
Simulating fluids with a computer:

Introduction and recent advances

Bruno Lévy

November 15, 2018

Abstract

In this article, I present recent methods for the numerical simulation
of fluid dynamics and the associated computational algorithms. The goal
of this article is to explain how to model an incompressible fluid, and how
to write a computer program that simulates it. I will start from Newton
laws “F = ma” applied to a bunch of particles, then show how Euler’s
equation can be deduced from them by “taking a step backward” and see-
ing the fluid as a continuum. Then I will show how to make a computer
program. Incompressibility is one of the main difficulties to write a com-
puter program that simulates a fluid. I will explain how recent advances
in computational mathematics result in a computer object that can be
used to represent a fluid and that naturally satisfies the incompressibility
constraint. Equipped with this representation, the algorithm that simu-
lates the fluid becomes extremely simple, and has been proved to converge
to the solution of the equation (by Gallouet and Merigot).

Figure 1: Interesting behaviors of fluids (simulated). Left: starting from a con-
figuration with a heavy fluid (water, in red) on top of a light fluid (oil, in blue),
both fluids want to exchange their positions. Because fluids are incompress-
ible, there is no trivial path to exchange their positions, thus some nice vortices
appear. Right: free-surface fluid simulations with some drops of water. This
creates changes of shape and topology, as well as splashes.

1

ar
X

iv
:1

81
1.

05
63

6v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
4

N
ov

 2
01

8

Introduction

Fluids are objects that are notoriously difficult to simulate on a computer. I
think the difficulty comes from different aspects, concerning both the nature of
the object, the physics, and the mathematical modeling:

1. Shape and topology of interfaces: during its movement, a fluid can
show drastic changes of shape and topology. The free surface of a fluid can
split and merge, create splashes, . . . When considering two non-miscible
fluids (water and oil), the interface between both fluids can form compli-
cated shapes (see Figure 1);

2. conservation of physical quantities: it is well known that some quan-
tities are conserved, the most obvious one being mass. The kinetic energy
(1/2mv2) is also conserved, as well as momentum (mv), and another
vector quantity that corresponds to the way things are spinning (called
“angular momentum”). If considering an incompressible fluid (like most
liquids), then the volume of a fluid element needs to be conserved as well.
These conservation laws are not trivial to enforce in a numerical simula-
tion;

3. form of the equations: last but not least, the equations of fluids (Euler,
Navier-Stokes) are written in a form that makes it difficult to understand
their connection with the physics (Newton laws).

In what follows, I will first try to “decipher” the fluid equations (you will
see them later) by starting from the beginning, i.e., explaining how to construct
them from Newton laws (§1). In the same section, I will explain how this
relates with problems in astrophysics. Then I will briefly explain the existing
methods to implement a computer program that simulates a fluid using these
equations (§2), as well as new ones, that use recent advances in computational
mathematics to deal with the incompressibility constraint. Finally I will show
some results (§3).

1 Mathematical modeling of fluids

1.1 Back to the roots: Newton laws

Since a fluid can be considered as a (huge !) number of particles in interaction,
let us start with the motion of a single particle, governed by Newton laws.
Newton laws can be summarized as follows:

• Law (I) Inertia: if there is no force, a particle continues its movement
in a straight line, with a constant speed;

• Law (II) Effect of forces: if there is a force, then it changes the speed of
the particle (accelerates/decelerates). The change of speed is proportional

2

to the force, and inversely proportional to the mass of the particle. In
formula:

a =
1

m
F

where m denotes the mass of the particle, F the force and a the acceler-
ation of the particle1. Considering for instance gravity, the force (weight)

is equal to the mass times gravity, F = mG = m
[

0
0

−9.81

]
. Computing

the acceleration a, the mass cancels out, then you can deduce that if you
fall, each second your speed gains 9.81 m/s, whatever your mass.
Some forces, like gravity, can be completely deduced from a scalar field
Φ (called “potential”) and correspond to (minus) the gradient ∇Φ =[

∂Φ/∂x
∂Φ/∂y
∂Φ/∂z

]
. For gravity on earth (considered to be flat !), with the Z axis in

the vertical direction, Φ(x, y, z) = 9.81mz. At this point, it is interesting
to notice that Newton’s law connects time derivatives (acceleration) with
space derivatives (gradient);

• Law (III) Action and reaction: consider two particles A and B. If A
exerts a force F on B, then B exerts the force −F on A (same magnitude,
opposite direction)2. From this law, Newton deduced that for a set of
particles in interaction, the vector p =

∑
mivi remains constant, where

mi and vi denotes the mass and speed vector of each particle. The vector
p is called “momentum”3.

Side note: In case you expect it to come here, kinetic energy 1
2mv2 and conser-

vation of energy are more subtle notions, difficult to connect to Newton’s law.
They were introduced by Leibniz who was contemporary of Newton. It took time
for these notions to make their way, mainly due to the personality of Newton !
More on this here4

Suppose now that you want to simulate a bunch ofN particles on a computer.
Each particle will be represented by a set of variables, first the position xi of
the particle. Suppose (for now) that there is no force. Because of Law (I)
(inertia), we need to memorize the speed vi of each particle. See the resulting
(uninteresting) algorithm 1.

Algorithm 1 is not very interesting, because all particles move in straight
lines at constant speed. To make it more interesting, we introduce forces. Let

1It was initially written differently by Newton, without any reference to mass, he only
stated that acceleration was proportional to force.

2If you consider gravity, the force that attracts you to the earth, you exert to the earth
exactly the same force (with a ’minus’ sign). Then, why doesn’t the earth move up when you
jump ? This is because law (II) state that the “change of speed” (acceleration) of the earth
will be inversely proportional to the mass of the earth. In fact when you jump, the earth
moves up a tiny bit, proportionally to the ratio of your mass and the mass of the earth.

3for French readers, “quantité de mouvement” which means in English “quantity of move-
ment”, as in Newton’s “Principia Mathematica”. This term means that two particles of one
gram moving at 1 meter per second in the same direction bear as much as “quantity of move-
ment” as one particle of two grams moving at 1 meter per second in that direction, or one
particle of two grams moving at 2 meters per second.

4
https://physics.stackexchange.com/questions/132754/how-was-the-formula-for-kinetic-energy-found-and-who-found-it

3

https://physics.stackexchange.com/questions/132754/how-was-the-formula-for-kinetic-energy-found-and-who-found-it

Algorithm 1: Trivial simulation algorithm, no forces

Input: Initial positions xi and speeds vi of the N particles
1 t← 0;
2 for timestep=0 to maxstep do
3 t← t+ δt ;
4 for i=1 to N do
5 xi ← xi + δt vi ; // Update position

6 end

7 end

Algorithm 2: Simple simulation algorithm with gravity

Input: Initial positions xi and speeds vi of the N particles
1 t← 0;
2 for timestep=0 to maxstep do
3 t← t+ δt ;
4 for i=1 to N do
5 Fi ← miG ; // Update force

6 end
7 for i=1 to N do
8 ai ← 1

mi
Fi ; // Update acceleration

9 vi ← vi + δt ai ; // Update speed

10 xi ← xi + δt vi ; // Update position

11 end

12 end

us consider for instance gravity, in formula Fi = mG where G =
[

0
0

−9.81

]
.

At each timestep, Algorithm 2 computes the force Fi applied to each particle,
then computes the acceleration (Newton law II), then updates the speed by
integrating the acceleration, and in turn updates the position by integrating the
speed5. Forces are updated in a different loop, because when considering more
interesting forces, that involve particles interaction, you may need the positions
of all the particles at the previous timestep. If you implement this algorithm
with a set of random positions and random speed vectors, you will see that each
particle moves along a parabola, as expected.

Algorithm 2 is naive, but it is quite easy to extend it to other types of forces.
In fact, this is how Newton discovered his laws, trying to figure out what happens
to a planet that orbits around the sun when moving from t to t+ δt, and how x
moves from x to x+δx, in a way that some known laws of motion (Kepler laws)

5There exist more elaborate ways of integrating w.r.t. time, such as Runge-Kutta, that
uses higher-order polynomials during a timestep [Haz01], or Verlet, defined in such a way that
the kinetic energy is conserved [Ver67]. In the frame of this article, to make things easier,
I will continue using the simplest scheme, that multiplies the integrated quantity by δt (the
so-called “explicit Euler” time integration).

4

could be retrieved. Newton’s and Leibniz’s genus was to consider what happens
when δt tends to zero, and this is how they invented the concept of derivative /
differential calculus6. It is fortunate that they lived in the 1700’s. If they had
a computer, they would probably simply have used a tiny timestep to do the
computations numerically, without inventing the mathematical theory. In our
case, the theory gives us directly the equation of the parabola for each particle,
without needing to do this “numerical integration”. However, sometimes it is
impossible to derive the solution formally. For instance, in the early NASA space
program, solving the system of PDEs that governs the re-entry of the spaceship
required to use numerical integration. The “Hidden Figures” movie portrays
Katherine Goble Johnson, one of the “human computers” of the NASA, who
played a key role in this story7.

1.2 From Newton laws to incompressible Euler fluids

From discrete to continuum

We now consider a fluid, that is to say a huge number N of particles. At each
time t, each particle has a position xi(t), a speed vi(t) = dxi

dt and an acceleration

ai(t) = d2xi

dt2 . Newton’s law (II) states that ai(t) = 1
mi

Fi(t). Up to now, to
name a particle, we use its index i, which is good when we got a small number
of particles, but remember that we got a huge number of particles, so another
possibility for the “name” of a particle is to use its position at time t = 0. Not
only this makes it easier to know which particle you are talking about, but also
this makes it possible to talk about an infinite number of particles !

One way of doing that is to represent the set of all particle trajectories with
a function χ(x0, t) : Ω× [0, T]→ Ω where Ω denotes the geometric domain and
T the simulation time. If you know it, the function χ(x0, t) tells you where the
point that was at position x0 at time 0 is at time t. Supposing that all the
particles have a mass m, Newton’s law (II) rewrites as:

∀x0 ∈ Ω,∀t ∈ [0, T],
d2χ(x0, t)

dt2
=

1

m
F(χ(x0, t), t) (1)

We also need to take into account the fact that fluids are incompressible. In
other words, this means that if we consider an element of fluid B ⊂ Ω at time
t = 0, then at any time it should have the same volume. Since this condition
needs to be satisfied for any subset B of Ω, it needs to be satisfied for an
elementary (arbitrarily small) volume around each point x0 of Ω. The way χ
changes an elementary volume corresponds to the determinant of its Jacobian
matrix (and in our case, it needs to remain constant):

∀x0 ∈ Ω,∀t ∈ [0, T], det(Jχ) = constant

6Their contemporaries did not believe in these computations and mocked them as “ghosts
of vanished quantities”.

7 https://www.insidescience.org/news/exploring-math-hidden-figures

5

https://www.insidescience.org/news/exploring-math-hidden-figures

where the Jacobian matrix Jχ, taken with respect to space, is given by:

Jχ =

∂χx

∂x
∂χx

∂z
∂χx

∂y
∂χy

∂x
∂χy

∂z
∂χy

∂y
∂χz

∂x
∂χz

∂z
∂χz

∂y

There are several difficulties:

• first, if you imagine you are looking at the fluid, say a river, from above,
sitting on a bridge that crosses the river, it will be difficult to keep track
of this infinite number of particles that move along many different trajec-
tories. It may be easier to measure the fluid through a fixed grid (you
can think about it as a metallic net sitting on the banks of the river),
and then measuring quantities such as the number of particles in each cell
of the grid, and the speed vector of the particle that passes under a grid
intersection;

• second, to be compatible with the rest, the constraint on volume preser-
vation needs to be expressed as an additional force, injected into the right
hand side of Equation 1. While it is possible to do that in the form of
Equation 1, it is easier to express in function of the grid mentioned above.

Particle coordinates and field coordinates

Equation 1 considers Newton’s laws from the “point of view” of a particle (also
called “Lagrange” point of view, or “Lagrange coordinates”). The “name” of
the particle – that is, the way it is referenced in the equation – is x0, i.e., where
the particle was at time t = 0, and the function χ(x0, t) tells you where it is
after time t.

Consider now the metallic grid attached to the banks of the river. Then
there are several quantities of interest:

• at time t, you may count the particles that are in a given cell of the
grid. Make the number of particles tend to infinity and the size of the
grid cells tend to zero, then this number of particles becomes a density,
that we will denote by ρ(x, t). Note: clearly, if the fluid is incompressible
and density was uniform (i.e., constant w.r.t. space) at time t = 0, then
density remains constant and uniform;

• still at time t, imagine that you are staring at a “grid point” x at the
intersection of two wires of the fixed “metallic grid” attached to the banks
of the river. We will denote by u(x, t) the speed of the particle that passes
exactly under grid point x at time t. Another way of thinking about u
is imagining an array of “weathercocks” that measure both the direction
and strength of the wind at a set of fixed locations.

By considering that the number of particles tends to infinity and the size
of the grid cells tends to zero, you obtain physical quantities attached to fixed

6

positions in space, and defining what is called a “field”, such as the “density
field” ρ, and the “velocity field” u. The point of view of fields, or of a person
sitting on the bridge and looking at the fluid through a fixed grid, is called
“Euler” point of view, or “Euler coordinates”.

Now the question becomes: “how can we write Newton’s equation in terms
of ρ and u ?” (then it will become “how can we express incompressibility as
an additional force ?”. Before answering this question, some care needs to be
taken: is it possible for ρ and u to take arbitrary values ? The answer is no:
they are connected. Imagine you know ρ(., t) and u(., t) at a given time t. When
you go from t to t + δt, the new ρ(., t + δt) is the result of “transporting”the
matter with u(., t), thus it cannot be arbitrary. Put differently, if you consider
a small blob around a point x at time t, the quantity of matter that enters
the blob minus the quantity of matter that leaves the blob (deduced from the
spatial variations of u) should correspond to the variation of the quantity of
matter inside the blob (the time variation of ρ). Write this condition, use the
divergence theorem, and make the blob arbitrarily small, then you end up with
this condition:

∂ρ

∂t
= −div(ρu) = −∇ · (ρu)

where div = ∇· denotes the divergence. This condition corresponds to mass
conservation (and is called the “continuity” equation, referring to the fact that
when it is satisfied, no matter can appear/disappear or even teleport). Note
that we did not need this condition with the “particles” point of view (previous
paragraph): of course mass is conserved if we transport a set of particles with
trajectories χ(x0, t). Here we need the constraint because the fluid is represented
by two independent fields ρ and u.

Now let us see how Newton’s law (II) can be expressed in terms of ρ and u.
We need to compute acceleration. A first idea would be to say that accelera-
tion is simply the derivative of u with respect to time, but it is wrong ! The
acceleration a(x, t) that we want to compute is the acceleration of the particle
that passes under grid-point x at time t. When we move from t to t + δt, the
particle under the grid-point x is replaced by another particle, then a correction
needs to be applied (tracking back in time our initial particle to measure its new
speed). The correct formula can be found by computing the acceleration from
the “particle point of view” (using the derivatives of χ), and mapping them to
the correct grid-point:

a(χ(x0, t), t) =
d2χ(x0, t)

dt2

Applying the chain rule, solving the equation and substituting x = χ(x0, t) (see,
e.g., [Mai10] for the detailed derivation), one finds:

a(x, t) =
∂u

∂t
+

ux

∂ux

∂x

uy
∂uy

∂y

uz
∂uz

∂z

 =
∂u

∂t
+ (u · ∇)u

7

This formula, that computes the acceleration of the “particle under the grid-
point”, is referred to as the “particle derivative” or “material derivative”. We
are now equipped to write the equation of the fluid:

∂u
∂t + (u · ∇)u = 1

ρ (F + P)

∂ρ
∂t +∇ · (ρu) = 0

where:

• the first equation corresponds to Newton’s law (II), written using the
“particle derivative” to express acceleration in function of the velocity
field u. In the right-hand side, F denotes the force (for instance gravity)
and the additional force P denotes the pressure (more on this below),

• the second equation corresponds to the conservation of mass (“continuity
equation”).

To go further, we need now to explicit the pressure force P, knowing that is it
supposed to enforce non-compressibility. To make things easier, we suppose that
at time t = 0, the density ρ is uniform (everywhere the same). Then, since the
fluid is incompressible, it remains the same for any time, and we got ∂ρ/∂t = 0.
The continuity equation becomes then ∇ · (ρu) = 0, or (∇ρ)u + ρ∇ · u = 0.
Note that ρ is uniform, thus it has zero gradient everywhere, and the first term
vanishes. Then since ρ is non-zero, we get ∇ · u = 0. In other words, non-
compressibility implies that u has zero divergence. Before going further, I need
to tell you more about this pressure force: it is of the kind that is (minus) the
gradient of a potential (pressure force P is minus the gradient of the “pressure
field” p). Thus our fluid equation becomes:{ ∂u

∂t + (u · ∇)u = (F−∇p)

∇ · u = 0
.

In the right hand side of the first equation, I removed the term 1/ρ since ρ is
uniform and constant (w.l.o.g. consider it to be 1). Now we can learn more
about pressure, by taking the divergence of both sides of the first equation
(Newton’s law II). We then obtain:

∇ · ∂u

∂t
+∇ · (u · ∇)u = ∇ · (F−∇p)

Since u has zero divergence, the first term (∇ · ∂u∂t vanishes. By reordering
and grouping, and using ∇ · ∇p = ∆p (the divergence of the gradient is the
Laplacian), one obtains:

∆p = ∇ · (F− (u.∇)u)

8

Our fluid equation then becomes:
∂u
∂t + (u · ∇)u = (F−∇p)
∂ρ
∂t +∇ · (ρu) = 0

∆p = ∇ · (F− (u.∇)u)

. (2)

With boundary conditions:{
∀x ∈ Ω, ∇ · u(x, 0) = 0
∀x ∈ ∂Ω, u(x, 0) · n(x) = 0

(the initial velocity field u(., 0) has zero divergence, and is tangent to the bound-
ary of the domain). There is also a limit condition for the initial pressure field,
but it is more tricky (I will not detail it here). With the additional limit condi-
tion, incompressibility (∇ · u = 0) can be removed, and is naturally implied by
the fluid equations, that couple the pressure field with the velocity field, and by
the limit conditions.

Let us take a closer look at Equation 2. The first equation expresses the
acceleration (particle derivative) in function of the gradient of a potential (here
∇p), and the second one is a Poisson equation, with the Laplacian of the poten-
tial in its left-hand side. This type of equation is known as a “Euler-Poisson”
system.

1.3 Similarities between fluids and astrophysics

This subsection explains interesting relations between the reasoning used in the
previous section to establish the equation of fluids and problems in astrophysics
that consider self-gravitating matter, that is, a bunch of stars that mutually
attract. This subsection may be skipped in a first reading.

Euler-Poisson systems can be encountered in different settings. In this sub-
section, we show an example in astrophysics. Consider a huge number of stars,
each of them having a mass mi and a position in time xi(t) and a speed vi(t).
Knowing the initial positions and speeds, how can we deduce the movement
of all the stars ? One of the difficulties is that each star is attracted by all
the other stars. Now, we will make it even more difficult: since we consider a
huge number of stars, we would like to “take a step backward” to look at them
from a wider perspective, and consider a continuous density field ρ instead of
individual stars. Now since we have a continuous density field, it is natural to
represent the speeds of the stars by a continuous velocity field u, also attached
to fixed locations in space. How can we write the equation that governs the
time evolution of ρ and u ? Again, the difficulty is that a specific point in space
is attracted by all the other points (in a way that depends on both the distance
to the other point and the density at the other point).

To make it easier, let us start with a single mass M at the origin. We take
the point of view of another mass m at point x attracted by the mass M at the

9

origin. The mass m “feels” a force F:

F = mG(r) = −mGM x

|x|3

where G denotes the universal constant of gravitation. It is easy to check that
G derives from a potential Φ, given by:

G(x) = −∇Φ(x) ; Φ(x) = −GM
|x|
.

Consider now that the mass m at point x is attracted by a continuous field of
matter, of density ρ(x). Then the potential at point x is obtained by summing
the contributions of all the other points x′ in the domain Ω:

Φ(x) =

∫
Ω

−G ρ(x′)

|x− x′|
dx′ (3)

Imagine now that you want to compute Φ numerically. It will have a high
cost, because all points of the domain are coupled with all the other points of the
domain. Then the question is “is it possible to have an equation for Φ that comes
in local form ?”. By local, I mean that the equation should only involve the value
of the density at a given point x and their derivatives. By examining Equation
3, it is possible to recognize that the integrand corresponds to something that
is well known, called the “Green function”. The Green function K(x,x′) is a
way of expressing the solution of a Poisson equation (∆f = g) as a convolution,
as follows:

∆f(x) = g(x)

f(x) =
∫

Ω
K(x,x′)g(x′)dx′

The expression of K can be found by solving for K in ∆K(x,x′) = δ(x−x′)
where δ is the Dirac distribution. I’m not giving the details of the derivations,
one may refer to the standard textbooks8. The expression of K is:

K(x,x′) = − 1

4π

1

|x− x′|
.

Comparing with Equation 3, one sees that the integrand corresponds to
K (up to a constant factor 4πG). Summarizing what we know so far, for a
continuous field of matter ρ, the force F(r) “felt” by a mass m at a point x is
given by: {

F(x) = mG(x) = −m∇Φ(x)
∆Φ = 4πGρ .

Now we are ready to write the equations of motion for matter described by
a density field ρ(x, t), and the associated velocity field u(x, t):

8https://en.wikipedia.org/wiki/Green’s_function

10

https://en.wikipedia.org/wiki/Green's_function

∂u
∂t + (u · ∇)u = −∇Φ

∂ρ
∂t +∇ · (ρu) = 0

∆Φ = 4πGρ

(4)

where the first equation corresponds to Newton’s law II, with in its left-hand side
acceleration expressed as the material derivative and in its right-hand side the
gravitational forces as the gradient of the gravitational potential. The second
equation is mass conservation (the continuity equation). The third equation is
the Poisson equation (with a Laplacian ∆) that we have just explained in the
previous paragraph. Note that unlike Equation 3 that is global, it only relates
Φ and ρ through local relations. As Equation 2 that we have written for fluids,
it is an Euler-Poisson system. We repeat Equation 2 below for making it easier
to compare both equations:

∂u
∂t + (u · ∇)u = (F−∇p)
∂ρ
∂t +∇ · (ρu) = 0

∆p = ∇ · (F− (u.∇)u)

.

In both equations, the first line corresponds to Newton’s law II, with forces
that derive from a potential (pressure for fluids, gravitational potential for as-
trophysics). The second line, conservation of mass, is the same in both cases.
The third line is a Poisson equation for the potential. The right-hand side is
different, in the case of fluids, it connects the pressure with the velocity fluid,
and in the case of astrophysics, it connects the gravitational potential with the
density.

In astrophysics, you can simulate the evolution of the whole universe from
big-bang time to now using some form of Equation 4, as done in large-scale
simulations such as the DEUS (Dark Energy Universe Simulation) project9.
The governing equation is similar to Equation 4 with some adjustments, (very)
roughly summarize here. See the reference books [Pee93, HE73], or the appendix
of the article [BFH+03], for the detailed derivations. First, it is interesting to
change the coordinates, and make them relative to a global expansion scale
factor, in order to cancel the global effect of expansion and concentrate on
the local aspect. To establish the equations that govern this expansion factor,
you need to take into account the effects of relativity. Second, you need also to
replace the density ρ with its deviation ratio ρ′ w.r.t. the average density. Third,
by replacing time t with a function τ of the global expansion scale factor, you
will end up with a system of equation that is still similar to an Euler-Poisson
system for fluids, where the new velocity field is denoted by u′ and the new

9http://www.deus-consortium.org/

11

http://www.deus-consortium.org/

potential by ϕ:
∂u′

∂τ + (u′ · ∇)u′ = − 3
2τ (u′ +∇ϕ)

∂ρ′

∂τ +∇ · (ρ′u′) = 0

∆ϕ = ρ′−1
τ

.

As you can see, the equation still looks like the original Euler-Poisson system,
with some differences here and there. A noticeable difference is the right-hand
side of the Poisson equation (third line), with its division by τ . To avoid dividing
by zero at big-bang time τ = 0, the numerator needs to vanish. This means,
with that model, that density was uniform at big-bang time. Now the same
thing applies to the right-hand side of the first equation, meaning that at τ = 0,
we have u′ = −∇ϕ. In other words, with this model, if you know the potential
ϕ at time τ = 0, then you also know the initial velocity field u′ ! (one says
that velocity is “slaved” to the potential). This observation (plus some other
considerations not detailed here, refer to [BFH+03]), is used in methods that
attempt to “go back in time” and reconstruct all the trajectories of the stars
from the sole observation of their current locations. Some examples will be
shown in the results section.

2 Fluids and computers

2.1 Particles or fields ?

Now that we have seen how to write the equations that describe the motion of a
fluid, we will see how to implement a computer program that implement them.
We remind that these equations can be written in two forms, either you adopt
the point of view of a particle (Lagrange coordinates) and write Newton’s law
(II), then you get:

∂2x

∂t2
= F−∇p. (5)

Or you adopt the point of view of a person looking at the fluid from a bridge
(Euler coordinates), then you obtain:

∂u
∂t + (u · ∇)u = (F−∇p)
∂ρ
∂t +∇ · (ρu) = 0

, (6)

and with this form you can find an equation that connects the pressure p with
the velocity field u:

∆p = ∇ · (F− (u.∇)u).

Before starting to program anything, you need to make a choice for your
variables, either particles or fields. It is a dilemma, because each has its pros
and cons:

12

• With particles, it is interesting because it naturally indicates where the
fluid goes, how it deforms etc. . . Adopting this point of view will make it
easier to track the geometry of the fluid, and particularly its interfaces
(free surface, surface between multiple inmiscible fluids). Moreover, it is
easier to enforce the conservation of the energy with this representation.
However, it does not indicate how to compute pressure. The Poisson
equation that we have for the pressure uses spatial derivatives w.r.t. fixed
coordinates. Of course it would be possible to translate them to moving
particles, but it is non trivial;

• With fields, pros and cons are the opposite. On the positive side what you
get is an easy and natural way of computing the pressure. The Poisson
equation that gives you the pressure in function of the velocity fluid is
very classical in numerical analysis, and can be solved very efficiently, es-
pecially if you use a regular grid to represent the fields. If you use periodic
boundary conditions (like in the PacMan game, the fluids that comes out
from the left side comes in from the right side), then you can use a Fourier
transform to solve the equation even faster. It is very well explained in
the article [Sta99] and book [Sta15] by Jos Stam, who developed a very
efficient algorithm for applications in Computer Graphics. On the nega-
tive side, the representation of the fluid, as a density and a velocity field,
is more subject to numerical dissipation, that is, fine structures of the
fluid motions that get “blurred” during the computations. Moreover, con-
servation laws (conservation of volume, energy, . . .) are more difficult to
enforce.

Several strategies were proposed, to develop numerical schemes that combine
the advantage of both coordinate systems. For instance, PIC (Particle in Cells)
methods [Har55] advect particles and update a pressure field supported by the
fixed grid. These particles can be replaced with more continuous representa-
tions, as in SPH methods [Mon88] (Smoothed Particles Hydrodynamics), that
derive pressure by replacing the particles with “Gaussian splats”, and comput-
ing the effect of overlapping splats at a given location in space. It is also possible
to completely free yourself from the need of making a choice, and consider now
that you are running along the bank of the river to follow the fluid. Then you
got your own coordinate system (neither Lagrangian nor Eulerian) in which you
translate the equations of motions of the fluid. From a computer point of view,
this means that you deform a grid and make it roughly follow the fluid, in a way
that captures the overall geometry of the flow while avoiding to create degen-
erated grid elements that would appear if you were following the flow exactly.
This class of methods is called ALE (Arbitrary Lagrangian Eulerian) [HAC74].

2.2 A parameterization of incompressible fluids

Intuitively, the “particle” point of view (Lagrangian) in Equation 5 is probably
easier to grasp, because using a computer, you can imagine implementing it
with (a variant of) Algorithm 2. This is the pressure that makes it necessary

13

Figure 2: Parameterization of an incompressible fluid using a Laguerre diagram

to introduce a fixed grid (Eulerian) and more complicated computations. The
question is now “is there a means of computing the pressure field p directly from
the position of the particles ?”.

A possibility to answer this question is to define a computer representation
of a fluid that depends on a (finite) set of variables, for instance the 3N coordi-
nates of N points xi (black dots in Figure 2), and that is defined in such a way
that any configuration of the variables xi results in an incompressible motion.
This will be the topic of the rest of this subsection. Once we have it, then the
question will be “how to make it respect Newton’s laws ?”, which will be the
topic of the next subsection.

To define our computer representation of the fluid, we will decompose the
domain Ω into regions Ωi associated with each point xi, that will represent
portions of the fluid (the cells displayed in Figure 2). A possibility to define
such a decomposition is to use the Voronoi diagram of the N points xi, that is,
a subdivision of the domain Ω into regions Ωi defined by:

Ωi = {x | d2(x,xi) ≤ d2(x,xj) ∀j),

where d2(., .) denotes the (squared) Euclidean distance.
While it is possible to simulate fluid dynamics (and astrophysics) with Voronoi

diagrams [WS99], in our case it will not work, because we want to enforce in-
compressibility in the first place: since each region Ωi represents a portion of
the fluid, it is supposed to keep the same volume throughout the simulation.
With a Voronoi diagram, there is no reason for the volumes of the regions to
remain constant. However, it is possible to use instead a Laguerre diagram (also
called power diagram in the specific case), that depends on an additional vector
W of N scalars wi. As compared to a Voronoi diagram, the definition of the
cells is slightly modified (uses the wi coefficients):

Ωi = {x | d2(x,xi)− wi ≤ d2(x,xj)− wj ∀j).

With the additional degrees of freedom wi, it is possible to control the vol-
umes of the cells ! In fact, we are in a very good situation, because for a given set
of xi points, there exists a unique W vector (up to a translation) such that the

14

volumes of the cells match the prescribed values (see [AHA92, GM96, Bre91], or
our survey [LS18] and the references herein). Moreover, this vector W can be
easily computed (by maximizing a concave function with a Newton algorithm
[KMT16]). In 3D, the algorithm can be implemented using well-adapted geo-
metric data structures [Lév15]. Now, given the N positions of the points xi, you
can compute the vector W such that the volume of each cell Ωi corresponds to
a prescribed value !

This means that we have a computer object, that represents a partition of
the fluid into N fluid portions Ωi. The partition is parameterized by N points
xi of Ω, and for any value of the parameters, the volume of each “fluid portion”
Ωi remains constant. The interesting point with this fluid parameterization is
that it has the “particle point of view” (Lagrange): one can track where each
individual fluid portion goes, or to track the interface between two inmiscible
fluids, as in Figure 2. Now we need to see how to use Newton’s laws to determine
how the points xi should move during the simulation.

2.3 The Gallouet-Merigot scheme

In this section, we describe the algorithm for simulating incompressible fluids,
due to Gallouet and Merigot [GM17]. They proved (after elaborate calcula-
tions) that the algorithm converges to the solution of the incompressible Euler
equation. Their algorithm can be also explained from an intuitive point of view:

Let us now consider a fluid subject to gravity. The only force we need to
take care of is gravity, there is no-longer pressure since it is naturally taken into
account by our parameterization of the fluid. Thus, the only thing we need
to do is applying the effect of gravity to the xi’s. However, some care needs
to be taken: remember that each xi has a volume of fluid Ωi attached to it.
If we keep that in mind, gravity is applied to the center of mass of the fluid
portion Ωi (and not to xi. However, we cannot directly act on the center of
masses of the fluid portions Ωi, since our only variables are the xi’s, but we can
attach a little spring between each xi and the center of gravity of the associated
Ωi. When “pulling” xi, this will in turn (and indirectly) pull the center of
gravity of Ωi. Or put differently, if imagining now that our fluid is represented
in a purely discrete manner, as a set of N xi points (that no longer represent
fluid portions), then the force exerted by the little spring between xi and the
center of gravity of Ωi may be thought of as a “discrete pressure force”, that
ensure the incompressibility of the (discrete) fluid. Putting everything together
results in Algorithm 3. Compared with our trivial simulation algorithm of the
introduction (Algorithm 2), it just adds the “pressure force”, that is the “spring
energy” that connects the points xi to the centers of gravity of the Laguerre
cells gi. This simple algorithm simulates interesting behavior of the fluid, such
as vortices, as can be seen in Figure 2 (more results in the next section). One
may argue that the function that computes the Laguerre diagrams and the
vector W (not detailed in this article, refer to [LS18] and references herein)
is far from trivial. However, note that more classical implementations of fluid
simulation, such as [Sta99], also rely on efficient numerical methods (e.g. Fast

15

Algorithm 3: Simulation of an incompressible fluid with the Gallouet-
Merigot algorithm

Input: Initial positions xi and speeds vi of the N particles
1 t← 0;
2 for timestep=0 to maxstep do
3 Compute the vector W that controls the volume of the Laguerre cells;
4 Compute the Laguerre diagram Compute the centers of gravity gi of

the Laguerre cells Ωi;
5 t← t+ δt ;
6 for i=1 to N do
7 Fi ← miG + 1

ε2 (gi − xi) ; // Update force

8 end
9 for i=1 to N do

10 ai ← 1
mi

Fi ; // Update acceleration

11 vi ← vi + δt ai ; // Update speed

12 xi ← xi + δt vi ; // Update position

13 end

14 end

Fourier Transform). The Laguerre diagram is less standard than the FFT, but
since it solves a form of Optimal-Transport, a problem that is very general, we
think that this type of method will make its way and will be soon part of the
standard numerical optimization toolbox.

3 Results

We show some results. Figure 3-left shows a simulation of a fluid constrained to
move on a sphere, that develops vortices. On the right, the same type of vortices,
but this time in full 3D (10 million points). Using efficient geometric algorithms,

Figure 3: Fluid on a sphere (left) and 3D instability (right).

16

Figure 4: Taylor-Rayleigh instability in a bottle.

Figure 5: Early Universe Reconstruction (simulation data courtesy of Roya
Mohayaee, Institut d’Astrophysique de Paris)

it is possible to define an arbitrary shape for the domain Ω, as shown in Figure 4.
Finally, Figure 5 shows some on-going works in Early Universe Reconstruction:
starting from the current (simulated for now) positions of a set of galaxy clusters
(left), the goal is to retrieve the initial condition. As explained in Section 1.3,
density is supposed to be constant at the initial time. The question is then to
determine for each galaxy cluster where it took its matter from, by “inverting”
the equation in Section 1.3. As our problem of computing the W vector that
controls the volumes of the Laguerre cells (Section 2.2), this is also an instance
of the Optimal Transport problem, that can be solved with the same algorithm
(with some adjustments to make it scalable). Here it is applied to 16 million
galaxy clusters, with periodic (“pac-man”) boundary conditions. Computation
took slightly more than 1h on a desktop with 32 Gb RAM and an NVidia V100
for the linear algebra.

Conclusions - towards the “path bundle” method

The numerical experiments in this article showed that a Laguerre diagram with
controlled cell volumes is a nice parameterization of an incompressible fluid,
leading to a fluid simulation algorithm that is straightforward to implement
(supposing that you already got the semi-discrete optimal transport code that
computes the Laguerre diagram, which is not standard, but readily available
in the open-source GEOGRAM library10). Now the way the points xi are

10http://alice.loria.fr/software/geogram/doc/html/index.html

17

http://alice.loria.fr/software/geogram/doc/html/index.html

connected to the centers of gravity with a “spring” is not completely satisfactory,
in particular it introduces a parameter ε (the stiffness of the springs). Could we
find instead a way of determining the movement of the xi in such a way that
our computer implementation best approximates the “true” (i.e. continuous,
mathematically idealized) system ? To find the equations of motion of the xi’s,
one possibility is considering something else than Newton’s laws, called the
principle of least action, that is mathematically equivalent to Newton’s laws.
This means starting from the principle of least action, one retrieves exactly
the same equations of motion. But the difference is that the principle of least
action comes in the form of a quantity (called “action”, and corresponding to the
integrated difference between the kinetic energy and the potential energy) that
is minimized. In our case it makes a difference: we can imagine parameterizing
the action with our discrete variables, and find the time evolution of our discrete
variables that minimize the action. To do that, it may be possible to use the
“adjoint method” from optimal control theory.

Acknowledgments

I wish to thank Quentin Mérigot, Thomas Gallouet, Yann Brenier, Jean-David
Benamou, Roya Mohayaee and Jean-Michel Alimi for many discussions. This
research project was partly funded by the ANR MAGA and INRIA PRE EX-
PLORAGRAM.

A The complete sources of a fluid simulator

This section gives the complete sources of the fluid simulator (shorter than two
pages !), implemented in Python. The full source code and companion software
is available here11 and the associated video tutorial for installation is here12.
The heart of the algorithm is the Euler_step() function (20 lines !), it is not
longer nor not more complicated than Algorithm 3, the rest is initialization and
bookkeeping (there are also 30 lines for the GUI that we did not reproduce here
because they are not very relevant for the topic of this article). All 2D images
(Taylor-Rayleigh instability) were produced using this code.

import math,numpy

N=1000 # Number of points.

def Euler_step():

OT = points.I.Transport

tau = 0.001 # Timestep

epsilon = 0.004 # Stiffness of the ’spring’ pressure force.

G = 9.81 # Gravity on earth in m/s^2

11https://gforge.inria.fr/frs/?group_id=1465
12https://www.youtube.com/watch?v=2ULkab3vyfc

18

https://gforge.inria.fr/frs/?group_id=1465
https://www.youtube.com/watch?v=2ULkab3vyfc

inveps2 = 1.0/(epsilon*epsilon)

Compute both W and the centroids of the Laguerre diagram.

OT.compute_optimal_Laguerre_cells_centroids(

Omega=Omega,centroids=Acentroid,mode=’EULER_2D’

)

Update forces, speeds and positions (Explicit Euler scheme, super simple !)

for v in range(E.nb_vertices):

Compute forces: F = spring_force(point, centroid) - m G Z

Fx = inveps2 * (centroid[v,0] - point[v,0])

Fy = inveps2 * (centroid[v,1] - point[v,1]) - mass[v] * G

V += tau * a ; F = ma ==> V += tau * F / m

V[v,0] = V[v,0] + tau * Fx / mass[v]

V[v,1] = V[v,1] + tau * Fy / mass[v]

position += tau * V

point[v,0] = point[v,0] + tau*V[v,0]

point[v,1] = point[v,1] + tau*V[v,1]

points.redraw()

def Euler_steps(n):

for i in range(n):

Euler_step()

######## Initialization

scene_graph.clear()

Omega = scene_graph.create_object(classname=’Mesh’,name=’Omega’)

Omega.I.Shapes.create_square()

Omega.I.Surface.triangulate()

Omega.I.Points.sample_surface(nb_points=N)

scene_graph.current_object = ’points’

points = scene_graph.objects.points

E = points.I.Editor

Low level access to point coordinates

point = numpy.asarray(E.find_attribute(’vertices.point’)) # [:,[0,1]]

Attributes attached to each vertex:

mass, speed vector and centroid of Laguerre cell

mass = numpy.asarray(E.find_or_create_attribute(’vertices.mass’))

V = numpy.asarray(

E.find_or_create_attribute(attribute_name=’vertices.speed’,dimension=2)

)

Acentroid = gom.create(classname=’OGF::NL::Vector’,size=E.nb_vertices,dimension=2)

centroid = numpy.asarray(Acentroid)

Initialize masses with nice sine wave, and heavy fluid on top.

for v in range(E.nb_vertices):

19

x = point[v,0]

y = point[v,1]

f =0.1*math.sin(x*10)

if (y-0.5) > f:

mass[v] = 3

else:

mass[v] = 1

Start with points at centroids, and initial speeds at zero.

def Euler_init():

OT = points.I.Transport

OT.compute_optimal_Laguerre_cells_centroids(

Omega=Omega,centroids=Acentroid,mode=’EULER_2D’

)

for v in range(E.nb_vertices):

point[v,0] = centroid[v,0]

point[v,1] = centroid[v,1]

V[v,0] = 0.0

V[v,1] = 0.0

points.update()

References

[AHA92] Franz Aurenhammer, Friedrich Hoffmann, and Boris Aronov.
Minkowski-type theorems and least-squares partitioning. In Sym-
posium on Computational Geometry, pages 350–357, 1992.

[BFH+03] Y. Brenier, U. Frisch, M. Henon, G. Loeper, S. Matarrese, R. Mo-
hayaee, and A. Sobolevskii. Reconstruction of the early universe as a
convex optimization problem. arXiv, September 2003. arXiv:astro-
ph/0304214v3.

[Bre91] Yann Brenier. Polar factorization and monotone rearrangement
of vector-valued functions. Communications on Pure and Applied
Mathematics, 44:375–417, 1991.

[GM96] Wilfrid Gangbo and Robert J. McCann. The geometry of optimal
transportation. Acta Math., 177(2):113–161, 1996.

[GM17] Thomas O. Gallouët and Quentin Mérigot. A lagrangian scheme à
la Brenier for the incompressible euler equations. Foundations of
Computational Mathematics, May 2017.

[HAC74] C.W. Hirt, A.A. Amsden, and J.L. Cook. An arbitrary lagrangian-
eulerian computing method for all flow speeds. J. Computational
Physics, 14, 1974.

20

[Har55] F.H. Harlow. A machine calculation method for hydrodynamic prob-
lems. Technical report, Los Alamos Scientific Laboratory report
LAMS-1956, 1955.

[Haz01] ed. Hazewinkel, Michiel, editor. Runge-Kutta method. Springer Sci-
ence+Business Media B.V. / Kluwer Academic Publishers, 2001.

[HE73] S.W. Hawking and G.-F.-R. Ellis. The Large-Scale Structure of
Space-Time. Cambridge Monographs on Mathematical Physics,
1973.

[KMT16] Jun Kitagawa, Quentin Mérigot, and Boris Thibert. A newton algo-
rithm for semi-discrete optimal transport. CoRR, abs/1603.05579,
2016.

[Lév15] Bruno Lévy. A numerical algorithm for L2 semi-discrete optimal
transport in 3d. ESAIM M2AN (Mathematical Modeling and Anal-
ysis), 2015.

[LS18] Bruno Lévy and Erica L. Schwindt. Notions of optimal transport
theory and how to implement them on a computer. Computers &
Graphics, 72:135–148, 2018.

[Mai10] Emmanuel Maitre. Modèles et calculs d’interfaces. Notes de Cours
M2R Mathématiques appliques, UJF, Grenoble, 2010.

[Mon88] J.J. Monaghan. An introduction to smooth particles hydrodynamics.
Computer Physics Communications, 48:88–96, 1988.

[Pee93] Philip James Edwin Peebles. Principles of Physical Cosmology.
Princeton Paperbacks, 1993.

[Sta99] Jos Stam. Stable fluids. In Proceedings of the 26th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
1999, Los Angeles, CA, USA, August 8-13, 1999, pages 121–128,
1999.

[Sta15] Jos Stam. The Art of Fluid Simulation. CRC Press, 2015.

[Ver67] Loup Verlet. Computer ”experiments” on classical fluids. i. thermo-
dynamical properties of lennard-jones molecules. Phys. Rev., 159:98–
103, Jul 1967.

[WS99] Simon D. M. White and Volker Springel. Fitting the universe on a
supercomputer. Computing in Science and Engineering, 1(2):36–45,
1999.

21

	1 Mathematical modeling of fluids
	1.1 Back to the roots: Newton laws
	1.2 From Newton laws to incompressible Euler fluids
	1.3 Similarities between fluids and astrophysics

	2 Fluids and computers
	2.1 Particles or fields ?
	2.2 A parameterization of incompressible fluids
	2.3 The Gallouet-Merigot scheme

	3 Results
	A The complete sources of a fluid simulator

