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Abstract: Construction of representations of braid group generators from N -state

vertex models provide an elegant route to study knot and link invariants. Using such

a braid group representation, an algebraic formula for the link invariants was put

forth when the same spin (N − 1)/2 are placed on all the component knots. In this

paper, we generalise the procedure to deduce representations of braiding generators

from bi-partite vertex models. Such a representation allows the study of multi-

colored link invariants where the component knots carry different spins. We propose

a multi-colored link invariant formula in terms of braiding generators derived from

R matrices of bi-partite vertex models.
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1 Introduction

Both mathematicians and physicists have attempted efficient methods of obtaining

a polynomial form of knot and link invariants. As knots and links can be obtained

from a closure of braid word, the knot and link invariants can be derived from the

representation theory of braid groups. Interestingly, there are diverse approaches

attempting different braid group representations.

The pioneering work of Witten[1] on SU(2) Chern-Simons theory is one such

approach where the Wilson loop expectation value 〈WR(K)〉 reproduces the Jones’

polynomial[2] for representation R = placed on the knot K. The main ingredi-

ent in this approach is the relation between three-dimensional SU(2) Chern-Simons

theory and two-dimensional SU(2)k Wess-Zumino Witten (WZW) model where k

is the Chern-Simons coupling constant which determines the level of WZW model.

The monodromy matrices along with fusion matrices(duality matrices) of the WZW

model provide representations for the braid group. In fact, this procedure can be gen-

eralised for other gauge groups G but the knowledge of duality matrices for arbitrary

representations R are not known.

The primary fields of the WZW model are in one to one correspondence with

the finite dimensional unitary representations of quantum groups Uq(G) where the

deformation parameter q is chosen to be root of unity. Further, the operator product

expansion of these primary fields resembles tensor products of representations in

the context of quantum group. The level k is related to q. For instance, q =

exp(2πi/k + 2) for SU(2) group [3]. The universal R matrices constructed using
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the generators J±, Jz of Uq(SU(2)) indeed obey defining relations of braid groups.

Hence, these universal R matrices provide representations for braid groups.

Exactly solvable statistical mechanical models[4] appears completely different

approach towards construction of braid group representation. N -state vertex models

are one such statistical mechanical model with Boltzmann weights (Rj,j)n1,n2
m1m2

(u)

associated with every vertex (see Fig.1(a)), on a square lattice, depending on the

states m1,m2, n1, n2 ∈ {−j,−j+1, . . . j} placed on four edges intersecting the vertex

where the spin j = (N − 1)/2. The Yang-Baxter equations are obeyed by spectral

parameter u dependent Boltzmann weights (Rj,j)n1,n2
m1m2

(u) of these vertex models. In

fact, the Yang-Baxter equation in the limit of u → ∞ can be reduced to defining

relations of braid group by applying permutation operator P̂ on the Boltzmann

weights. That is., the braiding generators are proportional to P̂ [(Rj,j)n1,n2
m1m2

(u→∞)].

The algebraic expression for the knot polynomial using these braiding matrices

have been studied in Refs.[5–10] for spin j = 1/2, j = 1, j = 3/2 which are also

known in the literature as 6-vertex, 19-vertex and 44- vertex models respectively.

The numbers 6, 19, 44 indicate the count of non-zero Boltzmann weights for the

corresponding N-state vertex model. The polynomial form can be computed for

any braid word A using the algebraic expression αj, j, . . . j︸ ︷︷ ︸
n

(A) (2.4) as discussed in

Refs.[5–10]. Here spin j states are placed on all the strands of the braid and n denotes

the number of component knots of the link obtained from closure of braid A.

It is also important to relate these braiding matrices with the monodromy ma-

trices in WZW models. Using the quantum deformed Clebsch-Gordan coefficients

q−CG, these braiding matrices P̂ [(Rj,j)n1,n2
m1m2

(u→∞)] can be diagonalised[11] whose

diagonal elements λJ(j, j) are the eigenvalues of monodromy matrices in the WZW

model. Extending this diagonalization procedure to the known Boltzmann weights

of the 6-vertex, 19-vertex and 44-vertex models, the spectral parameter dependent

diagonal matrix elements λJ(j, j;u) can be obtained. From these examples of ver-

tex models Boltzmann weights and their diagonalization, it was straightforward to

conjecture spectral parameter dependent diagonal matrix elements for spin j > 3/2.

Interestingly, the procedure can be reversed resulting in deducing Boltzmann weights

for new vertex models where the edges carry states of spin j > 3/2[11].

Thus, these vertex models provide us new representations of braiding matri-

ces which is useful to construct new knot invariants using the algebraic expression

αj, j, . . . j︸ ︷︷ ︸
n

(A)[5–10]. We would like to emphasize that obtaining knot and link poly-

nomials using such an algebraic expression is definitely an efficient approach as they

involve only multiplication of matrices corresponding to any arbitrary braid word A.

Just like the conventional vertex model approach enables efficient computation

of knot and link polynomials αj, j . . . j︸ ︷︷ ︸
n

(A), we wanted to attempt a modified algebraic
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Figure 1: (a)Vertex model (b)Bi-partite Vertex model

(Rj,j)n1,n2
m1,m2

(u) (Rj1,j2)n1,n2
m1,m2

(u)

expression for link invariant αj1,j2...jn(A) in terms of matrix representations of braid-

ing matrices where j1, j2, . . . are the spin states placed on different component knots

of a link. We will refer to these link invariants as multi-colored link invariants.

The braiding generators must be derivable from (Rj1,j2)n1n2
m1m2

(u)-matrices of new

vertex models whose vertices are of type as shown in fig. 1(b). We call such ver-

tex models as bipartite vertex models where two of the four edges carry states

m1, n1 ∈ j1, j1 − 1, . . .− j1 and the other two edges carry m2, n2 ∈ j2, j2 − 1, . . .− j2.

The procedure for obtaining vertex model Boltzmann weights (Rj,j)n1,n2
m1,m2

(u) from

spectral parameter dependent diagonal braiding matrix elements λJ(j, j;u) can be

generalized to deriving bi-partite vertex models Boltzmann weights (Rj1,j2)n1,n2
m1,m2

(u)

where two adjacent edges carry different spins j1, j2 as illustrated in Fig.1(b). It is

pertinent to mention that there will be groupoid relations[12] for braid generators

P̂ (Rj1,j2)n1,n2
m1m2

(u→∞)) obtained from Boltzmann weights in the u→∞ limit with

the application of a suitable permutation operator P̂ . Our main focus in this paper

is to construct representations of braids from (Rj1,j2)n1,n2
m1m2

(u) which obeys groupoid

properties[12] due to different spin j states on the strands. This methodology of

deducing matrix form for braiding generators from bi-partite vertex model Boltzmann

weights lead to efficiently compute multi-colored link polynomials αj1,j2...jn(A) using

our modified formula for links from the closure of arbitrary braid word A.

Plan of the paper is as follows. In sec.2, we will review the construction of braid-

ing matrices from R-matrices of conventional vertex models for same spin case and

the derivation of knot and link invariants. In sec.3, we will generalise the procedure to

determine new representation of braiding generators from R(u)-matrices associated

with bi-partite vertex models and propose an algebraic formula for multi-colored link

invariants. We will summarise and suggest open problems in the concluding section.
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2 Vertex models & R-matrix

In this section, we will briefly review vertex model approach of constructing repre-

sentations of braid group generators leading to evaluating knot or link invariants.

2.1 Vertex model

N -vertex models are two dimensional statistical mechanical model with states of same

spin j placed on the four edges intersecting every vertex as shown in fig. 1(a). These

statistical mechanical models are exactly solvable provided the spectral parameter

u dependent Boltzmann weights (Rj,j)n1,n2
m1,m2

(u) satisfies the following Yang-Baxter

equation: ∑
m′

1,m
′
2,m

′
3

(Rj,j)m
′
1,m

′
2

m1,m2
(u)(Rj,j)

m′′
1 ,m

′
3

m′
1,m3

(u+ v)(Rj,j)
m′′

2 ,m
′′
3

m′
2,m

′
3
(v)

=
∑

m′
1,m

′
2,m

′
3

(Rj,j)m
′
2,m

′
3

m2,m3
(v)(Rj,j)

m′
1,m

′′
3

m1,m′
3
(u+ v)(Rj,j)

m′′
1 ,m

′′
2

m′
1,m

′
2
(u) . (2.1)

The parametrized form of these R-matrices dependent on the spectral parameter u

and another parameter q = e2µ are given in [4, 5] for 6, 19, 44 vertex models. In

the limit u → ∞, the above equation involving R-matrix elements multiplied by a

permutation operator P̂ (upto an overall normalisation) will resemble defining rela-

tion of a braid group Br where the generators bi’s (i = 1, 2, . . . r) have the following

representation:

bi[j, j] = I1 × I2 × . . . I×︸ ︷︷ ︸
i−1

(R̂j,j)n1,n2
m1,m2

× Ii+2 . . .

bi[j, j]
−1 = I1 × I2 × . . . I×︸ ︷︷ ︸

i−1

((̂R̂j,j)n1,n2
m1,m2

)−1 × Ii+2 . . . . (2.2)

Here

(R̂j,j)n1,n2
m1,m2

=
1

N
P̂ (Rj,j)n1,n2

m1,m2
(u→∞), (2.3)

where the normalisation factor N = (Rj,j)j,jj,j(u → ∞) ensures that all the matrix

elements are finite in the u→∞ limit. Thus we have new braid group representations

from vertex model R-matrices leading us to new link invariants.

The following algebraic formula[5] defines invariant of any n-component link,

obtained from the closure of braid word A ∈ Br, with same spin j on their component

knots:

αj, j, . . . j︸ ︷︷ ︸
n

(A) = (τj τ̄j)
−n/2

(
τ̄j
τj

)(e/2)

Tr[HA], (2.4)

where e is the exponent sum of the bi’s appearing in the braid word A,

H = hj ⊗ hj . . . hj︸ ︷︷ ︸
r

where
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hj =
1

1 + q + . . .+ q2j
Diag[1, q, . . . , q2j] , (2.5)

and τj and τ̄j are

τj =
1

1 + q + . . .+ q2j
; τ̄j =

q2j

1 + q + . . .+ q2j
. (2.6)

The above invariant αj,j,...j(A), in variable q, remains unchanged if we perform

Markov moves on braids. Further, we work with the following unknot invariant:

αj(b1) =
∑j

i=−j q
i. These invariants are known in the knot theory literature as

unnormalised link invariants.

In the following subsection, we briefly review the link invariant computation

using the braiding matrices derived from the simplest 6-vertex model R-matrices.

That is., the edges in fig. 1(a) carry j = 1/2.

2.2 6-vertex models

The simplest vertex model is the 6-vertex model where states of j = 1
2

are placed on

the four edges intersecting every vertex. So the Boltzmann weights (R
1
2
, 1
2 )n1,n2
m1,m2

(u)

associated with every vertex are nonzero if and only if m1 + m2 = n1 + n2 where

m1,m2, n1, n2 ∈ {−1/2, 1/2}. This condition allows six non-zero Boltzmann weights

which is kept track by calling the model as 6-vertex model. In matrix form, the

elements are :

(R
1
2
, 1
2 )n1,n2
m1,m2

(u) =


m1,m2\n1, n2 → ↑↑ ↑↓ ↓↑ ↓↓

↑↑ sinh(µ− u) 0 0 0

↑↓ 0 − sinhu eu sinhµ 0

↓↑ 0 e−u sinhµ − sinhu 0

↓↓ 0 0 0 sinh(µ− u)

 .

In order to construct the braid generators bi, we take the limit u → ∞ on the

above matrix elements and replace e2µ by variable q. Further we choose a suitable

normalisation such that the matrix elements are finite in this limit u→∞ as shown

below:

(R
1
2
, 1
2 )n1,n2
m1,m2

(u→∞)

(R
1
2
, 1
2 )↑,↑↑,↑(u→∞)

=


m1,m2\n1, n2 → ↑↑ ↑↓ ↓↑ ↓↓

↑↑ 1 0 0 0

↑↓ 0 q1/2 1− q 0

↓↑ 0 0 q1/2 0

↓↓ 0 0 0 1

 .

Using the following permutation matrix

P̂ 1/2,1/2 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,
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Knot/Link Braidword e Polynomial

Trefoil 31 b31 ∈ B2 3 −q1/2(1 + q) (−1− q2 + q3)

HopfLink b21 ∈ B2 2 q1/2 (1 + q2)

Figure eight 41 b1b
−1
2 b1b

−1
2 ∈ B3 0 q−5/2(1 + q5)

L7a3 b1b
−1
2 b31b

−1
2 b1 ∈ B3 3 q−1 + 2q + q2 + q3 − q5 + q6 − q7

Whitehead b1.b
−1
2 .b1.b

−2
2 ∈ B3 -1 q−4(−1 + q + q2 + q3 + q4 + q6)

Boromean b−11 b2b
−1
1 b2b

−1
1 b2 ∈ B3 0 q−7/2(−1 + 2q + q2 + 2q3 + 2q4 + q5 + 2q6 − q7)

.

Table 1

the elements of (R̂
1
2
, 1
2 )n1,n2
m1,m2

(2.3) turn out to be

(R̂
1
2
, 1
2 )n1,n2
m1,m2

=


1 0 0 0

0 0 q1/2 0

0 q1/2 1− q 0

0 0 0 1

 .

Hence, we can determine the matrix form of the braid generators bi[1/2, 1/2] (3.14)

using the R̂ matrix. We can work out the invariants (2.4) for some knots and links.

In Table.1, we have listed the knots and links with their braid word and invariants

in variable q. Recall that there is only one braid generator b1 for all braid words

A ∈ B2 whose matrix form will be 4× 4 matrix. That is.,

b1 = (R
1
2
, 1
2 )n1,n2
m1,m2

We have worked out the invariants in eqn.(2.4) for unknot, trefoil and Hopf links

using braid words A = b1, b
3
1 and b21 respectively (see Table.1)

For knots and links obtained from closure of braid words A ∈ B3, there are two

braiding generators b1, b2 which are 8× 8 matrices:

b1 = (R
1
2
, 1
2 )n1,n2
m1,m2

× I,

b2 = I× (R
1
2
, 1
2 )n1,n2
m1,m2

.

For example, figure eight 41 knot whose braid word is A = b−11 b2b
−1
1 b2. We must

remember that such a braid word action on a 3-strand braid implies the following

order of matrix operation on an initial state |j,m1; j,m2; jm3〉:

A|3− strand〉 ≡ b2
[
b−11 {b2

(
b−11 |j,m1; j,m2; j,m3〉

)
}
]
. (2.7)

The method can be generalised for any braid word A ∈ Bn leading us to evaluate

polynomial invariants (2.4). Further these polynomials match with the Jones’ poly-

nomials upto unknot normalisation. As the approach involves only multiplication of
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matrices, this method is highly efficient in obtaining polynomial invariants for any

knot or link from vertex models whose R-matrix elements are known.

In the literature, colored Jones’ polynomials correspond to placing higher spins

j ≥ 1 on the component knots. Interestingly, these polynomials for j = 1, 3/2 agree

with the link invariant αj,j,...j(A) in eqn.(2.4) where the matrix representation of the

braid generators bi’s are derived from Boltzmann weights of the 19−vertex and 44-

vertex models.

The braiding generators bi’s derived from (Rj,j)n1,n2
m1,m2

-matrix of vertex models

as well as from eigenvalues (λ) of the monodromy matrices in SU(2)k Wess-Zumino

conformal field theory suggested a compact elegant relationship[11]:

(R̂j,j)n
′
1,n

′
2

m1,m2
=

1

N
P̂ j,j(Rj,j)n1,n2

m1,m2
(u→∞)

=
1

N
P̂ j,j

∑
J∈j⊗j

{ j j J

m2 m1 M

}
λJ(j, j)

{ j j J

n1 n2 M

}
, (2.8)

where M = m1 +m2 = n1 +n2 and the terms in parenthesis
{ j j J

m2 m1 M

}
denote the

quantum version of Clebsch-Gordan coefficients (q-CG)[3]. Note that the summation

J ∈ j ⊗ j refers to the range {0, 1, . . . 2j}.
The natural challenge is to deduce spectral parameter dependent eigenvalues

λJ(j, j;u) for any spin j such that the above relation gives the known Rj,j(u)-matrix

elements for 6-vertex, 19-vertex and 44-vertex models. Such a λJ(j, j;u) has been

conjectured in Ref.[11]:

λJ(j, j;u) =
J∏

k1=1

sinh(k1µ− u)

2j∏
k2=J+1

sinh(k2µ+ u) , (2.9)

resulting in the spectral parameter dependent (Rj,j)n1,n2
m1,m2

(u)-matrices associated with

new vertex models:

(Rj,j)n1,n2
m1m2

(u) =
∑
J,M

{ j j J

m2 m1 M

}
λJ(j, j;u)

{ j j J

n1 n2 M

}
. (2.10)

Here the SU(2) spin J ∈ j ⊗ j ≡ {0, 1, 2, . . . 2j}(allowed irreducible representations

in the tensor product). We have checked, for some values of spin j, that these R-

matrices obtained from the conjectured form eqn.(2.9) do obey Yang-Baxter equation

and hence are valid Boltzmann weights for new vertex models.

So far, we have discussed knot and link invariant computations from vertex mod-

els with edges carrying states of same spin j. We have also seen that there is a neat

relation between R-matrices with spectral parameter dependent λJ(j, j;u). Interest-

ingly, the conjectured eigenvalue in eqn.(2.9) can be generalised to λJ(j1, j2;u) where
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J ∈ j1 ⊗ j2 ≡ {|j1 − j2, |j1 − j2| + 1, . . . j1 + j2} which will lead to vertex models

with adjacent edges carrying states of different spins j1 6= j2. We refer to these

vertex models as bi-partite vertex models(see fig. 1(b) ). In the following section,

we briefly review bi-partite vertex model and propose a new algebraic expression for

multi-colored link invariants from the associated Boltzmann weights.

3 Bi-partite vertex model

Let us discuss new vertex model having different spins at the adjacent edges of a

lattice which we refer to as ‘bi-partite vertex model.’

Following the eigenvalue (eqn.(2.9)) for same spins, the generalisation λJ(j1, j2;u)

[11] is

λJ(j1, j2;u) =
J∏

k1=|j1−j2|+1

sinh(k1µ− u)

j1+j2∏
k2=J+1

sinh(k2µ+ u) , (3.1)

where J ∈ j1 × j2 and the corresponding spectral parameter dependent R-matrices

(similar to eqn.(2.10)) becomes:

(Rj1,j2)n1,n2
m1m2

(u) =
∑
J,M

{ j2 j1 J

m2 m1 M

}
λJ(j1, j2;u)

{j1 j2 J

n1 n2 M

}
. (3.2)

The above spectral parameter dependent R-matrix must satisfy the following Yang-

Baxter equation[4, 13]∑
m′

1,m
′
2,m

′
3

(Rj1,j2)m
′
1,m

′
2

m1,m2
(u)(Rj1,j3)

m′′
1 ,m

′
3

m′
1,m3

(u+ v)(Rj2,j3)
m′′

2 ,m
′′
3

m′
2,m

′
3
(v)

=
∑

m′
1,m

′
2,m

′
3

(Rj2,j3)m
′
2,m

′
3

m2,m3
(v)(Rj1,j3)

m′
1,m

′′
3

m1,m′
3
(u+ v)(Rj1,j2)

m′′
1 ,m

′′
2

m′
1,m

′
2
(u) . (3.3)

We have checked for some values of j1, j2, j3 values that the conjectured form of

R-matrices (3.2) indeed obey the above Yang-Baxter equation.

Taking the limit u, v, u + v → ∞ on (Rj1,j2)
m′

1,m
′
2

m1,m2(u) and a suitable normalisa-

tion N = (Rj1,j2)j1,j2j1,j2
(u → ∞), we obtain spectral parameter independent matrix

elements. Multiplying an appropriate permutation matrix P̂ j1,j2 , the matrix

(R̂j1,j2)n1n2
m1,m2

=
1

N
(P̂ j1,j2)m

′
1,m

′
2

m1,m2
(Rj1,j2)n1,n2

m′
1,m

′
2
(u→∞), (3.4)

define braiding generators b(j1, j2) whose action on two-strands with representations

j1, j2 will be

b(j1, j2)|j1, j2〉 ∝ |j2, j1〉 . (3.5)

Arbitrary braid word using these generators must keep track of the spin j1, j2, . . . jn
on the n-strands.The collection of such braid words actually forms a groupoid[12].
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Further, closure will require the initial state |j1, j2 . . . jn〉 to be same as the final

state after the operation of braid word. Such a closure of braid word will result in

multi-component links carrying different representations. Using the matrix form of

the braiding generators b(j1, j2), b(j1, j3) . . ., derived from bi-partite vertex models,

we can obtain multi-colored link invariants for component knots carrying different

representations. We illustrate this procedure for simple links by explicitly writing

down the Boltzmann weights Rj1=1,j2=1/2(u) in the following section.

3.1 R-matrix for different spin

For the calculation of multi-component link invariant it is essential to determine

(Rj1,j2)n1,n2
m1,m2

matix for different j1 and j2. As an example, let us take j1 = 1 and

j2 = 1/2 where the spectral parameter dependent eigenvalues (3.1) are

λ1/2(u) = sinh(
3µ

2
+ u) and λ3/2(u) = sinh(

3µ

2
− u) .

Using these eigenvalues, we obtain the following R1,1/2(u)-matrix (3.2):

(R1, 1
2 )n1,n2
m1,m2

(u) =



m1,m2\n1, n2 → 1, 1
2

1, −1
2

0, 1
2

0, −1
2
−1, 1

2
−1, −1

2

1, 1
2

x1(u) 0 0 0 0 0

1, −1
2

0 x2(u) x′3(u) 0 0 0

0, 1
2

0 x3(u) x′2(u) 0 0 0

0, −1
2

0 0 0 x′2(u) x′3(u) 0

−1, 1
2

0 0 0 x3(u) x2(u) 0

−1, −1
2

0 0 0 0 0 x1(u)


,

(3.6)

where

x1(u) = sinh(
3µ

2
− u), x2(u) = − sinh(

µ

2
+ u), x3(u) = (sinh 2µ sinhµ)

1
2 e−u,

x′3(u) = (sinh 2µ sinhµ)
1
2 eu, x′2(u) = sinh(

µ

2
− u) .

Substituting the limit as u→∞ and q = e2µ for j1 = 1, j2 = 1
2
, we get

lim
u→∞

(R1, 1
2 )n1,n2
m1,m2

(u)

(R1, 1
2 )

1, 1
2

1, 1
2

(u)
=



m1,m2\n1, n2 → 1, 1
2

1, −1
2

0, 1
2

0, −1
2

−1, 1
2

−1, −1
2

1, 1
2

1 0 0 0 0 0

1, −1
2

0 q (1− q)
√

1 + q 0 0 0

0, 1
2

0 0
√
q 0 0 0

0, −1
2

0 0 0
√
q (1− q)

√
1 + q 0

−1, 1
2

0 0 0 0 q 0

−1, −1
2

0 0 0 0 0 1


. (3.7)
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In order to obtain braiding generators b(j1 = 1, j2 = 1/2), we need a suitable per-

mutation matrix P̂ j1=1,j2=1/2 so that the sequence of states mentioned along the row

and column in the above Rj1,j2-matrix are maintained. This leads to the following

proposition.

Proposition 1:The permutation matrix P̂ j1j2 action on the column state

P̂ j1,j2



|j1, j2〉
|j1, j2 − 1〉

...

|j1,−j2〉
|j1 − 1, j2〉
|j1 − 1, j2 − 1〉

...

| − j1,−j2〉


=



|j1, j2〉
|j1 − 1, j2〉

...

| − j1, j2〉
|j1, j2 − 1〉
|j1 − 1, j2 − 1〉

...

| − j1,−j2〉


. (3.8)

For j1 = 1.j2 = 1/2, the P̂ 1,1/2 will be

P̂ 1, 1
2 =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


. (3.9)

We will now use the following permutation matrix in the braiding generator con-

struction:

(R̂j1,j2)n1,n2
m1,m2

= (P̂ j1,j2)m
′
1,m

′
2

m1,m2
lim
u→∞

(Rj1,j2)n1,n2

m′
1,m

′
2
(u)

(Rj1,j2)j1,j2j1,j2
(u)

. (3.10)

The explicit form of R̂1, 1
2 matrix is

(R̂1, 1
2
)
n1,n2
m1,m2 =



1 0 0 0 0 0

0 0
√
q 0 0 0

0 0 0 0 q 0

0 q (1− q)
√

1 + q 0 0 0

0 0 0
√
q (1− q)

√
1 + q 0

0 0 0 0 0 1


. (3.11)

Similar construction of R̂
1
2
,1 matrix for j1 = 1/2, j2 = 1 turns out to be transpose of

matrix R̂1, 1
2 . Note that the identity matrix can be written as:

R̂j1,j2 .
[
R̂j1,j2

]−1
= R̂j1,j2 .

[
[R̂j2,j1 ]ᵀ

]−1
= I . (3.12)
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Hence we can write the matrix representation of the braiding generators bi[j1, j2] of

the groupoid obeying

bi[j1, j2] (bi[j2, j1])
−1 = I ,

as follows:

bi[j1, j2] = I1 × I2 × . . . I×︸ ︷︷ ︸
i−1

R̂j1,j2 × Ii+2 . . . (3.13)

bi[j1, j2]
−1 = I1 × I2 × . . . I×︸ ︷︷ ︸

i−1

(R̂j2,j1)−1 × Ii+2 . . . . (3.14)

Hence for any braid word A, whose closure will give multi-component links, we

will use the above matrix representation for braiding generators and their inverses.

Similar to the knot invariants (eqn.(2.4)), we propose the following formulae for

multi-colored link invariants where the component knots carry different spins.

Proposition 2: The multi-colored link invariants α̃j1,j2,...jn(A)(upto an overall

factor of power of q1/2) for any n-component link L with different spins, obtained

from closure of any r-strand braid word A is given by

αj1,j2,...jn [A(L)] = q
1
2
Cα̃j1,j2,...jn(A) = q

1
2
C

n∏
i=1

(τji τ̄ji)
−`i/2Tr{H.A} , (3.15)

where the first factor gives an overall q-dependent normalisation with integer C de-

pendent on the spins, writhe of the component knots and the linking number between

component knots of a link. The `i’s are the number of times spin ji occurs in the

r-strand braid A. That is,
∑n

i=1 `i = r. Further, the matrix form of H will depend

on the order of such repeated spins occurring in the r-strand braid. For instance, a

3-strand braid with spin j1 on first strand, j2 6= j1 on second strand and again j1 on

first strand will mean

H = hj1 ⊗ hj2 ⊗ hj1 .

We must again follow sequence of matrix operations for braid word A similar to the

sequence (2.7) explained for same spins. Recall the definitions of hji ’s (eqn.(2.5))

τji ’s and τ̄ji ’s(eqn.(2.6)) as discussed in section 2. We will explicitly work out multi-

colored link invariants for some links in the following subsection.

3.1.1 Multi-colored link invariants

For two component links, with spin j1 = 1 on first component and spin 1/2 on second

component, we need to write the n-strand braid word keeping track of the spins.

1. For the simplest Hopf link H obtained from closure of two-strand braid, the

matrix operation will be

A(H) = b1[1/2, 1].b1[1, 1/2] = R̂1/2,1R̂1,1/2

– 11 –



and H = h1 ⊗ h1/2 giving

α̃1,1/2[A(H)] =
1 + q + q2 + q3 + q4 + q5

q3/2
(3.16)

which agrees with multi-colored Jones polynomial computed from SU(2) Chern-

Simons theory upto overall factor.

2. The other familiar two component link is the Whitehead Link W obtained from

closure of three-strand braid. Using the following matrix operation for A(W ) =

b−12 (1, 1/2).b−12 (1/2, 1).b1(1, 1/2).b−12 (1/2, 1/2).b1(1/2, 1) and H = h1/2 ⊗ h1 ⊗
h1/2 giving

α̃1/2,1[A(W )] = −−1 + q2 + q3 + 2q4 + q5 + q6 + q9

q5
. (3.17)

3. See Table.2 where we have presented the braid word and the multi-colored

invariant for link L7a3 whose results are matching with SU(N = 2) results in

Ref. [14] upto a overall factor

We have also worked out α̃j1,j2,j3 for Borrowmean rings when j1 = j2 6= j3 and

j1 6= j2 6= j3 for j1 = 1/2, j2 = 1, j3 = 3/2. As this computation requires R̂j1,j2 for

j1 = 1, j2 = 3/2 and j1 = 1/2, j2 = 3/2, we have presented the matrix elements in

Appendix A. We have tabulated the explicit multi-colored link invariants for some

j1, j2, j3 in Table. 2.

Link Braidword j1, j2 Polynomial

1, 1
2

q−
3
2 (1 + q + q2 + q3 + q4 + q5)

Hopf Link b1.b1 1, 3
2

q−
5
2

(
(1 + q + q2)(1 + q + q2 + q3)

×(1− q + q3 − q5 + q6)
)

3
2
, 1
2

q−2(1 + q)(1 + q2)(1 + q4)
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Link Braidword j1, j2, j3 Polynomial

1, 1
2
, 1
2

q−4 (1 + q2 + q3 + q4 + 2q5 + q7 − q11)

L7a3 Link b1.b
−1
2 .b31.b

−1
2 .b1

1
2
, 1, 1 q−

9
2

(
1 + 2q3 + 2q4 + q5 + 2q6 + q7

−q8 − q10 − q12 + q14 − 2q15 + q17
)

1
2
, 1, 1

2
q−5 (−1 + q2 + q3 + 2q4 + q5 + q6 + q9)

Whitehead link b1.b
−1
2 .b1.b

−2
2 1, 3

2
, 1 q−

25
2 (1 + q)(1− q − q2 + q7 + q8 + q10

+q11 + q13 + q14 + q17 − q20 + q21)

1
2
, 1, 1

2
2− 1

q5
+ 1

q4
+ 1

q3
+ 1

q2
+ 3

q

+3q + q2 + q3 + q4 − q5

Borromean Ring b−11 .b2.b
−1
1 .b2.b

−1
1 .b2

1
2
, 1, 3

2
−q−8(1 + q + q2)(1− q − 2q4 − q6
−2q7 − q8 − 2q10 − q13 + q14)

Table 2

4 Conclusion

In this paper, we have shown efficient computation of multi-colored link invariants

from the braid group representations derived from new bi-partite vertex models.

Here the adjacent edges carry different spins as shown in fig. 1(b). These invariants

are proportional to multi-colored Jones’ polynomials in the literature.

Instead of SU(2) group involving spin j1, j2 states on the edges intersecting the

vertex, we could place states of SU(N) representations. The procedure presented in

the paper must be generalisable for SU(N) group resulting in new vertex models and

their link invariants. We hope to report in future on such types of vertex models

and the link invariant computations. These invariants are known in the literature as

multi-colored HOMFLY-PT polynomials.
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Appendix A

We present the R̂1,3/2, R̂1/2,3/2 which will be useful for multi-colored link invari-

ants for other representations. From eqn.(3.2), the R-matrix when u→∞ is

lim
u→∞

(R1, 1
2 )n1,n2
m1,m2

(u)

(R1, 1
2 )

1, 1
2

1, 1
2

(u)
=



m1,m2\n1, n2 → 1, 1
2

1, −1
2

0, 1
2

0, −1
2

−1, 1
2

−1, −1
2

1, 1
2

1 0 0 0 0 0

1, −1
2

0 q (1− q)
√

1 + q 0 0 0

0, 1
2

0 0
√
q 0 0 0

0, −1
2

0 0 0
√
q (1− q)

√
1 + q 0

−1, 1
2

0 0 0 0 q 0

−1, −1
2

0 0 0 0 0 1


.

lim
u→∞

(R
3
2
, 1
2 )n1,n2
m1,m2

(u)

(R
3
2
, 1
2 )

3
2
, 1
2

3
2
, 1
2

(u)
=



m1,m2\n1, n2 → 3
2
, 1
2

3
2
, −1

2
1
2
, 1
2

1
2
, −1

2
−1
2
, 1
2
−1
2
, −1

2
−3
2
, 1
2
−3
2
, −1

2

3
2
, 1
2

1 0 0 0 0 0 0 0
3
2
, −1

2
0 y1 y2 0 0 0 0 0

1
2
, 1
2

0 0 y3 0 0 0 0 0
1
2
, −1

2
0 0 0 y5 y4 0 0 0

−1
2
, 1
2

0 0 0 0 y5 0 0 0
−1
2
, −1

2
0 0 0 0 0 y3 y2 0

−3
2
, 1
2

0 0 0 0 0 0 y1 0
−3
2
, −1

2
0 0 0 0 0 0 0 1


.

where y1 = q3/2, y2 = (1− q)
√

1 + q + q2, y3 =
√
q ,y4 = 1− q2, y5 = q.
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Similarly limu→∞
(R

3
2 ,1)

n1,n2
m1,m2

(u)

(R
3
2 ,1)

3
2 ,1

3
2 ,1

(u)
=



m1,m2\n1, n2 → 3
2
, 1 3

2
, 0 3

2
,−1 1

2
, 1 1

2
, 0 1

2
,−1 −1

2
, 1 −1

2
, 0 −1

2
,−1 −3

2
, 1 −3

2
, 0 −3

2
,−1

3
2
, 1 1 0 0 0 0 0 0 0 0 0 0 0

3
2
, 0 0 z1 0 z2 0 0 0 0 0 0 0 0

3
2
,−1 0 0 z6 0 z3 0 z4 0 0 0 0 0
1
2
, 1 0 0 0 z8 0 0 0 0 0 0 0 0

1
2
, 0 0 0 0 0 z1 0 z5 0 0 0 0 0

1
2
,−1 0 0 0 0 0 z7 0 z5 0 z4 0 0
−1
2
, 1 0 0 0 0 0 0 z7 0 0 0 0 0

−1
2
, 0 0 0 0 0 0 0 0 z1 0 z3 0 0

−1
2
,−1 0 0 0 0 0 0 0 0 z8 0 z2 0
−3
2
, 1 0 0 0 0 0 0 0 0 0 z6 0 0

−3
2
, 0 0 0 0 0 0 0 0 0 0 0 z1 0

−3
2
,−1 0 0 0 0 0 0 0 0 0 0 0 1



.

(.1)

where

z1 = q3/2, z2 = (1− q)
√

(1 + q) (1 + q + q2), z3 = (1− q)q
√

(1 + q) (1 + q + q2),

z4 = (−1 + q)2(1 + q)
√

1 + q + q2, z5 = (1− q)√q(1 + q)3/2, z6 = q3, z7 = q2, z8 = q .

Using the proposition 1 (3.8), the permutation matrices are

P̂ 1, 1
2 =



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


, P̂

3
2
, 1
2 =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


, P̂

3
2
,1 =



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1



.
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The R̂j1,j2matrix using eqn.(3.10) is given by;

(R̂1, 1
2 )n1,n2
m1,m2

=



1 0 0 0 0 0

0 0
√
q 0 0 0

0 0 0 0 q 0

0 q (1− q)
√

1 + q 0 0 0

0 0 0
√
q (1− q)

√
1 + q 0

0 0 0 0 0 1


,

(R̂
3
2
, 1
2 )n1,n2
m1,m2

=



1 0 0 0 0 0 0 0

0 0
√
q 0 0 0 0 0

0 0 0 0 q 0 0 0

0 0 0 0 0 0 q3/2 0

0 q3/2 (1− q)
√

1 + q + q2 0 0 0 0 0

0 0 0 q 1− q2 0 0 0

0 0 0 0 0
√
q (1− q)

√
1 + q + q2 0

0 0 0 0 0 0 0 1


.

(R̂
3
2
, 1
2 )n1,n2
m1,m2

=



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 z8 0 0 0 0 0 0 0 0

0 0 0 0 0 0 z7 0 0 0 0 0

0 0 0 0 0 0 0 0 0 z6 0 0

0 z1 0 z2 0 0 0 0 0 0 0 0

0 0 0 0 z1 0 z5 0 0 0 0 0

0 0 0 0 0 0 0 z1 0 z3 0 0

0 0 0 0 0 0 0 0 0 0 z1 0

0 0 z6 0 z3 0 z4 0 0 0 0 0

0 0 0 0 0 z7 0 z5 0 z4 0 0

0 0 0 0 0 0 0 0 z8 0 z2 0

0 0 0 0 0 0 0 0 0 0 0 1



.

Using these R̂-matrices, the multi-colored link invariants can be efficiently computed.
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