded dual of its universal enveloping algebra
will be equivalent to the renormalization Hopf algebra. [78, 109, 143, 179]

Theory of Hochschild cohomology for bialgebras is useful for us to formu-
late the Hochschild equation on Feynman diagrams which results a recursive
formulation for the renormalization coproduct. This class of equations can
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provide the key tools for the reformulation of Dyson–Schwinger equations.
In this part we review the foundations of the Hochschild equation with re-
spect to the renormalization coproduct and for further details we address
[64, 77, 78, 108, 109, 200] as the major sources.

For a given bialgebra H such as HFG(Φ), the dual of the coalgebra
(H,∆, ε) is an algebra H∗ such that the unit map I of H transposes to a
character It of H∗. Therefore we can build Hochschild cohomology groups
Hn(H,H∗) such that n-cochains are linear maps such as T : H −→ H⊗n.
We can transpose them to n-linear maps such as ρT : (H∗)n −→ H∗ where
we have

ρT (Γ1, ...,Γn) := T t(Γ1 ⊗ ...⊗ Γn). (2.13)

In this setting, the Hochschild coboundary operator b can be determined
by the relation

< Γ1 ⊗ ...⊗ Γn+1,bT (Γ) >:=< bρT (Γ1, ...,Γn+1),Γ > (2.14)

for each Γ ∈ H. Define ∆j : H
⊗n −→ H⊗(n+1) as the homomorphism which

applies the coproduct ∆ only on the jth factor. Now we can show that

< ρT (Γ1, ...,ΓjΓj+1, ...,Γn+1),Γ >=< Γ1 ⊗ ...⊗Γn+1,∆j(T (Γ)) > . (2.15)

It leads us to rewrite the Hochschild coboundary operator as the following
way

bT (Γ) := (id⊗ T )∆(Γ) +
n∑

j=1

(−1)j∆j(T (Γ)) + (−1)n+1T (Γ)⊗ I. (2.16)

The resulting cohomology groups Hn(H∗,H∗
It
) are indeed the Hochschild

cohomology theory of the bialgebra H. It is easy to check that linear forms
on H are 0-cochains and one cocycles are linear maps such as l : H −→ H
which obeys the following relation

∆(l) = l ⊗ I+ (id⊗ l)∆. (2.17)

The Hochschild cohomology with values in a H-bimodule A (such as the
regularization algebra) is defined by working on n-cochains via the vector
space Cn := Cn(H,A) consisting of n-linear maps ψ : Hn −→ A with the
H-bimodule structure

(γ1.ψ.γ2)(Γ1, ...,Γn) := γ1.ψ(Γ1, ...,Γn).γ2. (2.18)

The coboundary map b : Cn −→ Cn+1 is given by

b(ψ)(Γ1, ...,Γn+1) = Γ1.ψ(Γ2, ...,Γn+1)

+
n∑

j=1

(−1)jψ(Γ1, ...,ΓjΓj+1, ...,Γn+1) + (−1)n+1ψ(Γ1, ...,Γn).Γn+1. (2.19)
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The resulting cohomology groups are denoted by Hn(H,A).
Let us consider the Hochschild equation for the algebra K[X] which is

also equipped with a cocommutative coalgebra structure by considering the
indeterminate X as the primitive object where ε(X) = 0. For all k ≥ 2, by
induction, we can show that

∆(Xk) = (∆X)k =
k∑

j=0

(
k

j

)
Xk−j ⊗Xj . (2.20)

For any linear form ̺ on K[X], we have

b̺(Xk) = (id⊗ ̺)∆(Xk)− ̺(Xk)⊗ I =
k∑

j=1

(
k

j

)
̺(Xk−j)Xj . (2.21)

b̺ is a linear transformation of polynomials which does not increase the
degree. It shows that the integration map T (Xk) := Xk+1/(k + 1) is not a
1-coboundary but it is an one cocycle.

Thanks to this Hochschild cohomology theory, it is possible to define the
renormalization coproduct under a recursive setting.

A graded bialgebra H over a field K is graded as an algebra and as
a coalgebra. It is called connected if the degree zero component of the
graduation structure consists of scalars (i.e. elements of the field K). We
have

H =
⊕

n≥0

Hn, HmHn ⊆ Hm+n, ∆(Hn) ⊆
⊕

p+q=n

Hp ⊗Hq. (2.22)

The coproduct in the connected graded bialgebra of Feynman diagrams
can be presented in terms of the Sweedler notation such that for Γ ∈ Hn,
we have

∆(Γ) = Γ⊗ I+ I⊗ Γ +
∑

Γ′1 ⊗ Γ′2 (2.23)

where terms Γ′1 and Γ′2 all have degrees between 1 and n − 1. The counit
equations

∑
ε(Γ′1)Γ

′
2 =

∑
Γ′1ε(Γ

′
2) = Γ,

∑
S(Γ′1)Γ

′
2 =

∑
Γ′1S(Γ

′
2) = ε(Γ)I (2.24)

tell us that ∆(Γ) must contain terms Γ⊗ I ∈ Hn⊗H0 and I⊗Γ ∈ H0 ⊗Hn

and the remaining terms which have intermediate bidegrees. They address
the equation

Γ = (ε⊗ id)(∆(Γ)) = ε(Γ)I+ Γ +
∑

ε(Γ′1)Γ
′
2 (2.25)

which leads us to the relation ε(Γ) = 0 for every non-trivial Feynman dia-
gram.
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In general, the augmentation ideal in a graded bialgebra is given by

Kerε =

∞⊕

n=1

Hn. (2.26)

For P := id − Iε as the projector onto the augmentation ideal, define
Augm := (P ⊗ ...m times...⊗ P )∆m−1 and then set

H(m) := Augm+1/Augm (2.27)

for all m ≥ 1. It determines the bigraded structure on our bialgebra given
by

H =
⊕

n≥0

Hn =
⊕

m≥0

H(m) (2.28)

such that for all k ≥ 1

Hk ⊂
k⊕

j=1

H(j), H0 ≃ H(0) ≃ K. (2.29)

In addition, number of internal edges or number of independent loops can
be applied as the graduation parameters on the renormalization bialgebra
of Feynman diagrams to formulate its corresponding antipode inductively.
We have the recursive formulation

S(Γ) = −Γ−
∑

S(Γ′1)Γ
′
2 (2.30)

for the antipode of each Feynman diagram Γ with respect to its renormal-
ization coproduct. This formula can be applied to show the existence of a
convolution inverse for the identity map.

2.3 Renormalization Hopf algebra of Feynman graphons

and filtration of large Feynman diagrams

The combinatorial interpretation of Feynman diagrams in terms of decorated
rooted trees and the recursive nature of the renormalization coproduct are
the key tools to build a new Hopf algebra HCK of non-planar rooted trees.
This combinatorial Hopf algebra together with the grafting operator B+ has
the universal property with respect to the Hochschild cohomology theory of
commutative Hopf algebras. Each Feynman diagram with nested loops can
be represented by a labeled rooted tree where the root is the symbol for
the original graph and other vertices are symbols of nested loops. Edges
among vertices determine the positions of nested loops with respect to each
other. In addition, it is possible to represent Feynman diagrams with over-
lapping divergencies with rooted trees where we should deal with linear
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combinations of decorated rooted trees [77, 78, 106, 109]. In this section we
present a new interrelationship between the theory of infinite graphs and
the fundamental structure of Green’s functions in Quantum Field Theory
on the basis of rooted trees. We provide a new analytic generalization of
Feynman diagrams organized in to a new topological enriched version of the
Connes–Kreimer renormalization Hopf algebra. For this purpose, we use the
representation of Feynman diagrams via rooted trees to define a new graph
function representation formalism in dealing with expansions of Feynman
diagrams. We show the importance of analytic graphs for the study of solu-
tions of strongly coupled Dyson–Schwinger equations in terms of sequences
of partial sums and the notion of convergence with respect to the topology
of graphons. We then work on the combination of the renormalization Hopf
algebra and graphon models of Feynman diagrams to build a new Hopf alge-
bra of graphons which contribute to the analytic representation of Feynman
diagrams and solutions of Dyson–Schwinger equations. This Hopf algebra
of graphons is useful for us to formulate a new topological generalization of
the Connes–Kreimer BPHZ renormalization to generate non-perturbative
counterterms and related renormalized values. We also use this graphon
model approach to Dyson–Schwinger equations to explain the structure of
a filtration treatment on the space of solutions of these non-perturbative
equations.

On the one hand, Dyson–Schwinger equations are reformulated in terms
of the renormalization Hopf algebra and the grafting operator which act on
Feynman diagrams. The unique solution of each equation DSE with the
general form (1.10) is an infinite formal expansion of Feynman diagrams
together with powers of running couplings. In physical theories with weak
coupling constants, we can expect to study the renormalization of these ex-
pansions by applying many-loop computation techniques under the pertur-
bative setting. In physical theories with strong couplings, these expansions
contain infinite number of terms such that their renormalization generate
infinite number of counterterms. In this situation we need to deal with non-
renormalizable gauge field theories. However we can encapsulate all these
formal expansions in terms of fixed point equations of Green’s functions
of the given physical theory [110]. On the other hand, graph limits, as a
modern branch in infinite combinatorics, study limits of finite combinatorial
objects such as weighted or directed graphs, multi or hyper graphs, bipartite
graphs and posets. Theory of graphons and random graphs is one of the
recent progress in infinite combinatorics where we deal with (symmetric)
measurable functions such as W defined on the probability space Ω. Actu-
ally, a graph limit, as the convergent limit of an infinite sequence of graphs,
can be represented by a graphon which does not have necessarily the unique
representation. The key tool which allows us to concern convergence and
equivalence of graphons is the concept of cut-metric [125]. It is reason-
able to think about any relation between solutions of combinatorial Dyson–
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Schwinger equations namely, formal expansions such as
∑

n≥0(λg)
nXn, such

that g is the bare coupling constant while λg is any running coupling or any
rescaled version of the bare coupling, and graphons generated by infinite se-
quences of sparse graphs. This idea has already been discussed in [168, 169]
where we have shown that the unique solution of each equation DSE can
be obtained as the cut-distance convergent limit of a sequence of random
graphs generated in terms of the combinatorial information of partial sums
Ym =

∑m
i=1(λg)

iXi. In this work we plan to explain the structure of new
Hopf algebra of graphons which can encode solutions of all Dyson–Schwinger
equations in a given (strongly coupled) gauge field theory. This Hopf algebra
can be equipped with the cut-distance topology which enables us to describe
infinite expansions such as XDSE(λg) =

∑
n≥0(λg)

nXn as the unique solu-

tion of the equation DSE(λg) ∈ SΦ(λg) in terms of objects in the boundary
region of the compact topological space SΦ

graphon. In other words, this new

platform enables us to study SΦ,g =
⋃
λ S

Φ(λg), as the collection of all
Dyson–Schwinger equations under different running coupling constants in
the physical theory Φ, in the context of a subspace of the topological Hopf
algebra SΦ

graphon.

2.3.1 Graphons

Generally speaking, the theory of graph limits aims to assign a limit to a
sequence of finite graphs such as {Gn}n≥0 when number of vertices of graphs
in the sequence tends to infinity. There are some different approaches to
define the concept of convergence at this level but the one approach which
is based on random graphs and cut-distance topology is very useful. We can
say that a sequence {Gn}n≥0 of finite graphs is convergent when |Gn| tends
to infinity, if for each fixed value k, the distribution of the random graphs
Gn[k] is convergent when n tends to infinity. In this setting, Gn[k] is a
labeled subgraph of Gn with vertices 1, ..., k obtained by selecting k distinct
vertices v1, ..., vk ∈ Gn under a uniformly random process. Graph limits
can be generated by infinite sequences of dense or sparse graphs. We can
generalize graph limits to graph functions (i.e. graphons) in an arbitrary
probability space where we can study them in terms of equivalence classes
of convergent sequences of finite graphs with respect to (invertible) measure
preserving transformations of the ground probability space. [94, 125]

For a given probability space Ω, graphons are bounded measurable sym-
metric functions such asW : Ω×Ω → [0, 1]. The symmetric condition can be
removed when we work on another class of graphons known as bigraphons.
Bigraphons are useful for us if we want to rebuild Feynman diagrams. We
associate graph functions to Feynman diagrams via decorated rooted trees
where we need to fix an orientation on trees to identify the positions of
nested loops with respect to each other in Feynman diagrams. The choice
of the orientation allows us to work on the upper triangular or lower trian-
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gular versions of the adjacency matrix of rooted trees which are not clearly
symmetric.

The graphon representation of any given graph limit is not unique. In
other words, we can produce different graphon representations in terms of
changing the ground probability space or changing presentation parameters.
However for a fixed probability space, we can associate different labeled
graphons to a given graph limit by applying invertible measure preserving
transformations of the ground probability space.

For a given finite graph, the pixel pictures derived from the adjacency
matrix are the simplest examples of labeled graphons. For a given sequence
of finite simple graphs, the corresponding sequence of pixel pictures derived
from the adjacency matrices can provide labeled graphon representations for
the graph limit of the initial sequence.

A map ρ : Ω1 → Ω2 between probability spaces (Ω1,F1, µ1) and (Ω2,F2, µ2)
is called measure preserving if it is measurable and µ1(ρ

−1(A)) = µ2(A) for
each measurable set A ∈ F2. ρ is called measure preserving bijection if it is
a bijection map and ρ, ρ−1 are measure preserving. It is easy to check that
for a given measure preserving map ρ, the map ρ⊗ ρ : Ω2

1 → Ω2
2 defined by

ρ⊗ ρ(x, y) := (ρ(x), ρ(y)) is also a measure preserving map. If ρ is a bijec-
tion, then fρ, W ρ are called rearrangements of f (as a function on Ω2) and
W (as a function on Ω2

2). Actually, relabeling of labeled graphons can be
understood as a kind of rearrangement. In other words, for a given measure
preserving map ρ, the pull backs of f and W are defined by

fρ(x) := f(ρ(x)), W ρ(x, y) :=W (ρ(x), ρ(y)). (2.31)

If f ∈ L1(Ω2) and W ∈ L1(Ω2
2), then ‖ fρ ‖1=‖ f ‖1 and ‖W ρ ‖1=‖W ‖1.

Definition 2.3.1. (i) For the probability space Ω := [0, 1] together with
the Lebesgue measure, an unlabeled graphon is a graphon up to relabel-
ing such that a relabeling is defined by an invertible measure preserving
transformation of the closed unit interval.

(ii) Graphons W1,W2 are called weakly isomorphic (or weakly equiva-
lent i.e. W1 ≈ W2) if there exists a graphon W and measure preserving
transformations ρ1, ρ2 on the probability space Ω such that W ρ1 =W1 and
W ρ2 =W2 almost everywhere.

Relabeled graphons can be organized into an equivalence class, namely
an unlabeled graphon. For a given labeled graphon W , its corresponding
unlabeled graphon class [W ] is given by

[W ] := {W ρ : (x, y) 7→W (ρ(x), ρ(y)) : ρ is an arbitrary rearrangement}.
(2.32)

Set W(Ω) as the set of all labeled graphons on a given probability space
Ω. It is not difficult to see that if Ω := [0, 1] is the probability space, then
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W(Ω) is the subspace of symmetric functions in L∞([0, 1]2). By defining a
suitable equivalence relation on labeled graphons, which encodes exchanging
decorations (i.e. (2.32)), it is possible to associate a unique graphon class
to each graph limit. This graphon class is called unlabeled graphon. Set
[W](Ω) as the family of all unlabeled graphons on a given probability space
Ω.

Graphons, as edge weighted graphs on the vertex set [0, 1], can provide
a generalization of discrete graphs. Each finite simple graph G defines nat-
urally an unlabeled graphon class [WG] in terms of its adjacency matrix.
First we build a labeled graphon WG with respect to the information of
the adjacency matrix. Consider V (G) as a probability space such that each
vertex has probability 1

|G| . Define the map W 1
G : V (G) × V (G) −→ [0, 1] as

follows
W 1
G(u, v) := {1, if u and v are adjacent

0, otherwise . (2.33)

It is easy to see that W 1
G is a symmetric measurable function. In an al-

ternative setting, we can also consider Ω = (0, 1] as the probability space
which is equipped with a partition {Ini }i=1,...,n such that Ini := ( i−1n , in ]. If
the vertices of G is labeled by 1, .., n, then the corresponding graph function
W 2
G is given by

W 2
G(x, y) =W 1

G(i, j) = 1, x ∈ Ini , y ∈ Inj (2.34)

whenever there exists an edge between i and j.
The homomorphism density is an useful tool in dealing with the prob-

ability of the existence of a subgraph in an extremely large graph. For a
given finite graph G, the homomorphism density of each subgraph H in G
is given by

t(H,G) :=
hom(H,G)

|V (G)||V (H)|
(2.35)

such that hom(H,G) is the number of graph homomorphisms from H to
G. It is possible to generalize this idea for the level of graph limits where
this parameter informs the density of H as a subgraph in G asymptotically
when the number of vertices of G tends to infinity. For a given graphon
W : Ω2 → [0, 1] and a simple finite graph H, the homomorphism density is
defined by

t(H,W ) :=

∫

Ω|H|

∏

ij∈E(H)

W (xi, xj)dµ(x1)...dµ(x|H|). (2.36)

If the graphon WG is a labeled graphon with respect to a given graph G,
then we have t(H,G) := t(H,WG). Homomorphism densities provide an
alternative way of defining convergence of sequences of dense graphs. It
is shown that the sequence {Gn}n≥0 converges to the labeled graphon W
iff the sequence {t(H,Gn)}n≥0 of homomorphism densities converges to the
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homomorphism density t(H,W ) for each simple subgraph H. Therefore
any convergent sequence of finite sparse graphs should be convergent to
the graphon with zero density which is almost everywhere the 0-graphon.
However the theory of graphons of sparse graphs has been developed to
obtain non-zero graphons for sequences of sparse graphs in terms of the
rescaled versions of the canonical graphons or other normalization methods
applied on the ground probability space. [29, 94, 125, 169]

The space of graphons provides the completion of the space of finite
graphs with respect to a topology generated by a particular metric namely,
cut-distance. The cut-distance between labeled graphons W,U is defined by

δcut(W,U) := infρ,τ supS,T |

∫

S×T
W (ρ(x), ρ(y))−U(τ(x), τ(y))dxdy| (2.37)

such that the infimum is taken over all relabeling ρ onW and τ on U and the
supremum is taken over all measurable subsets S, T of the closed interval.
The infimum over relabeling allows us to define the cut-distance on the space
of unlabeled graphons.

Weakly isomorphic graphons and relabeled graphons with respect to a
given graphon have the same corresponding symmetric measurable functions
almost everywhere. The distance (2.37) does not distinguish between weakly
isomorphic graphons. We can see that graphonsW,U are weakly isomorphic
whenever for any finite subgraph H, we have t(H,W ) = t(H,U).

Theorem 2.3.2. Each graphon is the cut-distance convergent limit of a se-
quence of finite graphs. In addition, the cut-distance δcut determines a com-
pact topological structure on the quotient space W(Ω)/ ≈ of labeled graphons
with respect to the weakly isomorphic relation. [94, 125]

2.3.2 Feynman graphons

It is the place to deal with a new application of graph limits to Quantum
Field Theory where we aim to achieve a new interpretation of Feynman
diagrams and their corresponding formal expansions. In general, any arbi-
trary Feynman diagram, as a weighted graph decorated by some physical
parameters, might have many nested or overlapping loops. In higher order
perturbation expansions in (strongly) coupled gauge field theories, we can
investigate the appearance of many loops Feynman diagrams. We can en-
code these loops as vertices of the decorated rooted tree representation of the
original Feynman diagram and then consider this sparse graph to generate
its corresponding graphon model. Decorated rooted trees, as simple graphs
with low densities, are useful to simplify Feynman diagrams and their com-
plicated formal expansions which have more densities than sparse graphs.
Generating non-zero graphon models for the infinite sequence of rooted trees
requires to apply renormalization methods on the canonical graphons and
the ground probability space. [29, 169, 170, 174]
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Lemma 2.3.3. For a fixed probability space (Ω, µΩ), the algebraic combi-
natorics of each Feynman diagram can be encoded by a unique unlabeled
graphon class.

Proof. A rooted tree t is a finite, connected oriented graph without loops
in which every vertex has exactly one incoming edge, except one namely,
the root which has no incoming but only outgoing edges. We can put two
classes of decorations on each tree namely, vertex-labeled and edge-labeled.
The rooted tree representations of Feynman diagrams can be defined via the
grafting operator. The free commutative algebra generated by isomorphism
classes of non-planar rooted trees is actually the polynomial algebra gen-
erated by symbols t where each symbol represents one isomorphism class.
The concatenation is the product and the empty tree is the unit for this
polynomial algebra. In addition, this polynomial algebra can be equipped
by a modified version of the renormalization coproduct given by

∆CK(t) = I⊗ t+ t⊗ I+
∑

c

Rc(t)⊗ Pc(t) (2.38)

such that the sum is taken over all admissible cuts c on t which divides the
tree into two parts. The partRc(t) contains the original root of t and the part
Pc(t) is a forest of subtrees. The resulting Hopf algebra HCK of non-planar
rooted trees is connected graded free commutative non-cocommutative finite
type. Decorations enable us to adapt this combinatorial Hopf algebra with
respect to physical theories. Each Feynman diagram Γ, which might contain
divergent Feynman subgraphs, is encoded by a decorated non-planar rooted
tree tΓ such that the root represents the full graph and each leaf is a divergent
subgraph which has no further subdivergencies. If the original graph has
overlapping subdivergencies, then we can replace the single rooted tree by
a sum of decorated rooted trees after disentangling the overlaps. Thanks to
these rules, we can embed the Hopf algebra HFG(Φ) of Feynman diagrams
of Φ into the decorated Connes–Kreimer Hopf algebra HCK(Φ) as a closed
Hopf subalgebra. This embedding is encapsulated by the injective Hopf
algebra homomorphism

Γ 7−→ Ξ(Γ) :=

r∑

j=1

B+
Γj ,Gj,i

( kj∏

i=1

Ξ(γj,i)
)

(2.39)

such that Γ =
∏kj
i=1 Γj ⋆j,i γj,i and each Gj,i is the gluing information. For a

given decorated non-planar rooted tree t, if the longest path from the root
to a leaf contains k edges, then the renormalization coproduct ∆CK(t) is
a sum of at least k + 1 terms. In other words, the decorated non-planar
rooted tree t represents an iterated integral with k nested sub-divergencies
while each vertex corresponds to a sub-integral without any sub-divergencies.
[65, 67, 68, 77, 88]
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For any Feynman diagram Γ without overlapping sub-divergencies, the
decorated tree tΓ := Ξ(Γ) is a simple finite weighted graph where thanks to
its corresponding adjacency matrix we can determine the labeled graphons
WtΓ of the form (2.33) or (2.34). Set [WtΓ ] as the unlabeled graphon class
associated to tΓ. Up to the rearrangement, weakly isomorphic relation and
the embedding (2.39), we can show that the unlabeled graphon [WtΓ ].

For any Feynman diagram Γ which has some overlapping sub-divergencies,
uΓ := Ξ(Γ) is a linear combination of decorated non-planar rooted trees such
as uΓ = α1t1 + ... + αntn. In this situation, the labeled graphons WuΓ can
be determined by normalizing or rescaling methods used on Wtis. For each
1 ≤ i ≤ n, the labeled graphon Wti is projected or embedded into the
subinterval Ii of [0, 1] and then we have

WuΓ(x, y) :=
Wt1 + ...+Wtn

|Wt1 + ...+Wtn |
. (2.40)

The subintervals Ii are determined in terms of the grading value of rooted
trees and cut-distance topology.

Remark 2.3.4. For each Feynman diagram Γ and each natural number n ≥ 2,
the graphon WnΓ is actually n copies of WΓ inside the closed unital inter-
val. We can generate this graphon by measure preserving transformation
ρn : x 7→ nx on [0, 1] which is not invertible with respect to the Lebesgue
measure. Therefore WΓ and WnΓ are weakly isomorphic.

We use the phrase ”Feynman graphons” for this class of graphons which
provide an analytic generalizations for Feynman diagrams.

Definition 2.3.5. A sequence {Γn}n≥0 of non-trivial Feynman diagrams is
called convergent when n tends to infinity, if the corresponding sequence
{[WtΓn

]}n≥0 of non-zero unlabeled graphon classes is convergent to a unique
non-zero Feynman graphon class with respect to the cut-distance topology
when n tends to infinity.

Non-zero graphons, as the cut-distance convergent limit of the sequences
of sparse graphs, can be built in terms of applying rescaling or renormal-
ization methods to the ground probability space or canonical graphons.
[29, 174]

Suppose the unlabeled graphon class [W ] is the convergent limit for the
sequence {[WtΓn

]}n≥0. If we consider the pixel picture representation of
the graphon [W ], then we can associate an infinite tree or forest t such
that Wt ∈ [W ] and W ∈ [Wt]. Therefore [W ] = [Wt]. Thanks to the
homomorphism (2.39), it is possible to build an extremely large Feynman
diagram Γt with respect to the infinite tree or forest t. This Γt can be
described as the convergent limit of the sequence {Γn}n≥0 with respect to
the cut-distance topology. We can also show that this limit is unique up to
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the rearrangement, weakly isomorphic relation and the embedding (2.39).
[169]

Graphon models for Feynman diagrams in a given gauge field theory can
lead us to study formal expansions of Feynman diagrams in the context of
the theory of random graphs.

The study of random graphs was begun by Erdos, Renyi and Gilbert
when they were working on a probabilistic construction of a graph with
large girth and large chromatic number. After a short period of time, work
on random graphs Gn,m has been concerned by many mathematicians in
Combinatorics and Discrete Mathematics. Nowadays it is not difficult to
observe various applications of these combinatorial objects in many fields
in Mathematics and other applied sciences. Generally speaking, the theory
of random graphs aims to provide some results such as ”a combinatorial
property A almost always implies another combinatorial property B”. For
any integer value n and 0 ≤ p ≤ 1, a random graph G(n, p) is defined
by taking n nodes and connecting any two of them with the probability p,
making an independent decision about each pair. There are alternative ways
to build random graphs. As an example, consider Ln,m as the collection of
all labeled graphs with the vertex set V = [n] = {1, 2, ..., n} and m edges
such that 0 ≤ m ≤

(
n
2

)
. To each G ∈ Ln,m, assign the probability

P(G) =
1

((n2)
m

) . (2.41)

In other words, start with an empty graph on the set [n] and insert m edges

in such a way that all possible
((n2)
m

)
choices are equally likely. The resulting

graph Gn,m := ([n], En,m) is known as the uniform random graph. As other
example, fix 0 ≤ p ≤ 1 and for each graph G with the vertex set [n] and
0 ≤ m ≤

(n
2

)
edges, assign the probability

P(G) = pm(1− p)(
n
2)−m. (2.42)

In other words, start with an empty graph with the vertex set [n] and con-
sider

(n
2

)
to insert edges independently with the probability p. The resulting

graph Gn,p := ([n], En,p) is known as the binomial random graph.
It is shown that the random graph Gn,p with 0 ≤ m ≤

(n
2

)
edges is

the same as one of the
((n2)
m

)
graphs that have m edges. For enough large n,

random graphs Gn,m and Gn,p have the same behavior whenever the number
of edges m in Gn,m is very close to the expected number of edges of Gn,p,
namely,

m =

(
n

2

)
p ≈

n2p

2
. (2.43)

It is equivalent to say that the edge probability in Gn,p should be p ≈ 2m
n2 .

[79]
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Lemma 2.3.6. Each labeled graphon determines a class of random graphs.

Proof. If we have a simple weighted graph G, then we can build a random
simple graph R(G) by including the edge with probability equal to its weight.
Thanks to this idea, suppose we have a labeled graphonW and finite subset
S := {s1, ..., sn} in [0, 1]. We can make a weighted graph G(S ,W ) with
|S | = n nodes such that the edge sisj has the weight W (si, sj). In general,
the random graph R(n,W ) := R(G(S ,W )) with respect to the weighted
graph G(S ,W ) is our promising graph such that S is a set of n points which
are selected independently from the closed interval.

The random graphs R(n,W ) are useful to approximate graphons W
associated to large numbers of points in the closed interval. It is shown
that with the probability 1, the sequence {R(n,W )}n≥0 is convergent to
the graphon W with respect to the cut-distance topology when n tends to
infinity. [125]

Thanks to the discussed topics, it is time to observe some new appli-
cations of the graph function representation theory of Feynman diagrams
in dealing with expansions of these physical graphs in Quantum Field The-
ory. At the first application, we address a new interpretation of solutions of
Dyson–Schwinger equations in the context of sequences of random graphs
derived from partial sums of solutions.

Theorem 2.3.7. The unique solution of each combinatorial Dyson–Schwinger
equation can be described as the cut-distance convergent limit of a sequence
of finite Feynman diagrams.

Proof. The full proof is given in [169] and here we only address the main
idea. Suppose DSE be a combinatorial Dyson–Schwinger equation with the
general form (1.10) such that its unique solution is given by

XDSE =
∑

n≥0

(λg)nXn (2.44)

while g is the bare coupling constant and the generators Xn are determined
by the recursive relations (1.11). Make the new sequence {Ym}m≥1 of partial
sums of the expansion

∑
n≥0(λg)

nXn such that we have

Ym := (λg)1X1 + ...+ (λg)mXm. (2.45)

It is shown in [19, 73] that the large Feynman diagram XDSE belongs to a
completion of HFG[[g]] with respect to the n-adic topology. We claim that
the sequence {Ym}m≥1 of finite graphs converges to the large Feynman dia-
gram XDSE with respect to the cut-distance topology. For this purpose, we
can apply the n-adic metric and the graphon representations of the compo-
nents Xn to build a random graph with respect to each graph Ym. It leads
us to associate a sequence {R(Ym)}m≥1 of random graphs with respect to
the sequence {Ym}m≥1 which is cut-distance convergent to XDSE.
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The structure of a modification of the Connes–Kreimer BPHZ renormal-
ization for large Feynman diagrams has been formulated in [169] where we
worked on a topological completion of the renormalization Hopf algebra of
Feynman diagrams with respect to the cut-distance topology. As the second
application, we work on Feynman graphon formalism to build a renormal-
ization program on the collection SΦ,g under a topological Hopf algebraic
setting. This new approach enables us to proceed our knowledge about
non-perturbative versions of Feynman rules which act on large Feynman di-
agrams. For this purpose we explain the structure of a new Hopf algebra
derived from the renormalization coproduct on graphons.

Theorem 2.3.8. Thanks to the renormalization coproduct, there exists a
topological Hopf algebraic structure on the collection SΦ

graphon of all unla-
beled graphons which contribute to represent (large) Feynman diagrams of a
physical theory Φ.

Proof. We plan to equip SΦ
graphon with an enriched version of the renormal-

ization Hopf algebra which is completed with respect to the cut-distance
topology.

Thanks to Lemma 2.3.3, for each finite Feynman diagram Γ, we asso-
ciate the unlabeled graphon class [WΓ]. In addition, the unique solution
of each combinatorial Dyson–Schwinger equation DSE in SΦ,g determines a
unique large Feynman diagram XDSE such that thanks to Theorem 2.3.7,
this infinite graph can be interpreted as the convergent limit of the sequence
of partial sums with respect to the cut-distance topology. Therefore it does
make sense to replace objects of SΦ,g with large Feynman diagrams such as
XDSE as the unique solution of the equation DSE. Thanks to Lemma 2.3.3,
we associate a unique unlabeled graphon class [WtXDSE

] to the large Feyn-
man diagram XDSE via its rooted tree (forest) representation. For simplicity
in the presentation, from now we use the notation [WXDSE

] for this graphon
class.

It is possible to lift the renormalization coproduct (2.10) onto the level of
unlabeled graphons which contribute to the description of (large) Feynamn
diagrams. For a given finite Feynman diagram Γ with the corresponding
unlabeled graphon [WΓ], define

∆graphon([WΓ]) :=
∑

[Wγ ]⊗ [WΓ/γ ] (2.46)

such that the sum is taken over all unlabeled graphon classes such as [Wγ ]
associated to γ as the disjoint union of 1PI superficially divergent subgraphs
of Γ.

Thanks to Theorem 2.3.7, for the unlabeled graphon class [WXDSE
] cor-

responding to the large Feynman diagram XDSE, define its coproduct as the
convergent limit of the sequence {∆graphon([WYm ])}m≥1 of the coproducts of
the finite partial sums with respect to the cut-distance topology.
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Now we can adapt (2.46) for the level of large Feynman diagrams and
define

∆graphon([WXDSE
]) :=

∑
[WΥ]⊗ [WXDSE/Υ] (2.47)

such that the sum is taken over all unlabeled graphon classes such as [WΥ]
associated to Υ as the disjoint union of 1PI superficially divergent subgraphs
of XDSE.

If we consider objects of SΦ
graphon as generators of a free commutative

algebra, then thanks to (2.46) we obtain a bialgebra structure on Feynman
graphons which is graded in terms of the number of independent loops of
the corresponding Feynman diagrams. The unlabeled graphon class [WI]
corresponding to the empty graph is the unit for this bialgebra. The counit
is also defined by

ε̃([WΓ]) = {
1, [WΓ]=[WI]
0, else . (2.48)

The existence of the graduation parameter is the key tool to define an
antipode map. For each finite Feynman diagram Γ, we have

Sgraphon([WΓ]) = −[WΓ]−
∑

Sgraphon([Wγ(1) ])[Wγ(2) ] (2.49)

such that ∆graphon([WΓ]) =
∑

[Wγ(1) ]⊗ [Wγ(2) ].
Thanks to Theorem 2.3.7, for the unlabeled graphon class [WXDSE

] cor-
responding to the large Feynman diagram XDSE, define its antipode as
the convergent limit of the sequence {Sgraphon([WYm ])}m≥1 of unlabeled
graphons of finite partial sums Ym with respect to the cut-distance topol-
ogy. Since partial sums are finite graphs, their corresponding graphon type
antipodes Sgraphon([WYm ]) can be obtained inductively by the coproduct
∆graphon where we have

Sgraphon([WYm ]) = −[WYm ]−
∑

Sgraphon([WΓ(1)
])[WΓ(2)

] (2.50)

such that ∆graphon([WYm ]) =
∑

[WΓ(1)
]⊗ [WΓ(2)

].
Now we can adapt the antipode (2.49) for the level of large Feynman

diagrams and define

Sgraphon([WDSE]) = −[WDSE]−
∑

Sgraphon([WΥ(1)
])[WΥ(2)

] (2.51)

such that ∆graphon([WDSE]) =
∑

[WΥ(1)
]⊗ [WΥ(2)

].

Therefore SΦ
graphon becomes a connected graded free commutative non-

cocommutative (not necessarily finite type) Hopf algebra. In addition, the
recursive structure of the coproduct (2.47) and the antipode (2.51) together
with their linear property allow us to show the compatibility of this Hopf
algebraic structure with the cut-distance topology.

Feynman graphon models of Feynman diagrams allow us to show that
the space SΦ

graphon (given by Theorem 2.3.8) is completed with respect to
the cut-distance topology.
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Corollary 2.3.9. Let V be a complex vector space with a basis labeled
by coupling constants of a given Quantum Field Theory Φ, and suppose
Diff(V ) be the group of formal diffeomorphisms of V tangent to the identity
at 0 ∈ V and Hdiff(V ) be its corresponding Hopf algebra. The complex Lie
group GΦ

graphon(C) of characters on Feynman graphons can be represented by
Diff(V ).

Proof. The Hopf algebra Hdiff(C) of formal diffeomorphisms of C tangent
to the identity has generators such as an which play the role of coordinates
of

φ(x) = x+
∑

n≥2

an(φ)x
n (2.52)

such that φ is a formal diffeomorphism satisfying φ(0) = 0, φ′(0) = id. Its
coproduct is given by

∆(an)(φ1 ⊗ φ2) = an(φ2 ◦ φ1). (2.53)

We can define a Hopf algebra homomorphism Ψ : Hdiff(V ) → HFG(Φ)
with the corresponding dual group homomorphism Ψ̂ : GΦ(C) → Diff(V ).
The map Ψ maps the coefficients of the expansion of formal diffeomorphisms
to the coefficients in the renormalization Hopf algebra of the expansions of
the effective (or running) coupling constants of the physical theory as formal
power series in the bare coupling constants. As the consequence, for each
Dyson–Schwinger equation DSE with the corresponding Hopf subalgebra
HDSE and Lie (sub)group GDSE(C), we can define a group homomorphism
Ψ̂DSE from GDSE(C) to Diff(V ). [46, 164]

Thanks to Lemma 2.3.3, we can embed HFG(Φ) into the renormaliza-
tion Hopf algebra SΦ

graphon of Feynman graphons. This allows us to lift the
map Ψ onto the level of Feynman graphons and build a new Hopf algebra
homomorphism Ψ : Hdiff(V ) → SΦ

graphon with the corresponding dual group

homomorphism Ψ̂ : GΦ
graphon(C) → Diff(V ).

The construction of a canonical filtration on terms Xns of the unique
solution of a given Dyson–Schwinger equation has been explained in [121]
where each filtered term maps to a certain power of L in the log-expansion.
The original idea is to filter images of Feynman diagrams in a particular
universal enveloping algebra which generates a quasi-shuffle type Hopf al-
gebra. Thanks to Theorem 2.3.7 and Theorem 2.3.8, we aim to adapt this
filtration for large Feynman diagrams.

Theorem 2.3.10. Renormalized Feynman rules characters of the Hopf al-
gebra SΦ

graphon filtrate large Feynman diagrams.

Proof. Set Hword as the vector space of words which contains Hletter as the
subspace of letters. Set a commutative associative map Θ : Hletter×Hletter →

44



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

Hletter as the Hoffman pairing which sends two generators a, b to another
generator Θ(a, b) and adds degrees. Define the generalized quasi-shuffle
product ⊖Θ on Hword as follows

au⊖Θ bv := a(u⊖Θ bv) + b(au⊖Θ v) + Θ(a, b)(u⊖Θ v) (2.54)

which builds a commutative associative algebra with empty word I as the
unit. We can equip this algebra with the following coproduct structure

∆word(w) =
∑

vu=w

u⊗ v (2.55)

which gives us a bialgebra structure on Hword with the counit Îword. The
length of each word determines a natural graduation parameter on this bial-
gebra which leads us to define an antipode recursively. As the consequence,
(Hword,⊖Θ, I,∆word, Îword, Sword) is a graded connected commutative unital
non-cocommutative counital Hopf algebra [66, 87]. We have

⊖Θ ◦(Sword ⊗ id) ◦∆word = ⊖Θ ◦ (id⊗Sword) ◦∆word = Iword ◦ Îword. (2.56)

In this setting, the grafting operator on words allows us to add a letter to
the first place

B+
a (u) := au. (2.57)

We can check that for each a, the grafting operators are Hochschild one-
cocycles. It is possible to embed the renormalization Hopf algebra of Feyn-
man diagrams into the Hopf algebra of words. This embedding is defined
in terms of the homomorphism ν : HFG(Φ) → Hword determined by the
relations

ν(I) = Iword, ⊖Θ ◦ (ν ⊗ ν) = ν ◦m, Îword ◦ ν = ν ◦ Î,

∆word ◦ ν = (ν ⊗ ν) ◦∆FG, Sword ◦ ν = ν ◦ S, B+
an ◦ ν = ν ◦B+

γn . (2.58)

The morphism ν sends each primitive Feynman graph γn to a letter an.
Thanks to Theorem 2.3.8, it is possible to lift the embedding ν onto a
new homomorphism ν which embeds the renormalization Hopf algebra of
graphons SΦ

graphon into the Hopf algebra of words. It is enough to replace
each Feynman diagram Γ with its corresponding unlabeled graphon class
[WΓ].

Consider Dyson–Schownger equations for 1PI Green’s functions with the
general form

Γn̄ = 1 +
∑

γ,res(γ)=n̄

g|γ|

Sym(γ)
B+
γ (X

γ
R) (2.59)

such that B+
γ are Hochschild closed one-cocycles of the Hopf algebra of Feyn-

man diagrams indexed by Hopf algebra primitives γ with external legs n̄,
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Xγ
R is a monomial in superficially divergent Green’s functions which dress

the internal vertices and edges of γ. If we apply the renormalized Feyn-
man rules character φr to a Feynman graph which contributes to this class
of equations, then we can obtain a polynomial in a suitable external scale
parameter L = logS/S0 such that S0 fixes a reference scale for the renor-
malization process. At the end of the day, we can get a renormalized version
Gr(g, L, θ) of Green’s functions. Lemma 2.3.3 and Theorem 2.3.8 are use-
ful to reformulate the equation (2.59) in the language of graphons as an
equation in the Hopf algebra SΦ

graphon. The embedding ν enables us to lift
this graphon model Dyson–Schwinger equations onto their corresponding
equations in the Hopf algebra of words. We have

XDSE,word = ν([WXDSE
]) = Iword +

∑

n≥1

gnB+
ln
(X
⊖Θ(n+1)
DSE,word) (2.60)

such that XDSE,word is the word representation of the unlabeled graphon
class [WXDSE

] with respect to the large graph XDSE. We have XDSE,word =∑
n≥0 g

nzn such that each zn = ν(Xn) is determined recursively by the
relations

zn =

n∑

m=1

B+
lm
(

∑

k1+...+km+1=n−m, ki≥0

zk1 ⊖Θ ...⊖Θ zkm+1). (2.61)

We plan to explain the filtration structure on words and then by applying
the inverse of the embedding ν, we can adapt it for the level of Feynman
graphon representations of large Feynman diagrams which contribute to
solutions of Dyson–Schwinger equations.

The canonical candidate for the filtration on words is built in terms of
the lower central series at the Lie algebra level where we need to apply the
theory of Hall sets and Hall basis. The Milnor–Moore theorem ([144]) allows
us to build the graded dual Hopf algebra to Hword in terms of the universal
algebra of a particular Lie algebra.

A bilinear anti-symmetric map [., .] on a vector space L over the field K

with characteristic zero defines a Lie algebra structure if it obeys the con-
ditions

∀x ∈ L : [x, x] = 0,

∀x, y, z ∈ L : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (2.62)

The lexicographical ordering enables us to build the Hall basis for the Lie
algebra L [83, 84]. For a given ordering x1 < x2 < ... < [x1, x2] < ... on L,
define [x, x′] as an element of a Hall basis for L iff
- x, x′ ∈ L are Hall basis elements with x < x′,
- if x′ = [x1, x2], then x

′ ≥ x2.
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The unique universal enveloping algebra associated to L is defined in terms
of the tensor algebra (T (L),⊗, 1) such that

T (L) :=
⊕

n≥0

L⊗n. (2.63)

Set

I := {s⊗ (x⊗ y − y ⊗ x− [x, y])⊗ t : x, y ∈ L; s, t ∈ T (L)} (2.64)

as a two sided ideal and then define the equivalent classes of the form

[t] := {s ∈ T (L) : s− t ∈ I}. (2.65)

T (L)/I is actually the unique universal enveloping algebra U(L) generated
by L where the product of this algebra is given by

mU(L)([s]⊗ [t]) := [s⊗ t] (2.66)

and [1] is the unit of this algebra. In addition, we can equip U(L) by a
graded Hopf algebra structure with the coproduct

∆U(L)([x]) = [x]⊗ I+ I⊗ [x] (2.67)

Set Lword as the Lie algebra corresponding to the Hopf algebra Hword.
Define the decreasing sequence

Lword = L1 ≥ L2 ≥ L3 ≥ ... (2.68)

such that Ln+1 is generated by all objects [x, y] with x ∈ L and y ∈ Ln. For
letters a1, a2, ...,Θ(a1, a2), ... ∈ Hletter, set x1, x2, ...,Θ(x1, x2), ... ∈ L/L2.
The duality between Hword and U(Lword) can be determined by the unique
linear invertible map ν such that

ν(ai) = [xi], ν(Θ(ai, aj)) = [Θ(xi, xj)], ν(aiaj) = [xi ⊗ xj], .... (2.69)

The universal enveloping algebra U(Lword) is a filtered bialgebra.
Thanks to the structure of the quasi-shuffle product, we can build a

filtration algorithm where it requires to consider all words with length k
into the lexicographical order in terms of the concatenation commutator
with respect to the Hall basis which generates words with the length k − 1.
This procedure, which starts with the maximal length of words, should be
repeated for the full quasi-shuffle products of the k corresponding letters and
then insert them into the expression [121]. Now if we apply the inverse of
the embedding ν, then this filtration can be defined on Feynman graphons
and large Feynman diagrams which live in SΦ

graphon.
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Let us now apply renormalized Feynman rules characters on large Feyn-
man diagrams. The Hopf algebra homomorphism ν sends the renormalized
Feynman rules character φr to

ψr = φr ◦ ν
−1. (2.70)

In [121], it is shown that for each word w ∈ Hword with the corresponding
[x] ∈ U(Lword), if x ∈ T (Lword) is also an element of the Lie algebra Lword,
then ψr(u) maps to the L-linear part of the log-expansion of the renormalized
Green’s functions. In addition, we have

ψr(u⊖Θ v) = ψr(u).ψr(v). (2.71)

For a given Feynman diagram Γ with the coradical degree rΓ, we have

φr(Γ) =

rΓ∑

j=1

cΓj (θ)L
j (2.72)

such that
cΓj = c⊗j1 ∆̃j−1

FG (Γ) (2.73)

while c⊗j1 : HFG(Φ) ⊗ ...j times ⊗ HFG(Φ) → C is a symmetric function.
Thanks to the Hopf algebra homomorphism ν which preserves the co-radical
degree, for any word u ∈ Hword, we have

ψr(u) =

ru∑

j=1

dujL
j (2.74)

such that duj = c
ν−1(u)
j .

Thanks to the graphon representations of Dyson–Schwinger equations
(Theorem 2.3.7 and Theorem 2.3.8), we want to lift the Feynman rules
character (2.72) onto the level of large Feynman diagrams.

In [121], it is shown that ψr maps the shuffle product u1⊖Θ...⊖Θun to the
Ln-term in the log expansion such that as the result, this process filtrates
coefficients Xn in the unique solution of each Dyson–Schwinger equation.
We lift this story onto the level of Feynman graphons where we have the
correspondences Ym 7→ [WYm] for each m ≥ 1 and XDSE 7→ [WXDSE

]. Now
the renormalized character ψ̃r := φ̃r ◦ ν

−1 can help us to map the formal
expansions

∑m
1 ui1 ⊖Θ ...⊖Θ uik of shuffle products of words corresponding

to the partial sums Ym of XDSE to a certain term in the expansion

φ̃r([WYm ]) =

rYm∑

j=1

cYmj (θ)Lj (2.75)

such that
cYmj = c⊗j1 ∆̃j−1

graphon([WYm ]). (2.76)
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When m tends to infinity the sequence {cYmj }m≥1 of coefficients converges

to cXDSE
j (for each j) with respect to the cut-distance topology. In addition,

Feynman rules characters are linear homomorphisms which means that when
m tends to infinity, the sequence {φ̃r([WYm ])}m≥1 is cut-distance convergent
to φ̃r([WXDSE

]).
Therefore for the infinite graphXDSE, we can obtain the following formal

expansion as the result of the application of the renormalized Feynman rules
character φ̃r.

φ̃r([WXDSE
]) =

rXDSE∑

j=1

cXDSE
j (θ)Lj (2.77)

such that
cXDSE
j = c⊗j1 ∆̃j−1

graphon([WXDSE
]). (2.78)

Suppose SΦ
graphon,(i) is the vector space generated by those Feynman

graphons derived from solutions of Dyson–Schwinger equations. The con-
sidered Feynman graphons are filtered in terms of the canonical filtration
on their corresponding words. Namely, the filtration (i) can be defined by
applying ν and ψ̃r while the associated words map to a similar term i in the
log-expansion (2.77). Set

SΦ
graphon,(0) � SΦ

graphon,(1) � ... � SΦ
graphon,(i) � ... � SΦ,g

graphon (2.79)

as the resulting filtration on all Feynman graphons which contribute to solu-
tions of Dyson–Schwinger equations such that SΦ,g

graphon :=
⋃
i≥0 S

Φ
graphon,(i) ⊂

SΦ
graphon. It defines the graded vector space GΦ given by

GΦ
[0] = SΦ

graphon,(0)

GΦ
[i] := SΦ

graphon,(i)/S
Φ
graphon,(i−1), ∀i > 0 (2.80)

where we have
GΦ =

⊕

i≥0

GΦ
[i]. (2.81)

We can show that GΦ and SΦ,g
graphon are isomorphic as vector spaces.

Theory of words and quasi-shuffle products were studied in [87] where
the existence of Hopf algebra structures on words have been addressed. The
applications of shuffle type of products to Hopf algebraic renormalization
have been addressed in different settings [66, 109, 160, 165]. There is also
another alternative machinery ([160]) to lift Dyson–Schwinger equations in
SΦ,g onto their corresponding equations in the Hopf algebra of words. Ac-
cording to this approach, we apply the rooted tree representation of the
Connes–Marcolli shuffle type renormalization Hopf algebra HU and then
embed HU into an adapted version of the Hopf algebra HCK decorated by
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a particular Hall set. In this setting, we can address the question about
the existence of another filtration on Dyson–Schwinger equations originated
from Hopf algebra of words.

Thanks to the explained Hopf algebraic formalism we are ready to for-
mulate a generalization of the BPHZ renormalization machinery for non-
perturbative QFT in the context of Feynman graphons which will be dis-
cussed in the next part.

2.4 A generalization of the BPHZ renormaliza-

tion machinery for large Feynman diagrams

via Feynman graphons

In gauge field theories with strong couplings such as QCD, the size of the
coupling constant even at rather large values of the exchanged momentum
is in the range that the convergence of the perturbative expansion is slow.
Although in higher energy levels, the theory enjoys the asymptotic free-
dom property, several orders of perturbation theory should be concerned to
provide a greater accuracy where we need to deal with the evaluation of a
large class of higher order Feynman diagrams. We can address the correc-
tions to the quark self-energy as a complicated example in this setting. The
situation goes stranger when we deal with QCD in relatively lower energy
levels where non-perturbative aspects do appear. This is the level that we
need to build a powerful theoretical model for the study of interactions of
elementary particles. Thanks to the Hopf algebra structure SΦ

graphon, which
encodes Dyson–Schwinger equations of a given physical theory Φ, in this
part we plan to build a topological Hopf algebraic renormalization program
for large Feynman diagrams in the context of the Riemann–Hilbert problem.
We describe the construction of the Connes–Kreimer renormalization group
at the level of Feynman graphons.

The renormalization Hopf algebra HFG(Φ) of Feynman diagrams of the
physical theory Φ encodes enough mathematical tools to explain the step by
step removal of sub-divergencies. The graded dual of this Hopf algebra iden-
tifies an infinite dimensional complex pro-unipotent Lie group denoted by
GΦ(C). Feynman rules, which allow us to replace Feynman diagrams with
their corresponding Feynman integrals, are encoded by some elements of
GΦ(C). This Lie group has been applied by Connes and Kreimer to describe
perturbative renormalization as a special instance of a general mathemati-
cal procedure of multiplicative extraction of finite values in the context of
the Riemann–Hilbert problem. According to this approach, the BPHZ per-
turbative renormalization can be described as the existence of the Birkhoff
factorization for loops such as γµ defined on an analytic curve C ⊂ CP 1 (as
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the domain) which has values in GΦ(C). It is shown that

γµ(z) = γ−(z)
−1γµ,+(z) (2.82)

such that γµ,+(z) is the boundary value of a holomorphic map from the inner
domain of C to the group GΦ(C) and γ−(z) is the boundary value of the
outer domain of C to the group GΦ(C). In addition, γ− is normalized by
γ−(∞) = 1. The renormalized theory is the evaluation of the holomorphic
part γµ,+ of γµ as a product of two holomorphic maps γ± from the connected
components C± of the complement of the circle C in the Riemann sphere
CP 1. For Dimensional Regularization, we are interested in an infinitesimal
disk around z = 0 while the curve C is the boundary of this disk. Then we
have 0 ∈ C+ and ∞ ∈ C−. [43, 44]

Each regularized Feynman integral U z(Γ(p1, ..., pN )) defines a loop γµ(z)
which allows us to lift the analytic formulation of the Birkhoff factorization
onto the level of affine group schemes. Set

K = C{z}[z−1], O1 = C{z}, O2 = C[z−1]. (2.83)

It is shown that each character φ ∈ GΦ(K) has a unique Birkhoff factoriza-
tion φ = (φ−◦S)∗φ+ such that φ+ ∈ GΦ(O1), φ− ∈ GΦ(O2) and ε−◦φ− = ε.
The BPHZ renormalization procedure has been encapsulated in terms of the
deformed version of the antipode with respect to the Minimal Subtraction
scheme. We have

Γ 7−→ SφRms
∗ φ(Γ) (2.84)

such that

SφRms
(Γ) = −Rms(φ(Γ))−Rms(

∑

γ⊂Γ

SφRms
(γ)φ(Γ/γ)). (2.85)

Therefore
SφRms

∗ φ(Γ) = R(Γ) + SφRms
(Γ) (2.86)

such that

R(Γ) = U zµ(Γ) +
∑

γ⊂Γ

c(γ)U zµ(Γ/γ) = φ(Γ) +
∑

γ⊂Γ

SφRms
(γ)φ(Γ/γ) (2.87)

is the Bogoliubov’s operation. For any given Feynman integral Uµ(Γ),

the mathematical term SφRms
(Γ) generates the counterterm and the mathe-

matical term SφRms
∗ φ(Γ) generates the corresponding renormalized value.

[43, 44, 65, 78]
Each Dyson–Schwinger equation determines a commutative graded Hopf

subalgebra HDSE of HFG(Φ) where the morphism (1.14) allows us to have a
projection of the complex Lie group GDSE(C) inside GΦ(C). The Lie group
GDSE(C) has been applied to formulate the foundations of a new differential
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Galois theory for the computation of counterterms which contribute to the
renormalization of formal expansions in the solutions of Dyson–Schwinger
equations. Work on this Lie group has already provided global β-functions
with respect to solutions of Dyson–Schwinger equations to relate renormal-
ized values generated via different regularization schemes. The study of
Dyson–Schwinger equations in the context of this class of Lie groups have
also been lifted onto a categorical setting where the renormalization of any
given equation DSE can be encoded by objects of its corresponding neu-
tral Tannakian category RepG∗

DSE
. In this setting, we can compute non-

perturbative parameters derived from the equation DSE in terms of a class
of equi-singular differential equations organized as a subcategory of the uni-
versal Connes–Marcolli category ECM of flat equi-singular vector bundles.
[160, 162, 163, 164]

Thanks to Feynman graphon models, it is shown in [169] that the unique
solution of any given Dyson–Schwinger equation in SΦ,g is the cut-distance
convergent limit of the sequence of its corresponding partial sums. It al-
lows us to embed SΦ,g as a topological sub-vector space in SΦ

graphon. In
this part we plan to provide a new interpretation of the renormalization of
(large) Feynman diagrams in the context of the Hopf algebra SΦ

graphon of
Feynman graphons. We determine a new class of singular differential equa-
tions which contribute in the computation of non-perturbative counterterms
corresponding to renormalized Dyson–Schwinger equations.

Theorem 2.4.1. The Hopf–Birkhoff factorization process provides a renor-
malization program for each large Feynman diagram in SΦ,g.

Proof. We build a renormalization program for Feynman graphons in the
Hopf algebra SΦ

graphon and then we pull back the results to the level of Feyn-
man diagrams and solutions of Dyson–Schwinger equations.

Thanks to Milnor–Moore Theorem ([144]), the commutative graded Hopf
algebra SΦ

graphon (given by Theorem 2.3.8) determines the complex infinite

dimensional pro-unipotent Lie group GΦ
graphon(C). Choose Dimensional Reg-

ularization and Minimal Subtraction as the renormalization program where
the commutative algebra Adr of Laurent series with finite pole parts encodes
the regularization scheme and the linear map Rms, which projects series onto
their pole parts, encodes the renormalization scheme. Set Loop(GΦ

graphon(C), µ)
as the space of loops γµ on the infinitesimal punctured disk ∆∗, around the
origin in the complex plane, with values in GΦ

graphon(C). These loops can rep-

resent unrenormalized regularized Feynman rules characters in GΦ
graphon(C)

which act on Feynman graphons. The Rota–Baxter property of (Adr, Rms)
supports the existence of a unique Birkhoff factorization (γ−, γ+) which can
be lifted onto the level of Feynman rules characters of Feynman graphons to
achieve the factorization (φ̃−, φ̃+) for Feynman rules character φ̃. We have

φ̃z([WΓ]) := φz(Γ) (2.88)
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as the modified version of the regularized Feynman rules character φz which
acts on Feynman graphons.

For a given Feynman graphon [WX ] corresponding to the unique solu-
tion of an equation DSE, set [WYm ] (for each m) as the unlabeled graphon
classes with respect to the partial sums Ym of the infinite graph X. Since
formal expansions Yms and their corresponding rooted tree representations
are sparse graphs, then we need to apply rescaling methods to obtain non-
zero Feynman graphon model for the solution X. Details about this subject
has been discussed in [169, 174]. Now if we apply the renormalization co-
product formulas (2.46), (2.47) on Feynman graphons, the renormalization
antipode formulas (2.50), (2.51) on Feynman graphons and also the Hopf
algebraic BPHZ process given by (2.85), (2.86), (2.87), then we can build

the sequence {Sφ̃Rms
([WYm ])}m≥1 of Feynman graphons which is convergent

with respect to the cut-distance topology. We have

Sφ̃Rms
([WX ]) = limm→∞S

φ̃
Rms

([WYm ]) = limm→∞

m∑

i=1

Sφ̃Rms
([WXi

])

= limm→∞

m∑

i=1

−Rms(φ̃([WXi
]))−Rms(

∑
Sφ̃Rms

([Wγ ])φ̃([WXi/γ ])). (2.89)

The functional Sφ̃Rms
is the negative component of the Birkhoff factoriza-

tion of φ̃. The term Sφ̃Rms
([WX ]) addresses the counterterm with respect

to the Feynman graphon [WX ]. We can also build the sequence {Sφ̃Rms
∗

φ̃([WYm ])}m≥1 of Feynman graphons which is convergent with respect to
the cut-distance topology. We have

Sφ̃Rms
∗ φ̃([WX ]) = limm→∞S

φ̃
Rms

∗ φ̃([WYm ]) = limm→∞

m∑

i=1

Sφ̃Rms
∗ φ̃([WXi

])

(2.90)
such that the convolution product ∗ is defined with respect to the coproduct

∆graphon. The functional Sφ̃Rms
∗ φ̃ is the positive component of the Birkhoff

factorization of φ̃. The term Sφ̃Rms
∗ φ̃([WX ]) addresses the renormalized

value with respect to the Feynman graphon [WX ].

Thanks to the filtration parameter on Feynman graphons on the basis of
the Hopf algebra of words given by Theorem 2.3.10, it is possible to define a
new one-parameter group {θt}t of automorphisms on GΦ

graphon(C) with the
infinitesimal generator

d

dt
|t=0θt = Y (2.91)
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such that Y sends each Feynman graphon [WΓ] to its corresponding filtration
rank n[WΓ]. In other words, for each character φ̃,

< θt(φ̃), [WΓ] >:=< φ̃, θt([WΓ]) > . (2.92)

Lemma 2.4.2. Suppose the loop γµ ∈ Loop(GΦ
graphon(C), µ) encodes the reg-

ularized unrenormalized Feynman rules character φ̃ on Feynman graphons.
Then we have

γetµ(z) = θtz(γµ(z)).

In addition, the limit

Ft = limz→0γ−(z)θtz(γ−(z)
−1)

defines a new one-parameter subgroup of GΦ
graphon(C) such that for each

t ∈ R,
γetµ+(0) = Ftγµ+(0).

Proof. Thanks to the construction of the renormalization Hopf algebra of
Feynman graphons (given by Theorem 2.3.8) and Proposition 1.47 in [46],
we have the proof.

More details about non-perturbative parameters generated by Feynman
graphon representations of solutions of Dyson–Schwinger equations have
been discussed in [169, 170, 174].

It is possible to lift the Connes–Marcolli geometric approach onto the
level of the renormalization Hopf algebra of Feynman graphons. For this
purpose we need to adapt the regularization bundle and then classify equi-
singular flat connections, which encode counterterms, in terms of the renor-
malization of Feynman graphons.

Proposition 2.4.3. There exists a bijective correspondence (independent of
the choice of a local regular section σ : ∆ → B) between equivalence classes
of flat equi-singular GΦ

graphon(C)-connections on the regularization bundle

and elements of the Lie algebra gΦgraphon(C).

Proof. The regularization parameter in Dimensional Regularization can be
encoded by the punctured version of an infinitesimal disk ∆ around the
origin z = 0. Set Pgraphon := (∆×C∗)×GΦ

graphon(C) as the trivial principal
bundle over the base space ∆× C∗. Remove the fiber over z = 0 to obtain
the bundle P 0

graphon = ∆ × C∗ − π−1({0}) × GΦ
graphon(C) as the regulariza-

tion bundle modified with respect to the renormalization Hopf algebra of
Feynman graphons.

A flat GΦ
graphon(C)-connection ̟ on P 0

graphon is a gΦgraphon(C)-valued one

form such that gΦgraphon(C) is the Lie algebra of the Lie group GΦ
graphon(C)

which contains all linear maps l : SΦ
graphon → C with the property

l([WΓ1 ][WΓ2 ]) = l([WΓ1 ])ε̃([WΓ2 ]) + ε̃([WΓ1 ])l([WΓ2 ]). (2.93)
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The Lie bracket is given by the formula

[l1, l2]([WΓ]) =< l1 ⊗ l2 − l2 ⊗ l1,∆graphon([WΓ]) > . (2.94)

The one-parameter group {θt}t∈C of automorphisms of GΦ
graphon(C) can be

lifted onto the level of this Lie algebra.
A flat GΦ

graphon(C)-connection ̟ on P 0
graphon is called equi-singular if it

is Gm-invariant and for any solution f of the differential equation Df = ̟
with respect to the logarithmic derivative, the restrictions of f to sections
σ : ∆ → ∆× C∗ have the same type of singularity.

Thanks to [46], the negative component of the Birkhoff factorization of
each γµ ∈ Loop(GΦ

graphon(C), µ) determines a unique element β in gΦgraphon(C)
where we have

γ−(z) = T exp(
−1

z

∫ ∞

0
θ−t(β)dt). (2.95)

We can show that for each ̟ ∈ gΦgraphon(K) with the trivial monodromy,

there exists a solution ψ̃ ∈ GΦ
graphon(K) for the differential equationDψ̃ = ̟.

Two connections ̟1,̟2 with the trivial monodromy are called equiva-
lent if they are gauge conjugate by an element regular at z = 0. It leads us to
show that for equivalent connections ̟1,̟2, the solutions of the differential
equations Dψ̟̃1 = ̟1 and Dψ̟̃2 = ̟2 have the same negative components
of the Birkhoff factorization, namely,

ψ̟̃1
− = ψ̟̃2

− . (2.96)

Thanks to (2.95), (2.96) and the Connes–Marcolli Classification Theorem
(given by Theorem 1.67 in [46]), each element β ∈ gΦgraphon(C) determines a

unique class ̟ of flat equi-singular GΦ
graphon(C)-connections on P 0

graphon in
terms of a differential equation with the general form Dγµ = ̟ such that

γµ(z, v) = T exp(
−1

z

∫ v

0
uY (β)

du

u
) (2.97)

where u = tv, t ∈ [0, 1] and uY is the action of Gm on GΦ
graphon(C).

Proposition 2.4.4. The category ECM encodes the renormalization group
corresponding to the BPHZ renormalization of large Feynman diagrams.

Proof. Thanks to Proposition 2.4.3, for the Hopf algebra SΦ
graphon, we can

determine a family of flat equi-singular GΦ
graphon(C)-connections which en-

code counterterms on the basis of the β-functions. Thanks to [46], these
geometric objects form a new category EΦ

graphon which is recovered by the
category Rep

G
Φ,∗
graphon

of finite dimensional representations of the affine group

scheme G
Φ,∗
graphon. In addition, the renormalization Hopf algebra HFG(Φ)

of Feynman diagrams of the physical theory Φ determines the category EΦ
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of geometric objects recovered by the category RepG∗
Φ
of finite dimensional

representations of the affine group scheme G∗Φ. Thanks to the explained
categorical formalism in [46], we can embed RepG∗

Φ
as a sub-category into

ECM. It is shown that ECM is isomorphic to the category RepU∗ such that
the complex Lie group U(C) can be described in terms of the Lie algebra
LU generated by elements e−n of degree −n for each n > 0 such that the
sum e =

∑
e−n is an element of this Lie algebra. We can lift e onto the

morphism rg : Ga → U. The universality of ECM supports the existence of
a new class of graded representations such as

ϑ : U(C) → G
Φ
graphon(C). (2.98)

Now the composition ϑ ◦ rg determines the renormalization group {Ft}t∈C
at the level of Feynman graphons (i.e. Lemma 2.4.2).

Lemma 2.3.3 and Theorem 2.3.8 enable us to embedHFG(Φ) into S
Φ
graphon

which leads us to define an epimorphism of affine group schemes from
G

Φ,∗
graphon to G∗Φ. In addition, the renormalization Hopf algebra of Feynman

graphons includes solutions of all Dyson–Schwinger equations in the physi-
cal theory Φ. Therefore the category EΦ

graphon is rich enough to recover the

category EΦ and also, non-perturbative information of the physical theory.
As the summary, we have shown that the renormalization topological

Hopf algebra of Feynman graphons is capable to encode the renormaliza-
tion of Feynman diagrams and solutions of Dyson–Schwinger equations. We
have also embedded this graphon model of renormalization into the universal
Connes–Marcolli categorical setting where as the result, we can study Feyn-
man graphons under the differential Galois theory. In final, these achieve-
ments suggest the existence of a new unexplored interconnection between
motivic renormalization and Dyson–Schwinger equations in the context of
the theory of graphons.
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Chapter 3

Non-perturbative

computational complexity

• A parametric representation for large Feynman diagrams

• The optimization of non-perturbative complexity via a multi-

scale Renormalization Group

− A Renormalization Group program on SΦ,g

− Kolmogorov complexity of Dyson–Schwinger equations
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The original motivation for the introduction of Feynman graphons is
to clarify and study infinities originated from non-perturbative aspects in
Quantum Field Theory with strong couplings via a new topological Hopf
algebraic renormalization program. From a physicist’s perspective, these in-
finities do not acceptable and applying some approximation methods are use-
ful for the production of some intermediate values such as running couplings,
N large methods, etc. Then the Physics of elementary particles and its phe-
nomenology shall be described in terms of those approximations. From a
mathematician’s perspective, we have a different story where it is possible to
deal with infinities under different settings instead of only removing them.
The Cartier’s cosmic Galois group as a universal group of symmetries is
useful for the analysis of divergencies in perturbative gauge field theories
to generate some new data about the behavior of these physical theories in
higher order perturbation terms. The motivic Galois group associated to the
renormalization Hopf algebra SΦ

graphon of Feynman graphons is useful to ana-
lyze divergencies originated from solutions of Dyson–Schwinger equations in
the language of singular differential equations on cut-distance topological re-
gions of Feynman diagrams. This motivic Galois group could be a practical
candidate to encode non-perturbative gauge field theories. In this chapter
we plan to show some new applications of Feynman graphon models in deal-
ing with the non-perturbative computations of physical parameters derived
from Dyson–Schwinger equations. Here we focus on finding a new para-
metric representation in the context of Tutte polynomials and other com-
binatorial polynomials for the description of solutions of Dyson–Schwinger
equations. This new combinatorial setting allows us to understand the graph
complexity of large Feynman diagrams in terms of the graph complexities
of partial sums. Then we explain the elementary foundations of the concept
of Kolmogorov complexity on the space of all Dyson–Schwinger equations
of a given strongly coupled gauge field theory. We define this complexity
in terms of a new multi-scale non-commutative non-perturbative Renormal-
ization Group on SΦ,g which governs the changing the scales of the bare
coupling constant g and running coupling constants. This platform is use-
ful to provide a new algorithm for the study of Dyson–Schwinger equations
under strong couplings in terms of sequences of Dyson–Schwinger equations
with lesser complexities. We try to show that this Renormalization Group
machinery can optimize the complexity of non-perturbative computations.
We show how this notion of complexity is related to the Halting problem in
the Theory of Computation. This study suggests a new contextualization
for the description of non-perturbative situations and their complexity.
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3.1 A parametric representation for large Feyn-

man diagrams

The original task in Quantum Field Theory is to compute correlation func-
tions (i.e. Green’s functions) in a (non-)perturbative expansion setting
whose terms are decorated by Feynman diagrams. Each term in this class of
expansions consists of a multiple ill-defined integral such that the integrand
is codified by the combinatorial information of its corresponding Feynman
diagram. Generally speaking, we can work in momentum space of D dimen-
sions such that a preliminary count of the powers of the momenta in the
integrands can report the possible superficially divergence in the integral.
In this situation, the renormalization program associates a counterterm to
each superficially divergent subgraph to finally produce a finite result by sub-
traction treatment. All superficially divergent Feynman subgraphs should
be considered under a recursive setting to assign a final finite value to the
full Feynman diagram. Studying Feynman diagrams via tree representa-
tions enables us to formulate perturbative renormalization theory under a
simplified universal setting. Furthermore, it provides also a combinatorial
reformulation of Dyson–Schwinger equations where we can study solutions
of these non-perturbative type of equations in the context of partial sums
of decorated non-planar rooted trees. [19, 73, 74, 110, 115, 187, 200]

In the previous sections we have shown that the unique solution of each
Dyson–Schwinger equation is described as the convergent limit of a sequence
of Feynman graphons with respect to the cut-distance topology. This for-
malism has been applied to lift the BPHZ renormalization program onto the
level of large Feynman graphs to generate some new expressions for the de-
scription of counterterms and renormalized values associated to fixed point
equations of Green’s functions. Using graph polynomials for the study of
Feynman integrals has played an important role in the computational pro-
cesses where this class of combinatorial polynomials can bring some power-
ful algorithms for the analysis of the behavior of these divergent integrals
([8, 21, 101, 102, 119, 135, 148, 185, 193]). In this section we show another
application of this graphon representation of non-perturbative parameters
where we deal with the concept of parametric representation of large Feyn-
man diagrams. We study solutions of Dyson–Schwinger equations in the
language of Tutte polynomial and Kirchhoff–Symanzik polynomials.

The Tutte polynomial, as a two variables graph polynomial, enjoys a
universal property which enables us to evaluate any multiplicative graph
invariant with a deletion/contraction reduction machinery [181, 182, 183,
184, 191]. This fundamental property provides the opportunity to demon-
strate how graph polynomials can be specialized or generalized. The Aluffi–
Marcolli approach has clarified the practical importance of Tutte polynomi-
als in dealing with Feynman rules characters and Feynman integrals under
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an algebro-geometric setting where a motivic perspective on perturbative
renormalization program has been formulated very nicely. [7, 8, 134, 135]

We first review the basic structure of Tutte polynomials on finite graphs,
its different reformulations and its universal property ([135, 182, 183, 184,
191]) and then we explain graph polynomials which can contribute to the
combinatorial representations of Feynman graphons of large Feynman dia-
grams.

A given (finite) graph G has a set V (G) of vertices and a set E(G) of
edges. Graphs G1, G2 are isomorphic when there exists a bijection such as ρ
between the sets V (G1) and V (G2) such that for each edge uv in G1, ρ(uv)
is an edge in G2 and vice versa. Subsets of the set of vertices or the set of
edges can give us subgraphs. For any subset A ⊂ E(G) of edges, the rank
r(A) and the nullity n(A) are defined by the relations

r(A) := |V (G)| − κ(A), n(A) := |A| − r(A) (3.1)

such that κ(A) is the number of connected components of the graph. In
general, finite graphs can be classified in terms of their numbers of non-
trivial connected components. A graph is called n-connected, if we should
remove at least n edges from the graph to obtain a disconnected graph.
Rooted trees, as fundamental tools for us, are connected graphs which have
no cycles or loops. They are non-trivial connected components of forests
as more complicated graphs. Sometimes working on subgraphs of a given
complicated (finite) graph enables us to clarify some fundamental properties
of the original graph. Spanning subgraphs are applied as one important
class of subgraphs for the construction of graph polynomials. A spanning
subgraph covers all vertices of the original graph with the optimum number
of edges.

The notion of ”dual” in Graph Theory enables us to build the algebraic
combinatorics of graphs. If we can embed a graph into the plane without
any crossing in edges, then the graph is called planar. Each planar graph
can separate the plane into regions known as faces. Faces are key tools for
the construction of the dual of a graph. For a given planar graph G, its
corresponding connected dual graph is built by assigning a vertex to each
face where there exist m edges between two vertices in the dual graph if the
corresponding faces of the original graph have m edges in their boundaries.
We denote G∗ as the dual of the connected planar graph G and it can be
seen that

(G∗)∗ = G. (3.2)

There are two fundamental commutative operations on graphs namely,
deletion and contraction which enable us to build the algebraic combina-
torics of graphs. For a given finite graph G, we can build a new graph G \ e
as the result of deleting an edge e ∈ E(G). This new graph has the same
set of vertices V (G) and the set of edges E(G) − {e}. We can also build
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another new graph G/e as the result of contracting an edge e in terms of
identifying the endpoints of the edge e by shrinking this edge. It is easy to
check that the deletion and the insertion on a self-loop edge determine the
same resulting graph.

Lemma 3.1.1. (i) For any given different edges e1, e2 of a given planar
graph G, the graph (G \ e1)/e2 is isomorphic to the graph (G/e2) \ e1.

(ii) A planar graph and its dual have the same numbers of spanning trees.
(iii) The rank of a dual graph is well-defined. [182, 191]

The deletion or contraction of an edge determines a minor of a graph.
In more general setting, if a graph H is isomorphic to G \ A1/A2 for some
choice of disjoint subsets A1, A2 of E(G), then it is called a minor graph. In
this setting, a class of graphs is called minor closed if whenever the graph
G is in the class, then any minor of G is also in the class.

Graph invariants are useful tools for the characterization of graphs in
terms of some particular properties. A graph invariant is a function on the
class of all graphs such that it has the same output on isomorphic graphs.
Graph polynomials (such as Tutte polynomials) are indeed some graph in-
variants such that their images belong to some polynomial rings.

There are several different (but equivalent) (re)formulations for Tutte
polynomials in terms of rank–nullity generating function method, linear re-
cursion machinery and spanning tree expansion method which was originally
applied by Tutte. The linear recursion form can be described as a collection
of reduction rules to rewrite a graph as a weighted formal sum of graphs that
are less complicated than the original graph. This method is useful to iden-
tify a collection of simplest or irreducible graphs. [135, 182, 183, 184, 191]

Definition 3.1.2. The Tutte polynomial T (G;x, y) of a given (finite) graph
G is a two variables polynomial with respect to the independent variables
x, y which is defined in terms of the following recursive machinery:
- If G has no edge, then T (G;x, y) = 1; otherwise, for any edge e ∈ E(G),
- T (G;x, y) = T (G \ e;x, y) + T (G/e;x, y),
- T (G;x, y) = xT (G/e;x, y), if e is a coloop,
- T (G;x, y) = yT (G \ e;x, y), if e is a loop.

We can see that if G has i bridges and j loops, then its corresponding
Tutte polynomial is given by

T (G;x, y) = xiyj . (3.3)

In addition, Definition 3.1.2 shows us that the Tutte polynomial of the
disjoint union of finite number of graphs can be defined in terms of the
Tutte polynomials of each graph in the union. In other words,

T (G1 ⊔G2 ⊔ ... ⊔Gn;x, y) = T (G1;x, y)...T (Gn;x, y). (3.4)
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We can redefine Tutte polynomials in the language of the rank–nullity
generating functions. They are (infinite) polynomials with coefficients which
can count structures which are encoded by the exponents of variables. In
this setting we have

T (G;x, y) =
∑

A⊂E(G)

(x− 1)r(E(G))−r(A)(y − 1)n(A). (3.5)

Remark 3.1.3. The Tutte polynomials of a planar graph G and its dual
graph G∗ can determine each other. This means that

T (G;x, y) = T (G∗; y, x). (3.6)

We can also redefine Tutte polynomials in terms of spanning trees. In
this setting, we need to define a total order ≺ on the set of edges E(G) =
{v1, ..., vn} of a given graph G such as

vi ≺ vj ↔ i > j. (3.7)

For a given tree t, an edge e is called internally active if e is an edge of t
and it is the smallest edge in the cut defined by e. We can lift this concept
onto the dual level where an edge u is called externally active if u 6∈ t and it
is the smallest edge in the cycle defined by u. Now the Tutte polynomial of
the totally ordered graph G can be defined (independent of the chosen total
order) by the formal expansion

T (G;x, y) =
∑

i,j

tijx
iyj (3.8)

such that tij counts spanning trees with internal activity i and external
activity j. [8, 101, 135, 181, 182, 191]

The most fundamental property of the Tutte polynomial is its univer-
sality under a graph invariant setting. This means that any multiplica-
tive graph invariant on disjoint unions and one-point joins of graphs which
is formulated via a deletion/contraction reduction can be described as an
evaluation of the Tutte polynomial. There are different notions for the gen-
eralization of the Tutte polynomials and here we address the one which is
useful for us. [8, 135]

Definition 3.1.4. Let G be the set of isomorphism classes of finite graphs.
A graph invariant F from G to a commutative ring such as the polynomial
ring C[α, β, η, x, y] is called Tutte–Grothendieck invariant of graphs, if it has
the following properties:
- F (G) = η# V (G) if the set of edges is empty,
- F (G) = xF (G/e) if the edge e ∈ E(G) is a bridge,
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- F (G) = yF (G \ e) if the edge e ∈ E(G) is a looping edge,
- For any ordinary edge, which is not a bridge nor a looping edge,

F (G) = αF (G/e) + βF (G \ e), (3.9)

- For every G,H ∈ G, if G ∪ H ∈ G or G • H ∈ G, then F (G ∪ H) =
F (G)F (H) and F (G •H) = F (G)F (H) such that the one-point join G •H
is defined by identifying a vertex of G and a vertex of H into a new single
vertex of G •H.

The induction machinery can show that

T (G •H) = T (G)T (H), (3.10)

which means that the Tutte polynomial does not distinguish between the
one-point join of two graphs and their disjoint union.

The Tutte polynomial is a special version of the Tutte–Grothendieck
invariant which is independent of the choice of any ordering of edges of the
graph. We can show that for any given map f : G −→ R, if there exist
a, b ∈ R such that f is another Tutte–Grothendieck invariant, then f can
be presented in terms of the Tutte polynomial such that we have

f(G) = a|E(G)|−r(E(G))br(E(G))T (G;
x0
b
,
y0
a
). (3.11)

Here we want to apply Feynman graphon representations of Feynman
diagrams in a given gauge field theory to build a new class of Tutte poly-
nomials which contribute to the combinatorial presentations of solutions
of Dyson–Schwinger equations. Our idea is to implement an efficient al-
gorithm for the computation of the Tutte polynomial T (XDSE;x, y) of the
unique solution of a given Dyson–Schwinger equation DSE in terms of han-
dling intermediate graphs (i.e. partial sums) and their corresponding Tutte
polynomials to avoid unnecessary recomputations.

Theorem 3.1.5. There exists a new class of Tutte polynomials with respect
to large Feynman diagrams.

Proof. We work on the unique solution XDSE =
∑

n≥0Xn of a given Dyson–
Schwinger equation DSE under the coupling constant λg = 1. Thanks to
Theorem 2.3.7, the sequence {Ym}m≥1 of partial sums is convergent to XDSE

with respect to the cut-distance topology.
Thanks to Definition 3.1.2 and the formula (3.8), for each m ≥ 1, the

Tutte polynomial T (Ym;x, y) of the finite disjoint union graph Ym := I +
X1+ ...+Xm is defined in terms of the Tutte polynomials of the components
Xks. We have

T (Ym;x, y) =
m∏

k=1

T (Xk;x, y) =
m∏

k=1

∑

ik,jk

tikjkx
ikyjk (3.12)
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such that tikjk is the number of spanning trees in Xk with internal activity
ik and external activity jk.

We know that limm→∞Ym = XDSE with respect to the cut-distance
topology. It means that for each ǫ > 0, there exists Nǫ such that for each
m1,m2 ≥ Nǫ, we have

d(Ym1 , Ym2) = dcut([WYm1
], [WYm2

]) < ǫ. (3.13)

Therefore
dcut([WYm1

], [WYm2
]) = 0 ⇔ [WYm1

] ≈ [WYm2
]. (3.14)

For each m, the Feynman graphon class [WYm ] is determined in terms of
the rooted tree representations of Feynman diagrams X1, ...,Xm where dec-
orated rooted trees (or forests) tX1 , ..., tXm are the only spanning trees (or
forests) in themselves. Thanks to the relation (3.14), for enough large or-
ders, unlabeled graphon classes corresponding to partial sums are going to
be weakly isomorphic while they converge to the unique Feynman graphon
class [WXDSE

]. It means that spanning forests of partial sums for enough
large orders tend to the spanning forest tXDSE

of the unique graph limit
XDSE.

In addition, the Tutte polynomial for each arbitrary rooted tree t is given
by

T (t;x, y) =
∑

s∈R(t)

x|E(s)|(y + 1)|E(s)|−|L(s)| (3.15)

such that R(t) is the set of all subtrees of t, |E(s)| is the number of edges
of a subtree s and |L(s)| is the number of leaves of a subtree s.

Now for the collection {
∏m
k=1 T (tXk

;x, y)}m≥1 of Tutte polynomials, we
can define a collection {pm :

∏∞
k=1 T (tXk

;x, y) −→
∏m
k=1 T (tXk

;x, y)}m≥1
of projections. Thanks to the universal property of the Tutte polynomial,
for any graph invariant T (which enjoys the properties in Definition 3.1.2)
together with the collection {fm : T −→

∏m
k=1 T (tXk

;x, y)}m≥1, we can
define the unique map

̥ : T −→
∞∏

k=1

T (tXk
;x, y) (3.16)

such that fm = pm ◦ ̥. As the consequence, we can consider the direct
product

∏∞
k=1 T (tXk

;x, y) as the Tutte polynomial for the infinite tree (or
forest) tXDSE

.
If we replace rooted tree representations with the original Feynman di-

agrams, then we can build the Tutte polynomial for the large Feynman
diagram XDSE in terms of the direct product over the Tutte polynomials for
simpler finite graphs (i.e. partial sums) {T (Xk;x, y)}k≥1. We have

T (XDSE;x, y) =

∞∏

k=1

T (Xk;x, y). (3.17)
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We can address here some interesting applications of this class of Tutte
polynomials in dealing with the complexity of non-perturbative parameters.

As the first application, it is possible to describe the complexity of a
large Feynman diagram XDSE in terms of the complexity of finite Feynman
diagrams which live in partial sums Ym, (m ≥ 1). The complexity of Ym is
interpreted in terms of the number of different spanning trees (or forests)
which live in the graph. We can compute the complexity of Ym under a
recursive algorithm where at each stage of the algorithm, only an edge be-
longing to the proper cycle is chosen. The algorithm starts with a given
graph and produces two graphs at the end of the first stage. By applying
the elementary contraction to a multiple edge, the resulting graph can have
a loop and therefore the procedure can be still continued. At each subse-
quent stage one proper cyclic edge from each graph is chosen (if it exists)
for applying the recurrence. On termination of the algorithm, we get a set
of graphs (or general graphs) none of which have a proper cycle. The com-
plexity of Ym is the sum of the number of these graphs. If we perform this
recursive algorithm for each Ym when m tends to infinity, then we can get a
sequence which presents the behavior of complexities when the partial sums
converge to XDSE.

As the second application, we can interpret Feynman rules characters
of the renormalization Hopf algebra of Feynman graphons in the context of
deletion and contraction operators. This approach leads us to formulate a
universal motivic Feynman rule character on large Feynman diagrams.

Corollary 3.1.6. The Tutte polynomial invariant defines an abstract ver-
sion of Feynman rules characters on the renormalization Hopf algebra of
Feynman graphons.

Proof. Feynman graphon classes in SΦ
graphon can recover finite Feynman di-

agrams and their finite or infinite formal expansions which contribute to
Dyson–Schwinger equations in the physical theory Φ.

For each unlabeled graphon class [WΓ] corresponding to a finite Feynman
diagram Γ, we can define its corresponding Tutte polynomial T ([WΓ];x, y)
via

T ([WΓ];x, y) := T (Γ;x, y). (3.18)

Thanks to Proposition 2.2 in [8], the Tutte polynomial is multiplicative
over disjoint unions of finite (Feynman) diagrams. To see this property
requires to describe each connected Feynman diagram Γ as a tree tΓ with
1PI graphs inserted at the vertices of that tree. Then we can compute the
Tutte polynomials of the resulting trees (i.e. formula (3.15)) to show that
the Tutte polynomial of the disjoint union of Feynman graphons [WΓ1 ], [WΓ2 ]
corresponding to finite Feynman diagrams Γ1,Γ2 can be determined by the
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Tutte polynomial of the disjoint union of decorated trees tΓ1 and tΓ2 which
is multiplicative. So we have

T ([WΓ1 ] ⊔ [WΓ2 ];x, y) = T (Γ1 ⊔ Γ2;x, y) (3.19)

∑

s=(s1,s2)

(x− 1)b0(s1)+b0(s2)−b0(Γ1⊔Γ2)(y − 1)b1(s1)+b1(s2)

= T (Γ1;x, y)T (Γ2;x, y) = T ([WΓ1 ];x, y)T ([WΓ2 ];x, y)

such that the sum is taken over all pairs s = (s1, s2) of subgraphs of Γ1 and
Γ2, respectively where V (si) ⊆ V (Γi), E(si) ⊂ E(Γi), b0(s) = b0(s1)+b0(s2).

Furthermore, for a finite connected Feynman diagram Γ, we have

Γ =
⋃

v∈V (tΓ)

Γv (3.20)

such that Γvs are 1PI Feynman diagrams inserted at the vertices of the tree
tΓ. The internal edges of the tree tΓ are all bridges in the resulting graph
and thus

T (Γ;x, y) = x|Eint(tΓ)|T (Γ/ ∪e∈Eint(tΓ) e;x, y). (3.21)

It is possible to lift this property onto the level of Feynman graphons where
the decomposition (3.20) can be described by the disjoint unions of Feynman
graphons. In other words, for each v1, ..., vr ∈ V (tΓ), set [WΓv ] as the
unlabeled Feynman graphon class with respect to the graph Γv such that

[WΓ] = [WΓv1
] ⊔ ... ⊔ [WΓvr

]. (3.22)

It means that the Feynman graphon [WΓ] can be defined in terms of a
rescaled version of the linear combination of Feynman graphons [WΓvj

]. In
other words,

WΓv1⊔...⊔Γvr
=

∑r
j=1WΓvj

|
∑r

j=1WΓvj
|
. (3.23)

Thanks to (3.18), the Tutte polynomial of each [WΓvj
] is defined in terms

of the Tutte polynomial of the graph Γvj . Then we have

T ([WΓ];x, y) =

r∏

j=1

T ([WΓvj
];x, y) (3.24)

which leads us to a Feynman graphon version of the relation (3.21).
Theorem 3.1.5 describes the Tutte polynomial of a large Feynman di-

agram XDSE on the basis of the Tutte polynomials of the partial sums
{Ym}m≥1. The cut-distance convergence of the sequence of partial sums
to XDSE and the universality of the Tutte polynomial enable us to lift the
properties (3.19) and (3.21) onto the Feynman graphon [WXDSE

]. It allows us
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to define the abstract Feynman rules characters on large Feynman diagrams
in terms of the Tutte polynomial where we have

Ũ([WXDSE
]) := T ([WXDSE

];x, y) = T (XDSE;x, y). (3.25)

Now we explain the construction of another important class of combi-
natorial polynomials namely, the first Kirchhoff–Symanzik polynomials for
large Feynman diagrams.

The Feynman parametric representation of a given Feynman integral
U(Γ) can be described by the integration theory over a topological simplex
such as σn with respect to Feynman parameters w = (w1, ..., wn) ∈ σn such
that n is the number of internal edges of the corresponding Feynman diagram
Γ. If l = b1(Γ) be the first Betti number of Γ (as the maximum number of
independent loops in the graph) and an orientation were fixed on the graph,
then we can define the circuit matrix η̂ = (ηik)ik such that ei ∈ E(Γ) and
k ranges over the chosen basis of loops. If an edge ei belongs to a loop lk
with the same/reverse orientations, then ηik = 1 and ηik = −1, respectively.
If the edge ei does not belong to a loop lk, then ηik = 0. The arrays of the
corresponding l × l Kirchhoff–Symanzik matrix MΓ(w) are given by

(MΓ(w))kr =
n∑

i=1

wiηikηir (3.26)

which defines a function MΓ : An −→ Al
2
, w = (w1, ..., wn) 7−→MΓ(w) over

higher dimensional affine spaces. The first Kirchhoff–Symanzik polynomial
of the graph Γ is then defined by the equation

ΨΓ(w) = det(MΓ(w)) (3.27)

which is independent of the choice of an orientation on the graph and the
basis of loops. This function on An, which is a homogeneous polynomial of
degree l, can be formulated in the language of spanning trees. We have

ΨΓ(w) =
∑

T⊂Γ

∏

e 6∈E(T )

we (3.28)

such that the sum is over all spanning trees T of the graph Γ and for each
spanning tree, the product is over all edges of Γ that are not in the se-
lected spanning tree. We can show that this product is multiplicative over
connected components.

Now consider a large Feynman diagram X with the corresponding se-
quence {Ym}m≥1 of partial sums. For each m, we know that the first
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Kirchhoff–Symanzik polynomial of Ym is the product of the polynomials
of each of its components which means that

ΨYm(w) =
m∏

j=1

ΨXj
(3.29)

where
ΨXj

(w) =
∑

Tj⊂Xj

∏

e 6∈E(Tj)

we (3.30)

such that the sum is taken over all the spanning forests Tj of Xj and for
each spanning forest, the product is taken over all edges of Xj that are not
in that spanning forest.

Thanks to the cut-distance convergence of the sequence {Ym}m≥1 to X,
for each ǫ > 0, there exists Nǫ such that for each m1,m2 ≥ Nǫ, we have

d(Ym1 , Ym2) = dcut([WYm1
], [WYm2

]) < ǫ. (3.31)

Therefore
dcut([WYm1

], [WYm2
]) = 0 ⇔ [WYm1

] ≈ [WYm2
], (3.32)

which means that for enough large m, spanning forests of Ym tend to the
spanning forests of the unique graph limit X.

Definition 3.1.7. The first Kirchhoff–Symanzik polynomial ΨX(w) of the
large Feynman diagram X is defined as the convergent limit of the sequence
{ΨYm(w)}m≥1 of the first Kirchhoff–Symanzik polynomials of finite graphs
Ym = X1⊔...⊔Xm = X1+...+Xm with respect to the cut-distance topology.

We can present this polynomial by the expansion

ΨX(w) =

∞∏

j=1

ΨXj
=

∑

T⊂X

∏

e 6∈E(T )

we (3.33)

such that the sum is taken over all the spanning forests T of X and for each
spanning forest, the product is taken over all edges of X that are not in that
spanning forest.

Lemma 3.1.8. The first Kirchhoff–Symanzik polynomial ΨX(w) of the large
Feynman diagram X can be defined recursively in terms of the deletion and
the contraction operators.

Proof. Set

F :=
∂ΨX

∂wn
= ΨX \ e (3.34)

as the deletion operator which is the result of deleting the edge e = en from
the original graph. In addition, set

G := ΨX |wn=0 = ΨX/e (3.35)
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as the contraction operator which is the result of contracting the edge e = en
to a point in the original graph.

For each edge e which is not a bridge or self-loop in the large Feynman
diagram X, we can show that

ΨX = weF +G (3.36)

such that weF collects the monomials corresponding to spanning forests that
do not include e.

At the end of this section, we address a new application of the first
Kirchhoff–Symanzik polynomial for the study of polynomial invariants of
large Feynman diagrams and Feynman rules characters which act on Feyn-
man graphons.

For a given large Feynman diagram X with the corresponding first
Kirchhoff–Symanzik polynomial ΨX(w), define

V̂X = {w ∈ A
∞ :=

∞∏

i=1

A
ni : ΨX(w) = 0} (3.37)

such that the affine hypersurface complement A∞ \ V̂X enjoys the multi-
plicative property. We have

A
∞ \ V̂X =

∞∏

i=1

A
ni \ V̂Xi

(3.38)

such that ni is the number of internal edges of the Feynman diagram Xi.
Consider the Grothendieck ring F of immersed conical varieties gener-

ated by the equivalence classes [V̂ ] up to linear changes of coordinates of
varieties V̂ ⊂ A∞ embedded into some affine space. These varieties are
defined in terms of homogeneous ideals with the usual inclusion–exclusion
relation

[V̂ ] = [R̂] + [V̂ \ R̂] (3.39)

for the closed embedding. Now we can define algebro–geometric Feynman
rules characters on the renormalization Hopf algebra of Feynman graphons.
It is an abstract Feynman rules character Û : SΦ

graphon → Adr with the
general form

Û([WX ]) = I([A∞ \ V̂X ]) (3.40)

such that [A∞ \ V̂X ] is the class in F and I : F → Adr is a ring homomor-
phism.

We can also define a new invariant of infinite Feynman diagrams in terms
of a generalization of the Chern–Schwartz–MacPherson (CSM) characteristic
classes of singular varieties. The algebro–geometric Feynman rules have
been constructed in terms of a polynomial invariant originated from the
CSM characteristic classes ([7, 8, 135]) and here we plan to lift that study
onto the level of Feynman graphons.
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Corollary 3.1.9. There exists an extension of the CSM homomorphism for
the level of large Feynman diagrams generated by Dyson–Schwinger equa-
tions.

Proof. The existence of the CSM-homomorphism I∞CSM is another conse-
quence of the cut-distance topology and graphon representations of Feynman
diagrams.

For a given large Feynman diagram XDSE as the unique solution of an
equation DSE, suppose ΨXDSE

(w) is the first Kirchhoff–Symanzik polyno-
mial and V̂XDSE

is its associated hypersurface. In addition, suppose 1V̂XDSE

is the function for V̂XDSE
⊂ A∞ and A(P∞) is the associated Chow group.

The natural transformation

1V̂XDSE
7−→ a0[P

0] + a1[P
1] + a2[P

2] + ... ∈ A(P∞) (3.41)

allows us to define

GV̂XDSE
(T ) := a0 + a1T + a2T

2 + ...+ aNT
N + ... . (3.42)

Now define

I∞CSM : F −→ Z[T ], [V̂XDSE
] 7−→ GV̂XDSE

(T ) (3.43)

and extend it by linearity to achieve a group homomorphism.

3.2 The optimization of non-perturbative com-

plexity via a multi-scale Renormalization Group

In Complexity Theory, the efficiency of an algorithm against a problem
is judged in terms of the algorithm’s capability in dealing with computa-
tional demands about quantities originated from the intrinsic complexity of
that problem. An algorithm is known as feasible if it has a polynomial-
time asymptotic scaling and it is known as infeasible if it has a super-
polynomial (typically, exponential) scaling. The calculations of quantum
field-theoretical scattering amplitudes at high precision or strong couplings
are infeasible on classical computers but recently, there are some research ef-
forts which aim to show that these calculations can be feasible on quantum
computers. Traditional calculations of scattering amplitudes in Quantum
Field Theory is on the basis of a series expansion in powers of the coupling
constant (i.e. the coefficients of the interaction terms) such that the running
coupling constant is taken to be small. Feynman diagrams provide an in-
tuitive way to organize this class of perturbative expansions where the loop
number is associated with the power of the (running) coupling constant. The
number of this class of combinatorial diagrams gives us a reasonable measure
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to evaluate the computational complexity of perturbative calculations. This
measure increases factorially in terms of the number of loops and the number
of external particles. Furthermore, if the amount of the coupling constant
is insufficiently small, then the perturbative machinery can not provide cor-
rect results while the series expansions are divergent or asymptotic even at
weak coupling constants. Indeed, if we include higher-order terms beyond
a certain point, then the approximations can be inappropriate. In fact, by
increasing the coupling constant, one eventually reaches a quantum phase
transition at some critical couplings such that in the parameter space near
this phase transition perturbative methods become unreliable. This region
can be studied under strong-coupling regimes.

Generally speaking, limits of computations and the efficiently comput-
ing of things are the most important topics in Theory of Computation and
Information Theory where people deal with the Halting problem as an un-
decidable type of problem which determines whether the program will finish
running or continue to run forever. Thanks to rooted trees decorated by
primitive recursive functions, Manin discovered a new reinterpretation of
the Halting problem in the context of the BPHZ perturbative renormaliza-
tion. He encapsulated the amount of (non-)computability in terms of the
existence of the Birkhoff factorization at the level of the renormalization
Hopf algebra of the Halting problem [63, 131, 132, 133].

Algorithms belong to the intermediate steps between programs and func-
tions which means that they are classified as substructures in the context
of Galois theory. This fundamental fact has already been applied to de-
scribe the foundations of a new categorical–geometric setting for the study
of (systems) of Dyson–Schwinger equations (as the generators of interme-
diate steps) in the renormalization Hopf algebra of the Halting problem
under Dimensional Regularization and the global β-functions. As the con-
sequence of this treatment, we already have the construction of a new class
of neutral Tannakian subcategories of the universal Connes–Marcolli cate-
gory ECM which encode intermediate algorithms in the context of systems of
differential equations together with singularities. In addition, these subcat-
egories can address the existence of a new interrelationship between mixed
Tate motives and the Halting problem in Theory of Computation. Further-
more, thanks to the combinatorial reformulation of the universal countert-
erm, some new computational techniques for the study of the amount of
non-computability in the language of the theory of Hall words have been
obtained. It is now possible to analyze infinities or non-computability in the
Theory of Computation in terms of a renormalization theory on (systems)
of Dyson–Schwinger equations and vice versa. [63, 131, 167]

It is so difficult to have an optimal solution when we want to consider
a complex problem under a limited period of time. In this situation we
work on the construction of anytime algorithms by computing an initial
potentially highly suboptimal solution and then we improve the computed
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suboptimal solution as time allows.
The Kolmogorov complexity, as an uncomputable concept, aims to de-

termine the length of the shortest algorithm which produces an object as
the output of a procedure. For a given set Σ of alphabets or letters, let
f be a computable function on the set of all possible strings generated by
elements in Σ. A description of a string σ is some string τ with f(τ) = σ.
The Kolmogorov complexity Kf is defined by

Kf (σ) :=
{min{|τ |:f(τ)=σ}

∞, otherwise
. (3.44)

It is possible to modify this definition independent of choosing f where we
need to apply a universal Turing machine. In fact, there exists a Turing
machine U such that for all partial computable functions f , there exists a
program p such that for all y, we have U(p, y) = f(y). It enables us to
define K(σ) as the Kolmogorov complexity of σ. It is shown that for all
n, there exists some σ with |σ| = n such that K(σ) ≥ n. Such σ is called
Kolmogorov random.

In this section, we plan to apply the graphon representation theory of so-
lutions of Dyson–Schwinger equations to build a new concept of complexity
of non-perturbative parameters in terms of the Kolmogorov complexity. We
will show that optimal algorithms in dealing with non-perturbative parame-
ters can be achieved by working on a multi-scale non-perturbative Wilsonian
renormalization group defined on the space SΦ,g.

3.2.1 A Renormalization Group program on SΦ,g

One important method for the study of the dynamics of quantum systems
is changing the scales of fundamental parameters of the physical theory
such as momentum, energy and mass. Theory of Renormalization Group
aims to describe the behavior of quantum systems under this class of re-
scalings where the possibility of exchanging information from scale to scale
is considered under the fundamental principles of Quantum Mechanics. The
interpretation of the concept of mass in the context of time and distance by
using the Planck constant and the interpretation of the concept of time in
the context of distance by using the speed of light enable us to study the
dynamics of relativistic quantum systems under the re-scaling of the distance
parameter. In this situation, small distances and times are equivalent to
large momenta, energies and masses which produce divergencies in Quantum
Field Theory.

There is another important parameter in Quantum Field Theory which
encodes the strength of the fundamental forces. This parameter, which is
known as the coupling constant, appears in the interaction part of the La-
grangian where we encode information of physical theory in the language
of Green’s functions and Feynman integrals. The amount of the coupling
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constant has direct influence on the complexity of Green’s functions. As the
basic fact, in QED we deal with couplings smaller than 1 while in low energy
QCD we deal with couplings at the size of 1 or larger than 1. In theoretical
and experimental studies we study coupling constants under two settings
namely, the bare couplings and the running couplings. Running coupling
constants are the outputs of (dimensional) regularization and renormaliza-
tion schemes and they have been applied in high energy levels to generate
some intermediate quantities which are useful for the approximation of non-
perturbative parameters. Running couplings guide us to deal with changing
the scale of the momentum parameter where the Wilsonian model of the
Renormalization Group has been formulated.

Generally speaking, there are two different well-known approaches for the
formulation of non-perturbative Renormalization Group in Theoretical and
Mathematical Physics namely, Wilson–Polchinski framework and effective
average action. We can address following references [48, 103, 136, 145, 146,
149, 150, 154, 192] for the study of these methods and here we only review
their general facts.

In Wilson–Polchinski framework, Physics at very small scale corresponds
to a scale Λ in momentum space which is actually the inverse of a microscopic
length where the partition function is given by

Z[B] =

∫
dµCΛ

(φ)exp
(
−

∫
V (φ) +

∫
Bφ

)
(3.45)

such that dµCΛ
is a functional Gaussian measure with a cut-off at scale Λ.

Now if we separate the field φp = φ(p) into rapid and slow modes φp,<, φp,>
with respect to a scale k, then we can rewrite the partition function in terms
of these components which lead us to define a running potential Vk at scale
k via performing the integration on φ>. So we can have

Z =

∫
dµCk

(φ<)exp(−

∫
Vk(φ<)) (3.46)

such that when k ≤ Λ, Vk involves derivative terms with any power of the
derivatives of φ<. The Wilson–Polchinski equation is indeed a differential
equation for the evolution of Vk with k such that the flow of potentials Vk(φ<)
do not contain all information on the initial theory and in addition, Vk(φ)
involves infinitely many couplings contrarily to perturbation theory that in-
volves only the renormalizable ones. In this method of non-perturbative
Renormalization Group there is no general achievement about the conver-
gence of the series of approximations that are used. In addition, the anoma-
lous dimension is depended on the choice of cut-off parameters that separate
the rapid and the slow modes whereas it should be independent of it.

In effective average action method, the basic idea is to build the 1-
parameter family of models for which a momentum depended mass term is
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added to the original Hamiltonian where we have

Zk[B] =

∫
Dφ(x)exp

(
−H[φ]−∆Hk[φ] +

∫
Bφ

)
(3.47)

∆Hk[φ] =
1

2

∫

q
Rk(q)φqφ−q. (3.48)

For 0 < k < Λ, the rapid modes are almost unaffected by the cut-off function
Rk(q) (as a homogeneous to a mass square) which means that Rk(|q| > k) ≃
0. Set

Wk[B] := logZk[B] (3.49)

with the corresponding Legendre transformation Γk[M(x)] = Γk[
δWk

δB(x) ]. The
Renormalization Group equation on Γk is the differential equation of the
type

∂kΓk = f(Γk). (3.50)

It is shown that by working on dimensionless and renormalized quantities,
the resulting non-perturbative Renormalization Group can be written inde-
pendently of the scales k and Λ. The geometry of the resulting Renormal-
ization Group flow from this framework supports the universality of self-
similarity and decoupling of massive modes.

In this part we address an alternative Renormalization Group platform
for the study of non-perturbative parameters in terms of changing the scales
of Dyson–Schwinger equations in terms of the rescaling of bare and running
couplings. Our study can provide a mathematical setting to exchange in-
formation among non-perturbative aspects under different scales. For this
purpose, we plan to build a new multi-scale Renormalization Group ma-
chinery on the space SΦ,g of all Dyson–Schwinger equations in the physical
theory Φ under different scales λg of the bare coupling constant g.

The bare couplings are independent of any regularization and renormal-
ization schemes and therefore their rescaling can be helpful for us to approx-
imate non-perturbative parameters originated from Dyson–Schwinger equa-
tions under a universal setting. Using running coupling constants makes
some fundamental issues. On the one hand, running couplings are unoberv-
able. On the other hand, the most important mission of the Renormal-
ization Group is to show that the predictions for the observables do not
depend on theoretical conventions such as renormalization or regularization
schemes, the initial state, the choice of effective charge or the choice of
running coupling constants. Therefore different choices of these couplings
should be related to each other which means that search for an optimal
choice is very important. Our promising non-perturbative Renormalization
Group enables us to study Dyson–Schwinger equations under changing the
scales of bare couplings and running couplings not simultaneously but re-
lated to each other. We expect that this alternative machinery is helpful to
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provide a theoretical algorithm for the determination of effective couplings
where the complexity of the corresponding Dyson–Schwinger equations will
be controlled in terms of changing the scale of the bare coupling constant.

Let X g be the collection of all interacting Lagrangians with coefficients
in the ring R[[g]], invariant under the change φ→ −φ, and interaction parts
with the general form

I(φ) :=
∑

k≥2

Ik(φ) (3.51)

such that for all k, Ik = O(g) with respect to the bare coupling constant g.
Changing the scale of g allows us to obtain an effective Lagrangian at the
scale τ ≤ λ of a Lagrangian L at the initial scale λ. The interaction part
is the original source of Dyson–Schwinger equations and therefore the re-
scaling of the coupling constants lead us to rescale these non-perturbative
type of equations. The Renormalization Group with respect to this class
of momentum type rescaling enables us to discuss about the possibility of
exchanging information among rescaled Dyson–Schwinger equations.

For each k, set Fk as the set of all smooth functions on the hyperplane∑k
i=1 vi = 0 in (V ∗)⊕k such that V is the Euclidean 4-dimensional space-

time. Define F :=
∏∞
i=1 F2i to formulate Green’s functions G given by

G : X g ×Mm −→ F, G := (G2,G4, ...) (3.52)

such that
- Mm is the set of scales of the momentum parameter,
- The value Gk at (L, λ) is called the k-point correlation function of the La-
grangian L at the scale λ,
- For each k, Gk is the formal expansion of amplitudes of all Feynman dia-
grams with k external edges.

Dyson–Schwinger equations are actually formulated as the fixed point
equations of G with the general form

G = 1 +

∫
IγG (3.53)

such that Iγ is the integral kernel with respect to the (IPI) primitive Feyn-
man diagram γ.

Definition 3.2.1. An equation DSE’ in SΦ,g is called effective at the scale
τ of the original Dyson–Schwinger equation DSE at the initial scale λ, if
the fixed point equation of the Green’s function G(LΦ, λ) corresponding to
the equation DSE coincides with the fixed point equation of the Green’s
function G(LΦ, τ) corresponding to the equation DSE’.

It is shown in [171] that we can build a unique effective equation at the
scale τ for any equation DSE in SΦ,g at the original scale λ of the momentum
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parameter. It enables us to change the scale of the momenta of internal edges
of each term in the formal expansion of the solution of DSE.

In higher orders in perturbation theory we should deal with a large num-
ber of Feynman diagrams which cost us exponentially growing of the mo-
mentum scale. Therefore all orders in perturbation theory do not accessible
for any scale of the momentum parameter. The asymptotic freedom behav-
ior of QCD at very high energies enables us to study Physics of hadrons
under perturbative setting. At a relatively low energy scale, coupling con-
stants become too large where non-perturbative situations of the physical
system can be observed. Running coupling constants, as the functions of
the momentum parameter, describe the strength of the interactions among
quarks and gluons. The determination of this class of couplings has very
uncertainty nature which makes so many computational and phenomeno-
logical difficulties. Dimensional Regularization allows us to replace the bare
coupling constant with a class of scale depended couplings. The ultraviolet
divergencies are eliminated by normalizing the coupling at a specific mo-
mentum scale. In addition, the ultraviolet cut-off dependency is removed
by allowing the couplings and masses in the Lagrangian to have a scale
dependency. Therefore we can produce running couplings in terms of nor-
malizing them to a measured value at a given scale. This normalization of
the coupling to a measured value makes the running coupling to not have
sensitivity to the ultraviolet cut-off. The scale dependency of the strong
coupling can be controlled by the β-function as the infinitesimal generator
of the Renormalization Group. [51, 137, 138]

However we plan to apply effective Dyson–Schwinger equations under
different rescaling of the bare coupling constant and running coupling con-
stants to define a new multi-scale Renormalization Group on the space SΦ,g

to analyze the behavior of rescaled Dyson–Schwinger equations. This new
Renormalization Group is also useful to rescale running couplings in terms
of changing the scale of the bare coupling constant independent of any reg-
ularization method.

Theorem 3.2.2. There exists a Renormalization Group machinery on SΦ,g

which encodes the dynamics of Dyson–Schwinger equations under changing
the scales of the bare and running coupling constants.

Proof. Set Mrunning as the set of scales of the running couplings. For scales

Λ1,Λ2,Λ3 ∈Mrunning such that Λ1 < Λ2 < Λ3, define the scale map Rrunning
−−

on SΦ,g which satisfies the property

Rrunning
Λ1Λ2

Rrunning
Λ2Λ3

= Rrunning
Λ1Λ3

. (3.54)

For each equation DSE, Rrunning
Λ1Λ2

DSE is the effective Dyson–Schwinger equa-
tion at the scale Λ2 of the equation DSE at the original scale Λ1. Now define
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an action of the semigroup R
+
≤1 on the space SΦ,g ×Mrunning given by

r ◦ (DSE,Λ) := (Rrunning
Λ,rΛ DSE, rΛ). (3.55)

The equation Rrunning
Λ,rΛ DSE is the rescaled version of the Dyson–Schwinger

equation DSE under the running coupling rΛ while the equation

Rrunning
rΛ Λ DSE := (Rrunning

Λ,rΛ DSE, rΛ) (3.56)

is the corresponding unique effective Dyson–Schwinger equation in the ef-
fective Lagrangian LΦ

rΛ(g). The resulting Renormalization Group allows us
to study the dynamics of Dyson–Schwinger equations under the rescaling of
the running couplings.

Set Mbare as the set of scales of the bare coupling constant g. For scales
τ1, τ2, τ3 ∈Mbare such that τ1 < τ2 < τ3, define the scale map Rbare

−− on SΦ,g

which satisfies the property

Rbare
τ1τ2R

bare
τ2τ3 = Rbare

τ1τ3 . (3.57)

For each equation DSE in SΦ,g define a new equation Rbare
τ1τ2DSE which is the

effective Dyson–Schwinger equation at the scale τ2 of the equation DSE at
the initial scale τ1. Now define an action of the semigroup R

+
≤1 on the space

SΦ,g ×Mbare given by

r ◦ (DSE, τ) := (Rbare
τ,rτDSE, rτ). (3.58)

The equation Rbare
τ,rτDSE is the rescaled version of the Dyson–Schwinger equa-

tion DSE under the rescaled bare coupling constant rτ while the equation

Rbare
rτ τDSE := (Rbare

τ,rτDSE, rτ) (3.59)

is the corresponding unique effective Dyson–Schwinger equation in the ef-
fective Lagrangian LΦ(rτg). The resulting Renormalization Group allows
us to study the dynamics of Dyson–Schwinger equations under the rescaling
of the bare coupling constant g.

Thanks to (3.55) and (3.58), we can define a new multi-scale renormaliza-
tion group on SΦ,g where it is possible to rescale the bare coupling constant
g 7−→ τg before the application of regularization schemes.

Each triple (DSE, τg,Λτ ) in SΦ,g ×Mbare ×Mrunning presents an effec-
tive Dyson–Schwinger equation such that its unique solution is a polynomial
with respect to the rescaled bare and running coupling constants. This poly-
nomial is an infinite formal expansion of Feynman integrals together with
the powers of the rescaled bare coupling constant bare coupling constant τg
(as the initial scale) such that each Feynman integral in the expansion is
defined in terms of the momentum parameter at the initial scale Λτ . Now
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we can define a new action of the semi-group R
+
≤1 on SΦ×Mbare×Mrunning

as the following way

λ ◦ (DSE, τg,Λτ ) := (Rmulti
(τg,Λτ ),(λτg,λΛτ )

DSE, (λτg, λΛτ )). (3.60)

The equation Rmulti
(τg,Λτ ),(λτg,λΛτ )

DSE is the multi-rescaled version of the Dyson–
Schwinger equation DSE obtained by changing scales τg 7→ λτg and Λτ 7→
λΛτ of the bare and running coupling constants. The equation

Rmulti
(λτg,λΛτ ) (τg,Λτ )

DSE := (Rmulti
(τg,Λτ ),(λτg,λΛτ )

DSE, (λτg, λΛτ )) (3.61)

in SΦ,g is the corresponding unique effective Dyson–Schwinger equation in
the effective Lagrangian LΦ

λΛτ
(λτg).

In Theorem 3.2.2, the equation Rmulti
(λτg,λΛτ ) (τg,Λτ )

DSE can be seen as the

unique effective Dyson–Schwinger equation at the multi-scale (τg,Λτ ) of the
equation DSE at the original multi-scale (λτg, λΛτ ). This means that this
new multi-scale Renormalization Group can generate observable running
coupling constants which are independent of any regularization or renor-
malization schemes. This fundamental property clarifies the universality
of this non-perturbative Renormalization Group with respect to generating
observable intermediate values for a given strong bare coupling constant.

Roughly speaking, the renormalization machinery enables us to redefine
the unrenormalized constants which exist in the Lagrangian in such a way
that the observable quantities remain finite when the ultraviolet cut-off is
removed. This machinery requires a new quantity µ with the dimension of
a mass where all intermediate quantities are depended on µ. The confine-
ment in QCD does not allow us to determine a natural scale for µ. The
µ dependence of the coupling constant and various quark masses in QCD
force us to define running coupling constants and running masses where the
Renormalization Group equations can control the µ dependence of the re-
sulting renormalized quantities. The running coupling constant g(µ2) can
be studied in terms of the equation

µ2
dg(µ2)

dµ2
= β(g(µ2)) (3.62)

which leads us to

g(µ2) =
1

β0ln(µ2/Λ2)
(3.63)

such that the dimensional scale Λ is the scale at which the coupling diverges
and perturbation theory becomes meaningless. When the cut-off parameter
tends to infinity, β(g(µ2)) remains finite such that in perturbation theory
we have

β(g(µ2)) = −g(µ2)2(β0 + β1g(µ
2) + β2g(µ

2)2 + ...). (3.64)
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The Renormalization Group machinery defined by Theorem 3.2.2 is non-
commutative because the scale of the momentum parameter is completely
depended on the chosen rescaling of the bare coupling. It encodes the dy-
namics of non-perturbative aspects of quantum systems by Dyson–Schwinger
equations under different running coupling constants derived from changing
the scales of couplings.

Dimensional Regularization or other regularization schemes can change
the nature of the bare couplings to describe QFT under a perturbative
setting but it fails to be functional in higher orders. Theorem 3.2.2 enables
us to generate a new class of running couplings in terms of the rescaled bare
coupling which are independent of any regularization process. Therefore the
resulting running couplings preserve the nature of the bare coupling which
means that they have physical meanings.

The one important application of this multi-scale Renormalization Group
together with Feynman graphon models is a new way for the description of
any strongly coupled Dyson–Schwinger equation DSE(g) in terms of a cut-
distance convergent sequence of Dyson–Schwinger equations under weaker
couplings λg in the space SΦ,g. This means that we can approximate
the complexity of non-perturbative parameters under the strong coupling
constant g in terms of a sequence of complexities of solutions of Dyson–
Schwinger equations with lesser rate of complexities. In this setting, we can
compute the unique solution X(λg) of the equation DSE(λg) for couplings
λg < 1 as intermediate values for the approximation of the large Feynman
diagram X(g).

Corollary 3.2.3. For each large Feynman diagram X(g) =
∑∞

m=0 g
mXm

derived from an equation DSE in SΦ,g at the strong bare coupling constant
g ≥ 1, there exists a sequence of large Feynman diagrams at weaker effective
couplings which converges to X(g) with respect to the cut-distance topology.

Proof. Thanks to Theorem 3.2.2, we can build the sequence {Rbare
g, n

n+1
gDSE}n≥1

of Dyson–Schwinger equations with respect to the rescaled bare coupling
constants n

n+1g for each n ≥ 1 where the initial scale of the equation DSE
is at least 1.

For each n, Rbare
g, n

n+1
gDSE is an equation in SΦ,g which has the unique

solution

Y (
n

n+ 1
g) =

∞∑

m=0

(
n

n+ 1
g)mXm. (3.65)

The scales n
n+1 for each n ≥ 1 provide an increasing sequence of effective

couplings derived from the bare coupling constant g where n
n+1g < g. There-

fore for each n, the solution Y ( n
n+1g) of the equation R

bare
g, n

n+1
gDSE is actually

a disjoint union of multi-loop Feynman diagrams which can be handled by
higher order perturbation methods. It remains to show that the sequence

79



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

{Y ( n
n+1g)}n≥1 is convergent to X(g) with respect to the cut-distance topol-

ogy. Thanks to Lemma 2.3.3, for each n ≥ 1, we can associate a unique
unlabeled graphon class [WY ( n

n+1
g)] with respect to each large Feynman

diagram Y ( n
n+1g). Thanks to Definition 2.3.5, it is enough to show that

the sequence {[WY ( n
n+1

g)]}n≥1 is convergent to the unlabeled graphon class

[WX(g)].
On the one hand, we can show that when n goes to infinity, the la-

beled Feynman graphons W( n
n+1

g)mXm
and WgmXm are weakly isomorphic

for each m ≥ 0. On the other hand, if we replace the Lebesgue measure with
the Gaussian measure in the ground probability measure of our Feynman
graphon model, then we can show that for a fixed n ≥ 1, the labeled Feyn-
man grahonsW( n

n+1
g)mXm

andWgmXm are weakly isomorphic (or equivalent)

for each m ≥ 0.
Therefore whenm tends to infinity, labeled Feynman graphonsWY ( n

n+1
g)

and WX(g) are also weakly isomorphic (or equivalent).

Corollary 3.2.4. For any given strongly coupled Dyson–Schwinger DSE in
SΦ,g, there exists a sequence of many-loop Feynman diagrams such that their
corresponding BPHZ counterterms and renormalized values converge to the
counterterm and the renormalized value generated by the renormalization of
the equation DSE.

Proof. Thanks to Corollary 3.2.3, there exists a sequence of Dyson–Schwinger
equations under weaker rescaled bare coupling constants λng and running
couplings Λλn in SΦ,g with the corresponding sequence {Γn}n≥1 of their solu-
tions which is cut-distance convergent to the unique solution XDSE(g). Now
apply Theorem 2.4.1 to each large Feynman diagram Γn to build sequences

{Sφ̃Rms
([WΓn ])}n≥1 (3.66)

and
{Sφ̃Rms

∗ φ̃([WΓn ])}n≥1 (3.67)

which are cut-distance convergent to Sφ̃Rms
([WXDSE(g)]) and S

φ̃
Rms

∗φ̃([WXDSE(g)]),
respectively

Thanks to these investigations, the multi-scale Renormalization Group
defined by Theorem 3.2.2 is capable to optimize the computational proce-
dures in dealing with non-perturbative parameters. We consider this topic
in the next section where our main effort is to determine an order of com-
plexity on Dyson–Schwinger equations in a given strongly coupled gauge
field theory.

80



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

3.2.2 Kolmogorov complexity of Dyson–Schwinger equations

In this part, we plan to build a new concept of complexity on the space
SΦ,g of Dyson–Schwinger equations of a given strongly coupled gauge field
theory Φ in terms of our new multi-scale Renormalization Group (i.e. The-
orem 3.2.2). Then we use the Manin renormalization Hopf algebra of the
Halting problem for non-perturbative Feynman rules characters on Feynman
graphons to formulate a new way of computing non-perturbative parameters
in the context of the Halting problem for partial recursive functions on the
new constructive world SΦ,g. The required structural numbering for this
new constructive world can be determined via our multi-scale Renormaliza-
tion Group (i.e. Theorem 3.2.2) and the density of rational numbers in real
numbers.

We define the Kolmogorov complexity of each Dyson–Schwinger equation
DSE in SΦ,g in terms of changing the scale of the bare coupling constant
where exchanging information among equations at different scales have been
encoded by our new non-perturbative multi-scale Renormalization Group.
We can generate partial recursive (or semi-computable) functions in terms
of increasing sequences of rational numbers which provide different rescaling
of the bare coupling constant and the momentum parameter. For example,
thanks to Corollary 3.2.3, define

ug : Z+ × SΦ,g −→ SΦ,g, (n,DSE(g)) 7−→ DSE(
n

n+ 1
g) (3.68)

as a semi-computable function. It means that there exists an algorithm
which encodes the application of ug on Dyson–Schwinger equations to gen-
erate effective equations under different running couplings. The equation
DSE( n

n+1g) is the effective Dyson–Schwinger equation Rbare
n

n+1
g g generated by

changing the scale of the bare coupling constant in terms of the sequence
{ n
n+1}n≥1.

Definition 3.2.5. The Kolmogorov complexity of an equation DSE(λg) at
the scale λg with respect to the function ug (3.68) is determined by the
relation

Kug(DSE(λg)) := Min{n ∈ Z+ : ug(n,DSE′(g)) ⊆ DSE(λg)} (3.69)

such that the inclusion means that, up to the weakly isomorphic relation,
the large Feynman diagram XDSE′( n

n+1
g) can be embedded as a subgraph

into the large Feynman diagram XDSE(λg).

Lemma 3.2.6. There exists the Kolmogorov total order on SΦ,g.

Proof. The Kolmogorov order of SΦ,g is defined as a bijection Kug : SΦ,g →
Z+ which arranges all Dyson–Schwinger equations of the physical theory Φ
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in the increasing order of their complexities Kug(DSE(λg)). Define

DSE1(λ1g) � DSE2(λ2g) ⇐⇒ Kug (DSE1(λ1g)) < Kug(DSE2(λ2g)).
(3.70)

It is possible to determine some constants c0 > 0 such that for all Dyson–
Schwinger equations such as DSE(λg),

c0Kug (DSE(λg)) ≤ Kug(DSE(λg)) ≤ Kug (DSE(λg)). (3.71)

This is actually the most simple example of this class of semi-computable
functions and we can generate other examples in terms of any arbitrary in-
creasing sequence of rational numbers, which provides some rescaling for the
bare coupling constant g and the running couplings, to define more general
semi-computable functions in terms of our new multi-scale Renormalization
Group. We have addressed a more general setting for the structure of the
Kolmogorov complexity in other research work and here we only focus on
the partial recursive (or semi-computable) function (3.68).

Thanks to Definition 3.2.5 and Definition 3.2.6, it is now possible to
consider SΦ,g as a poset such that for any given partial recursive map σ :
SΦ,g → SΦ,g which generates a permutation, we can define a new map

σKug
:= Kug ◦ σ ◦K−1ug (3.72)

where it provides a permutation of the subset

D(σKug
) := Kug(Dom(σ)) ⊆ Z+. (3.73)

Consider the equation DSE(λg) ∈ Dom(σ) such that its corresponding orbit
σZ(DSE(λg)) is infinite. Set

Kug(DSE(λg)) := kλDSE (3.74)

such that for each n > 0, we have

σn
Kug

(kλDSE) = Kug(σ
n(DSE(λg))) ≤ cKug (n). (3.75)

In [130] it is discussed that for any partial recursive function f : Z+ → Z+

and x ∈ Dom(f) we have

K(f(x)) ≤ cfK(x) ≤ c
′

fx. (3.76)

We want to apply the inequality (3.76) for the Kolmogorov complexity of
Dyson–Schwinger equations defined by Definition 3.2.5 and bijection Kug .
Define

Y := {σn(DSE(λg)) : n ∈ Z+} (3.77)

82



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

as a recursively enumerable subset of SΦ,g which plays the role of the domain
for a partial recursive function A : SΦ,g → Z+ given by

A(DSE(τg)) = n, if σn(DSE(λg)) ≅ DSE(τg). (3.78)

We then have

K−1ug (n) = K−1ug (A(DSE(τg))) ≤ c′Kug(DSE(τg)) = c′Kug(σ
n(DSE(λg)))

(3.79)
such that as the consequence, it is possible to determine some upper and
lower boundaries for the permutation σKug

such as

c1K
−1
ug (n) ≤ σn

Kug
(kλDSE) ≤ c2K

−1
ug (n). (3.80)

Lemma 3.2.7. Consider SΦ,g as the constructive world and equip this col-
lection with a total recursive structure of additive group without torsion with
the zero element 0. The Halting problem for any partial recursive function
f : Z+ × SΦ,g → SΦ,g can be described in the language of fixed points of
some permutations on Z+ × SΦ,g derived from f .

Proof. Feynman graphon models of solutions of Dyson–Schwinger equations
enable us to define a total recursive structure of the additive group without
torsion on the constructive world SΦ,g ⊔{0} such that 0 is the zero element.
Now extend f to a new function

gf : Z+ × (SΦ,g ⊔ {0}) −→ (SΦ,g ⊔ {0}) (3.81)

such that
gf ((n,X)) := 0, if (n,X) 6∈ Dom(f). (3.82)

Now define a new permutation

τf : Z+ × (SΦ,g ⊔ {0})× (SΦ,g ⊔ {0}) −→ Z+ × (SΦ,g ⊔ {0})× (SΦ,g ⊔ {0}),

τf (n, (X,Y )) := (gf (n,0),X + gf ((n, Y )), Y ). (3.83)

We can check that finite orbits of τf are fixed points of the permutation. It
leads us to build a new partial recursive permutation σf with the domain

Dom(σf ) := (SΦ,g ⊔ {0}) ×Dom(f). (3.84)

Thanks to [130, 132] and the definition of gf , we can show that the com-
plement to Dom(σf ) in the constructive world (SΦ,g ⊔ {0}) × (SΦ,g ⊔ {0})
covers the fixed points of τf . This process reduces the Halting problem for
f to the determination of the fixed points of τf .
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For the constructive world SΦ,g, the map ug given by (3.68), the map
σKug

given by (3.72) and (3.73), the integer value kλDSE given by (3.74),
define

Ψ(kλDSE, σ, u
g, z) :=

1

(kλDSE)
2
+

∑

n≥1

zKug (DSE(λ n
n+1

g))

(σn
Kug

(kλDSE))
2
. (3.85)

Corollary 3.2.8. - If the σ-orbit of the equation DSE(λg) ∈ Dom(σ) is
finite, then Ψ(kλDSE, σ, u

g, z) is a rational function in the complex variable z.
All poles of this formal series, which are of the first order, live at the roots
of unity.

- If the σ-orbit of the equation DSE(λg) ∈ Dom(σ) is infinite, then
Ψ(kλDSE, σ, u

g, z) is the Taylor series of an analytic function on the region
|z| < 1 which is continuous at the boundary of this region.

Proof. It is a direct result of the discussions in [130, 132] where we need to
replace the constructive world Z+ with SΦ,g.

Thanks to the Manin’s reconstruction of the Halting problem in the
language of the BPHZ renormalization program ([131, 132, 133]) and the
explained machinery with respect to the constructive world SΦ,g, now it
is possible to relate the Halting problem for a given partial recursive map
f : Z+ × SΦ,g → SΦ,g to our new version of the Kolmogorov complexity
of Dyson–Schwinger equations. For this purpose we reduce f to a partial
recursive permutation

σf : Dom(σf ) ⊂ SΦ,g −→ Dom(σf ) ⊂ SΦ,g (3.86)

to interpret the problem of recognizing whether a positive integer number
k belongs to the domain Dom(σf ) or not to the problem of whether the
corresponding analytic function Ψ(k, σf , u

g, z) of a complex parameter z
has a pole at z = 1 or not.

Theorem 3.2.9. The BPHZ renormalization of Feynman graphons encodes
the Halting problem for a given partial recursive map f : Z+×SΦ,g −→ SΦ,g.

Proof. Thanks to the construction of the renormalization Hopf algebra of
Feynman graphons SΦ

graphon and the BPHZ renormalization of large Feynman
diagrams, consider the character

ϕk : SΦ
graphon −→ Adr, ϕk([WXDSE

]) := Ψ(kλDSE, σf , u
g, z). (3.87)

Thanks to the Birkhoff factorization on the regularization algebra Adr, we
have Adr = A+⊕A− such that A+ is the unital algebra of analytic functions
in the region |z| < 1 which are continuous on the boundary |z| = 1 and
A− := (1− z)−1C[(1− z)−1].

If we apply Lemma 3.2.7, Corollary 3.2.8 and discussion about the exis-
tence of a pole at z = 1 for the analytic function Ψ(kλDSE, σf , u

g, z), then we
can determine whether kλDSE lives in D(σf ) or not.
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The main reason of this important result is the existence of a class of
semi-computable maps such as ug (for a given strong coupling g) which has
led us to define a modified version of the Kolmogorov complexity for Dyson–
Schwinger equations (i.e. Definition 3.2.5). The dynamics of the well-defined
map ug (3.68) can be studied by the multi-scale Renormalization Group ma-
chinery which is defined on SΦ,g. We can define the Kolmogorov complexity
Kw on Dyson–Schwinger equations with respect to other arbitrary elements
w of the set of Kolmogorov optimal functions. In this setting, the optimality
means that for any partial recursive v : Z+ × SΦ,g −→ SΦ,g there exists a
constant cv,w > 0 such that for each Dyson–Schwinger equation DSE(λg),

Kw((n,DSE(λg))) ≤ cv,wKv((n,DSE(λg))). (3.88)

Thanks to Corollary 3.2.3, relations (3.71) and (3.80) and Theorem 3.2.9,
which determines the amount of non-computability via the Halting problem
at the level of Feynman graphons, those semi-computable maps defined in
terms of the map Rmulti

−− can be considered as the truth candidate to search
for the optimal option.
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• A spectral triple model for quantum motions

• A noncommutative symplectic geometry model for SΦ
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Noncommutative Geometry studies geometric properties of singular spaces
on the basis of suitable coordinate algebras where point spaces are replaced
by (noncommutative) function algebras. The standard differential and inte-
gral calculi have been adapted to a more general setting in the way compat-
ible with the interpretation of variable quantities in Quantum Mechanics as
operators on the Hilbert space of states and spectral analysis. The interplay
between Algebra and Topology has been studied conceptually and contex-
tually under two general settings on the basis of the theory of Hopf algebras
(or quantum groups) and the theory of C*-algebras. In the resulting dictio-
nary, noncommutative C*-algebras, which are interpreted as the algebras of
continuous functions on some virtual noncommutative spaces, are the dual
arena for noncommutative topology. As the important consequence of this
interrelationship, the theory of spectral triples and the theory of noncom-
mutative differential graded algebras enable us to build the foundations of
differential and integral calculi in Noncommutative Geometry. [45, 54]

The idea of applying Noncommutative Geometry to Quantum Field The-
ory has already been considered and developed by different groups of math-
ematicians and mathematical/theoretical physicists where we can address
new models of gauge field theories or the mathematical foundations of Stan-
dard Model and its modified versions in dealing with elementary particles
[39, 46, 52, 55, 56, 127, 140]. Furthermore, thanks to the renormalization
Hopf algebra, some new applications of noncommutative geometric tools
in dealing with Dyson–Schwinger equations were found where two classes of
differential graded algebras had been formulated to describe the geometry of
quantum motions. The first class of differential graded algebras was built in
the way to determine a family of connections which encode quantum motions
independent of the chosen regularization scheme [161]. The second class of
differential graded algebras was built in the way to encode regularization
and renormalization processes of Feynman diagrams which contribute to so-
lutions of Dyson–Schwinger equations in the language of noncommutative
differential forms. This setting, which applies shuffle products and Rota–
Baxter algebras ([80]), has provided a new geometric interpretation of the
Connes–Kreimer renormalization group in the context of integrable systems
under a non-perturbative setting [166].

In this chapter, we plan to continue our search for some new applications
of Noncommutative Geometry to non-perturbative aspects ([171]). At the
first step, we explain the construction of a new class of spectral triples which
encodes the geometry of Dyson–Schwinger equations under an operator the-
oretic setting. This study provides the foundations of a theory of spectral
geometry for the description of large Feynman diagrams. At the second
step, we search for a new class of differential graded algebras on Feynman
graphons to build a noncommutative differential geometry machinery for the
description of physical parameters generated by large Feynman diagrams.
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4.1 A spectral triple model for quantum motions

Geometric objects associated to any n-dimensional C∞ manifold M such
as vector fields, differential forms, general tensor fields, vector bundles, Rie-
mannian metric, connections, curvature tensor, etc are encoded via the com-
mutative algebra C∞(M) (i.e. infinite times differentiable functions on M)
and some extra operators on this algebra. If we replace the algebra C∞(M)
with a noncommutative algebra A (such as the algebra generated by some de-
formation procedures on C∞(M)), then we can achieve the basic elements of
Noncommutative Geometry as a generalization of the standard commutative
geometry of manifolds. The basic pedagogical example of a noncommutative
space is given via Gelfand–Naimark Theorem where studying commutative
C*-algebras is translated to studying compact topological (Hausdorff) spaces
and vice versa. It leads us to a general idea that studying noncommutative
C*-algebras becomes to studying ”noncommutative” compact topological
spaces. [45]

Classical Mechanics can be interpreted as the fundamental example of
a commutative geometry where the phase space of a system of N non-
relativistic particles is a 6N dimensional symplectic manifold M and the
physical observables, energy, angular momentum, etc are functions in C∞(M).
Quantum Mechanics can be interpreted as the fundamental example of a
model in Noncommutative Geometry where we should deal with a non-
commutative algebra of quantum observables consisting of operators on the
Hilbert space of states. The position operator Q and the momentum oper-
ator P (as unbounded self-adjoint operators) satisfy the canonical Heisen-
berg’s commutation relation

PQ−QP = −i~I. (4.1)

The physical observables are represented by hermitian operators. If we apply
one-parameter unitary groups Us = eisP , Vt = eitQ, then we have the Weyl
form of the commutation relation namely,

UsVt = e−i~stVtUs. (4.2)

Set s = t = 1 and λ = −2π~ to obtain the unitary bounded operators
U, V on the same Hilbert space which enjoy the property UV = e2πiλV U .
The noncommutative polynomial algebra Aλ generated by U, V together
with their corresponding adjoint operators where equipped with the opera-
tor norm is actually a noncommutative C∗-algebra derived from Quantum
Mechanics.

Deformation quantization focuses on the construction of a noncommuta-
tive algebra of quantum observables in terms of defining some new noncom-
mutative type of products on the vector space C∞(M). The deformation of
the coordinates of space-time with respect to relations such as [x̂µ, x̂ν ] = iθµν
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is another machinery in this setting to build a Noncommutative Geometry
model.

In an alternative approach, Connes developed a formulation of differ-
ential geometry in terms of commutative algebras to build a noncommu-
tative generalization where we can consider a compact manifold of arbi-
trary dimension with a well-defined Riemannian structure which gives rise
to a first order differential operator known as the Dirac operator. It is
shown that the manifold, including the metric tensor, can be completely
reconstructed from the discrete eigenvalues of the Dirac operator such that
the properties of the spectrum can be encoded by a spectral triple which
contains some algebraic information. In summary, an ordinary compact
Riemannian manifold M is reinterpreted in terms of the spectral triple
(A = C∞(M),H = L2(.),D = iγµ∂x

µ) which is called a commutative spec-
tral triple. Thanks to this setting, Connes achieved a new modified version
of the Gelfand–Naimark Theorem for compact Riemannian manifolds and
spectral triples. The generalization of this approach has led us to the con-
cept of noncommutative spectral triples where some new applications of
Noncommutative Geometry to the description of relativistic quantum the-
ory, elementary particles and space-time at the micro-scale Physics have
been discovered by mathematicians and mathematical/theoretical physi-
cists. As an example we can address the mathematical foundations of
Standard Model, its modified versions and perturbative renormalization pro-
gram on these physical theories in terms of noncommutative geometric tools.
[45, 46, 178, 179]

Here we plan to explain the structure of a new class of spectral triples
originated from solutions of Dyson–Schwinger equations. The resulting spec-
tral triples encode the geometry of those parts of Quantum Field Theories
under strong running coupling constants where quantum motions have com-
plicated non-perturbative behaviors.

In general, a spectral triple is a collection (A,H,D) of related mathemat-
ical structures such that A is a (unital) involutive algebra which is faithfully
represented on a given Hilbert space H via a representation π. The operator
D is a self-adjoint operator acting on H with the compact resolvent. For
any a ∈ A, π(a) maps dom(D) into itself. The operator [D,π(a)] extends
to a bounded operator on H.

Theory of Clifford algebras and spin structures have provided the foun-
dations of the algebraic reconstruction of the geometry of smooth (compact)
Riemannian manifolds in the context of the theory of spectral triples. For
a given n-dimensional (locally) compact C∞-Riemannian manifold M with-
out boundary, set A1(M) := Γ(M,T ∗

C
M) as the space of sections of the

complex cotangent bundle, which are differentiable 1-forms on M , with the
corresponding dual space ℵ(M) := Γ(M,TCM), as the space of sections of
the tangent bundle, which are differentiable vector fields on M . The met-
ric g is therefore a C∞(M)-valued symmetric bilinear positive definite form
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on A1(M) (or ℵ(M)). The Cech cohomology theory of the algebra of Clif-
ford sections enables us to define spinc structures. Then we determine the
corresponding spin structures under Morita equivalent relation. A spinc con-
nection on a spinor module Γ(M,S) is defined (compatible with the action
of the algebra of Clifford sections) as a Hermitian connection

∇S : Γ(M,S) −→ A1(M)⊗C∞(M) Γ(M,S). (4.3)

It is called a spin connection, if it commutes with the anti-linear charge
conjugation c for each real vector field. The Riemannian distance on the
manifold M is determined in terms of the Dirac operator as a complex
linear operator such as D : Γ(M,S) −→ Γ(M,S) defined by the composition
−iĉ ◦ ∇S such that

ĉ ∈ HomC∞(M)(B ⊗ Γ(M,S),Γ(M,S)) (4.4)

is given by ĉ(ρ1, ρ2) := c(ρ1)ρ2 while B is the Clifford algebra bundle. It
is also possible to present this operator under a local setting in terms of
the spaces of vector fields and 1-forms. This explains the Dirac operator as
an essentially self-adjoint operator on its original domain, where we can see
that [D, f ] = −ic(df) for any smooth function f . Thanks to this treatment
the relation

d(x, y) = sup{|f(y)− f(x)| : f ∈ C∞(M), ||[D, f ]|| ≤ 1} (4.5)

describes the geodesic distance in terms of an unbounded Fredholm module
over the C*-algebra C∞(M) [45, 46]. Therefore all geometric information
of the manifold M can be encapsulated by the spectral triple

(C∞(M), L2(M,S),D). (4.6)

Theorem 4.1.1. Consider {(Am,Hm,Dm)}m≥1 as a countable family of
spectral triples with the corresponding family of representations {πm}m≥1.
For each m, let ||.||m be the norm on Hm and then choose {αm}m≥1 as a se-

quence of non-zero real numbers such that the sequence {||(1+α2
mD

2
m)

−1
2 ||m}m≥1

converges to zero when m goes to infinity. There exists a spectral triple

(A⊕,H⊕,D⊕) (4.7)

such that H⊕ :=
⊕

m≥1 Hm, D
⊕ :=

⊕
m≥1 αmDm with the corresponding

self-adjoint extension D⊕. In addition,

A⊕ := {(am)m≥1 ∈
∏

m

Am :

supm≥1||πm(am)||m < +∞, supm≥1||[αmDm, πm(am)]||m < +∞}

such that for each a⊕ ∈ A⊕, π⊕(a⊕) :=
⊕

m≥1 πm(am). [71]
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The graduation parameter on the renormalization Hopf algebra and Hopf
subalgebras generated by Dyson–Schwinger equations enable us to describe
the corresponding complex Lie groups GΦ(C) and GDSE(C) under projective
limits of Lie subgroups.

Generally speaking, for a given commutative (graded) Hopf algebra H,
let Spec(H) be the set of all prime ideals of H equipped with the Zariski
topology and the structure sheaf. This topological space accepts a group
structure generated by the coproduct of H. Under a categorical setting, the
functional Spec is a contravariant functor from the category of commutative
algebras to the category of topological spaces which leads us to define an-
other functional GH = Spec(H) as a covariant representable functor from
the category of commutative algebras to the category of groups. For each
commutative algebra A, the Lie group GH(A) = Spec(H)(A) is the set of
morphisms with the general form

ϕ : H −→ A, ϕ(h1h2) = ϕ(h1)ϕ(h2), ϕ(1h) = 1A, (4.8)

which is equipped with the convolution product

ϕ1 ∗ ϕ2(h) := m ◦ (ϕ1 ⊗ ϕ2) ◦∆H(h). (4.9)

Thanks to Milnor–Moore Theorem ([144]), the finite dimensional com-
plex Lie group GLn of n×nmatrices with non-zero determinants corresponds
to the Hopf algebra

HGLn = k[xi,j , t]i,j=1,...,n/det(xi,j)t− 1 (4.10)

with the coproduct

∆(xi,j) =
∑

s

xi,s ⊗ xs,j. (4.11)

It is shown that if the Hopf algebra H is finitely generated as an algebra,
then its corresponding affine group scheme is a linear algebraic group which
can be embedded as a Zariski closed subset of some GLn. [139]

If we have a graduation parameter on the commutative Hopf algebra
H, then there exists a family {Hn}n≥0 of commutative Hopf subalgebras
such that H =

⋃
n≥0Hn and for all n and m, we can find some k where

Hn ∪ Hm ⊂ Hk. It is called a finite type graded Hopf algebra if each
component of the grading structure is finitely generated as an algebra which
means that for each n, there exists the corresponding linear algebraic group
of the form

Gn(C) = Spec(Hn)(C) < GLmn(C) (4.12)

for some mn. These algebraic groups can generate the affine group scheme
GH corresponding to the Hopf algebra H via the projective limit

GH = lim←−nGn. (4.13)
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Theorem 4.1.2. There exists a class of infinite dimensional spectral triples
which describes the geometry of quantum motions in physical theories with
strong coupling constants.

Proof. We are going to build a spectral triple with respect to each Dyson–
Schwinger equation in SΦ,g such that the bare coupling constant g is strong
enough to produce non-perturbative situations. For simplicity in notation
we set g = 1 and suppose the large Feynman diagram XDSE =

∑
n≥0Xn

is the unique solution of an equation DSE. It is discussed that terms Xn

are generators of the free graded connected commutative finite type Hopf
subalgebra HDSE(Φ) of the Connes–Kreimer renormalization Hopf algebra
HFG(Φ) of Feynman diagrams graded in terms of the number of internal
edges. Present HDSE(Φ) in terms of its graded components as follows

HDSE(Φ) =
⋃

n≥0

H
(n)
DSE(Φ). (4.14)

For each n, the finite dimensional Hopf subalgebra H
(n)
DSE(Φ) determines

the finite dimensional complex Lie subgroup G
(n)
DSE(C) which is embedded

as a closed subset of the linear algebraic group GLmn(C) for some mn with
respect to the Zariski topology. Thanks to (4.13), the complex pro-unipotent

graded Lie group GDSE(C) is the projective limit of G
(n)
DSE(C)s as closed

subsets of GLmn(C)s.
For each mn, GLmn(C) is a finite dimensional Riemannian manifold with

the corresponding spectral triple

S(mn) := (C∞(GLmn(C)), L
2(GLmn(C), S),DGLmn (C)

). (4.15)

A restriction of this spectral triple enables us to build the spectral triple

corresponding to the complex Lie group G
(n)
DSE(C). We present it by

S
(n)
DSE = (A

(n)
DSE,H

(n)
DSE,D

(n)
DSE). (4.16)

Now consider the family {S
(n)
DSE}n≥0 of countable number of spectral triples

derived from components of the graduation structure of the Hopf subalgebra
HDSE(Φ) generated by the equation DSE. Let {αn}n≥1 be a sequence of non-
zero real numbers such that

{||(1 + α2
n(D

(n)
DSE)

2)
−1
2 ||n}n≥1 (4.17)

converges to zero when n tends to infinity where ||.||n is the norm on H
(n)
DSE.

Apply Theorem 4.1.1 to achieve the infinite dimensional spectral triple

S⊕DSE := (A⊕DSE,H
⊕
DSE,D

⊕
DSE) (4.18)
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originated from the five-tuples (A
(n)
DSE,H

(n)
DSE,D

(n)
DSE, π

(n)
DSE, αn) for each n.

The norm of the Hilbert space H
⊕
DSE is given by

||.||⊕ := supn||.||n. (4.19)

In addition, we can check that the representation π⊕DSE and the commutator
[D⊕DSE, π

⊕
DSE(A

⊕
DSE)] are bounded where the sequence {αn}n≥1 controls the

behavior of the sequence {D
(n)
DSE}n≥1. It means that

∑

n

dim(KerD
(n)
DSE) <∞. (4.20)

It is reasonable to name S⊕DSE as the non-perturbative spectral triple
with respect to the Dyson–Schwinger equation DSE.

Remark 4.1.3. If the coupling constant of a physical theory is weak enough
where higher order perturbation methods can handle solutions of Dyson–
Schwinger equations, then we can describe the geometry of this class of
quantum motions in terms of summing a finite number of finite dimensional
spectral triples.

Corollary 4.1.4. Each non-perturbative spectral triple has a graphon rep-
resentation.

Proof. For a given spectral triple S⊕DSE with respect to the equation DSE,
we can associate the unlabeled Feynman graphon class [WtXDSE

] determined
by the labeled graph functions of the infinite tree (or forest) tXDSE

corre-
sponding to the unique solution of DSE.

The geometry of the underlying manifold determines the spectrum but
the main challenge is the possibility of recovering geometrical information
from the spectrum to determine completely the metric or the shape of the
boundary. While the answer to this challenge is negative but Noncommu-
tative Geometry can provide an operator theoretic setting to deal with the
theory of spectral geometry. The fundamental integral in Noncommutative
Geometry is described as the Dixmier trace which extends the Wodzicki
residue from pseudodifferential operators on a manifold to a general frame-
work which concerns spectral triples [45]. In other words, for a given spectral
triple, we have ∫

T := Ress=0Tr(T |D|−s). (4.21)

It is possible to adapt this integral to deal with the geometry of Dyson–
Schwinger equations. The construction of the non-perturbative spectral

triple S⊕DSE (i.e. Theorem 4.1.2) shows that for each n, S
(n)
DSE is a finite
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dimensional spectral triple. Actually, for each n ≥ 1, S
(n)
DSE is the result

of the restriction of the spectral triple associated to the complex Lie group
Glmn(C) for some mn. Therefore for each n ≥ 1, the functional

a 7−→ Tr+(a|D
(n)
DSE|

−mn) (4.22)

determines a differential calculus theory and spectral geometry with respect

to the Riemannian volume form for S
(n)
DSE. This differential calculus is de-

scribing the geometric behavior of a quantum motion in terms of its ap-
proximation with respect to partial sums of the unique solution XDSE of the
corresponding equation DSE. Thanks to this interpretation, we may have
chance to search for the existence of a noncommutative integral with the
general form

a⊕ 7−→ Trω(a
⊕|D

⊕

DSE|
−p) (4.23)

for some p ≥ 1 and state ω. This noncommutative integral, which is on the
basis of the Connes–Dixmier traces, can lead us to build a theory of spectral
geometry for large Feynman diagrams.

4.2 A noncommutative symplectic geometry model

for SΦ
graphon

We have discussed that for a given smooth manifold M with the corre-
sponding complex commutative unital *-algebra C∞(M), it is possible to
reconstruct M together with its smooth structure and the objects attached
to the manifold (such as smooth vector fields) in terms of the spaces of
characters and derivations of the algebra C∞(M). The choice of the gen-
eralization method for the notion of module over a commutative algebra
when this algebra is replaced by a noncommutative algebra is related to the
choice of the noncommutative generalization of the classical commutative
case. There are some approaches to build the algebraic generalizations of
differential geometry such as Koszul framework. This framework is on the
basis of the space Der(A) of all derivations of a commutative associative
algebra A. A graded differential algebra (as the generalization of the al-
gebra of differential forms) determines another graded differential algebra
C∧(Der(A), A) of A-valued Chevalley–Eilenberg cochains of the Lie algebra
Der(A). The Koszul framework admits a generalization to the noncom-
mutative setting via differential calculus with respect to derivations. It is
actually the suitable differential calculus for Quantum Mechanics. In this
setting, an algebraic version of differential geometry in terms of a commu-
tative associative algebra A, A-modules and connections on these modules
have been designed. If we replace the commutativity of the algebra with
non-commutativity, then different classes of generalizations of the notion of
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a module over a noncommutative algebra can be resulted such as the notions
of left or right A-modules and left or right Z(A)-modules. [52, 53, 54, 56, 127]

The algebraic interpretation of Classical Geometry requires a commu-
tative setting where we have two options to fix the algebra. The first one
is the real commutative algebra AR of smooth real valued functions where
its complexified extension is canonically a complex commutative *-algebra.
The second one is the complex commutative *-algebra AC of smooth complex
valued functions where the set Ahermitian of its hermitian elements is a real
commutative algebra and thus AC will be the complexification of Ahermitian.

The algebraic interpretation of Quantum Physics requires a noncom-
mutative setting where we already have two classes of generalizations of
the algebra of real valued functions. The first one is the real Jordan algebra
Ahermitian of all hermitian elements of a complex noncommutative associative
*-algebra A. The second one is a real associative noncommutative algebra.
The most important challenge at this level is the choice of the mathematical
machinery to build a differential calculus theory. One generalization ap-
proach has been formulated by Connes in terms of theory of cyclic cohomol-
ogy of an algebra where the generalization of the cohomology of a manifold
in Noncommutative Geometry is actually the reduced cyclic homology of
an algebra which replaces the standard algebra of smooth functions. As we
know the computation of cohomology theory of classical manifolds is not a
unique way and furthermore, we can expect the construction of noncommu-
tative generalizations of differential geometry for which the generalization
of de Rham theorem fails to be true. These facts show that any cochain
complex, which has the reduced cyclic homology as cohomology, can not be
an acceptable generalization of differential forms. Thanks to these efforts,
the best candidate for the construction of a noncommutative differential cal-
culus is on the basis of the space of derivations as generalizations of vector
fields. This platform, which had been initiated and developed by Kozul and
Dubois-Violette, has already provided the foundations of a noncommutative
symplectic geometry for the study of quantum theories. [52, 56, 57, 99]

In a different story, the Connes–Kreimer Hopf algebraic renormalization
is the direct result of the existence of the Hopf–Birkhoff factorization on a
class of Lie groups. The original source of this particular factorization is
the multiplicativity of perturbative renormalization which is encoded by the
theory of Rota–Baxter algebras. The determination of a class of Hopf sub-
algebras via Dyson–Schiwnger equations together with the renormalization
of these equations under Dimensional Regularization had been applied to
build a class of Dubois–Violette’s differential graded algebras which encode
the geometric information of these equations in the context of noncommu-
tative differential forms. The basic idea in this approach is to associate a
noncommutative algebra to each equation DSE and then build a theory of
noncommutative (symplectic) geometry to encode the behavior of infinites-
imal characters corresponding to Feynman diagrams which contribute to

95



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

the solution of DSE under the renormalization process. This platform is
also useful to formulate a new interpretation of the Connes–Kreimer non-
perturbative renormalization group in the context of quantum integrable
systems. [166]

Our main task in this part is to develop this new Hopf algebraic approach
and explain the construction of a noncommutative differential calculus the-
ory for the topological Hopf algebra SΦ

graphon of Feynman graphons which is
originated from the BPHZ non-perturbative renormalization (i.i. Theorem
2.4.1) and the theory of Rota–Baxter algebras ([80]). The basic step is to
associate a (noncommutative) algebra to SΦ

graphon and then build a theory
of noncommutative differential forms on this algebra. Our study can deter-
mine a new class of non-perturbative quantum integrable systems generated
by solutions of Dyson–Schwinger equations.

The BPHZ renormalization program is on the basis of Dimensional Reg-
ularization and Minimal Subtraction map Rms which is an idempotent Rota–
Baxter map on the regularization algebra of Laurent series with finite pole
parts. We want to show that the application of each step of the BPHZ
renormalization program to Feynman graphons can determine a theory of
noncommutative differential calculus. These differential calculi are useful
to formulate some new geometric tools for the evaluation of solutions of
Dyson–Schwinger equations under the renormalization procedure.

Theorem 4.2.1. The Minimal Subtraction map Rms in the BPHZ renor-
malization of Feynman graphons (i.e. Theorem 2.3.8 and Theorem 2.4.1)
determines a noncommutative symplectic geometry model for the Hopf alge-
bra SΦ

graphon.

Proof. Consider Adr := A+⊕A− as the algebra of Laurent series with finite
pole parts which encodes Dimensional Regularization (i.e. regularization
scheme) and Rms as the linear map on Adr which projects a series onto its
corresponding pole parts. The pair (Adr, Rms) satisfies the conditions of a
Rota–Baxter algebra which enables us to define a new family of convolu-
tion products on the space L(SΦ

graphon, Adr) of linear maps in terms of the
following steps.

- Lift the map Rms onto a new map R on L(SΦ
graphon, Adr) defined by

R(φ) := Rms ◦ φ. (4.24)

The pair (L(SΦ
graphon, Adr),R) is a new Rota–Baxter algebra.

- Set R̂ := Id − R and for each λ ∈ R, define a new class of Nijenhuis
maps Rλ := R− λR̂.

- Define a new family of products on L(SΦ
graphon, Adr) with the general

form

φ1 ◦λ φ2 := Rλ(φ1) ∗gr φ2 + φ1 ∗gr Rλ(φ2)−Rλ(φ1 ∗gr φ2) (4.25)

96



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

such that ∗gr is the convolution product with respect to the coproduct
∆graphon on Feynman graphons (2.46) where we have

ψ1∗grψ2([WΓ]) =
∑

ψ1([WΓ′ ])ψ2([WΓ′′ ]), ∆graphon([WΓ]) =
∑

[WΓ′ ]⊗[WΓ′′ ].

(4.26)
The non-cocommutativity of the renormalization Hopf algebra of Feyn-

man graphons shows that the convolution product ∗gr and new products ◦λ
are noncommutative.

The Nijenhuis property of Rλ shows that

Rλ(φ1 ◦λ φ2) = Rλ(φ1) ∗gr Rλ(φ2) (4.27)

which supports the associativity of these new products.
Now set

Cgraphon
λ := (L(SΦ

graphon, Adr), ◦λ) (4.28)

as the unital associative noncommutative algebra generated by the Minimal
Subtraction map. For each λ, the commutator with respect to ◦λ determines
a new Lie bracket [., .]λ on the space L(SΦ

graphon, Adr) given by

[φ1, φ2]λ = [Rλ(φ1), φ2] + [φ1,Rλ(φ2)]−Rλ[φ1, φ2]. (4.29)

This class of Lie brackets is the key tool for us to build a new noncommu-
tative differential calculus on Cgraphon

λ in terms of the following steps.

- Set Derλgraphon as the space of all derivations on Cgraphon
λ . It has all

linear maps such as θ : Cgraphon
λ −→ Cgraphon

λ which enjoys the Leibniz rule.
- The Lie bracket [., .]λ determines naturally the Poisson bracket {., .}λ on

Cgraphon
λ . For each φ ∈ Cgraphon

λ , its corresponding Hamiltonian derivation
is defined by

ham(φ) : ψ 7→ {φ,ψ}λ. (4.30)

Set Hamλ
graphon as the Z(Cgraphon

λ )-module generated by all Hamiltonian

derivations on Cgraphon
λ .

- Define

Ω•λ,graphon(C
graphon
λ ) := (

⊕

n≥0

Ωnλ,graphon(C
graphon
λ ), dλ) (4.31)

as the differential graded algebra on Cgraphon
λ . For each n ≥ 1, Ωnλ,graphon(C

graphon
λ )

is the space of all Z(Cgraphon
λ )-multilinear antisymmetric mappings from

Hamλ
graphon × ...n × Hamλ

graphon into Cgraphon
λ . The zero component of this

differential graded algebra is the initial algebra Cgraphon
λ . In addition, for

each ω ∈ Ωnλ,graphon(C
graphon
λ ) and θi ∈ Hamλ

graphon, the anti-derivative de-
gree one differential operator dλ is defined by

dλω(θ0, ..., θn) :=

n∑

k=0

(−1)kθkω(θ0, ..., θ̂k, ..., θn)+
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∑

0≤r<s≤n

(−1)r+sω([θr, θs]λ, θ0, ..., θ̂r, ..., θ̂s, ..., θn) (4.32)

such that we have d2λ = 0.
Thanks to this differential graded (Lie) algebraic machinery, we can de-

termine a new class of symplectic structures generated by the Lie bracket
[., .]λ. Define

ωλ : Hamλ
graphon ×Hamλ

graphon −→ Cgraphon
λ

ωλ(θ, θ
′) :=

∑

i,j

ui ◦λ vj ◦λ [fi, hj ]λ (4.33)

such that {f1, ..., fm, h1, ..., hn} ⊂ Cgraphon
λ , {u1, ..., um, v1, ..., vn} ⊂ Z(Cgraphon

λ )
and

θ =
∑

i

ui ◦λ ham(fi), θ′ =
∑

j

vj ◦λ ham(hj). (4.34)

The differential form ωλ is a Z(Cgraphon
λ )-bilinear anti-symmetric non-

degenerate closed 2-form in Ω2
λ,graphon(C

graphon
λ ). For a given f ∈ Cgraphon

λ

with the corresponding symplectic vector field θλf , we have

{f, g}λ := iθλ
f
(dλg) (4.35)

such that

iθ(ω0dλω1...dλωn) =

n∑

j=1

(−1)j−1ω0dλω1...θ(ωj)...dλωn (4.36)

is the super-derivation of degree -1. We can check that

{f, g}λ = iθλ
f
iθλgωλ. (4.37)

Theorem 4.2.2. The Dimensional Regularization in the BPHZ renormal-
ization of Feynman graphons (i.e. Theorem 2.3.8 and Theorem 2.4.1) de-
termines a noncommutative symplectic geometry model for the Hopf algebra
SΦ
graphon.

Proof. There exists a universal setting for the construction of a new Nijen-
huis algebra from a given commutative unital algebra Adr. We present the
product of formal series by m(f, g) = [fg] and consider the graded tensor
module T (Adr) :=

⊕
n≥0A

⊗n
dr generated by expressions such as f1 ⊗ f2 ⊗

...⊗ fn. From now we name each series in Adr as a letter and each sequence
U := f1f2...fn of letters as a word with the length n. The empty word e
which has the length zero is the unit object in T (Adr).
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By induction we can define a new shuffle product on T (Adr) given by

fU ⊚ gV := f(U ⊚ gV ) + g(fU ⊚ V )− e[fg](U ⊚ V ) (4.38)

which is unital and associative. The product (4.38) defines another new
quasi-shuffle product on T (Adr) :=

⊕
n≥1A

⊗n
dr given by

fU ⊖ gV := [fg](U ⊚ V ) (4.39)

which is also unital and associative.
The linear map B+

e on T (Adr) sends each word U of length n to the
new word eU of length n + 1. Thanks to investigations discussed in [66],
the triple (T (Adr),⊖, B

+
e ) is th universal Nijenhuis algebra in a category of

Nijenhuis algebras generated by the initial algebra Adr.
Now we can lift the linear map B+

e onto L(SΦ
graphon, T (Adr)) to define

the new Nijenhuis map

Ngraphon(ψ) := B+
e ◦ ψ. (4.40)

The resulting Nijenhuis algebra is the key tool for us to build a new product
◦u on L(SΦ

graphon, T (Adr)) defined by

ψ1 ◦u ψ2 := Ngraphon(ψ1) ∗⊖ ψ2 + ψ1 ∗⊖ Ngraphon(ψ2)−Ngraphon(ψ1 ∗⊖ ψ2)
(4.41)

such that ∗⊖ is the convolution product with respect to the coproduct
∆graphon on Feynman graphons (2.46) and the product ⊖. We have

ψ1∗⊖ψ2([WΓ]) =
∑

ψ1([WΓ′ ])⊖ψ2([WΓ′′ ]), ∆graphon([WΓ]) =
∑

[WΓ′ ]⊗[WΓ′′ ].

(4.42)
The non-cocommutativity of the renormalization Hopf algebra of Feyn-

man graphons shows that the convolution product ∗⊖ and the new product
◦u are noncommutative. In addition, the Nijenhuis property shows that

Ngraphon(ψ1 ◦u ψ2) = Ngraphon(ψ1) ∗⊖ Ngraphon(ψ2) (4.43)

which supports the associativity of this new product.
Set

Cgraphon
u := (L(SΦ

graphon, T (Adr)), ◦u) (4.44)

as the unital associative noncommutative algebra generated by Dimensional
Regularization. In addition, the commutator with respect to the product ◦u
determines a new Lie bracket [., .]u on the space L(SΦ

graphon, T (Adr)) given
by

[ψ1, ψ2]u := [Ngraphon(ψ1), ψ2]+[ψ1,Ngraphon(ψ2)]−Ngraphon[ψ1, ψ2]. (4.45)

This class of Lie brackets enables us to build a new noncommutative differ-
ential calculus on Cgraphon

u in terms of the following steps.
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- Set Derugraphon as the space of all derivations on Cgraphon
u . It has all

linear maps such as θ : Cgraphon
u −→ Cgraphon

u which enjoys the Leibniz rule.
- The Lie bracket [., .]u naturally determines the Poisson bracket {., .}u on

Cgraphon
u . For each φ ∈ Cgraphon

u , its corresponding Hamiltonian derivation
is defined by

ham(φ) : ψ 7−→ {φ,ψ}u. (4.46)

Set Hamu
graphon as the Z(Cgraphon

u )-module generated by all Hamiltonian

derivations on Cgraphon
u .

- Define

Ω•u,graphon(C
graphon
u ) := (

⊕

n≥0

Ωnu,graphon(C
graphon
u ), du) (4.47)

as the differential graded algebra on Cgraphon
u . For each n ≥ 1, Ωnu,graphon(C

graphon
u )

is the space of all Z(Cgraphon
u )-multilinear antisymmetric mappings from

Hamu
graphon × ...n × Hamu

graphon into Cgraphon
u . The zero component of this

differential graded algebra is the initial algebra Cgraphon
u . In addition, for

each ω ∈ Ωnu,graphon(C
graphon
u ) and θi ∈ Hamu

graphon, the anti-derivative de-
gree one differential operator du is defined by

duω(θ0, ..., θn) :=

n∑

k=0

(−1)kθkω(θ0, ..., θ̂k, ..., θn)+

∑

0≤r<s≤n

(−1)r+sω([θr, θs]u, θ0, ..., θ̂r, ..., θ̂s, ..., θn) (4.48)

such that we have d2u = 0.
Thanks to this differential graded (Lie) algebraic machinery, we can de-

termine a new class of symplectic structures generated by the Lie bracket
[., .]u. Define

ωu : Hamu
graphon ×Hamu

graphon −→ Cgraphon
u

ωu(θ, θ
′) :=

∑

i,j

ui ◦u vj ◦u [fi, hj ]u (4.49)

such that {f1, ..., fm, h1, ..., hn} ⊂ Cgraphon
u , {u1, ..., um, v1, ..., vn} ⊂ Z(Cgraphon

u ),

θ =
∑

i

ui ◦u ham(fi), θ′ =
∑

j

vj ◦u ham(hj). (4.50)

The differential form ωu is a Z(Cgraphon
u )-bilinear anti-symmetric non-

degenerate closed 2-form in Ω2
u,graphon(C

graphon
u ). For a given f ∈ Cgraphon

u

with the corresponding symplectic vector field θuf , we have

{f, g}u := iθu
f
(dug) (4.51)
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such that

iθ(ω0duω1...duωn) =

n∑

j=1

(−1)j−1ω0duω1...θ(ωj)...duωn (4.52)

is the super-derivation of degree -1. We can check that

{f, g}u = iθu
f
iθugωu. (4.53)

The modified version of the Connes–Kreimer Renormalization Group for
Feynman graphons is defined by Lemma 2.4.2 where we should apply the fil-
tration parameter on Feynman graphons given by Theorem 2.3.10. Thanks
to the built noncommutative differential geometry on SΦ

graphon, we can pro-
vide a new geometric interpretation for the behavior of the Connes–Kreimer
Renormalization Group whenever it acts on large Feynman diagrams.

Lemma 4.2.3. Let {Ft}t be the Renormalization Group on Feynman graphons
defined by Lemma 2.4.2. For each t and any large Feynman diagram X,
Ft(X) is the convergent limit of the sequence {Ft(Xn)}n≥1 with respect to
the cut-distance topology.

Proof. Consider the loop γµ ∈ Loop(GΦ
graphon(C), µ) which encodes the Feyn-

man rules characters in the renormalization Hopf algebra of Feynman graphons
with respect to a given physical theory Φ. For a given Dyson–Schwinger
equation DSE with the unique solution X =

∑
n≥0Xn, we have

γµ(z)([WX ]) := U zµ(X) (4.54)

such that U zµ(X) is a Laurent series as the regularized large Feynman integral
with respect to X. The one-parameter group {θt}t∈C sends the unlabeled
graphon class [WX ] to the filtration rank of the equation DSE (i.e. Theorem
2.3.10). The resulting Renormalization Group {Ft}t (i.e. Lemma 2.4.2)
is a subgroup of GΦ

graphon(C) which means that for each t, Ft is a linear
homomorphism. On the other hand, thanks to Theorem 2.3.7, we know
that the large Feynman diagram X is the convergent limit of the sequence
of its partial sums with respect to the cut-distance topology. Therefore we
have

Ft(X) = Ft(limm→∞Ym) = Ft(limm→∞

m∑

n=1

Xn) =

limm→∞

m∑

n=1

Ft(Xn) = limm→∞

m∑

n=1

limz→0γ−(z)(Xn)θtz(γ
−1
− (z)(Xn))

= limm→∞limz→0

m∑

n=1

γ−(z)(Xn)θtz(γ
−1
− (z)(Xn)) (4.55)
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such that according to Proposition 1.47 in [46], for each t, Ft(Xn) is a
polynomial in t.

Corollary 4.2.4. The non-perturbative Connes–Kreimer Renormalization
Group on Feynman graphons can determine an infinite dimensional inte-
grable system.

Proof. We work on the unital associative noncommutative algebra Cgraphon
0 :=

(L(SΦ
graphon, Adr), ◦0) generated by the Minimal Subtraction map for λ = 0.

Thanks to Theorem 4.2.1, consider the differential graded algebra

Ω•0,graphon(C
graphon
0 ) := (

⊕

n≥0

Ωn0,graphon(C
graphon
0 ), d0) (4.56)

with respect to the Lie bracket [., .]0. Each character Ft of the Renormaliza-

tion Group {Ft}t given by Lemma 4.2.3 is an object in the algebra Cgraphon
0 .

Therefore the motion integral equation with respect to the character Ft0 is
given by the equation

{f, Ft0}0 = 0 (4.57)

such that f ∈ Cgraphon
0 . Thanks to the existence of a noncommutative

symplectic form ω0 on Cgraphon
0 with respect to the Lie bracket [., .]0 (i.e.

Theorem 4.2.1), the motion integral can be determined by the equation

{f, Ft0}0 = iθ0
Ft0

iθ0
f
ω0 = w0(θ

0
Ft0
, θ0f ) = [f, Ft0 ] = 0. (4.58)

On the one hand, from the definition of the deformed Lie bracket [., .]0 and
the idempotent Rota–Baxter property of (Adr, Rms), we have

{Ft, Fs}0 = [Rms(Ft), Fs] + [Ft, Rms(Fs)]−Rms([Ft, Fs]). (4.59)

On the other hand, for each t, Ft([WΓ]) is a polynomial in t which means
that Rms(Ft([WΓ])) = 0 and in addition, for each s, t, Ft∗Fs = Ft+s. Thanks
to these facts, we can observe that for each s, t,

{Ft, Fs}0 = 0. (4.60)
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Chapter 5

A theory of functional analysis

for large Feynman diagrams

• The Haar integration on SΦ,g and its application

• The Gâteaux differential calculus on SΦ,g and its application

− Feynman random graphs via homomorphism densities

− Differentiability
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This chapter aims to provide the foundations of a functional analysis
machinery for the study of large Feynman diagrams which contribute to
solutions of Dyson–Schwinger equations. We build an integration theory
and a differentiation theory for the functionals on the space SΦ,g with re-
spect to a given strongly coupled gauge field theory Φ. The space SΦ,g can
be embedded into the Hopf algebra Hcut

FG(Φ) of (large) Feynman diagrams
topologically completed with the cut-distance topology. The space Hcut

FG(Φ)
consists of all Feynman diagrams and their corresponding finite or infinite
formal expansions where solutions of all non-perturbative Dyson–Schwinger
equations belong to the boundary region of this compact topological Hopf
algebra. As we have shown in the previous parts, this enriched Hopf algebra
of Feynman diagrams can be encoded in terms of the renormalization Hopf
algebra SΦ

graphon of Feynman graphons.

At the first step, we build a measure theory on SΦ,g where we equip
this space with a new topological group structure which leads us to a new
Haar measure integration theory for functionals on large Feynman diagrams.
Then we deal with some applications of the resulting measure space where
a new generalization of the classical Johnson–Lapidus Dyson series for large
Feynman diagrams will be obtained. In addition, we work on the con-
struction of a new Fourier transformation machinery on the Banach algebra
L1(SΦ,g, µHaar) which enables us to describe the evolution of large Feynman
diagrams on the basis of their corresponding partial sums under a functional
setting. At the second step, we concern the Gâteaux differentiability of real
valued functionals on SΦ

graphon where we obtain Taylor expansion represen-
tations for these functionals under some conditions.

Achievements of these steps can be adapted for the level of the topologi-
cal Hopf algebra Hcut

FG(Φ). In other words, the promising differential calculus
and integration theory enable us to describe the dynamics of topological re-
gions of Feynman diagrams on the basis of the behavior of functionals with
respect to the built Haar integration theory and Gâteaux differentiation
theory on Feynman graphons.

5.1 The Haar integration on SΦ,g and its applica-

tion

For a given physical theory Φ with strong coupling constant g ≥ 1, set
V (Φ) as the set of all vertices which appear in Feynman diagrams and their
corresponding formal expansions as interactions among elementary particles.
This infinite countable set allows us to count interactions independent of
their physical types. Set KV (Φ) as the complete graph with V (Φ) as the set
of vertices and all possible edges among these vertices except self-loops. The
collection {0, 1}KV (Φ) , as the family of all functions from KV (Φ) to {0, 1},
allows us to characterize Feynman diagrams which contribute to physical
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theory Φ. Therefore, each (large) Feynman diagram Γ can be determined by
its corresponding characteristic function χΓ which sends vertices v ∈ KV (Φ)

to 1 if v ∈ Γ and sends other vertices to 0. For each edge e ∈ KV (Φ), if Ve
be the set of vertices in V (Φ) which are attached to the edge e, then the
infinite Cartesian product ×e∈KV (Φ)

P(KVe) has enough vertices and edges

to contain all Feynman graphs in Hcut
FG (Φ).

Lemma 5.1.1. SΦ,g can be equipped with an abelian compact Hausdorff
topological group structure.

Proof. For a given Dyson–Schwinger DSE in SΦ,g with the unique solution
XDSE, we can associate the characteristic function χXDSE

∈ {0, 1}KV (Φ) to
DSE. The function χXDSE

allows us to identify vertices and edges which
contribute to the large Feynman diagramXDSE. It means that we can embed
the collection SΦ,g into {0, 1}KV (Φ) which is useful to define new addition
and multiplication operators on Dyson–Schwinger equations in terms of the
pointwise addition and multiplication of their corresponding characteristic
functions. These operators provide a vector space structure generated by
XDSE for each DSE where as the result, we have a commutative Z2-algebra
structure on SΦ,g.

In addition, we can also define a new binary operation on SΦ,g in terms
of the symmetric difference operator

(DSE1,DSE2) 7−→ XDSE1△XDSE2 . (5.1)

By adding the empty graph I to SΦ,g as the zero element, the pair (SΦ,g,△)
is an abelian group which can be equipped with a compatible topology to ob-
tain a compact topological group. For this purpose, suppose α be a bijection
between KV (Φ) and the set of natural numbers N. For the fixed coupling con-

stant g ≥ 1 and each ǫ > 0, define a new map dg,α,ǫ : S
Φ,g ×SΦ,g −→ [0,∞)

given by

dg,α,ǫ(DSE1,DSE2) :=
∑

e∈XDSE1
△XDSE2

(g + ǫ)−α(e) (5.2)

such that the sum is taken over vertices such as e which belongs to only
one of the large Feynman diagrams XDSE1 or XDSE2 . The map dg,α,ǫ is a
translation invariant metric such that dg,α,ǫ1 and dg,α,ǫ2 have the equivalent
topology.

The space SΦ,g together with the symmetric difference operator and
the topology generated by the metric dg,α,ǫ is a compact Hausdorff abelian
topological group.

Thanks to the translation-invariant metric dg,α,ǫ defined by Lemma 5.1.1,
for each equation DSE in SΦ,g with the corresponding large Feynman dia-
gram XDSE define

‖ XDSE ‖g,α,ǫ:= dg,α,ǫ(I,XDSE). (5.3)

105



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

In this setting, a sequence {Γn}n≥1 of large Feynman diagrams in SΦ,g is
convergent to a unique large Feynman diagram Γ, if each indicator sequence
{1e∈Γn}n≥1 converges to the indicator 1e∈Γ for any e ∈ KV (Φ).

Theorem 5.1.2. The topological group SΦ,g can be equipped with the Haar
measure µHaar.

Proof. Lemma 5.1.1 supports the existence of the unique Haar measure µHaar

on SΦ,g originated from the compact topological structure. We build this
measure which is actually of the type Bernoulli probability.

Consider the product σ-algebra
∑

prod on SΦ,g generated by cylinder sets

SΓ0 := ×Γ6=Γ0{I, {Γ}} × {Γ0} (5.4)

for each large Feynman diagram Γ0 corresponding to an equation DSE0 in
SΦ,g. For each large Feynman diagram Γ, the characteristic function χΓ is
useful to see Γ as an infinite countable subset of vertices in KV (Φ) which
contribute to the unique solution of the equation DSEΓ. Therefore each
function P ∈ {0, 1}KV (Φ) can identify a new function P̃ : SΦ,g → [0, 1] which
can be applied to define the measure µP̃ on the σ-algebra

∑
prod in terms of

the following steps.
- For finite intersections of cylinder sets SΓ1 , ..., SΓn , we have

µP̃ (SΓ1 ∩ SΓ2 ∩ ... ∩ SΓn) =

n∏

i=1

P̃ (Γi) (5.5)

for large Feynman diagrams Γ1, ...,Γn as solutions of Dyson–Schwinger equa-
tions DSE1, ...,DSEn in SΦ,g.

- The function µP̃ is a probability measure on SΦ,g which can be pre-
sented with the general form

µP̃ :=
∏

X∈SΦ,g

µP̃ ,X . (5.6)

Now we need to show that the measure µP̃ is the Haar measure. In other
words, we claim that the Haar measure is equal with µP̃ where P (X) = 1/2
for each large Feynman diagram X ∈ SΦ,g.

For subsets Z1, Z2 of KV (Φ), define

I(Z1, Z2) := {DSE ∈ SΦ,g : Z1 ⊂ XDSE, Z2 ⊂ KV (Φ)\XDSE} (5.7)

and then consider the σ-algebra
∑
I generated by all sets I(Z1, Z2). The

σ-algebra
∑
I is the same as the σ-algebra generated by all sets I(Z1, Z2)

for disjoint sets Z1, Z2. In addition, we have SΓ = I(I, {Γ}) which leads us
to show that

∑
prod =

∑
I .

Thanks to some standard methods in Analysis [158], we can determine
the unique translation-invariant probability measure µHaar on the compact
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topological group SΦ,g. For a given large Feynman diagram X and a subset
Z of KV (Φ), define

Z +X := {γ ⊔X : γ ∈ Z}. (5.8)

Then we can show that

I(Z1, Z2) = I(I, Z1 ⊔ Z2) + Z2. (5.9)

Thanks to this fact, for given large Feynman diagrams Γ1,Γ2, set Γ = Γ1⊔Γ2.
Then we have

µHaar(I(Γ1,Γ2)) = µHaar(I(Γ1,Γ2) + Γ2) = µHaar(I(I,Γ)) (5.10)

which informs the translation-invariance.
In general, if (Ω, A) ba σ-algebra generated by a subset C ⊂ A which

is closed under finite intersections, then two probability measures on A are
equal if and only if they agree on C. If C has an algebraic structure which
is equipped by a probability measure µ, then we can extend µ to a unique
measure on A [158]. Now let the subset Z of KV (Φ) can determine a finite
number of large Feynman diagrams Γ1, ...,Γn. Then as the set we have

SΦ,g =
⊔

Z0⊂Z

I(Z0, Z\Z0) (5.11)

which can be used to show that µHaar agrees with µ1/2 on σI . In other
words,

µHaar(I(Z1, Z2)) = 2−n = µ1/2(I(Z1, Z2)). (5.12)

It is also possible to check that σI is equal with the Borel σ-algebra
generated by all open sets in SΦ,g with respect to the metric dg,α,ǫ. For a
given bijection α : KV (Φ) → N, set

En(α) := {e ∈ KV (Φ) : α(e) ≤ n}. (5.13)

For each large Feynman diagram X in SΦ,g, set B(X, r, ‖ . ‖g,α,ǫ) as the
open ball in (SΦ,g, dg,α,ǫ) with the center X and the radius r. In addition,
for given disjoint finite subsets N1, N2 ⊂ N such that N1∪N2 = {1, 2, ..., n},
define

I(N1, N2) := I(α−1(N1), α
−1(N2)). (5.14)

Then we have

I(N1, N2) = B(α−1(N2), 2
−n, ‖ . ‖g,α,2)

⋃
B(KV (Φ)\α

−1(N1), 2
−n, ‖ . ‖g,α,2)

(5.15)
such that B(α−1(Ni), 2

−n, ‖ . ‖g,α,2) is the open ball in (SΦ,g, dg,α,g+ǫ=2)
with the center α−1(Ni) and the radius 2−n.

Now a large Feynman diagram X ∈ SΦ,g can be described as the con-
vergent limit of the sequence {Γn}n≥1 such that Γn := X ∩ En(α).
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Furthermore, we know that SΦ,g is a compact Hausdorff topological
group (i.e. Lemma 5.1.1). Therefore K ⊂ SΦ,g is compact iff SΦ,g\K is
open. It shows that the σ-algebra generated by all compact sets is the same
as the Borel σ-algebra generated by all open sets. As the result, µHaar on
σprod determines uniquely the Haar measure. Therefore µHaar = µ1/2.

Theorem 5.1.3. For a given bijection α, the Haar measure of any ball of
the radius 0 ≤ r ≤ 1 in the normed vector space (SΦ,g, ‖ . ‖g,α,g+ǫ=2) is r.

Proof. The proof is a direct result of Theorem 5.1.2 and the proof of Theo-
rem A in [98].

The resulting measure space enables us to initiate an integration theory
on the family of (large) Feynman diagrams which contribute to solutions of
Dyson–Schwinger equations of a given strongly coupled gauge field theory.
This integration theory can be interpreted in the context of the Riemann–
Lebesgue integration theory on the measure space (R,B(R)).

Theorem 5.1.4. The integration theory on the measure space (SΦ,g, µHaar)
can be formulated in terms of the Riemann–Lebesgue integration theory on
real numbers with respect to the Borel σ-algebra generated by all open sets.

Proof. Thanks to the structure of the topological group SΦ,g (i.e. Lemma
5.1.1) where the norm ‖ . ‖g,α,2 (given by (5.3)) and the Haar measure
µHaar (given by Theorem 5.1.2) are defined on large Feynman diagrams, we
can adapt the proofs of Lemma 3.22 and Proposition 3.23 in [168] for large
Feynman diagrams to obtain the following results.

(i) We can show that the norm ‖ . ‖g,α,2 (as a real valued function on
SΦ,g) is the Haar measure-preserving map.

(ii) We can show that for any Lebesgue integrable real valued function
f on [0, 1],

EµHaar
[f(‖ . ‖g,α,2)] =

∫ 1

0
f(x)dx. (5.16)

(iii) We can show that for any integrable real valued function h on SΦ,g,

EµHaar
[h] =

∫ 1

0
h((‖ . ‖g,α,2)

−1(x))dx. (5.17)

Therefore the Haar integration theory on (SΦ,g, µHaar) can be described
by transferring the Riemann–Lebesgue integration theory from the unit in-
terval to the space of large Feynman diagrams.

The rest of this section provides some applications of this integration
theory for functionals on the measure space (SΦ,g, µHaar).
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Consider a single quantum particle which moves in a given potential such
that its behavior can be studied by a class of functionals on C[0, t] given by

Z(y) := exp{

∫

(0,t)
θ(s, y(s))ds} (5.18)

where the complex valued function θ on [0, t]×Rn is the given potential. This
formulation is on the basis of the standard Lebesgue–Stieltjes measure while
under some conditions it is possible to formulate these functionals with re-
spect to other complex Borel measures. It has been shown that for each com-
plex number with positive real part λ, the operators Kλ(Zn) exist for each
n such that Zn(y) := (

∫
(0,t) θ(s, y(s))dη)

n and Kλ(Z) =
∑

n≥0 anKλ(Zn).
The central motivation of this formulation was to deal with Feynman’s op-
erational calculus in QED and other quantum theories. [96]

A modification of the Johnson–Lapidus Dyson series for a measure space
of graphs which contribute to the topological Hopf algebra Hcut

FG(Φ) has been
obtained in [168]. Now we want to apply the Haar integration theory on the
topological group SΦ,g to formulate the Johnson–Lapidus Dyson series on
SΦ,g. This class of series allows us to explain the evolution of (strongly
coupled) Dyson–Schwinger equations in terms of sequences of partial sums
or sequences of large Feynman diagrams corresponding to weakly coupled
Dyson–Schwinger equations.

Theorem 5.1.5. Let θ be a complex valued function on SΦ,g×R2 and v(z) =∑
n≥0 anz

n with the radius of convergence strictly grater than ||θ||∞;µBorel
.

For a functional Z on the measure space L1(SΦ,g, µHaar) of all complex valued
µHaar-integrable functions on SΦ,g given by

Z(F ) := v(

∫

SΦ,g

θ(X,F (X))dµBorel) (5.19)

, there exists a family of operators {Kλ(Zn)}n∈N such that
- parameters λ are complex numbers with positive real parts,
- Zn(F ) := (

∫
SΦ,g θ(X,F (X))dµBorel)

n,
- Kλ(Z) =

∑
n≥0 anKλ(Zn).

Proof. Theorem 5.1.2 and Theorem 5.1.4 enable us to understand the Haar
integration theory on SΦ,g in terms of the Riemann–Lebesgue integration
theory for real valued functions on the closed interval. In addition, we have
discussed the equivalence between the product σ-algebra

∑
prod on cylinders

determined by large Feynman diagrams and the Borel σ-algebra of open balls
with respect to the norm ‖ . ‖g,α,2. It is useful to determine uniquely the
Borel measure µBorel on SΦ,g corresponding to the Haar measure µHaar (i.e.
Theorem 5.1.2). Therefore we can now extend the classical Johnson-Lapidus
Dyson series to the level of the Haar measure µHaar on SΦ,g.
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In addition, we have shown the existence of a compact Hausdorff topo-
logical group structure on SΦ,g. Thanks to standard methods in Anal-
ysis ([158]), it is easy to show that the topological space Cc(S

Φ,g) con-
sisting of continuous functions on SΦ,g with compact support is dense in
L1(SΦ,g, µHaar). Apply (5.17) to transfer the Haar measure integral

EµHaar
[h] =

∫

SΦ,g

h(X)dµHaar (5.20)

of each h ∈ Cc(S
Φ,g) to its corresponding Riemann–Lebesgue integral. It

remains only to lift the proof of the classical Johnson-Lapidus generalized
Dyson series given in [96] onto L1(SΦ,g, µHaar).

Corollary 5.1.6. (i) The Johnson–Lapidus Dyson series can describe the
behavior of a combinatorial Dyson–Schwinger equation in a given potential.

(ii) The functionals Kλ(Z) (determined by Theorem 5.1.5) enable us
to describe the evolution of each large Feynman diagram X in terms of a
sequence of Dyson–Schwinger equations in SΦ,g.

Proof. (i) Suppose XDSE(g) =
∑

n≥0 g
nXn is a large Feynman diagram

as the unique solution of an equation DSE in the normed vector space
(SΦ,g, ‖ . ‖g,α,2). Thanks to the Hahn–Banach Theorem ([158]), there exists
a continuous linear map ψDSE : SΦ,g −→ R such that

ψDSE(XDSE) =‖ XDSE ‖g,α,2, ‖ ψDSE ‖≤ 1 (5.21)

where the operator norm ‖ ψDSE ‖ is defined by

‖ ψDSE ‖:= inf{c ≥ 0 : |ψDSE(X)| ≤ c ‖ X ‖g,α,2, ∀X ∈ SΦ,g}. (5.22)

Now apply Theorem 5.1.5 for ψDSE ∈ L1(SΦ,g, µHaar).
(ii) For any given Dyson–Schwinger equation DSE, if we apply the multi-

scale Renormalization Group given by Theorem 3.2.2, then we can build a
sequence {DSEn(

n
n+1g)}n≥1 of Dyson–Schwinger equations under rescaled

values of the bare coupling constant where we have

XDSEn(
n

n+ 1
g) ⊂ XDSEn+1(

n+ 1

n+ 2
g). (5.23)

For each n, set χnDSE as the characteristic function with respect to the large
Feynman diagram XDSEn

( n
n+1g) on SΦ,g such that χnDSE ∈ L1(SΦ,g, µHaar).

Now apply Theorem 5.1.5 to the sequence {χnDSE}n≥1 to obtain a description
for the evolution of XDSE(g) in terms of large sub-graphs. A free evolution
from XDSE(0) = I (i.e. the empty graph) to XDSE1(

1
2g), interactions of par-

ticles in XDSE1(
1
2g) with the potential θ, free evolution from XDSE1(

1
2g) to

XDSE2(
2
3g), and so on up to nth integration with θ at the level XDSEn(

n
n+1g)

followed by a free evolution from XDSEn(
n
n+1g) to XDSE(g) when n tends to

infinity.
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Lemma 5.1.7. Thanks to the symmetric difference as a binary operation
on large Feynman diagrams, there exists a complex commutative Banach
algebra structure on L1(SΦ,g, µHaar).

Proof. We have seen that the binary operation △ determines an abelian
compact Hausdorff topological group structure on SΦ,g such that the empty
graph I is the zero element of this group. Now define the following convolu-
tion product on L1(SΦ,g, µHaar)

F1 ∗△ F2(Γ1)

=

∫

SΦ,g

F1(Γ2)F2(Γ
−1
2 △Γ1)dµHaar(Γ2), F1, F2 ∈ L1(SΦ,g, µHaar) (5.24)

such that Γ−12 is the inverse of the graph with respect to the group structure
△. The compatibility between the product (5.24) and the L1-norm

‖ F ‖1:=

∫

SΦ,g

| F (X) | dµHaar(X) (5.25)

provides our promising Banach algebra. The abelian property of the group
(SΦ,g,△) guarantees the commutativity of this Banach algebra. In addition,
we add the infinitesimal delta function δ as the multiplicative unit for this
Banach algebra. Then we have

∫

SΦ,g

F (X)δ(X)dµHaar(X) = F (I) (5.26)

for each F ∈ L1(SΦ,g, µHaar) and each large Feynman diagram X ∈ SΦ,g.

Proposition 5.1.8. (i) Each functional F ∈ L1(SΦ,g, µHaar) has a non-
empty spectrum.

(ii) The space Ω(L1(SΦ,g, µHaar)) of all characters of the complex Banach
algebra L1(SΦ,g, µHaar) is a compact Hausdorff topological space.

Proof. We need only to adapt the standard procedures in Functional Anal-
ysis ([158]) to achieve the results.

(i) We show that

sp(F ) := {λ ∈ C : F − λδ not invertible} (5.27)

is non-empty. If F = 0, then thanks to the definition of the infinitesimal
delta function, we have the result. If F be a non-zero functional, suppose
its spectrum is empty which means that the new function

R : C −→ L1(SΦ,g, µHaar), λ 7−→ (F − λδ)−1 (5.28)
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is well-defined, holomorphic, non-constant and bounded. For any bounded
linear functional Υ on L1(SΦ,g, µHaar), define a new function Υ̃ on R2 given
by

Υ̃(x, y) := Υ(R(xeiy)). (5.29)

We can show that Υ̃ is continuously differentiable with respect to variables x
and y. Now by differentiation under the integral sign from the holomorphic
bounded function K(x) :=

∫ 2π
0 Υ̃(x, y)dy, we have K ′(x) = 0. Therefore K

is a constant function which is a contradiction with the initial assumption.
(ii) The ideal generated by kernel of any character provides a natural

correspondence between the set of maximal ideals of the Banach algebra
L1(SΦ,g, µHaar) and the set of characters on the space L1(SΦ,g, µHaar).

Each character ψ ∈ Ω(L1(SΦ,g, µHaar)) is actually an algebra homomor-
phism from L1(SΦ,g, µHaar) to C such that ψ(δ) = 1. We can show that ψ is
continuous of norm 1, otherwise there exists a function F ∈ L1(SΦ,g, µHaar)
such that ||F || < 1 and ψ(F ) = 1. Apply the convolution product to define
G :=

∑
n≥1G

n. From the equation G = F + FG we have

ψ(G) = ψ(F ) + ψ(F )ψ(G) = 1 + ψ(G) (5.30)

which shows a contradiction. So the norm of ψ is less than or equal to 1
and ψ(δ) = 1 which implies that ||ψ|| = 1. Thanks to this fact, we can
see that Ω(L1(SΦ,g, µHaar)) is a closed subset of the unit ball of the dual
space L1(SΦ,g, µHaar)

∗ which is a compact Hausdorff space with respect to
the weak-⋆ topology. As the consequence, Ω(L1(SΦ,g, µHaar)) is a compact
Hausdorff topological space.

Thanks to the Gelfand transform, define

L1(SΦ,g, µHaar) −→ C0(Ω(L
1(SΦ,g, µHaar))) (5.31)

F 7−→ F̃ , F̃ (ψ) := ψ(F ).

It is a norm decreasing algebraic homomorphism such that its image sepa-
rates µHaar-integrable functions on SΦ,g. It can be seen that

||F̃ ||∞ = max{|λ| : λ ∈ sp(F )}. (5.32)

Thanks to the Pontryagin duality Theorem [158], we can obtain a cor-
respondence between elements of the topological space Ω(L1(SΦ,g, µHaar))
and elements of the Pontryagin dual. In this situation, the canonical iso-
morphism

evL1(SΦ,g,µHaar)(X)(ρ) = ρ(X) ∈ S1 ⊂ C (5.33)

can be applied to define a modification of the Fourier transformation on
L1(SΦ,g, µHaar).
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Definition 5.1.9. For a given Quantum Field Theory Φ with the strong cou-
pling constant g ≥ 1 and the corresponding collection SΦ,g of all large Feyn-
man diagrams generated by Dyson–Schwinger equations, the Fourier trans-
formation F on the complex commutative unital Banach algebra L1(SΦ,g, µHaar)
is well-defined. For F ∈ L1(SΦ,g, µHaar), we have

F̂ (ρ) =

∫

SΦ,g

F (X)ρ(X)dµHaar(X). (5.34)

for any character ρ.

For functionals G,H ∈ L1(SΦ,g, µHaar), we have

F{G ∗△ H} = F{G}F{H}. (5.35)

The original motivation to formulate the Gelfand transform (5.31) is pro-
viding a way to separate functionals in L1(SΦ,g, µHaar). Thanks to this idea,
the Fourier transformation (5.34) encodes the mathematical procedure for
the decomposition of the functional F in terms of large Feynman diagrams
which contribute to Dyson–Schwinger equations in SΦ,g. In particular, if
we restrict our discussion to a fixed Dyson–Schwinger equation DSE with
the unique solution XDSE, then our generalized Fourier transformation de-
scribes the evolution of the large Feynman diagram XDSE with respect to
µ-integrable functions originated from large subdiagrams (or partial sums)
which converge to XDSE.

As the final note, we have developed a theory of Haar integration on the
space of all Dyson–Schwinger equations of a given (strongly coupled) gauge
field theory in the language of the classical Riemann–Lebesgue integral. This
new measure theoretic approach is useful to build an analogous version of
the classical Newton–Leibniz differentiation theory with respect to metrics
dg,α,ǫ for the study of functionals on large Feynman diagrams.

5.2 The Gâteaux differential calculus on SΦ,g and

its application

In the second section of the previous chapter we have explained the construc-
tion of a noncommutative differential geometry model for the Hopf algebra
SΦ
graphon which is derived from the BPHZ non-perturbative renormalization

process of Feynman graphons. In [168] we have applied the analysis of
linear spaces to discuss the construction of a theory of differentiation on
the space of Feynman diagrams in terms of the graph function represen-
tations of these physical diagrams and Gâteaux differentiability under the
cut-distance topology where we worked on admissible directions to define
well-defined differentiations. It has led us to obtain Taylor series type repre-
sentations for continuous functionals on Feynman graphons on the basis of
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homomorphism densities. The homomorphism densities can be considered
as functionals WΓ 7−→ t(G,WΓ) on Feynman graphons such that G is an
arbitrary finite graph. If G is a simple graph (such as rooted trees), then we
can show that the corresponding homomorphism density is continuous with
respect to the cut-distance topology and it is also L1-integrable. Thanks
to the disjoint union operator, we can build an algebraic structure on the
linear span of homomorphism densities with respect to finite simple graphs
which determine a dense subset in the space C(SΦ

graphon) of all continuous

functions on SΦ
graphon with respect to the topology of uniform convergence.

In addition, we can compute the Gâteaux derivatives of homomorphism den-
sities where their Fréchet differentiability can be achieved with respect to
simple graphs (i.e. decorated non-planar rooted trees) under some condi-
tions where we might need to remove the symmetric condition of Feynman
graphons and work on Feynman bigraphons. These observations can clar-
ify the importance of homomorphism densities to study graphons under a
functional analysis setting.

In this section, we concern the question of how to endow with a differen-
tial calculus on large Feynman diagrams independent of any renormalization
program. We consider the real or complex vector space SΦ,g generated by
all Dyson–Schwinger equations in the physical theory Φ and equip this space
with the cut-distance topology determined by

d(DSE1,DSE2) := dcut([f
XDSE1 ], [fXDSE2 ]). (5.36)

It defines the cut-norm for each large Feynman diagram. We have

‖ XDSE ‖cut= supA,B⊆[0,1] |

∫

A×B
fXDSE(x, y)dxdy | (5.37)

such that the supremum is taken over Lebesgue measurable subsets A,B of
the closed interval. The resulting space can be interpreted as a closed topo-
logical subspace of the compact topological space of all unlabeled graphons.
It means that we can consider SΦ,g as a new Banach space to build a new
Gâteaux differential calculus on the space of solutions of Dyson–Schwinger
equations of a given physical theory. Then we apply the functional analysis
of graphons ([50]) to obtain a new Gâteaux differential calculus machinery
for the study of C(SΦ,g).

Total derivative and directional derivatives are the most common differ-
entiation machineries in finite dimensions such that their analogous versions
in infinite dimensions are Fréchet derivative and Gâteaux derivative.

For a given function F : X −→ Y between two Banach spaces (or normed
vector spaces), the Gâteaux derivative at x0 ∈ X is by definition a bounded
linear operator Tx0 : X −→ Y ∈ B(X,Y ) such that for every u ∈ X,

limt−→0
F (x0 + tu)− F (x0)

t
= Tx0u. (5.38)
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If for some fixed u the limit

δuF (x) :=
d

dt
|t=0F (x+ tu) = limt→0

F (x+ tu)− F (x)

t
(5.39)

exists, then we call F has a directional derivative at x in the direction u.
Therefore F is Gâteaux derivative at x0 if and only if all the directional
derivatives δuF (x) exist and form a bounded linear operator

DF (x) : u 7−→ δuF (x). (5.40)

Tx0 is called the Fréchet derivative of F at x0, if the limit (in the sense of
the Gâteaux derivative) exists uniformly in u on the unit ball in X. If we
set y = tu then t tends to zero is equivalent to y tends to zero. Now F is
Fréchet differentiable at x0, if for all y we have

F (x0 + y) = F (x0) + Tx0(y) + o(‖ y ‖), (5.41)

which means that

lim‖h‖→0
‖ F (x+ h)− F (x)− Th ‖

‖ h ‖
= 0 (5.42)

holds. As we can see, the limit in the Fréchet derivative only depends on the
norm of y where the operator T defines the natural linear approximation of
F in a neighborhood of the point x0. In this setting, we call Tx0 = DF (x0)
as the derivative of F at x0. In addition, we can show that being Fréchet
differentiable at a point implies being Gâteaux differentiable at a point such
that in this case the Gâteaux derivative is equal to the Fréchet derivative.

If F is Gâteaux differentiable onX, then we have the mean value formula

‖ F (y)− F (x) ‖≤‖ x− y ‖ sup0≤θ≤1 ‖ DF (θx+ (1− θ)y) ‖ . (5.43)

This enables us to show that if F is Gâteaux differentiable on an open neigh-
borhood U of x and DF (x) is continuous, then F is Fréchet differentiable
at x. [72, 158]

We plan to study (smooth) real valued continuous functions on the Ba-
nach space SΦ,g in terms of their Taylor series representation under the
higher orders Gâteaux differentiations. We show that the solution space of
the natural generalization of the equation dn

dxnF (x) ≡ 0 to large Feynman
diagrams namely, Gâteaux type differential equations with the general form

dN+1F (X;Z1, ..., ZN+1) = 0 (5.44)

for all large Feynman diagrams X,Z1, ...ZN+1 ∈ SΦ,g, can be described
by homomorphism densities. Solutions of this class of equations enjoy the
property

F (Z) = F (0) + dF (0;Z) +
d2F (0;Z,Z)

2
+ ...+

dnF (0;Z, ..., Z)

n!
. (5.45)
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Definition 5.2.1. For a given function F : SΦ,g −→ R and each large
Feynman diagram X, the Gâteaux derivative exists at X in the direction
Y ∈ SΦ,g, if the limit

dF (X;Y ) = limt−→0
F (X + tY )− F (Y )

t
(5.46)

exists. The higher orders of the Gâteaux differentiability can be defined by
induction where for any n ≥ 2, F is called n-time Gâteaux differentiable at
X in directions Z1, ..., Zn if at the first, the higher mixed Gâteaux derivatives

dn−1F (X + λZn;Z1, ..., Zn−1) (5.47)

exist for each real number λ and at the second, the limit

dnF (X;Z1, ..., Zn) =

limλ−→0
dn−1F (X + λZn;Z1, ..., Zn−1)− dn−1F (X;Z1, ..., Zn−1)

λ
(5.48)

exists.

It is easy to check that the Gâteaux derivatives dnF (X;Z1, ..., Zn) are
multilinear maps in Zi and in addition, for any permutation τ ∈ Sn, we have

dnF (X;Z1, ..., Zn) = dnF (X;Zτ(1), ..., Zτ(n)). (5.49)

5.2.1 Feynman random graphs via homomorphism densi-

ties

The description of large Feynman diagrams via Feynman graphons in SΦ
graphon

allows us to think about the concept of ”density” of infinite Feynman graphs
in the solution of a given Dyson–Schiwnger equation. From the view point
of Quantum Field Theory, any infinite Feynman graph can contain nested
loops which present different types of subdivergencies derived from virtual
particles and their interactions. One important task is to search for any
algorithm which could estimate the appearance of a particular class of sub-
divergencies (or subgraphs) in an infinite expansion of Feynman diagrams.
The homomorphism density, as a class function on SΦ

graphon or SΦ,g, is a
useful tool to formulate a new mathematical model for this fundamental
challenge.

Proposition 5.2.2. The homomorphism density is a well-defined operator
on large Feynman diagrams.

Proof. Proposition 4.6 in [169] shows that the unique solution XDSE of a
given Dyson–Schwinger equation DSE can be interpreted as the convergent
limit of the sequence {Ym}m≥1 of its partial sums with respect to the cut-
distance topology.
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For each unlabeled Feynman graphon class [W ], we can build the homo-
morphism density t(XDSE,W ) as the ”limit” of the sequence {t(Ym,W )}m≥1
of homomorphism densities corresponding to finite expansions Ym of finite
graphs (which do not have self-loops but have loops).

For each m ≥ 1, if the partial sum Ym := X1 + ...+Xm has km vertices,
then we have

t(Ym,W ) =

∫

[0,1]km

∏

(i,j)∈E(Ym)

W (xi, xj)dx1...dxkm . (5.50)

The induction is useful to show that

t(Ym+1,W ) = t(Ym,W )t(Xm+1,W ). (5.51)

The condition dcut(W
′,W ) = 0 for weakly isomorphic graphons can be

applied to show that t(Ym,W
′) = t(Ym,W ) which leads us to t(XDSE,W

′) =
t(XDSE,W ). Therefore we can define a poset on homomorphism densities
where a family of injections {fij : t(Yi,−) → t(Yj,−)}i≤j on the space
of Feynman graphons can be formulated. This gives us an inverse system
where its inverse limit can be identified as a subset of the direct product of
the homomorphism densities t(Yi,−)s. This inverse limit can be considered
as the homomorphism density with respect to the large Feynman diagram
XDSE. We have

t(XDSE,−) = lim←mt(Ym,−)

= {
−→
W ∈

∞∏

m=1

t(Ym,−) : fij(Wj) =Wi, ∀i ≤ j} ⊆
∞∏

m=1

t(Ym,−). (5.52)

For 1 ≤ n ≤ ∞, set [n] := {i ∈ N : i ≤ n}. For a given Feynman
graphon W , define a random graph G(n,W ) with the vertex set [n] (chosen
points {x1, ..., xn} at random from the closed unit interval) by letting ij be
an edge in G(n,W ) with the probability W (xi, xj). It is possible to build
G(n,W ) for all n by constructing G(∞,W ) as an exchangeable random
graph namely, its distribution is invariant under permutations of the vertices
and every exchangeable random graph is a mixture of such graphs. Then
take the subgraph defined by the first n vertices. In general, for any Feynman
diagram Γ (as a labeled graph), the homomorphism density t(Γ,W ) equals
the probability that Γ is a subgraph of G(∞,W ) or of G(n,W ) for any
n ≥ |Γ|. In other words, the family {t(Γ,W )}Γ and the distribution of
G(∞,W ) can determine each other.

It is important to note that for given Feynman graphonsW,W ′, G(∞,W )
and G(∞,W ′) have the same distribution if and only if those two graphons
are weakly isomorphic or equivalent.
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Lemma 5.2.3. Homomorphism densities can determine a new class of ran-
dom graphs with respect to solutions of Dyson–Schwinger equations.

Proof. We know that XDSE = limm→∞Ym with respect to the cut-distance
topology such that |Ym| → ∞. For each [k] there exists a random graph
Ym[k] on the vertex set [k] such that {Ym[k]}m≥1 converges to XDSE[k] with
respect to the metric

ddens(Γ,Γ
′) =

∑

i

2−i|t(Wi,Γ)− t(Wi,Γ
′)| (5.53)

which is equivalent to the cut-distance ([26, 94]). Therefore there exists
an infinite random graph XDSE on [∞] such that XDSE[k] ≡ XDSE|[k] with
respect to the metric ddens. This means that

limm→∞Ym[k] = XDSE|[k]. (5.54)

Corollary 5.2.4. The distribution of the random graphs Ym[k] with respect
to partial sums of XDSE converges when m tends to infinity.

Proof. Thanks to Lemma 5.2.3, for each k ≤ |Ym|, there exists Ym[k] as
the random induced subgraph of Ym with k vertices determined by selecting
k separate vertices v1, ..., vk of Ym at uniformly random procedures. Now
thanks to graphon representations of Feynman diagrams, it is enough to
apply the definition of convergent sequences in the theory of graphons via
random graphs ([94]) to the sequence {Ym}m≥1 to show its convergence to
XDSE.

Lemma 5.2.5. Dyson–Schwinger equations which generate isomorphic Hopf
subalgebras have the same homomorphism density.

Proof. Suppose Hopf subalgebras HDSE1 , HDSE2 corresponding to the equa-
tions DSE1 and DSE2 are isomorphic which means that the unique solutions
XDSE1 and XDSE1 are isomorphic infinite graphs. We can lift the weakly
isomorphic relation on graphons onto the level of large Feynman diagrams.
We say that two large Feynamn diagrams XDSE1 ,XDSE2 are weakly isomor-
phic or equivalent if their corresponding labeled graphons have the same
unlabeled measurable function almost everywhere. In other words, XDSE1

and XDSE2 are weakly isomorphic or equivalent whenever

dcut(f
XDSE1 , fXDSE2 ) = 0. (5.55)

Thanks to Borgs–Chayes–Lovasz Theorem ([125]) and Proposition 5.2.2, we
can show that two weakly equivalent large Feynamn diagrams XDSE1 ,XDSE2

have the same homomorphism density for all (finite) simple graphs. In other
words,

t(H, fXDSE1 ) = t(H, fXDSE2 ). (5.56)
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5.2.2 Differentiability

In this part our task focuses on the study of the space of smooth real valued
functions on SΦ,g in terms of homomorphism densities of Feynman graphons
which contribute to solutions of Dyson–Schwinger equations. We show that
this class of homomorphism densities can play the role of a basis for the
Taylor series representations of smooth functions.

Define a new graduation parameter on the collection H(Φ) of all Feyn-
man diagrams of a physical theory Φ in terms of the number of edges. For
each n, set Hn(Φ) as the isomorphism classes of Feynman diagrams with n
internal and external edges, no isolated vertices, no self-loops but possible
multi-edges. Set H≤n(Φ) =

⋃
j≤nHj(Φ). The homomorphism density for

all Feynman graphs Γ ∈ Hj(Φ) is well-defined.

Theorem 5.2.6. For each n ≥ 1, define

Fn : SΦ
graphon −→ R, Fn(WΓ) :=

∑

γ∈H≤n(Φ)

aγt(γ,WΓ) (5.57)

for any finite Feynman diagram Γ and some constants aγ . Then
(i) Fn is continuous in the L1-topology.
(ii) It is possible to lift Fn onto the space of large Feynman diagrams and
define a new real valued map F̃ on SΦ,g which is continuous in the L1-
topology.

Proof. (i) Define a new real valued multilinear functional τ on (SΦ
graphon)

n

given by

τ((Wγt)γt) :=

∫

[0,1]
∑

|γt|

∏

γt

Wγt(xi, xj)
∏

i

dxi. (5.58)

We can show that

|τ((Wγt)γt)− τ((W ′γt)γt)| ≤
∑

γt

‖Wγt −W ′γt ‖1 (5.59)

which leads us to

|t(⊔γt,W )− t(⊔γt,W
′)| ≤ |E(⊔γt)| ‖Wγt −W ′γt ‖1 . (5.60)

(ii) Thanks to Proposition 5.2.2, we plan to lift the above process onto
the level of large Feynman diagram XDSE with the partial sums Ym, m ≥ 1.
It is enough to extend the relation (5.60) to Ym+1 = Ym +Xm+1. We have

∣∣t(Ym ⊔Xm+1,W )− t(Ym ⊔Xm+1,W
′)
∣∣ =

∣∣t(Ym ⊔Xm+1,W )− t(Ym ⊔Xm+1,W
′)± t(Ym,W

′)t(Xm+1,W )
∣∣ =

∣∣t(Xm+1,W )
(
t(Ym,W )−t(Ym,W

′)
)
+t(Ym,W

′)
(
t(Xm+1,W )−t(Xm+1,W

′)
)∣∣
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≤ |t(Xm+1,W )||(t(Ym,W )−t(Ym,W
′))|+|t(Ym,W

′)||t(Xm+1,W )−t(Xm+1,W
′)|

(5.61)
≤ |t(Xm+1,W )|

(
|E(Ym)| ‖WYm−W

′
Ym ‖1

)
+|t(Ym,W

′)|
(
|E(Xm+1)| ‖WYm−W

′
Ym ‖1

)

such that ‖WYm ‖∞, ‖W
′
Ym

‖∞≤ 1.
Lift the multilinear operator τ onto the multilinear operator τ̃ defined

as a bounded operator on the Banach space SΦ,g. Now define the new map
F̃ on SΦ,g given by

F̃ (XDSE) :=

∞∏

m=1

Fm(WYm) (5.62)

such that each term Fm(WYm) is a L
1-continuous function. Therefore F̃ , as

the product of continuous functions, is also continuous with respect to the
L1- topology.

The space W[0,1] of all (bi-)graphons can be embedded into the vector
space W of bounded (symmetric) measurable functions f : [0, 1]2 → R which
is equipped by a semi-norm. Under weakly isomorphic relation ≈, we can
build a complete metric structure on the quotient space W[0,1]/ ≈. The

topological space SΦ
graphon of all unlabeled graphon classes which contribute

to the representations of Feynman diagrams and Dyson–Schwinger equations
sits inside W[0,1]/ ≈. As we have discussed each Feynman graphon [WΓ] ∈

SΦ
graphon is a class of bounded (symmetric) measurable functions on [0, 1]2

up to relabeling and weakly isomorphic relation. This class of graphons
are generated by rooted tree representations of (large) Feynman diagrams.
Rooted trees are simple graphs where their adjacency matrices can determine
their corresponding graphon classes. Orientations on decorated non-planar
rooted trees, which encode positions of nested loops in the main Feynman
diagram, inform us that we might need only the upper part or the lower part
of the adjacency matrix for the reconstruction of any Feynman diagram from
its graphon representation. It means that we do not need the symmetric
property of graphons and we can work only on the bounded measurable
functions f : [0, 1]2 → [0, 1] up to the relabeling and weakly isomorphic
relation. This class of objects, which are known as bi-graphons, enables
us to have Fréchet differentiability of homomorphism densities of Feynman
graphons.

Lemma 5.2.7. (i) The homomorphism densities on SΦ
graphon are Fréchet

differentiable.
(ii) The homomorphism densities on SΦ,g are Fréchet differentiable.

Proof. (i) We compute the Fréchet derivatives of the homomorphism densi-
ties on SΦ

graphon for ladder trees l1, l2, l3 and the rooted tree
∨

where vertices
2, 3 are adjacent to the root 1.

For the tree with only one vertex, t(l1,−) ≡ 1 which is obviously Fréchet
differentiable.

120



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

For the oriented decorated ladder tree l2 with two vertices 1, 2 and one
edge e12 from 1 to 2, the Gâteaux derivative can be computed by

d(t(H,WΓ);WΓ′) =

∫

[0,1]k

∑

(i1,j1)∈E(H)

WΓ′(xi1 , xj1)
∏

(i,j)∈E(H)\(i1,j1)

WΓ(xi, xj)dx1...dxk (5.63)

which leads us to compute the unique Fréchet derivative by the linear map

WΓ′ 7−→ d(t(l2,WΓ);WΓ′) =

∫

[0,1]2
WΓ′(x1, x2)dx1dx2. (5.64)

We have

limWΓ′→0

∣∣t(H,WΓ +WΓ′)− t(H,WΓ)−
∫
[0,1]2 WΓ′(x1, x2)dx1dx2

∣∣
‖WΓ′ ‖cut

(5.65)

= limWΓ′→0
0

‖WΓ′ ‖cut
= 0

which approves the Fréchet differentiability in terms of the formula (5.42).
For the oriented decorated ladder tree l3 with three vertices 1, 2, 3 and

two edges e12, e23 which connect the vertices 1 to 2 and 2 to 3, the unique
candidate for the Fréchet derivative of t(l3,−) should be

WΓ′ 7−→ d(t(l3,WΓ);WΓ′) =

∫

[0,1]3
WΓ′(x1, x2)WΓ(x2, x3) +WΓ(x1, x2)WΓ′(x2, x3)dx1dx2dx3 (5.66)

= 2

∫

[0,1]3
WΓ(x1, x2)WΓ′(x2, x3)dx1dx2dx3.

t(l3,−) is Fréchet differentiable if the following limit exists and equals to
zero,

limWΓ′→0

∣∣t(l3,WΓ +WΓ′)− t(l3,WΓ)− d(t(l3,WΓ); g)
∣∣

‖WΓ′ ‖cut

= limWΓ′→0

∣∣ ∫
[0,1]3 WΓ′(x1, x2)WΓ′(x2, x3)dx1dx2dx3

∣∣
‖WΓ′ ‖cut

. (5.67)

If this limit is not zero, then there are some below boundaries c > 0 which
means that we can define a sequence {Wn}n≥1 of graphons which converges
to zero with respect to the cut-norm but the limit (5.67) does not zero when
n tends to infinity. In other words, we might have

0 < c ≤
1

n
=

∣∣
∫

[0,1]2,x2∈[0,1/n]
1dx1dx2dx3

∣∣ =
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∣∣
∫

[0,1]2,x2∈[0,1/n]
Wn(x1, x2)Wn(x2, x3)dx1dx2dx3

∣∣ ≤ (5.68)

∣∣
∫

[0,1]3
Wn(x1, x2)Wn(x2, x3)dx1dx2dx3

∣∣.

This situation supports the existence of sequences of graphons such as
Wn = 1 on min(x1, x2) < 1/n which satisfy the above inequality. On
the other hand, we can build the topological renormalization Hopf algebra
SΦ
graphon of Feynman graphons by measurable bounded functions from [0, 1]2

to [0, 1] in terms of working only on the upper parts or lower parts of the
adjacency matrices of oriented decorated non-planar rooted trees. In this
non-symmetric setting, the sequences such as {Wn}n≥1 of graphons does
not belong to SΦ

graphon. As the consequence, the only lower boundary for
Feynman graphons is zero itself which means that the limit (5.67) is zero.

By a similar discussion, we can show the existence of Fréchet derivative
for other oriented rooted trees H which contains the tree

∨
where vertices

2, 3 are adjacent to the root 1. In this situation, we need to deal with

limn→∞

∣∣t(H,WΓ +WΓ′)− t(H,WΓ)− d(t(H,WΓ);WΓ′)
∣∣

‖WΓ′ ‖cut
(5.69)

where if this limit is not zero then we get some lower boundaries c > 0 such
that

c|E(H)|−2

∫

[0,1]3
WΓ′(x1, x2)WΓ′(x2, x3)dx1dx2dx3 ≤

∫

[0,1]|V (H)|

WΓ′(x1, x2)WΓ′(x2, x3)
∏

(ij)∈E(H)\{(1,2),(2,3)}

WΓ(xi, xj)dx1...dx|V (H)|

≤ t(H,WΓ +WΓ′)− t(H,WΓ)− d(t(H,WΓ);WΓ′). (5.70)

This situation allows us to determine sequences of graphons which can not
belong to SΦ

graphon whenever we work on Feynman bigraphons. Therefore
the limit (5.69) should be zero.

(ii) Objects in the Banach space SΦ,g are large Feynman diagrams namely,
infinite formal expansions of Feynman diagrams which have nested or over-
lapping loops. Thanks to Theorem 5.2.2, homomorphism densities on large
Feynman diagrams can be computed in terms of homomorphism densities
of finite partial sums. For large Feynman diagrams X,Z, we have

t(X,Z) = lim←mt(Ym, Z) (5.71)

such that for each m ≥ 1,

t(Ym, Z) =

m∏

i=1

t(Xi,WZ). (5.72)
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We have X(g) =
∑

n≥0 g
nXn and WZ as a Feynman bigraphon which lives

in SΦ
graphon such that it can not have a non-zero lower boundary.
Furthermore, thanks to the formula (5.41), we know that the Fréchet

differentiability depends only on the norm WZ where by applying (i), each
t(Xm,WZ) is Fréchet differentiable. Thanks to the product rule, t(Ym, Z) as
the product of Fréchet differentiable functions is also Fréchet differentiable
for each m. Since t(X,Z) can be identified by a subset of the direct product∏∞
m=1 t(Ym, Z), t(X,Z) will be also Fréchet differentiable.

Lemma 5.2.8. For a given Cn (n > 0) class function G : SΦ,g → R,
dnG(0;Z1, ..., Zn) is a symmetric S[0,1]-invariant multilinear functional.

Proof. We can extend the functions

GX,Z(λ1, ..., λm) := G(X + λ1Z1 + ...+ λmZm) (5.73)

to Cn functions on Rm where the equality of mixed partial derivatives show
that for any permutation σ ∈ Sn, we have

dnG(X;Z1, ..., Zn) = dnG(X;Zσ(1) , ..., Zσ(n)). (5.74)

In addition, we can extend dnG(0;Z1, ..., Zn) multilinearly to each

(spanR(Γ1, ...,Γm))
n. (5.75)

Corollary 5.2.9. Let F̃ : SΦ,g → R be a L1-continuous functional (de-
termined by Theorem 5.2.6) such that for some N ≥ 1, F̃ is N + 1 times
Gâteaux differentiable. Then for each large Feynman diagram X and also
Z1, ..., ZN+1 in the Banach space SΦ,g,

dN+1F̃ (X;Z1, ..., ZN+1) = 0

if and only if there exists a unique family {aγ}γ of real constants such that
F̃ (X) =

∑
γ∈H≤N (Φ) aγt(γ,WX).

Proof. Thanks to Definition 5.2.1, Proposition 5.2.2, Theorem 5.2.6, Lemma
5.2.7, Lemma 5.2.8, we can apply the main result in [50].

Corollary 5.2.10. Let G : SΦ,g → R be a continuous functional with respect
to the cut-distance topology and smooth with respect to the Gâteaux deriva-
tion. For each large Feynman diagram X define the following sequence of
Taylor polynomials

Pn(X) :=

n∑

m=0

1

m!
dmG(0;X, ...,X), ∀n ≥ o (5.76)
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which converges to G(X) when n tends to infinity. In addition, let the Taylor
expansion

∞∑

m=0

∑

γ∈Hm(Φ)

aγt(γ,WX) (5.77)

is absolutely convergent to P (G)(X) such that

∑

γ∈Hm(Φ)

aγt(γ,WX) =
1

m!
dmG(0;X, ...,X). (5.78)

Then G(X) = P (G)(X).

Proof. In [50], the required conditions for the existence of the convergent
Taylor series of a smooth function on the space of unlabeled graphons have
been provided. Now it is enough to adapt that procedure for Feynman
graphons (which is already addressed in [168]) and then lift it onto the
whole space SΦ,g in terms of Definition 5.2.1, Proposition 5.2.2, Theorem
5.2.6, Lemma 5.2.7, Lemma 5.2.8 and Corollary 5.2.9.
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The first purpose in this chapter is to build a new mathematical model
for the description of information flow among particles in (strongly coupled)
interacting gauge field theories. This new platform enables us to analyze
quantum entanglement via fundamental tools in Category Theory and The-
oretical Computer Science. We apply combinatorial Dyson–Schwinger equa-
tions as the building blocks of information flow among distant elementary
particles in a system with infinite degrees of freedom. The cut-distance
topology is applied to construct topological regions around elementary par-
ticles which encode passing information. We organize these cut-distance
topological regions into a new class of lattices of topological Hopf subalge-
bras. This setting allows us to understand quantum entanglement in the
language of intermediate algorithms which contribute to transferring infor-
mation among entangled particles [172]. The second purpose in this chapter
is to build a new mathematical model for the description of logical propo-
sitions of non-perturbative aspects in strongly coupled gauge field theories.
We explain the basic foundations of a new topos of presheaves which is capa-
ble to encode topological regions of elementary particles and the strength of
coupling constants. This topos has enough physical information to evaluate
logical propositions about infinite formal expansions of Feynman diagrams
which contribute to quantum motions [173].

6.1 Some historical remarks

Entanglement, non-locality and indeterminism are actually the most compli-
cated and challenging concepts in QuantumMechanics. These concepts have
been originated from pioneering efforts to clarify the complicated method-
ologies applied in dealing with the outputs of Quantum Mechanics. The
study of the behavior of electrons via Quantum Mechanics had shown some
results which were against the objections of Einstein and his followers such
as the double slit experiment, the photon box experiment and the Einstein–
Podolsky–Rosen paradox. The completeness of Quantum Mechanics has
already been clarified in terms of successful experiments on photons polar-
ization and formulating modern gauge field theories. However there still
remain some philosophical challenges for the interpretation of predications
in Quantum Mechanics. [1, 11, 14, 70, 176]

On the one hand, there are some rigorous efforts for the interpreta-
tion of Quantum Mechanics under a deterministic setting. Theory of many
worlds and universal wave function, as the key tools in this setting, can
provide predictions completely different from Quantum Mechanics predic-
tions. These tools introduce a different theory for quantum world. Bohmian
Mechanics, hidden variables, many-world interpretation and theory of uni-
versal wave function are well-known tools for the deterministic interpreta-
tion of Quantum Mechanics. This class of theories has tried to show that
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the form of all hidden variable models is capable to reproduce Quantum
Mechanics of a spin-singlet by satisfying both the assumptions of free will
and no signaling, which correspond, measurement-independence and setting-
independence, respectively. [5, 11, 13, 49, 188, 196]

On the other hand, Bell’s Theorem ([11, 12]), Kochen–Specker Theo-
rem ([100, 153]) and collapse theories such as von Neumann method ([189]),
Ghirardi–Rimini–Weber Theory ([82]), no-collapse theories such as modal
interpretations ([85])) are rigorous well-known efforts to show the incon-
sistency of the Einstein–Podolsky–Rosen paradox and other deterministic
observations with the foundations of Quantum Mechanics. In this direction,
the existence of certain class of observables which can not consistently be as-
signed values at all has been considered. Then it is discussed that a quantum
system evolves based on the Schrodinger equation between measurements
at which it collapses to the eigenstate of the measured variable. In non-
measurement interactions, the evolution of states obeys a linear and unitary
equation of motion such that the particle pair in the Einstein–Podolsky–
Rosen experiment remains in an entangled state. This class of equations
dictates that in a spin measurement, the pointers of the measurement tools
are entangled with the particle pair in a non-separable state in which the
indefiniteness of spins of particles is transmitted to the pointer’s position.
The critical challenge in this description is the lack of explicit definitions for
the notions of measurement and time, duration and nature of state collapses.
There are some efforts to handle this issue such as adding a nonlinear term
to the Schrodinger equation, modal no-collapse interpretations. In addition,
Kochen–Specker Theorem shows the impossibility of the reproduction of
Quantum Mechanics predictions in terms of a hidden variable model where
the hidden variables could assign a value to every projector deterministically
and non-contextually. We can also address Free Will Theorem which proves
that no theory, whether it extends Quantum Mechanics or not, can correctly
predict the results of future spin experiments. These topics could provide
strong reasons for the intrinsic non-local indeterministic nature of Quantum
Mechanics. [11, 12, 18, 47, 153]

The notion of entanglement in Quantum Mechanics was derived from
Schrodinger’s efforts to describe quantum systems extended over physically
distant parts. Then it was modified by Bohr to deal with the Einstein–
Podolsky–Rosen paradox. Bohr was trying to solve the question about the
spin components of a pair of particles emitted from a source to move in op-
posite directions where no slower than light or light signal can travel between
them. Bohr addressed that since two particles have interacted, they were
part of one whole phenomenon which means that the two particles are en-
tangled. In other words, these particles are part of one whole phenomenon
or one whole system that has one wave function [14, 176]. On the other
hand, Bell’s Theorem made the free choice of the experimenter as one of the
axioms where it is proved mathematically that certain quantum correlations
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violate realism, locality or freedom of choice. The Bell’s inequality is on the
basis of the assumption that the quantum state is not the ultimate limit
and additional parameters such as hidden variables could provide a mod-
ified description. Bell discovered that no local hidden variable theory can
reproduce all possible results of Quantum Mechanics. This framework shows
that any local model of the Bohm’s version of the Einstein–Podolsky–Rosen
experiment is committed to certain inequalities about the probabilities of
measurement outcomes which could be incompatible with the predications
of Quantum Mechanics. Bell’s Theorem has achieved the non-locality of
the quantum realm in terms of an alternative interpretation of the factor-
ization as a locality condition. This perspective postulates that for each
quantum mechanical state there exists a distribution over all possible pair
states which is independent of the settings of the equipments. However, ex-
periments (such as polarization of photons) violate the Bell’s inequality and
moreover, they confirm the predictions of Quantum Mechanics with high ac-
curacy. The violation of the Bell’s inequality is enough to show that there is
no underlying classical description for Quantum Mechanics. [10, 11, 12, 18]

Quantum concepts such as entanglement and superposition are funda-
mental tools for a theory of quantum computation which performs opera-
tions on information in terms of quantum bits. The state of a quantum
bit lives in a superposition of two orthonormal states such as |ψ >:= α|0 >
+β|1 > such that α, β are complex numbers. The measurement of one quan-
tum bit collapses the wave function of the other quantum bit. Quantum
entanglement deals with three fundamental subjects which can be studied
under deterministic and indeterministic settings. The first challenge is to
explain how we can detect optimally entanglement under theoretical models
and experimental tests. The second challenge is to build theoretical models
and experimental tests which reverse an inevitable process of degradation
of entanglement. The third challenge is to design computational algorithms
which enable us to characterize, control and quantify entanglement. The
main objective in dealing with these challenges is to find a way to estimate
optimally the amount of quantum entanglement of the compound system
in an unknown state if only incomplete data in the form of average val-
ues of some operators detecting entanglement are accessible. In this direc-
tion, a notion of minimization of entanglement has been formulated under
a chosen measure of entanglement with constrains in the form of incom-
plete set of data from experiment. In addition, theory of positive maps has
been developed to provide strong tools for the detection of entanglement.
[38, 89, 93, 155, 159]

Entanglement in Quantum Field Theory have also been considered re-
cently where the measurements of the amount of entanglement in a quantum
system with infinite degrees of freedom were modeled under some settings
such as entropy, kinematic entanglement, particle mixing and oscillations,
theory of neutrino oscillations and entangled space-time points. Entropy
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is on the basis of partitioning an extended quantum system into two com-
plementary subsystems and calculating the entanglement entropy defined
as the von Neumann entropy of the reduced density matrix of one subsys-
tem. This treatment does not provide information about the entanglement
between two non-complementary parts of a larger system because of the ex-
istence of a mixed state. Negativity is one interesting tool to deal with this
issue in Quantum Field Theory. Multi-mode entanglement of single-particle
states has been concerned via particle mixing and flavor oscillations. It is
shown that in Quantum Field Theory these phenomena exhibit a fine struc-
ture of quantum correlations as multi-mode multi-particle entanglement ap-
pears. Quantum information theory is capable to provide appropriate tools
to quantify the content of multi-particle flavor entanglement in QFT sys-
tems. The multi-particle flavor-species entanglement associated with flavor
oscillations of the QFT neutrino system has been studied in terms of the
particle-antiparticle species as further quantum modes. Neutrino oscilla-
tions are due to neutrino mixing and neutrino mass differences. Theory
of entanglement in neutrino oscillations is another progress in this direc-
tion where mode entanglement can be expressed in terms of flavor tran-
sition probabilities. Charged-current weak-interaction processes together
with their associated charged leptons enable us to identify flavor neutrinos.
Neutrino oscillations and CP violation concern neutrino mixing such that
neutrino masses as corrections to Standard Model play their essential roles
in the procedure [6, 23, 24, 25, 38, 81, 97]. In this chapter we plan to build
a new mathematical model for the description of quantum entanglement
in terms of the space of Dyson–Schwinger equations of a given gauge field
theory. We show the importance of analytic generalization of solutions of
Dyson–Schwinger equations (i.e. Feynman graphon models) for the analysis
of quantum informational bridges in terms of lattices of substructures.

Passing from Classical Physics to Quantum Physics changes the logical
foundations of our mathematical frameworks. If we have a rigorous formula-
tion for the logic of quantum systems with infinite degrees of freedom, then
it definitely helps us to develop our knowledge about entanglement machin-
ery in QFTs. The logical foundations of Quantum Mechanics were firstly
built in the context of propositional calculus, Hilbert space of states and the
space of observations. The original aim of the propositional calculus in logic
is to evaluate propositions with the general form ” the physical quantity such
as A of a given system S has a value in the subset ∆ of real numbers.” In
this context, the main task is to find what truth-values such propositions
have in a given state of the system and how the truth-value changes with
the state in time. In Classical Physics, there is a space of states such as
points in a topological space equipped with some additional structures such
as Poisson brackets, symplectic forms, .... In any given state, each physical
quantity has its value and each proposition of the form A ∈ ∆, which is
represented by some Borel subsets of the state space, has a truth-value true
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or false. The Borel subsets of the state space form a Boolean σ-algebra
which means that the logic of classical systems can be encoded by a definite
Boolean logic. This description enables us to label Classical Physics as a
realist theory. Quantum Physics does not have this explicit realistic nature
and according to the Kochen–Specker Theorem, there is no state space of
a quantum system analogous to the classical state space. As the assump-
tions of this Theorem, the physical quantities are represented as real-valued
functions on the hypothetical state space of a quantum system. Then it is
shown that such a space does not exist and it is impossible to assign values
to all physical quantities at once. Therefore it is also impossible to assign
true or false values to all propositions. Birkhoff and von Neumann built the
foundations of an instrumentalist approach to quantum logic where upon
measurement of the physical quantity A, we could find the result belong
in ∆ with a determined probability. In this approach, pure states are rep-
resented by unit vectors in one particular Hilbert space and propositions
with the general form A ∈ ∆ are represented by projection operators on
this Hilbert space. These projections form a non-distributive lattice. Set
Ê[A ∈ ∆] as the projection which represents the proposition A ∈ ∆. The
probability of A ∈ ∆ being true in a given state |ψ > is determined by

P (A ∈ ∆|ψ >) :=< ψ|Ê[A ∈ ∆]|ψ >∈ [0, 1]. (6.1)

Non-distribuitivity, dependence on measurement tools and the use of real
numbers as continuum are the most fundamental and conceptual issues of
this instrumentalist approach and its generalizations. [1, 4, 10, 20, 37, 41]

Category Theory had been applied to formulate a modern topos model
for the logical descriptions of physical phenomena. This modern approach
clarified the passing from Classical Physics to Quantum Physics in terms
of their corresponding topos models. Study in this direction has provided
a new contextual form of quantum logic where it is possible to reconstruct
the foundations of physical theories in the context of search for a suitable
representation in a topos of a certain formal language. Classical Physics
is reconstructed via the category of sets while Quantum Physics is recon-
structed via the category of presheaves on a particular base category. This
categorical machinery has been developed to QFT models where nowadays
we have some topos models for gauge field theories [17, 58, 59, 60, 61, 62,
90, 91, 92, 122, 126, 129, 141, 152]. In this chapter we plan to build a new
topos model for strongly coupled gauge field theories which is capable to
recognize the logical differences between perturbative and non-perturbative
aspects of the physical theory.
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6.2 QFT-entanglement via lattices of Dyson–Schwinger

equations

The mathematical formulation of Standard Model in the context of Noncom-
mutative Geometry can motivate to bring a new approach for the description
of quantum entanglement in gauge field theories. In Standard Model we have
six quarks, six leptons and gauge bosons which are responsible to carry fun-
damental forces. Gauge bosons describe exchanging information between
elementary particles and their interactions in strong, weak and electromag-
netic forces. For example, the exchanging virtual photons (as the gauge
boson in quantum electrodynamics) makes transferring information as the
force between two electrons which is repulsive. Gluons are involved gauge
bosons in strong interactions among hadrons (i.e. six quarks) which live in
the nucleus of an atom. Electrons and neutrinos do not feel strong nuclear
force. Every charge particle feels the electromagnetic force. W±, Z are in-
volved gauge bosons in weak interactions where everything is effected by the
weak nuclear force. Graviton is the theoretical candidate for gauge bosons of
gravity which effects everything. The modified versions of Standard Model
aim to describe the contribution of gravity. Heavier gauge bosons are bosons
of the fundamental force with the shortest range of effect. Photons are mass-
less which means that the electromagnetic force has infinite range. W±, Z
bosons are extremely heavy and they have very short range. For example, a
neutron can decay into a proton and the gauge bosonW− where at the very
short time, this boson quickly decays into an electron and an antielectron
neutrino. A proton can decay into a neutron and the gauge bosonW+ where
at the very short time this boson quickly decays into a positron and a neu-
trino. Protons and neutrons are built by quarks. W± bosons can contribute
to exchanging a type of quark to another type where as the result a proton
converts to a neutron and vice versa. Since W± are heavy, they need to
borrow energy to perform this exchange and then they should pay back the
energy by converting to pairs (positron, neutrino) or (electron, antielectron
neutrino) very quickly. Quarks enjoy the Pauli exclusion principle which
means that quarks should be in different quantum states. This distinction
is encoded by colors. Gluons govern any possible interactions among quarks
which convert or exchange the colors of quarks by absorbtion or emission
of gluons. Gluons can also produce other gluons and they glue quarks to-
gether. Force between two quarks is independent of distance between them
and therefore we need infinite amount of energy to separate quarks. This
fact, known as quark confinement, tells us that we can not isolate a quark.
Thanks to gluons, the strong force also governs the existence of protons and
neutrons together inside the nucleus but the force at this level is not inde-
pendent of distance. Theoretically, the amount of energy can be converted
to a pair of quark and anti-quark where some interactions could happen to
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exchange colours. [46, 112, 147, 156, 157, 186]

6.2.1 A new lattice model

It is possible to encapsulate all possible interactions in terms of Green’s
functions where their self-similar nature enable us to study interactions in
the context of fixed point equations of Green’s functions namely, Dyson–
Schwinger equations. The strength of the fundamental forces dictate the
appearance of perturbative, asymptotic freedom or non-perturbative behav-
iors to these equations. It is mentioned that gauge bosons provide informa-
tion exchange and here we plan to mathematically describe the existence of
information flow among elementary particles at strong levels of the coupling
constants in interacting gauge field theories via towers of Dyson–Schwinger
equations, cut-distance topological regions of Feynman diagrams which con-
tribute to solutions of these equations and the vacuum energy. The vacuum
energy guarantees the existence of virtual particles in the vacuum state
which will be used in our setting.

Remark 6.2.1. The vacuum state in free field theory can be described in
terms of a tensor product of the Fock space vacuum states for each inde-
pendent field mode where there is no entanglement between the field modes
at different momenta. The full vacuum state in interacting Quantum Field
Theory can be described in terms of a superposition of Fock basis states
where the modes of different momenta are entangled.

Our promising mathematical model tries to engineer divergencies of non-
perturbative aspects of strongly coupled gauge field theories in the context of
lattices of topological regions of elementary particles. It shows a deep depen-
dence of the quantum entanglement on the indeterminateness of elementary
particles. This platform enables us to understand quantum entanglement
as an intrinsic non-local property of non-perturbative QFT-models which
approves the indeterministic nature of strongly coupled gauge field theories.

Definition 6.2.2. For each n, consider γpn as a primitive (1PI) Feynman
diagram which presents some interactions of any elementary particle p with
other (virtual) particles in the physical theory. For each Feynman diagram
Γ, B+

γpn
(Γ) builds a new disjoint union of Feynman diagrams as the result

of all possibilities for the insertion of Γ into γpn in terms of the types of
vertices in γpn and types of external edges in Γ. Each family {B+

γpn
}n≥0

of this class of Hochschild one cocycles can determine a particular Dyson–
Schwinger equation DSEp which encodes a collection of possible interactions
between p and other (virtual) particles in the physical theory.

We plan to apply lattice structures to describe quantum entanglement.
A lattice is a partially ordered set such that each pair of its elements has a
unique join ∨ which is the least upper bound and a unique meet ∧ which
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is the greatest lower bound. A lattice is called bounded if there exist the
greatest element and the least element. A lattice is called distributive, if the
operations meet and join obey the distributive conditions.

Theorem 6.2.3. The information flow between the particle p and all unob-
served intermediate states can be described in terms of a lattice of topological
Hopf subalgebras.

Proof. Intermediate states address virtual particles. Dyson–Schwinger equa-
tions are the best tools for us to build Hopf subalgebras of the Connes–
Kreimer renormalization Hopf algebra HFG(Φ) of Feynman diagrams of a
given gauge field theory Φ. Thanks to the cut-distance topology defined
on Feynman graphons (i.e. Theorem 2.3.8), we can naturally equip each
Hopf subalgebra HDSE with this topology such that the distance between
Feynman diagrams Γ1,Γ2 is given by

d(Γ1,Γ2) := dcut([f
Γ1 ], [fΓ2 ]). (6.2)

The class [fΓi ] is the unique unlabeled Feynman graphon with respect to
the Feynman diagram Γi and

dcut([f
Γ1 ], [fΓ2 ]) = infφ,ψsupA,B|

∫

A×B
fΓ1(φ(x), φ(y))−fΓ2(ψ(x), ψ(y))dxdy|

(6.3)
where the infimum is taken over all different relabeling φ,ψ for the labeled
graphons fφ, fψ, respectively. The supremum is taken over all Lebesgue
measurable subsets A,B of the closed interval.

In addition, the coproduct of HDSE is a linear bounded operator on
normed space of Feynman diagrams which leads us to consider each Hcut

DSE

as a topological Hopf subalgebra.
Thanks to Definition 6.2.2, choose an equation DSEp which contains

some interactions related to the particle p. For each j ≥ 1, build a new

collection {Γ
(j)
n }n≥1 of primitive graphs

Γ(j)
n := Γ

(j−1)
1 + ...+ Γ(j−1)

n (6.4)

such that Γ
(0)
n = γpn for each n ≥ 1.

Thanks to the Milnor–Moore Theorem ([144]), the Connes–Kreimer renor-
malization Hopf algebra HFG(Φ) is isomorphic to the graded dual of the uni-
versal enveloping algebra of the Lie algebra of primitive elements inHFG(Φ)

∗

where for each Feynman diagram Γ, we can consider its corresponding in-
finitesimal character ZΓ in the dual space. Since the renormalization co-
product is a linear map, we can check easily that the sum of a finite number
of primitive graphs is primitive. Therefore for each j ≥ 1 and n ≥ 1, the
operator B+

Γ
(j)
n

is the corresponding Hochschild one cocyle such that for each
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Feynman diagram Γ, this operator concerns all possible situations for the

insertion of Γ into the disjoint unions of Feynman diagrams Γ
(j−1)
1 , ...,Γ

(j−1)
n .

In addition, by induction, we can show that for each j, the resulting graph
B+

Γ
(j)
n

(Γ) covers B+

Γ
(j−1)
n

(Γ) as a subgraph.

For each j ≥ 1, we can consider the Dyson–Schwinger equation

DSE(j)
p :=< {B+

Γ
(j)
n

}n≥1 >, (6.5)

with the corresponding Hopf subalgebra H
DSE

(j)
p
. There exists a natural

injective Hopf algebra homomorphism fromH
DSE

(j)
p

toH
DSE

(j+1)
p

which leads

us to build the following increasing chain of Hopf subalgebras

HDSEp ≤ H
DSE

(1)
p

≤ H
DSE

(2)
p

≤ ... ≤ H
DSE

(j)
p

≤ .... (6.6)

IfX
DSE

(j)
p

=
∑

n(j)≥0
gn(j)Xj

n(j)
is the unique solution of the equation DSE

(j)
p ,

then for each n(j) ≥ 1, set

H(Xj
1 , ...,X

j
n(j)

) (6.7)

as the graded Hopf subalgebra of H
DSE

(j)
p

free commutative generated alge-

braically by graphs Xj
1 , ...,X

j
n(j)

.
We can also equip these Hopf subalgebras with the cut-distance topol-

ogy and then work on the topologically completed enrichment of these Hopf
subalgebras. We have discussed that solutions of Dyson–Schwinger equa-
tions are actually graph limits of sequences of finite Feynman diagrams with
respect to the cut-distance topology. The Hopf subalgebra HDSE generated
by a given Dyson–Schwinger equation DSE is graded with respect to the
number of internal edges or the number of independent loops. We have

HDSE =
⊕

n≥0

HDSE,(n) (6.8)

such that HDSE,(n) is the homogeneous component of degree n and

HDSE,(p)HDSE,(q) ⊆ HDSE,(p+q),

∆(HDSE,(n)) ⊆
⊕

p+q=n

HDSE,(p) ⊗HDSE,(q), S(HDSE,(p)) ⊆ HDSE,(p). (6.9)

Define a new parameter val for Feynman diagrams in HDSE given by

val(Γ) := Max{n ∈ N : Γ ∈
⊕

k≥n

HDSE,(k)} (6.10)

which determines the n-adic metric on HDSE defined by the formula

dadic(Γ1,Γ2) := 2−val(Γ1−Γ2). (6.11)
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Thanks to Proposition 4.6 in [169], the n-adic metric enables us to build
a sequence {Rn(DSE)}n≥1 of random graphs which is convergent to the
unique solution XDSE with respect to the cut-distance topology. Now if
we apply the graphon representations of Feynman diagrams, then we can
embed HDSE into the renormalization topological Hopf algebra of Feynman
graphons SΦ

graphon. We can consider the completed enrichment of Hcut
DSE with

respect to the cut-distance topology to add graph-limits to this topological
Hopf algebra. The coproduct ∆HDSE

is a linear bounded map Hcut
DSE which

makes it a continuous operator. Thanks to the graduation parameter, the
antipode is also a continuous operator in this setting. Denote Hcut

DSE as the
resulting topological Hopf algebra.

Now for each j ≥ 1, set Hcut

DSE
(j)
p

as the resulting topological Hopf sub-

algebra corresponding to each equation DSE
(j)
p . The family Cp of these

topological Hopf subalgebras can be equipped by the following binary rela-
tion

V 4W ⇐⇒ (6.12)

there exists a finite sequence of topological Hopf subalgebras V1, ..., Vr ∈ Cp
together with injective morphisms V → V1 → V2 → ... → Vr → W which
connect V to W .

We can check that (Cp,4) is a lattice of topological Hopf subalgebras with

the greatest lower bound H(X
(0)
1(0)

)cut. For each subset {V1, V2} of (Cp,4), if

V1 4 V2 then define

V1 ∧ V2 := V1, V1 ∨ V2 := V2. (6.13)

The lattice (Cp,4) enables us to relate a class of Dyson–Schwinger equa-
tions derived from the basic equation DSEp to each other with respect to
morphisms among their corresponding topological Hopf subalgebras. This
means that the lattice (Cp,4) mathematically describes the transferring of
information from one equation to another. It describes the informational
bridge between p and its intermediate states.

Definition 6.2.4. Set Rp as the smallest collection of all Feynman diagrams

in Φ which contribute to the equations DSEp and DSE
(j)
p for all j ≥ 1. Then

equip it with the cut-distance topology and add garph limits to obtain a
complete topological region Rp.

Thanks to Theorem 6.2.3, the lattice (Cp,4) shows us the information
flow processes among all (virtual) particles which contribute to the topolog-
ical region Rp.

Theorem 6.2.5. There exists a lattice of topological Hopf subalgebras which
describes the information flow in an entangled system of elementary particles
in a given interacting Quantum Field Theory.
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Proof. At the first step, we are going to show the existence of a class of
Dyson–Schwinger equations for the description of information flow between
two space-time far distant particles which belong to an entangled system in
a given interacting Quantum Field Theory.

Thanks to Theorem 6.2.3, we already have described the entanglement
process in a topological region around an elementary particle on the basis
of the cut-distance topology. Here we need to show the possibility of infor-
mation flow between two entangled particles p, q while p does not belong to
Rq, q does not belong to Rp and Rp ∩Rq = ∅.

We have identified topological subspaces Rp and Rq of the topological
Hopf algebra Hcut

FG(Φ) in terms of their contribution to the entanglement of
intermediate states (i.e. Definition 6.2.4). Now thanks to the metric (6.2),
define the distance between this class of regions in terms of

d(Rp, Rq) := inf{d(X,Y ) : X ∈ Rp, Y ∈ Rq}. (6.14)

We want to show the existence of topological regions such as Rcpq in Hcut
FG(Φ)

with the following conditions

Rp ∩Rcpq 6= ∅, Rq ∩Rcpq 6= ∅. (6.15)

For d(Rp, Rq) > 0, there exist j1, j2 ≥ 0 such that the corresponding

equations DSE
(j1)
p and DSE

(j2)
q have the following conditions

X
DSE

(j1)
p

= limn→∞

n∑

k=0

X
(j1)
k , X

DSE
(j2)
q

= limn→∞

n∑

k=0

X
(j2)
k (6.16)

d(Rp, Rq) = dcut(XDSE
(j1)
p
,X

DSE
(j2)
q

) > 0. (6.17)

For each ǫ > 0, we can determine Hochschild one cocycles B+
γǫn,p

, n ≥ 1
which fulfills the following conditions:

- Each γǫn is a finite primitive (1PI) Feynman diagram such that

∀n ≥ 1, γǫn /∈ Rp, γǫn /∈ Rq, γǫn ∈ HFG(Φ). (6.18)

- The equation DSE
(ǫ)
p as the Dyson–Schwinger equation originated from

the family {B+
γǫn,p

}n≥1 with the unique solution Xp
ǫ =

∑
n≥0X

(ǫ)p
n has the

following property that there exists Nǫ ∈ N such that for each n > Nǫ, we

have d(X
(j1)
n ,X

(ǫ)p
n ) ≤ ǫ.

Thanks to the triangle inequality of the cut-distance metric, we can
obtain

d(X
DSE

(j1)
p
,Xp

ǫ ) ≤ ǫ (6.19)

In addition, for each ǫ > 0, we can determine Hochschild one cocycles
B+
ηǫn,q

, n ≥ 1 which fulfills the following conditions:
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- Each ηǫn is a finite primitive (1PI) Feynman diagram such that

∀n ≥ 1, ηǫn /∈ Rp, ηǫn /∈ Rq, ηǫn ∈ HFG(Φ). (6.20)

- The equation DSE
(ǫ)
q as the Dyson–Schwinger equation originated from

the family {B+
ηǫn,q

}n≥1 with the unique solution Xq
ǫ =

∑
n≥0X

(ǫ)q
n has the

following property that there exists N ′ǫ ∈ N such that for each n > N ′ǫ, we

have d(X
(j2)
n ,X

(ǫ)q
n ) ≤ ǫ.

Thanks to the triangle inequality of the cut-distance metric, we can
obtain

d(X
DSE

(j2)
q
,Xq

ǫ ) ≤ ǫ. (6.21)

The vacuum in an interacting physical theory can be described as a
homogeneous system of virtual particles where its states are invariant by all
transformations of the invariance group. Some particles in the vacuum have
negative energies where without violating the conservation laws they can
annihilate ([156]). Thanks to this fact, we can determine Rcpq as the smallest
topological subset ofHcut

FG(Φ) consisting of Feynman graphs which contribute

to equations of the types DSE
(ǫ)
p and DSE

(ǫ)
q . This region contains virtual

particles (created by the vacuum energy) which has separate contributive
parts with topological regions Rp and Rq. The relations (6.19) and (6.21)
guarantee that

Rp ∩Rcpq 6= ∅, Rq ∩Rcpq 6= ∅. (6.22)

Now if we apply Theorem 6.2.3, then graphs which belong to the region Rcpq

(as the completion of Rcpq with respect to the cut-distance topology) make
informational bridges between entangled particles p, q and their correspond-
ing intermediate states (virtual particles) which live in Rp ∪Rq ∪Rcpq .

At the second step, we want to encapsulate the above machinery in
terms of lattice models. Suppose DSEp and DSEq are the basic Dyson–
Schwinger equations corresponding to entangled particles p and q. Thanks
to the built lattice by Theorem 6.2.3, let (Cp,4) be the lattice of topological

Hopf subalgebras Hcut

DSE
(j)
p

generated by equations of the type DSE
(j)
p which

live in the topological region Rp and let (Cq,4) be the lattice of topological

Hopf subalgebras Hcut

DSE
(l)
q

generated by equations of the type DSE
(l)
q which

live in the topological region Rq. Thanks to the previous part of the proof, we

can show the existence of j1, j2 ≥ 0 such that DSE
(j1)
p and DSE

(j2)
p contribute

in the description of the distance between two topological regions Rp and
Rq (i.e. metric (6.14)). Set

j∗1 := Min{j1 : DSE(j1)
p }, j∗2 := Min{j2 : DSE(j2)

q }. (6.23)

Consider the sub-lattice (C
j∗1
p ,4) which contains only the first j∗1 columns of

the original lattice (Cp,4) and the sub-lattice (C
j∗2
q ,4) which contains only
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the first j∗2 columns of the original lattice (Cq,4). These two sub-lattices
have the greatest lower bound and the smallest upper bound.

Thanks to the structure of the topological region Rcpq , we can build a new

lattice (C
j∗1 j

∗
2

cpq ,4) which is the result of the disjoint union of the sub-lattices

(C
j∗1
p ,4) and (C

j∗2
q ,4) which are connected to each other by topological Hopf

algebra homomorphisms associated to Dyson–Schwinger equations of the

types DSE
(ǫ)
p and DSE

(ǫ)
q . We have

Hcut
DSEp

≤ Hcut

DSE
(1)
p

≤ ... ≤ Hcut

DSE
(j∗1 )
p

(6.24)

Hcut
DSEq

≤ Hcut

DSE
(1)
q

≤ ... ≤ Hcut

DSE
(j∗
2
)

q

(6.25)

which belong to the new lattice in terms of one of the following topological
Hopf algebra homomorphisms

Hcut

DSE
(j∗
1
)

p

−→ Hcut

DSE
(ǫ)
p

−→ Hcut

DSE
(k)
c

−→ Hcut

DSE
(ǫ)
q

−→ Hcut

DSE
(j∗
2
)

q

(6.26)

or

Hcut

DSE
(j∗
2
)

q

−→ Hcut

DSE
(ǫ)
q

−→ Hcut

DSE
(k)
c

−→ Hcut

DSE
(ǫ)
p

−→ Hcut

DSE
(j∗
1
)

p

(6.27)

such thatHcut

DSE
(k)
c

is the topological Hopf subalgebra associated to the Dyson–

Schwinger equation DSE
(k)
c which lives in the region Rcpq and derived from

the virtual particle c.

6.2.2 Intermediate algorithms for QFT-entanglement

TheMilnor–Moore theorem provides a correspondence between pro-unipotent
Lie groups and graded commutative Hopf algebras ([36, 139]). This corre-
spondence enables us to translate the determination of Hopf subalgebraic
structures in the renormalization Hopf algebra to a problem in Lie groups.
One interesting application of Galois theory is to find a fundamental in-
terrelationship between subgroups of the group of all automorphisms and
intermediate algorithmic structures which live in the middle of programs
and computable functions [198, 199]. Dyson–Schwinger equations can be
applied for the determination of substructures in the renormalization Hopf
algebra HFG(Φ) and the determination of Lie subgroups of the complex
Lie group GΦ(C) of characters. We can consider each HDSE as the Hopf
ideal in HFG(Φ) and then consider the resulting quotient Hopf subalgebra.
The complex Lie group corresponding to this quotient Hopf algebra is a Lie
subgroup of GΦ(C) while we have a surjective group homomorphism from
GΦ(C) to GDSE(C). Therefore these non-perturbative equations play the
middle bridge between Theory of Computation and Quantum Field Theory
[63, 167].
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Theorem 6.2.3 and Theorem 6.2.5 have explained the entanglement of el-
ementary particles in terms of the existence of substructures originated from
Dyson–Schwinger equtations. This new mathematical platform can address
a deep connection between the concept of information flow in Quantum
Field Theory and the existence of subobjects inside an object determined
by the Galois Fundamental Theorem. The immediate consequence of this
investigation is to recognize a new approach to quantum entanglement in
the language of intermediate algorithms in Theoretical Computer Science.
We deal with this interesting challenge on the basis of the representation
theory of Lie groups.

Theorem 6.2.6. The intermediate algorithms corresponding to Lie sub-
groups of the complex Lie group GΦ

graphon(C) can encode the information
flow in an entangled system in a given interacting Quantum Field Theory Φ
in terms of a lattice of Lie subgroups.

Proof. At the first step, we plan to show that the information flow between
the particle p and all unobserved intermediate states can be encoded via a
lattice of Lie subgroups of GΦ(C). Thanks to Theorem 6.2.3, the entangle-
ment of the particle p and its related virtual particles is encapsulated by the
lattice (Cp,�) of topological Hopf subalgebras. Each pair of Hopf subalge-
bras H

DSE
(k)
p

� H
DSE

(l)
p

in this lattice determines the injective Hopf algebra

homomorphism
ikl : HDSE

(k)
p

−→ H
DSE

(l)
p
. (6.28)

The passing from Hopf subalgebras to Lie subgroups can be formulated by
applying the contravariant functor Spec which sends a commutative algebra
to a topological space. For each object H

DSE
(k)
p

∈ (Cp,�), Spec(H
DSE

(k)
p
)

is the set of all prime ideals of the commutative algebra H
DSE

(k)
p

equipped

with the Zariski topology and the structure sheaf. The homomorphism ikl
can be lifted onto the surjective homomorphism

ĩkl : Spec(HDSE
(l)
p
) −→ Spec(H

DSE
(k)
p
) (6.29)

of affine group schemes. For a fixed Hopf subalgebra H
DSE

(k)
p
, Spec(H

DSE
(k)
p
)

is a representable covariant functor which sends a topological space to a
group. Set Gp(k) := Spec(H

DSE
(k)
p

)(C) as the complex Lie subgroup cor-

responding to the Hopf subalgebra H
DSE

(k)
p

such that its group structure

is given by the convolution product generated by the coproduct ∆H
DSE

(k)
p

.

Thanks to this setting, we can build a new lattice (Gp,�) of complex Lie
groups such that

G � K ⇐⇒ (6.30)

There exists a finite sequence of complex Lie subgroups G1, ..., Gr ∈ Gp
together with surjective group homomorphisms G → G1 → G2 → ... →
Gr → K which connect G to K.
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In addition, for each n ≥ 1, define G(Xj
1 , ...,X

j
n) as the finite dimen-

sional complex Lie subgroup corresponding to the free commutative graded
Hopf subalgebra H(Xj

1 , ...,X
j
n) of HDSE

(j)
p
. The lattice (Gp,�) of Lie groups

encodes the information flow between p and its related virtual particles.
At the second step, we plan to show that there exists a lattice of Lie

subgroups which describes the information flow in an entangled system of
elementary particles in a given interacting gauge field theory. For this pur-
pose, we need to build a lattice of Lie subgroups for the description of the
quantum entanglement process between space-time far distant elementary
particles which belong to an entangled system in the physical theory Φ.

Theorem 6.2.5 determines a lattice (C
j∗1 j

∗
2

cpq ,�) of Hopf subalgebras which
describes the entanglement process. Thanks to the first part of the Proof,
it is possible to lift the increasing chains (6.24), (6.25) onto the following
decreasing chains of Lie subgroups

G
p(j

∗
1 ) ≥ G

p(j
∗
1−1) ≥ ... ≥ Gp(1) ≥ GDSEp

(6.31)

G
q(j

∗
2
) ≥ G

q(j
∗
2
−1) ≥ ... ≥ Gq(1) ≥ GDSEq (6.32)

with the corresponding group homomorphisms

G
q(j

∗
2
) −→ Gq(ǫ) −→ Gc(k) −→ Gp(ǫ) −→ G

p(j
∗
1
) (6.33)

or
G
p(j

∗
1 ) −→ Gp(ǫ) −→ Gc(k) −→ Gq(ǫ) −→ G

q(j
∗
2 ) (6.34)

such that Gc(k) is the complex Lie subgroup corresponding to the Hopf sub-

algebra H
DSE

(k)
c

generated by the equation DSE
(k)
c which lives in the topo-

logical region Rcpq . The existence of the virtual particle c, which contributes
to interactions of the particles p, q, is the consequence of the energy of the
vacuum in interacting physical theory. Now we can define a new lattice

(G
j∗1 j

∗
2

cpq ,�) (6.35)

of Lie subgroups and Lie group epimorphisms. This lattice encodes the
entanglement processes between p and q.

As we have shown in the previous parts of this work, the renormal-
ization Hopf algebra of Feynman graphons SΦ

graphon is capable to recover
the renormalization Hopf algebra HFG(Φ) and Hopf subalgebras generated
by all Dyson–Schwinger equations. Therefore for each Dyson–Schwinger
equation DSE with the corresponding Hopf subalgebra HDSE, we can cover
the associated complex Lie subgroup GDSE(C) via the complex Lie group
GΦ

graphon(C) by a natural surjection while in the quotient Hopf algebra level

Hom(
SΦgraphon
HDSE

,C) is a Lie subgroup of GΦ
graphon(C).
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6.2.3 Tannakian subcategories as intermediate algorithms

The study of Dyson–Schwinger equations had been developed to a cate-
gorical setting where we associated a category of geometric objects to each
system of these equations. Then we have embedded this class of categories
into the universal Connes–Marcolli category ECM of flat equi-singular vector
bundles. Thanks to this machinery, some new geometric and combinatorial
tools for the computation of non-perturbative parameters have already been
obtained [160, 162, 164, 167]. Thanks to Theorem 6.2.6, now it is possible
to describe quantum entanglement in the context of the representation the-
ory of Lie groups where we can address a new application of Tannakian
formalism to Quantum Field Theory.

Theorem 6.2.7. There exists a lattice of Tannakian subcategories which
describes quantum entanglement in a given interacting Quantum Field The-
ory.

Proof. At the first step, we show the existence of a lattice (Catp,�) of
Tannakian subcategories which encodes the quantum entanglement between
an elementary particle p and all unobserved intermediate states (as virtual
particles).

Thanks to Theorem 6.2.3, the entanglement of the particle p and its
related virtual particles is encapsulated by the lattice (Cp,�) of topological
Hopf subalgebras. Each pair of objects Hcut

DSE
(k)
p

4 Hcut

DSE
(l)
p

can determine

the natural injective Hopf algebra homomorphism

ikl : HDSE
(k)
p

−→ H
DSE

(l)
p

(6.36)

which can be lifted onto the surjective group homomorphism

ĩkl : Gp(l) −→ Gp(k) . (6.37)

For each object Gp(l) of the lattice (Gp,�), let

G∗
p(l)

:= Gp(l) ⋊Gm (6.38)

such that Gm is the multiplicative group which acts on the original group.
Define RepG∗

p(l)
as the category of finite dimensional representations of

the complex Lie group G∗
p(l)

which is a neutral Tannakian category. Thanks

to the representation theory of affine group schemes ([139]), the surjective
morphism ĩkl allows us to send each representation σ : Gp(k) −→ GLV to a
representation

σ ◦ ĩkl : Gp(l) −→ GLV (6.39)

which leads us to achieve an exact fully faithful functor

RepG∗

p(k)
−→ RepG∗

p(l)
. (6.40)
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This information is enough to build a new lattice (Catp,�) of subcate-
gories such that

RepH∗ � RepK∗ ⇐⇒ (6.41)

there exists a finite sequence of subcategories RepH∗
1
, ...,RepH∗

t
∈ Catp to-

gether with exact fully faithful functors

RepK∗ → RepH∗
1
→ ...→ RepH∗

t
→ RepH∗ (6.42)

derived from the epimorphisms ĩkl.
At the second step, we show the existence of a lattice of Tannakian

subcategories for the description of the entanglement between space-time
far distant elementary particles which belong to an entangled system.

Thanks to Theorem 6.2.5, the information flow between p and other

distant particle q is described by the lattice (C
j∗1 j

∗
2

cpq ,�) of topological Hopf

subalgebras which inherits a lattice (G
j∗1 j

∗
2

cpq ,�) of Lie subgroups (i.e. Theo-
rem 6.2.6). The decreasing chains (6.31) and (6.32) can be lifted onto the
categorical setting to achieve the following chains of categories and exact
fully faithful functors

RepG∗
DSEp

≥ RepG∗

p(1)
≥ ... ≥ RepG∗

p
(j∗1−1)

≥ RepG∗

p
(j∗1 )

(6.43)

RepG∗
DSEq

≥ RepG∗

q(1)
≥ ... ≥ RepG∗

q
(j∗
2
−1)

≥ RepG∗

q
(j∗
2
)
. (6.44)

We can connect these two chains to each other in terms of one of the following
sequences of exact fully faithful functors

RepG∗

q
(j∗2 )

−→ RepG∗

q(ǫ)
−→ RepG∗

c(k)
−→ RepG∗

p(ǫ)
−→ RepG∗

p
(j∗1 )

(6.45)

or

RepG∗

p
(j∗
1
)
−→ RepG∗

p(ǫ)
−→ RepG∗

c(k)
−→ RepG∗

q(ǫ)
−→ RepG∗

q
(j∗
2
)
. (6.46)

This information is enough to define (Cat
j∗1 j

∗
2

cpq ,�) as a lattice of Tan-
nakian subcategories which encodes the entanglement process between p
and q.

Theorem 6.2.8. Flat equi-singular vector bundles provide a new geometric
description for the information flow in interaction Quantum Field Theories
on the basis of the Riemann–Hilbert correspondence.

Proof. Flat equi-singular vector bundles have been applied for the construc-
tion of the Connes–Marcolli category ECM which is a neutral Tannakian
category. It is isomorphic to the category RepU∗ of finite dimensional rep-
resentations of the universal affine group scheme U∗. [46]
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This universal category is rich enough to recover all categories RepG∗

p(j)

as subcategories which enable us to define a surjective functor

π∗j : RepU∗ −→ RepG∗

p(j)
(6.47)

of categories. Now if we apply the chain (6.45) or (6.46), then we can
determine one of the functors

ρpqj∗1 j∗2
: RepG∗

p
(j∗
1
)
−→ RepG∗

q
(j∗
2
)

(6.48)

or
ρpqj∗2 j∗1

: RepG∗

q
(j∗
2
)
−→ RepG∗

p
(j∗
1
)
. (6.49)

These functors allow us to formulate one of the following equations

πj∗2 = ρpqj∗1 j∗2
◦ πj∗1 , or πj∗1 = ρpqj∗2 j∗1

◦ πj∗2 (6.50)

at the level of functors. They are the key tools for us to determine some
flat equi-singular vector bundles which contribute to the information flow in
entangled systems.

Corollary 6.2.9. There exists a category of mixed Tate motives which in-
terprets the information flow in an entangled system of particles in a given
interacting Quantum Field Theory.

Proof. On the one hand, the category ECM is equivalent to the motivic
category

TMmix(Spec O[1/N ]) (6.51)

of mixed Tate motives (i.e. Proposition 1.110, Corollary 1.111 in [46]).
Thanks to Theorem 6.2.8, neutral Tannakian subcategories RepG∗

p
(j∗1 )

and

RepG∗

q
(j∗
2
)
can be embedded into this motivic category. Therefore the in-

formation flow is equivalent to determining subcategories of the category
T Mmix(Spec O[1/N ]) which contain those mixed Tate motives identified
by motivic Galois groups G∗

p(j
∗
1 ) and G

∗

q(j
∗
2 ) . We denote the resulting motivic

subcategories with Mot(G∗
p(j

∗
1
)) and Mot(G∗

q(j
∗
2
)), respectively.

On the other hand, thanks to Theorem 6.2.6, we have already determined

a new class of Dyson–Schwinger equations DSE
(k)
c which describes the infor-

mation flow in the topological region Rcpq . Now by applying Theorem 6.2.7,
we have the category RepG∗

c(k)
with respect to this class of Dyson–Schwinger

equations which can encode the information flow. This category can be also
embedded into ECM which leads us to characterize another class of mixed
Tate motives identified with the motivic Galois group G∗

c(k)
. We denote the

resulting motivic subcategory with Mot(G∗
c(k)

).

143



Ali Shojaei-Fard

The phenomenology of non-perturbative QFT:

Mathematical Perspective

The disjoint union of objects of these motivic subcategories make a new
subcategory

Motpq := Mot(G∗
p(j

∗
1
))
⊔

Mot(G∗
c(k)

)
⊔

Mot(G∗
q(j

∗
2
)) (6.52)

of T Mmix(Spec O[1/N ]). Motpq is a category of mixed Tate motives which
contribute to the entanglement processes between space-time far distant
particles p, q via virtual particles of the vacuum energy.

The explained mathematical machinery for the description of quantum
entanglement is related to the strength of the bare or running coupling con-
stants of physical theories where we deal with Dyson–Schwinger equations
under different running couplings. It means that our machinery still works
after changing the scale of the momenta (i.e. running coupling constant). As
we know that theory of Renormalization Group is the key tool in Quantum
Field Theory to study the changes of the dynamics of a quantum system
with infinite degrees of freedom when the scales of some physical parameters
such as momentum, energy and mass have been changed. It allows us to
concern the possibility of exchanging information from scale to scale in the
appearance of uncertainty principle. Now we can apply the Connes–Marcolli
universal affine group scheme to define a suitable Renormalization Group
which encodes the information flow under the rescaling of the momentum
parameter.

Corollary 6.2.10. The information flow between an elementary particle p
and all unobserved intermediate states exists independent of changing the
scale of the momenta of particles.

Proof. The universal category ECM is isomorphic to the category RepU∗

with respect to the universal affine group scheme U∗. The Connes–Marcolli
universal shuffle type Hopf algebra of renormalization HU is the result of
the graded dual of the universal enveloping algebra of the free graded Lie
algebra LU which is generated by elements e−n of degree −n for each n > 0.
The Milnor–Moore Theorem can determine the corresponding affine group
scheme U. The sum e :=

∑
n e−n is an element of the Lie algebra LU where

thanks to the pro-unipotent structure of U, we can lift it onto the morphism
rg : Ga → U. [46]

Now we can apply Theorem 1.106 in [46] to determine a graded repre-
sentation

τp : U
∗(C) → G∗DSEp

(6.53)

such that the resulting map τp◦rg provides the Renormalization Group with
respect to the equation DSEp. By this method, we can build a Renormal-

ization Group with respect to each Dyson–Schwinger equation DSE
(j)
p for

each j ≥ 1. These Renormalization Groups allow us to study the behavior
of the information flow in the topological regions such as Rp under changing
the scales of the momentum parameter.
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6.3 Quantum logic via non-perturbative proposi-

tional calculus

The fundamental purpose in this section is to address a new category model
for the study of logical propositions about solutions of (strongly coupled)
Dyson–Schwinger equations. We use cut-distance topological regions of
Feynman diagrams to build a new topos model which can encode the role
of the strength of coupling constants in the logical evaluation about non-
perturbative aspects of physical theories. This new topos model can lead us
to clarify a new class of computable Heyting algebras for the logical study
of gauge field theories.

6.3.1 Quantum Topos

Generally speaking, a quantum system is described by its von Neumann
algebra B(H) of observables which contains all bounded operators on an
infinite dimensional separable Hilbert space H. Each physical quantity A
has a corresponding self-adjoint operator Â in B(H) and vice versa. Set
V(H) as the poset of all unital abelian von Neumann subalgebras of B(H)
which can be seen also as the context category. For objects V1 ⊂ V2 in the
context category, the subalgebra V1 has less number of self-adjoint operators
and less number of projections than the subalgebra V2. The restriction
process from the subalgebra V2 to the subalgebra V1 or the lifting process
from V1 onto V2 are fundamental issues in propositional calculus of quantum
systems. These translation issues have been studied under coarse-graining
process. On the one hand, it enables us to map self-adjoint operators and
projections from V2 to V1. For a proposition A ∈ ∆ about a given physical
quantity A, suppose its corresponding projection P̂∆

A belongs to V2 but not
belong to V1. It means that this proposition can not be evaluated from the
perspective of V1. The daseinisation process has been designed to adapt the
projection P̂∆

A and the proposition A ∈ ∆ to V1 by making them coarser.
On the other hand, every self-adjoint operator and every projection in V1
belong also to V2 but the embedding of the smaller subalgebra into the larger
one requires some extra structures and objects which live in V2. To concern
this issue has led people to build a topos of contravariant functors from the
context category V(H) to the category Set. This categorical setting has been
developed very fast for the reconstruction of physical theories in the context
of higher order logic. [4, 20, 59, 60, 61, 62, 90, 91, 92, 122, 129, 141, 175]

The original motivation for the construction of a new topos model is to
provide a new analogous of this propositional calculus for the study of situ-
ations beyond perturbation theory in Quantum Field Theories with strong
couplings in the context of logical conceptions. Our new topos model shows
the importance of the strength of the (bare) couplings in the construction
of the category of context (i.e. base category). The context category of our
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new topos is built in terms of cut-distance topological Hopf subalgebras of
the enriched renormalization Hopf algebra Hcut

FG(Φ). Its complexity is more
than the complexity of the standard context category V(H). The inclu-
sion Hcut

DSE1
⊂ Hcut

DSE2
in our context category does not mean in general that

the equation DSE1 should have less physical information than the equation
DSE2. We can remind the calculus of ordinals in Set Theory, where we deal
with different types of infinities while sometimes a subset of a set and the
set can have the same cardinal. Therefore coarse-graining process is not
noticed in the foundations of our topos model and we need to concern other
parameters to deal with propositions at the level of large Feynman diagrams.

Let us give a short overview about the concept of topos . The fundamen-
tal motivation for the study of topos came from the concept of abstraction in
Mathematics. In fact, Category Theory, as a modern discipline, comes to the
game whenever we plan to study a general theory of structures. Categories
enable us to concern mathematical structures in terms of interrelationships
among objects (which are formally known as morphisms) while under a set
theoretic perspective, we choose to deal with properties of mathematical
structures on the basis of elements and membership relations. Many ba-
sic concepts such as spaces and elements in Set Theory can be replaced by
objects and arrows in the categorical setting, respectively. It is reasonable
to think about Category Theory as a generalization of Set Theory where
we are capable to study a mathematical structure in terms of its relations
with other structures. This approach leads us to a universal fundamental
language in dealing with mathematical structures where we have general
powerful tools such as functors between categories and natural transforma-
tions between functors instead of the equality relation between elements of
sets in Set Theory. Actually, the language of Category Theory provides a
new understanding of the notion of ”element” of an object in a mathematical
structure which is more general than its set theoretic version. Each arrow
is indeed a generalized element of its own codomain which means that each
object X can be described in terms of consisting of different collections of
arrows Y → X. This interpretation is known as the varying of elements
of X over the stages Y which corresponds to the notion of absolute ele-
ment x of a set X in Set Theory. This story is encapsulated in terms of
a map x : {∗} → X where we enable to address the terminal object un-
derlying the categorical setting. Questions about the existence of a class of
categories which could be regarded as a categorical-theoretic replacement
and generalization of the category of sets and functions have led people to
build elementary topos and Grothendieck topos such that the second class
is known as a replacement for the notion of ”space”. The concept of topos
has all tools of the set-theoretical world which are necessary for the con-
struction of mathematical structures and their models under a categorical
configuration. It provides a generalized version of the notions of space and
logic where we enable to interpret it as a categorical-theoretic generalization
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of the structure of a universe of sets and functions that disappears certain
logical and geometric restrictions of the base mathematical structure. Gen-
erally speaking, for a given mathematical theory, we can have a treatment
to evaluate and study the theory under different stages with respect to ob-
jects of a fixed base category. So there is a chance to consider possible
relations among toposes in the context of a special family of functors which
are called geometric morphisms. The category Set of all sets and functions
is an example of a topos which is the basis for the construction of more
complicated toposes such as the Grothendieck topos of sheaves over a given
base category. Consider the category SetC

op
of contravariant functors from

the base category C to the standard category Set of sets and functions. El-
ements of this mathematical theory corresponded to the base category C,
which have been already modeled as objects in the mentioned topos, be-
come representable in terms of set-valued functors over the base category C.
Roughly speaking, a topos is a Cartesian closed category with equalisers and
subobject classifier. In other words, a topos has terminal object, equalis-
ers, pullbacks, all other limits, exponential objects and subobject classifier.
[10, 95, 123, 124, 126, 152, 151, 177]

6.3.2 Non-perturbative Topos

In this part we build the context category of our new topos model. Then
we show the existence of a new class of computable Heyting algebras which
encode truth-values of propositions about non-perturbative aspects of gauge
field theories.

Definition 6.3.1. Topological Hopf algebras Hcut
DSE(λg) generated by solu-

tions of Dyson–Schwinger equations under different running couplings in a
given gauge field theory Φ with the strong bare coupling constant g and
their closed Hopf subalgebras can be organized into a poset structure. For
each pair (H1,H2) of objects, we can define arrows pointing from H1 to H2

(i.e. H1 ≤ H2) if and only if there exists a homomorphism H1 → H2 of Hopf
algebras which is continuous with respect to the cut-distance topology.

This poset can be seen as a category denoted by Cnon,g
Φ .

Lemma 6.3.2. Cnon,g
Φ is a small category.

Proof. The existence of the graduation parameters on the renormalization
Hopf algebra HFG(Φ) allow us to represent it in terms of an infinite sys-
tem of Dyson–Schwinger equations generated by fixed point equations of
vertex-type and edge-type Green’s functions of the physical theory under
different running couplings. Therefore HFG(Φ) can be seen as an object in
the category Cnon,g

Φ which makes this category as a small category.
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The small category Cnon,g
Φ is useful to determine cut-distance topological

neighborhoods of Feynman diagrams and expansions around a fixed Feyn-
man diagram. These topological regions are Hausdorff and therefore they
allow us to separate not weakly isomorphic Feynman diagrams from each
other. It gives us an advantage to study the unique solution of a given
Dyson–Schwinger equation in terms of Feynman diagrams which contribute
to arbitrary small neighborhoods around the corresponding large Feynman
diagram.

Lemma 6.3.3. There exists a topos structure on the small category Cnon,g
Φ .

Proof. The natural choice is the topos of presheaves on the category Cnon,g
Φ

(as the category of context). We denote this new category by Tnon,g
Φ and

call it a non-perturbative topos.
An object in Tnon,g

Φ is a contravariant functor from the category Cnon,g
Φ

to the standard category Set of sets and functions.
A morphism between a pair (F1, F2) of objects is a natural transfor-

mation such as η : F1 → F2 which is actually a family of morphisms
{ηH : F1(H) → F2(H)}H∈Obj(Cnon,gΦ ) with respect to the contravariant prop-

erty. It means that for each morphism f : H1 → H2 in Cnon,g
Φ , we have

ηH1 ◦ F1(f) = F2(f) ◦ ηH2 .
A sieve on an object H ∈ Cnon,g

Φ is defined as a collection S of morphisms
f : H −→ H ′ in Cnon,g

Φ with the property that if f belongs to S and if
g : H ′ → H ′′ is any other morphism in Cnon,g

Φ , then g ◦ f : H → H ′′ also
belongs to S.

The terminal object 1 : Cnon,g
Φ → Set can be defined by 1(H) := {∗}

at all stages H in Cnon,g
Φ . If f : H → H ′ is a morphism in Cnon,g

Φ , then
1(f) : {∗} → {∗}. It is the terminal object because for any other presheaf
F we can define a unique natural transformation η : F → 1 such that its
components ηH : F (H) → 1(H) = {∗} are the constant maps Γ 7→ ∗ for all
Γ ∈ F (H).

The subobject classifier Ωnon is the presheaf Ωnon : Cnon,g
Φ → Set such

that for any object H ∈ Cnon,g
Φ , Ωnon(H) is identified by the set of all sieves

on H. If f : H ′ → H ′′ is a morphism in Cnon,g
Φ , then Ωnon(f) : Ωnon(H ′′) →

Ωnon(H ′) is given by

Ωnon(f)(S) := {h : H ′′ → H ′′′, h ◦ f ∈ S} (6.54)

for all sieves S which lives in Ωnon(H).
The outer presheaf is the contravariant functor O which maps each Hopf

subalgebra HDSE in the base category to the set In(DSE) of all infinitesimal
characters corresponding to Feynman diagrams in HDSE.

The spectral presheaf is the contravariant functor Σ which sends each
Hopf subalgebra HDSE in the base category to its corresponding complex
Lie group of characters.
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More details about the basic structure of the non-perturbative topos has
been studied by author in other separate research work.

Heyting algebras are practical models of the intuitionistic logic where we
do not have the law of excluded middle. It means that the proposition φ∨¬φ
is not intuitionistically valid. The importance of this class of logical algebras
in physics have been clarified when people started to describe quantum logics
in terms of topos models. [10, 86, 90, 91, 92, 122]

Definition 6.3.4. A Heyting algebra A is a bounded distributive lattice
with the largest element 1 and the smallest element 0 which obeys this
condition that for each couple (a, b) of its elements there exists a greatest
element x ∈ A such that a ∧ x ≤ b. This particular element is called the
relative pseudo-complement of a with respect to b. A is called a complete
Heyting algebra, if it is a complete lattice.

Theorem 6.3.5. The topos T
non,g
Φ can encode the logical evaluation of

propositions about topological regions of Feynman diagrams.

Proof. Truth objects corresponding to cut-distance topological regions of
Feynman diagrams can be determined by the Heyting algebraic structure
defined naturally on the subobject classifier of the topos Tnon,g

Φ .
For a given topological Hopf algebraHcut

DSE, consider the space Ω
non(Hcut

DSE)
which contains all sieves on Hcut

DSE. Now for arbitrary sieves S1, S2 on Hcut
DSE

which live in Ωnon(Hcut
DSE), the partial order relation on Ωnon(Hcut

DSE) can be
determined naturally by the relation

S1 ≤ S2 ⇔ S1 ⊂ S2. (6.55)

It leads us to make the following elementary logical statements

S1 ∧ S2 := S1 ∩ S2, S1 ∨ S2 := S1 ∪ S2,

S1 ⇒ S2 :=

{f : Hcut
DSE,1 → Hcut

DSE,2 s.t. ∀g : Hcut
DSE,2 → Hcut

DSE,3, g ◦ f ∈ S1 ⇒ g ◦ f ∈ S2}.
(6.56)

The negation of an element S is defined by the proposition ¬S := S =⇒ 0
which means that

¬S := {f : Hcut
DSE,1 → Hcut

DSE,2 s.t. ∀g : H
cut
DSE,2 → Hcut

DSE,3, g◦f /∈ S}. (6.57)

Thanks to the defined partial order (6.55), for S1, S2 ∈ Ωnon(Hcut
DSE),

there exists a proposition S1 ⇒ S2 of Ωnon(Hcut
DSE) with the property that

for all S ∈ Ωnon(Hcut
DSE),

S ≤ (S1 ⇒ S2) ⇔ S ∧ S1 ≤ S2. (6.58)
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In addition, the unit element in Ωnon(Hcut
DSE) is the principal sieve on Hcut

DSE

and the null element is the empty sieve ∅.
The presheaf Ωnon as the subobject classifier shows that subobjects of

any object F in the topos Tnon,g
Φ are in an one to one correspondence with

morphisms such as χ : F → Ωnon. In other words, for a subobject K of F ,
its associated characteristic morphism χK is determined by its components
χK
Hcut

DSE
: F (Hcut

DSE) → Ωnon(Hcut
DSE) where

χKHcut
DSE

(A) := {f : Hcut
DSE → Hcut

DSE,1 : F (f)(A) ∈ K(Hcut
DSE,1)}, (6.59)

for all A ∈ F (Hcut
DSE), is actually a sieve on Hcut

DSE. Furthermore, each mor-
phism χ : F → Ωnon, which is a natural transformation between presheaves,
defines a subobject Kχ of F which is given by

Kχ(Hcut
DSE) := χ−1

Hcut
DSE

{1Ωnon(Hcut
DSE)

}. (6.60)

As the conclusion, for each equation DSE, (Ωnon(Hcut
DSE),≤,∧,∨,→) is

our promising Heyting algebra.

A Heyting algebra is called finitely free, if it is generated by the equiv-
alence classes of formulas of finite number of propositional variables under
provable equivalence in the intuitionistic logic.

A subset A of natural numbers is called computable if there exists an
algorithm to decide whether a natural number belongs to A or not. In
other words, A is computable if its corresponding characteristic function is
computable. An algebraic structure is called computable if its domain can
be identified with a computable set of natural numbers where the (finitely
many) operations and relations on the structure are computable. If the
structure is infinite, people usually identify the cardinal of its domain with
the symbol ω. The computable dimension of a computable structure is the
number of classically isomorphic computable copies of the structure up to
the computable isomorphism. [175]

Definition 6.3.6. A Heyting algebra (H,≤,∧,∨,→) is called computable,
if H and all its corresponding operations are computable.

For a given Heyting algebra with one generator, there exist infinitely
nonequivalent intuitionistic formulas of one propositional variable. The con-
nection between free Heyting algebras and the intuitionistic logic leads us to
the concept of ”computable dimension” for Heyting algebras in particular
the ones which can encode the logics of the non-perturbative toposes Tnon,g

Φ .

Theorem 6.3.7. There exists a computable Heyting algebra which encodes
truth objects associated to topological regions of Feynman diagrams which
contribute to the unique solution of the Dyson–Schwinger equation DSE in
a given gauge field theory Φ.
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Proof. We work on the non-perturbative topos Tnon,g
Φ . Thanks to Theorem

6.3.5, we can associate the Heyting algebra Ωnon(Hcut
DSE) to each combinato-

rial Dyson–Schwinger equation DSE. Therefore the subobject classifier Ωnon

has the internal structure of our interesting Heyting algebra (as the alge-
braic structure appropriate for the intuitionistic logic). We want to lift this
logical type of algebra onto a enriched version Ω̂non which is computable at
the level of dimension.

Consider the propositional intuitionistic logic over the given language
(Ωnon(Hcut

DSE),∧,∨,→,⊥,⊤) such that Ωnon(Hcut
DSE) can be seen as the col-

lection of propositional formulas in infinitely many variables modulo equiva-
lence under the intuitionistic logic where ∧,∨,→ are the logical connectives,
⊥ is false and ⊤ is truth. The codes for formulas such as φ ∧ ψ, φ ∨ ψ or
φ −→ ψ are always greater than the codes for φ and ψ.

The intuitionistic propositional logic is decidable ([37, 180]) which means
that we need a finite constructive process to apply uniformly to every propo-
sitional formula to understand either it produces an intuitionistic proof of
the formula or it shows no such proof can exist. Therefore we have a com-
putable copy of the free Heyting algebra on ω generators. Now we can
consider elements of Ωnon(Hcut

DSE) as the equivalence classes [φ] under prov-
able equivalence in the intuitionistic logic which leads us to the following
computational operations.

[φ] ≤ [ψ] ⇔ φ→ ψ is provable under the intuitionistic logic,

[φ] ∧ [ψ] = [φ ∧ ψ], [φ] ∨ [ψ] = [φ ∨ ψ]. (6.61)

The plan is to build Ω̂non as a computable copy which is not computabil-
ity isomorphic to Ωnon. Let αs(n) be a label at stage s determined by the
domain of Ω̂non in the construction process. It is a propositional formula in
the intuitionistic logic such that
- α(n) = limsαs(n),
- For n 6= m, the propositional formulas α(n) and α(m) are not intuitionis-
tically equivalent,
- For each intuitionistic propositional formula φ, there exists such n such
that α(n) is intuitionistically equivalent to φ,
- Morphisms with the general form φe : Ω̂non → Ωnon can be applied to
deal with the diagonalization against all possible computable isomorphisms
([180]).

Once we define the join, meet or relative pseudo-complement of elements,
these relationships never change in future stages. Therefore, the function α,
which indicates an isomorphism map between Ω̂non and Ωnon, makes Ω̂non

computable.
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In this part we summarize the original achievements of this monograph
which focused on the mathematical foundations of non-perturbative gauge
field theories in the context of combinatorial, geometric–analytic and cate-
gorical settings.

(A)We have studied solutions of Dyson–Schwinger equations in terms of
an infinite combinatorial setting. We applied the theory of analytic graphs
(for sparse graphs) to formulate non-trivial graphon models of Feynman
diagrams and their formal expansions. Then we encapsulated the renormal-
ization of these graphons in the context of a new topological Hopf algebra
SΦ
graphon of Feynman graphons with respect to Feynman diagrams of a given

(strongly) coupled gauge field theory Φ. The topology of this Hopf algebra is
the topology of graphons, its coproduct is derived from the Kreimer’s renor-
malization coproduct and its graduation parameter can be determined in
terms of loop numbers of the corresponding Feynman diagrams. The com-
pactness of the topology of graphons enables us to identify Feynman graph
limits as the convergent limits of sequences of finite Feynman diagrams. In
addition, solutions of fixed point equations of Green’s functions have also
been studied as the cut-distance convergent limits of the sequences of their
corresponding partial sums. We then applied these Feynman graphon mod-
els of Dyson–Schwinger equations to formulate a new enrichment of the
BPHZ renormalization theory for infinite formal expansions of Feynman di-
agrams. Our study completes the foundations of a differential Galois theory
(in terms of the Riemann–Hilbert problem) for the study of non-perturbative
parameters derived from the renormalization of Dyson–Schwinger equations
under strong running or bare coupling constants.

We have also studied Dyson–Schwinger equations in the language of some
combinatorial polynomials. We built a new parametric representation for
solutions of these non-perturbative equations in terms of Tutte polynomials
and Kirchhoff–Symanzik polynomials. We then formulated a new multi-scale
Renormalization Group on the collection SΦ,g of all Dyson–Schwinger equa-
tions in a given gauge filed theory in terms of changing simultaneously the
scales of momenta (i.e. running) and bare coupling constants. This Renor-
malization Group is useful to study strongly coupled Dyson–Schwinger equa-
tions in terms of cut-distance convergent limits of sequences of large Feyn-
man diagrams under weaker running couplings. Feynman graphon models
and the topology of graphons are the essential tools for this fundamental
result. In addition, this Renormalization Group has been applied to for-
mulate a new concept of complexity for Dyson–Schwinger equations under
different running coupling constants. We considered SΦ,g as a new con-
structive world to formulate a new generalization of the Kolmogorov com-
plexity for Dyson–Schwinger equations. We showed that our generalized
non-perturbative BPHZ renormalization program can encode the Halting
problem of partial recursive functions on SΦ,g.

(B)We have built a new Noncommutative Geometry model for the study
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of Dyson–Schwinger equations in terms of a new class of infinite dimensional
spectral triples. These spectral triples are derived from graded Hopf subal-
gebras generated by solutions of Dyson–Schwinger equations. The strength
of running couplings has a direct influence on the structures of these spectral
triples. This is a fundamental achievement for the description of the geom-
etry of non-perturbative quantum motions via noncommutative differential
geometry and the theory of Spectral Geometry.

Thanks to Feynman graphon models, we have explained the foundations
of a new Functional Analysis approach for the study of solutions of Dyson–
Schwinger equations in terms of the Haar integration theory on SΦ,g as
a modification of the classical Riemann–Lebesgue integration theory with
respect to the Borel σ-algebra on real numbers. As we have shown this new
approach is useful for the analytic description of evolution of large Feynman
diagrams in terms of sequences of their corresponding partial sums where
we have formulated a new generalization of . Johnson–Lapidus Dyson series
for strongly coupled Dyson–Schwinger equations.

We have also worked on the Banach algebra L1(SΦ,g, µHaar) to formu-
late a generalized version of the Fourier transformation on the basis of the
Gelfand transform. It is useful to encode the evolution of Dyson–Schwinger
equations in terms of µHaar-integrable functions on SΦ,g.

In addition, we explained the basic elements of the Gâteaux differential
calculus machinery on the separable Banach space SΦ,g with respect to the
cut-norm to study smooth functions on SΦ,g in the language of Taylor series
of higher order Gâteaux differentiations and homomorphism densities.

(C) Thanks to Feynman graphon models of Dyson–Schwinger equations,
we have obtained a new mathematical model for the description of quantum
entanglement in interacting (strongly coupled) gauge field theories in the
language of intermediate algorithms organized in some new lattice models.
These intermediate algorithms have been encoded via lattices of topologi-
cal Hopf subalgebras generated by solutions of Dyson–Schwinger equations.
We then lifted these lattices on to the level of lattices of Lie subgroups and
Tannakian subcategories. Our study provides a new bridge between infor-
mation flow in Quantum Field Theory and the Theory of Computation and
Complexity.

In addition, we have organized topological Hopf subalgebras derived from
solutions of Dyson–Schwinger equations in a given gauge field theory into a
new topos. This new topos can provide the logical foundations of gauge field
theories under strongly coupled running couplings. This new topos model
has been developed by Author in his recent research works. We have shown
the existence of a new class of computable Heyting algebras which encode
the evaluation of logical propositions about topological regions of Feynman
diagrams.
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