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In light-pulsed atom interferometry, the phase accumulated by atoms depends on the effective
wave vector of the absorbed photons. In this work, we proposed a theory model to analyses the
effective wave vector of photons in structured light. As for monochromatic optical field, a transverse
confinement could lead to diffraction. We put forward that in light-atom interaction, the atom
wave function could also provide a transverse confinement thus affect the effective wave vector of
the absorbed photons. We calculated the relative shift of the photon effective wave vector when an
atom with a Gaussian wave function absorbs one photon at the waist in a Gaussian beam. This shift
could lead to a systematic effect related to atom spatial distribution in high precision experiment
based on light-pulsed atom interferometry.

Introduction.—In quantum optics, structured light field
could be decomposed into a superposition of plane waves.
When an atom absorbs one photon in a plane wave, the trans-
ferred momentum is supposed to be along with the direction
of the plane wave propagation.

In light-pulsed atom interferometry, photons transfer mo-
mentum to atoms to split and interfere matter waves [1].
Those interferometers are applied as high precision inertial
sensors to measure gravitational acceleration [2, 3], gravity
gradient [4, 5], fine structure constant [6, 7] and Newton’s
gravitational constant [8, 9]. The phase shift accumulated

by atoms is dependent on the effective wave vector ~keff of

the absorbed photons [10]. The deviation of ~keff in a struc-
tured optical field from the wave vector in plane wave light
could lead to the systematic effect of “wavefront curvature”.

At present in atom interferometry, ~keff is supposed to be

the local wave vector, give by the phase gradient ~∇φ [11]
at the atom position and the transferred momentum is sup-

posed to be the canonical photon momentum ~pcan = h̄~∇φ
[12–14]. Here φ is the phase of the optical field.

However there are two problems with this approach. First,
the canonical photon momentum doesn’t comply with the
uncertainty principle, as by making the phase gradient one
may define the position and momentum of photon at the
same time. Second, in structured monochromatic field, such
as Gaussian beam, at some region the local phase gradient
is larger than the wavenumber k. If one atom absorbs one
photon at this region, the transferred canonical momentum
could be larger than h̄k [12, 14]. While if we decompose
light into plane waves, in each mode the photon momentum
should not be larger than h̄k along any direction.

To solve those two problems, in this work based on Fourier

optics [15], we provide a theory model to estimate ~keff of
photons in structured light field. As transverse confinement
could lead to diffraction, we proposed that when an atom
absorbs one photon, the atom position wave function could

also provide a transverse confinement to light thus affect ~keff
of the absorbed photons. The relative shift of effective wave
vector could lead to a systematic effect related to atom spa-
cial distribution in light-pulsed atom interferometry.
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Our model could provide an alternative interpretation for
the extra photon recoil observed in a distorted optical field
[12, 13].

Effective wave vector.—We start with a monochromatic
scalar optical field with complex amplitude Ψ(x, y, z, t) =
u(x, y, z)e−iωt. In vacuum u(x, y, z) applies for the
Helmholtz equation:

(∇2 + k2)u(x, y, z) = 0 (1)

k = ω/c. Here ω is angular frequency and c is the speed
of light. Structured field could be decomposed into a su-
perposition of plane waves with angular spectrum A(kx, ky)
[16]

u(x, y, z) =
1

4π2

∫∫
A(kx, ky)ei(kxx+kyy)

× ei
√
k2−k2x−k2yzdkxdky.

(2)

A(kx, ky) is the Fourier transform of u(x, y, 0), whose modu-
lus square describes the weighting of each plane wave mode

A(kx, ky) =

∫∫
u(x, y, 0)e−i(kxx+kyy)dxdy. (3)

To calculate ~keff we normalize the integration of
|A(kx, ky)|2 and define two relative complex amplitude func-
tions:

φ(kx, ky) =
A(kx, ky)√∫∫
|A(kx, ky)|2dkxdky

, (4)

and

ψ(x, y, z) =
1

4π2

∫∫
φ(kx, ky)ei(kxx+kyy)

× ei
√
k2−k2x−k2yzdkxdky.

(5)

ψ(x, y, z0) is the photon transverse position probability am-
plitude on plane z = z0, and φ(kx, ky) is the photon trans-
verse wave vector probability amplitude. We have the photon
transverse state on plane z0 as:

|photon〉 =

∫∫
ψ(x, y, z0)|x, y〉dxdy

=

∫∫
φ(kx, ky)|kx, ky〉dkxdky.

(6)
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FIG. 1: (a) An incident plane wave (red dashed line), u(x, y, z) = eikz diffracted by a single slit. The transmission rate of the slit
is t(x, y) = rect(x/a) and a is the slit width. The modulus square of the angular spectrum of the diffracted light is |A′(kx, ky)|2 =
a2sinc(akx/2π)2. (b) Geometric illustration of the interaction between a plane wave light field and a plane atomic matter wave

(black dashed line). The atom wave function is ψatom = eipz/h̄. There is no transverse confinement in this case. (c) Interaction
between a plane wave light and a 3D Gaussian atomic cloud (black dots) with radius σa. The atom transverse probability distribution

is |ψatom(x, y)|2 = (1/2πσ2
a)e−i(x

2+y2)/4σ2
a . The atom position distribution could provide a transverse confinement to the absorbed

photons and lead to a projection of their transverse position state. For the absorbed photons, the transverse wave vector probability

distribution becomes |φ′(kx, ky)|2 = (1/πσ2
a)e−σ

2
a(k2x+k2y).

|kx, ky〉 represents for plane wave basis

e−i(kxx+kyy+
√
k2−k2x−k2yz).

Associating with the momentum operator p̂ = −ih̄~∇, the
effective photon momentum in the field is

~peff = 〈photon|p̂|photon〉 = h̄~keff , (7)

and the effective wave vector is

~keff =

∫∫
(kx~ekx + ky~eky

+
√
k2 − k2x − k2y~ekz )|φ(kx, ky)|2dkxdky.

(8)

Transverse confinement of light.—Suppose light propa-
gates towards +z direction. As in monochromatic field
k2x + k2y + k2z = k2, u(x, y, z) has only two degrees of free-
dom. A transverse confinement on plane z0 will affect the

field and ~keff after the plane. Consider an aperture with
transmission rate t(x, y) on the plane

u′(x, y, z0) = u(x, y, z0)t(x, y). (9)

According to Eq. (2) after z0 the angular spectrum becomes

A′(kx, ky) = F{u′(x, y, z0)}e−i
√
k2−k2x−k2yz0 . (10)

For z > z0

u′(x, y, z) = F−1{A′(kx, ky)ei
√
k2−k2x−k2yz}. (11)

F and F−1 are Fourier and inverse Fourier transforms.
Fig. 1(a) shows the transverse confinement from a sin-

gle slit, t(x, y) = rect(x/a), to a plane wave light field
u(x, y, z) = eikz. a is the slit width. According to Eq.
(9) and Eq. (10), we get the modulus square of the an-
gular spectrum for the diffracted field as |A′(kx, ky)|2 =
a2sinc(akx/2π)2.

In the point of view of photons, the aperture projects the
photon transverse position state and affects its momentum
distribution as a result.

We design a projection operator Ô that projects the pho-
ton state to |x, y〉 with probability t(x, y)

Ô =

∫∫
t(x, y)|x, y〉〈x, y|dxdy. (12)

After projection, the photon state becomes

|photon′〉 = Ô|photon〉. (13)

On plane z0

ψ′(x, y, z0) =
ψ(x, y, z0)t(x, y)√∫∫
|ψ(x, y, z0)t(x, y)|2dxdy

, (14)

and according to Eq. (5)

φ′(kx, ky) = F{ψ′(x, y, z0)}e−i
√
k2−k2x−k2yz0 . (15)

Thus after the aperture, ~peff and ~keff were changed accord-
ing to Eq. (7) and Eq. (8).

Local photon momentum.—The effective photon momen-
tum and effective wave vector in Eq. (7) and Eq. (8) are
for the whole field and nonlocal. Due to the uncertainty
principle, the determination of photon position, realized by
interaction or measurement, could at the same time affect
~keff . For example, if we provide a transverse confinement of
photon position with t(x, y) = δ(x− x0, y − y0) on plane z0,
according to Eq. (14), in this case

ψ′(x, y, z0) = δ(x− x0, y − y0). (16)

After taking Eq. (16) to Eq. (15) we have

φ′(kx, ky) = e−i(kxx0+kyy0)e−i
√
k2−k2x−k2yz0 . (17)

Taking Eq. (17) into Eq. (8), we get the effective wave vector
at the position (x0, y0, z0) as

~keff =
2

3
k~ekz , (18)
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and the effective photon momentum as

~peff =
2

3
h̄k~ekz . (19)

The result is different with the canonical photon momentum
defined in [12] and local wave vector in [11] that described
by the optical phase gradient at the given position.

Transverse confinement in light atom interaction.—
We analysis the interaction between a structured field
u(x, y, z)e−iωt and a single two-level atom. In the dipole
approximation, the interaction Hamiltonian is [17]

Hde = − ~D · ~E(x0, y0, z0). (20)

(x0, y0, z0) is the center position of the atom, ~E is electric

field and ~D is the electric dipole. The atom is supposed to
be located at the given position and interact with the local
field through dipole interaction.

In real case, the atom position distribution is described by
its wave function ψatom(x, y, z). When the atom absorbs one
photon on plane z0, the atom transverse probability distribu-
tion could also provide a confinement for the absorbed pho-
ton. Comparing to the aperture, which projects the trans-
verse photon state to |x, y〉 with probability t(x, y), we define
the projection operator for the atom on plane z0 as

Ô =

∫∫
|ψatom(x, y, z0)|2|x, y〉〈x, y|dxdy. (21)

When an atom absorbs one photon on this plane, the photon
transverse state becomes

|photon′〉 = Ô|photon〉. (22)

According to Eq. (6),

ψ′(x, y, z0) =
ψ(x, y, z0)|ψatom(x, y, z0)|2√∫∫
|ψ(x, y, z0)|ψatom(x, y, z0)|2|2dxdy

,

(23)
and

φ′(kx, ky) = F{ψ′(x, y, z0)}e−i
√
k2−k2x−k2yz0 . (24)

Taking Eq. (24) to Eq. (8), we can get ~keff for the absorbed
photon.

Fig 1.(c) shows the interaction between a plane wave light
and a Gaussian atom cloud with radius σa. In this case,
ψ(x, y, z) = eikz and the atom transverse probability distri-
bution is independent on the longitudinal coordinate z

|ψatom(x, y)|2 =
1

2πσ2
a

e
− x

2+y2

2πσ2a . (25)

According to Eq. (23) and Eq. (24) we have |φ′(kx, ky)|2 =

(1/πσ2
a)e−σ

2
a(k

2
x+k

2
y). Then ~keff is dependent on σa.

In experiment we usually use Gaussian beams. Suppose
the beam waist lies on z = 0 plane, here the photon trans-
verse position probability amplitude is

ψ(x, y, 0) =
1√

2πσB
e
− (x2+y2)

4σ2
B , (26)

σB is the beam waist. When an atom in the cloud of Eq.

(25) absorbs one photon on z = 0 plane, ~keff depends on

0.0 0.5 1.0 1.5 2.0 2.5
Atom cloud radius a (mm)

10 8

10 7

10 6

10 5

10 4

FIG. 2: σB = 3.6 mm, beam wavelength λ = 780 nm, δ = (k −
keff )/k as a function of atom cloud radius.

both the atom cloud radius σa and beam waist σB . In this
case kx,eff = ky,eff = 0, and ~keff = kz,eff~ekz . We define δ
as the relative shift of keff to k,

δ =
k − keff

k
. (27)

In Fig. 2, we have plotted the value of δ as a function of
σa. Setting the wavelength 780 nm and the beam waist 3.6
mm, δ changes from the order of 10−9 to 10−5 as the atom
cloud radius decreases from 2.0 mm to 10 um. Depending
on the atom temperature, those are normal sizes for optical
molasses and Bose-Einstein condensation (BEC). A smaller
atom cloud radius could lead to a larger relative shift of k.

1 2 3 4 5 6 7

Beam waist B (mm)

4 × 10 9

5 × 10 9

6 × 10 9

FIG. 3: σa = 1.7 mm, beam wavelength λ = 780 nm, δ = (k −
keff )/k as a function of beam waist.

In Fig. 3, we keep the atom radius as 1.7 mm and change
the beam waist from 1 mm to 7 mm, there is a decrement of
δ at the order of 10−9. Similarly, a smaller beam waist could
lead to a larger relative shift of k.

At one extreme case, if both the atom matter wave and the
light are in plane wave mode, as shown in Fig. 1.(b), there
will be no confinement and δ = 0. On the other extreme,
by setting σa the value of Bohr radius, we get δ ≈ 0.33. We
define the atom mean recoil velocity as

~vr =
h̄~keff
m

, (28)
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m is the atom mass. As in our model keff is always smaller
than k, there will be no recoil velocity larger than h̄k/m.

Systematic effect in atom interferometer.—In light-pulsed
atom interferometer, the total phase consists of two parts.
One part depends on laser frequency and the other part de-
pends on atoms’ motion [13, 18]. The phase accumulated

by atoms relies on ~keff of the absorbed photons [10]. The
relative shift of wave vector could lead to a shift of the final
result in high precision measurements. For the measurement
of fine structure constant α, the result directly relies on the
measurement of the mean recoil velocity ~vr.

In the α measurement [7, 19], the principle is to transfer an
amount of recoil velocities to an atom cloud using a 1D ac-
celerating lattice, then use a Ramsey-Bordé interferometer
to measure the mean recoil velocity. The relative correc-
tion of α, ∆α/α scales as the relative shift of wave number
∆k/k = −δ [7], also the case is for the relative correction of
recoil velocity vr. Here ∆k = keff − k.

From Eq. (23), Eq. (24) and Eq. (8) we can see that in

our model ~keff and δ depend on the atom wave function and
the optical transverse complex amplitude.

In two recent works [12, 13], the experimenters found a rel-
ative shift of recoil velocity vr as they changing the relative
number of atoms. In their experiment they change the num-
ber of atoms by changing the intensity of the lattice laser
thus to change the efficiency of Bloch oscillation [20]. In
fact at the same time the spatial distribution of the survival
atoms is also changed.

In [13] with lower lattice intensity, fewer atoms survived
at high intensity region, the center of the Gaussian beam,
a negative relative shift to the level 10−8 of vr has been
observed. That could correspond to a decrease of atom cloud
radius by several 0.1 mms from around 0.5 mm in Fig. (2)

in our model. By blowing away atoms in the high intensity
region of the lattice laser, a positive shift of the relative value
of vr has been observed at the magnitude of 10−8, and it
was regarded as an extra photon recoil [12]. It could also be
explained with our model to some extent. Because by doing
that the center part of the atom cloud was lost, located at the
center of the Gaussian beam, and the residual atoms has a
more incompact spatial distribution. Then according to Eq.
(24), ψ′(kx, ky) could be more compact. That could lead to
a smaller δ in principle. In our opinion the measured recoil
velocity is not an extra recoil, but a relative larger recoil
velocity compared to a previous value [7].

Summary—Based on plane wave angular spectrum, we
have analyzed the nonlocal effective wave vector of photon
in structured light field. We proposed that in light-atom in-
teraction, the atom transverse wave function could provide
a 2D confinement to photons. As a result, the effective wave
vector of the absorbed photons and the mean recoil velocity
could be affected.

We have defined a projection operator to describe the con-
finement of photon transverse position state, and calculated
the relative shift of the effective wave vector when an atom
with a Gaussian wave function absorbs one photon at the
waist of a Gaussian beam. This shift could lead to a sys-
tematic effect related to atom cloud size and Gaussian beam
waist in high precision measurement based on light-pulsed
atom interferometer. Our model complies with uncertainty
principle and sheds new light on momentum transfer in light-
atom interaction.
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F. Biraben, and S. Guellati-Khélifa. Atom interferometry
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