
Symmetry-Breaking Topological Insulators in the Z2 Bose-Hubbard Model

Daniel González-Cuadra,1, ∗ Alexandre Dauphin,1, † Przemysław R.
Grzybowski,1, 2 Paweł Wójcik,1, 3 Maciej Lewenstein,1, 4 and Alejandro Bermudez5
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In this work, we study a one-dimensional model of interacting bosons coupled to a dynamical Z2 field, the
Z2 Bose-Hubbard model, and analyze the interplay between spontaneous symmetry breaking and topological
symmetry protection. In a previous work, we showed how this model exhibits a spontaneous breaking of the
translational symmetry through a bosonic Peierls transition. Here we find how, at half filling, the resulting phase
also displays topological features that coexist with the presence of long-range order and yields a topological
bond order wave. Using both analytical and numerical methods, we describe the properties of this phase, show-
ing that it cannot be adiabatically connected to a bosonic topological phase with vanishing Hubbard interactions,
and thus constitutes an instance of an interaction-induced symmetry-breaking topological insulator.
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I. INTRODUCTION

Emergence [1] and symmetry [2] are primary driving forces
for the vast diversity of phenomena observed in condensed

∗Electronic address: daniel.gonzalez@icfo.eu
†Electronic address: alexandre.dauphin@icfo.eu

matter. On the one hand, emergence can account for the
appearance of different collective behaviour at macroscopic
scales, starting from a collection of many individual parti-
cles that interact quantum-mechanically (i.e. quantum many-
body effects) according to the same microscopic laws. On
the other hand, symmetry can explain how, sometimes, this
complexity can be tamed by understanding the underlying mi-
croscopic symmetries, and how these are spontaneously bro-
ken to yield various phases of matter. According to Landau’s
paradigm, even when the system Hamiltonian H(g) commutes
with a unitary operator UG that describes a particular sym-
metry group G , UG H(g) = H(g)UG , its groundstate may not
be invariant UG |gs(g)〉 6= |gs(g)〉 as the microscopic param-
eters g are modified across a critical point gc. This leads to
the so-called symmetry-breaking phase transitions, which can
be characterized by local order parameters. During the last
decades, topology has proved to be yet another fundamental
driving force in condensed matter, leading to partially un-
charted territories with a new form of matter that cannot be
described by Landau symmetry breaking, nor by local order
parameters, requiring instead the use of certain topological in-
variants: topological matter [3]. A current challenge of mod-
ern condensed-matter physics is to understand the interplay of
these three key ingredients: symmetry, topology, and many-
body effects, trying to classify all the possible orderings and
the new physical phenomena that they entail.

The theoretical prediction of topological insulators [4–6],
followed by their experimental realization [7, 8], have caused
a revolution in the subject of topological matter. In particu-
lar, these seminal contributions showed that the combination
of symmetry and topology brings in an unexpected twist in
the standard band theory of solids, establishing topological
matter as one of the most active research areas of condensed
matter [9, 10]. Let us note that the symmetries in topological
insulators are not related to the previous unitaries UG com-
muting with the Hamiltonian, but correspond instead to dis-
crete time-reversal T and particle-hole C symmetries, and
the combination thereof S = T ◦C , which allow to clas-
sify Hamiltonians according to ten generic symmetry classes.
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In this context, topological insulators might be considered as
the “symmetric counterparts” of the integer quantum Hall ef-
fect [11]: they also display topological quantization [12] and
edge/surface states [13] that are robust to perturbations within
a particular symmetry class [14–16]. Let us emphasize that
symmetry plays a completely different role in this scenario.
Whereas standard phases can be understood from the pattern
of broken symmetries, topological insulators require topolog-
ical invariants that remain quantized in the presence of pertur-
bations that respect the particular symmetry.

Topological insulators can be understood by upgrading the
aforementioned electronic band theory to a topological band
theory, and can thus be classified as a single-particle effect.
An interesting and active line of research is to explore quan-
tum many-body effects in topological insulators as interac-
tions among the electrons are switched on, and inter-particle
correlations build up, leading to correlated topological insula-
tors [17, 18]. Another possible and, arguably, more interesting
question is to study if interactions allow for new topological
phenomena not present in the single-particle limit.

Interactions may stabilize a topological phase that cannot
be adiabatically connected to the free-fermion limit by grad-
ually decreasing the interactions. This leads to the so-called
interaction-induced topological insulators. For instance, ini-
tial mean-field studies [19] and subsequent works [20–23]
showed that the Haldane topological insulator [24] can be dy-
namically generated from a semi-metal by including interac-
tions. For instance, for spinless fermions in a honeycomb lat-
tice with Hubbard-type interactions, the anti-unitary T sym-
metry can be broken for sufficiently-strong electron-electron
interactions, leading to a topological Chern insulator within its
particular symmetry class [19]. Although this idea was ruled
out by subsequent numerical studies that found a density-
wave-type Landau order in detriment of the Chern insula-
tor [25, 26], its essence turned out to be correct, as interaction-
induced Chern insulators can be found starting from different
non-interacting models [27–30]. Moreover, unitary symme-
tries can also be spontaneously broken, such that the clear-cut
division between the role of symmetry breaking in standard
Landau-ordered phases and symmetry protection in topologi-
cal insulators dissapears. This can lead to symmetry-breaking
topological insulators [31], where the topological insulating
behavior within a particular symmetry class sets in by the
spontaneous breaking of a different unitary symmetry. In this
situation, the ground-state can simultaneously display topo-
logical features, characterized by a topological invariant, and
Landau ordering, characterized by a local order parameter.
For instance, spinless fermions in a triangular lattice with
Hubbard-type interactions can lead to a phase displaying both
density-wave-type order and a fractional Chern insulator [31].

At this point, we remark that this type of correlated topolog-
ical matter is not restricted to fermionic topological insulators,
but also occurs for spin and bosonic models, which are al-
together referred to as symmetry-protected topological (SPT)
phases [32]. In fact, the spin-1 Heisenberg chain [33, 34] is
arguably the first instance of a correlated SPT phase without a
single-particle non-interacting counterpart [35, 36]. Addition-
ally, bosonic SPT phases are important in the abstract classi-

fication [37, 38] of SPT phases of matter beyond 1D [39, 40].
For this reason, although the focus still lies on correlated
fermionic SPT phases, the bosonic case is gradually rais-
ing more attention from the community as microscopic lat-
tice models are put forth [41, 42]. From this perspective,
the promising prospects of quantum simulations [43] with
ultra-cold neutral atoms in optical lattices [44] gives a fur-
ther motivation, as lattice models of interacting bosons such
as the Bose-Hubbard model (BHM) [45, 46], can now be
experimentally realized and probed to unprecedented levels
of precision. Moreover, topological band-structures have al-
ready been loaded with weakly-interacting ultra-cold bosons,
and the topological features have been probed by various
means [47–51]. As recently shown in [52, 53], these topo-
logical band-structures can lead to interaction-induced SPT
phases as the boson-boson interactions are increased towards
the strongly-correlated regime. It is interesting to note that
other interaction-induced bosonic topological insulators have
been theoretically predicted to exist already at the weakly-
interacting regime [54, 55].

The goal of this paper is to present a through description
of a lattice model that can host a bosonic groundstate corre-
sponding to an interaction-induced symmetry-breaking topo-
logical insulator. In particular, we will show that a one-
dimensional bosonic SPT phase arises at finite boson-boson
interactions, and cannot be adiabatically connected to the non-
interacting system. This SPT phase occurs via the sponta-
neous breaking of lattice translational invariance, which also
produces a long-range order in the bond density of bosons.
Therefore, the bosonic groundstate combines a topological-
insulating behavior with Landau-type order, leading to a par-
ticular instance of symmetry-breaking topological insulators:
a topological bond-order wave (TBOW). To our knowledge,
our results constitute the first instance of a bosonic interaction-
induced symmetry-breaking topological insulator.

The article is organized as follows. In Sec. II, we intro-
duce the Z2 Bose-Hubbard model and explain its connec-
tion with general lattice field theories, such as gauge theories,
as well as with fermion-phonon lattice models in condensed
matter. Similarly to the latter, our model exhibits a spon-
taneous breaking of the translational symmetry, giving rise
to long-range Landau-type order. In Sec. III, we study this
phenomenon in detail, focusing first on the hardcore boson
limit. Using a Born-Oppenheimer approximation for quasi-
adiabatic Z2 fields, we predict the opening of a single-particle
gap at half filling, associated to a dimerization in the struc-
ture of the Z2 fields. We show that one of the symmetry-
broken sectors of this ordered phase leads to a topological
hardcore-boson insulator: a TBOW, which is characterized by
a quantized topological invariant, the Zak phase. We check
that this TBOW phase survives in the softcore regime as the
interaction strengths are reduced, and show how the size of
the gap decreases, suggesting that a quantum phase transi-
tion may occur at finite interactions that would prove that the
TBOW phase is a bosonic instance of an interaction-induced
symmetry-breaking topological insulator. In Sec. IV, we test
these predictions numerically using the density matrix renor-
malization group algorithm. We give several signatures to
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characterize the TBOW as a SPT phase, and discuss the ex-
istence of fractional many-body edge states. We also analyze
the phase transition between the topological insulator and a
non-topological superfluid phase for small interactions, pre-
senting a phase diagram of the mode, and showing the impor-
tance of strong correlations to stabilize the topological phase.
Finally, in Section V we summarize our results.

II. THE Z2 BOSE-HUBBARD MODEL

In this section, we describe the bosonic lattice model un-
der study within the more general context of lattice field the-
ories [56]. In lattice field theories, one is typically concerned
with the discretization of a local quantum field theory with a
matter sector that consists of particles whose interactions are
carried by the excitations of some gauge field. This discretiza-
tion proceeds by placing the matter fields, typically described
by relativistic fermions, on the sites of a lattice that serves as
a scaffolding of space (or space-time), while the carriers, typ-
ically described by gauge bosons, reside on the lattice links.
Let us emphasize, however, that other interesting situations
have also been explored in the literature.

For instance, one can place Z2 fields in the links, and
study the so-called Ising lattice gauge theories [57, 58],
which may interact with a bosonic matter sector residing
on the lattice sites [59, 60]. More recently, gauge theo-
ries of (2+1) relativistic fermions coupled to Z2 fields have
provided a very rich playground to test the phenomenon of
confinement-deconfinement transitions in a condensed-matter
scenario [61–63]. Let us note that one can be more general,
and study fermionic lattice field theories under Z2 fields where
the gauge symmetry is explicitly broken. This can also lead to
exotic strongly-correlated behavior [64, 65] and, in the context
of the present manuscript, to dynamical generation of topo-
logical masses that can stabilize an interaction-induced SPT
phase [66].

In this article, we study a (1+1) Hamiltonian lattice field
theory of bosons coupled to Z2 fields, and introduce terms
that explicitly break the gauge symmetry. As we will discuss
in detail below, these ingredients provide a rich playground
to explore the aforementioned TBOW. In this reduced dimen-
sionality [67], the Z2 gauge theory of bosons [59] becomes

HZ2 =−α ∑
i

(
b†

i σ z
i,i+1bi+1 +H.c.

)
+β ∑

i
σ x

i,i+1, (1)

where we have introduced the discretized bosonic operators
bi,b

†
i on the sites of a 1D crystal, and the Z2 Ising field is

described by Pauli matrices σ z
i,i+1,σ

x
i,i+1 that reside on the

links/bonds of the chain. In this Hamiltonian, α > 0 repre-
sents the strength of a gauge-invariant tunneling of bosons,
and β > 0 stands for a transverse field that induces a spin-
flip dynamics on the Z2 fields (see Fig. 1(a)). This Hamil-
tonian (1) constitutes the simplest bosonic Ising lattice gauge
theory, as it displays a local Z2 symmetry: the bosons trans-
form as bi→ eiϕibi, b†

i → e−iϕib†
i , while the Ising fields fulfill

σ x
i,i+1→ σ x

i,i+1, σ z
i,i+1→ eiϕiσ z

i,i+1e−iϕi+1 , where ϕi ∈ {0,π} is
a local Z2-valued phase.

i i+1i�1
i, i+1i�1, i

U
�(t �a)�(t +a)

b D

U ⌧ t

U � t
s⇤

bsb

hb†
i bi+1i > 0

qSF

hb†
i bi+`i ⇠ `�2K

BOW

a

b

hb†
i bi,+1i = 0

hb†
i bi+1i ⇠ (1� (�1)i)s0

c

Figure 1: Scheme of the bosonic Peierls transition: (a) Repre-
sentation of the lattice model of bosons coupled to an Ising field ac-
cording to Eqs. (1)-(3). Bosons (red dots) reside on the lattice sites,
where they interact with strength U , and can tunnel through the links
with a Z2-valued tunneling strength −t ±α , which depends on the
configuration of the Ising field on the links (yellow arrows). These
fields can be represented by a two-level system (inset) with energy
difference ∆, and spin-flipping strength β . (b,c) Interaction-induced
Peierls transition between a bosonic quasi-superfluid (qSF) in a ho-
mogeneous Ising backround, and a bond-ordered wave (BOW) in a
Néel-orfdered type background, such that translational invariance is
spontaneously broken. The BOW phase can be understood as an al-
ternation of bonding σb and anti-bonding σ∗b units with a different
distribution of the bosons within the links/bonds. The homogeneous
qSF phase is characterized by an algebraic decay of correlations.

As advanced below, interesting scenarios for the study of
correlated topological matter can arise by considering addi-
tional terms that explicitly break the gauge symmetry. In
our context, we consider a paradigmatic model of strongly-
correlated bosons, the so-called Bose-Hubbard model [68, 69]

HBH =−t ∑
i

(
b†

i bi+1 +H.c.
)
+

U
2 ∑

i
ni(ni−1), (2)

where ni = b†
i bi. Therefore, in addition to the Z2-dressed tun-

neling of Eq. (1), the bosons also have a bare tunneling of
strength t, and contact interactions of strength U . Finally,
we introduce the simplest-possible gauge-breaking term that
modifies the spin dynamics

H∆ =
∆
2 ∑

i
σ z

i,i+1, (3)

where ∆ stands for the energy difference between the local
configurations |↑i,i+1〉, |↓i,i+1〉 of the Z2 field.

Altogether, the Hamiltonian containing the terms (1)-(3)

HZ2BH = HZ2 +HBH+H∆ (4)

forms the model of strongly-correlated lattice bosons under
Z2 fields (Z2BHM) that is the subject of our work.
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Recently, we have studied this model in the context of
bosonic Peierls transitions [70], as the Z2 field can be con-
sidered as a simplified version of a dynamical lattice with
the vibrational phonons substituted by discrete Ising vari-
ables. From this perspective, we have shown that bosonic ana-
logues of some of the rich phenomenology of density waves
in strongly-correlated materials [71], customarily described in
terms of fermion-phonon models, can also be found in the
Z2BHM. These transitions are characterized by the sponta-
neous breaking of the translational invariance of the Z2 field,
and the development of a bond-ordered wave for the bosons
that displays a periodic modulation of the density of bosons
along the links of the chain (see Fig. 1(b)-(c)). This phenom-
ena is reminiscent of the standard Peierls transition in 1D met-
als [72], where the fermionic statistics and the presence of a
Fermi sea are sufficient to drive this effect (i.e. a gap opening
at the Fermi surface provides the required energy to distort
the lattice). Depending on the fermionic occupation, different
distortion patterns can emerge. The associated order is char-
acterized by a wavelength λ0, which is inverse of the density
ρ , λ0 = 1/ρ . Although these notions are absent in our bosonic
model, we have found that similar effects can still appear for
sufficiently strong Hubbard interactions (see Fig. 1(b)-(c)).

The focus of our previous work [70] was the elucidation
of this bosonic Peierls mechanism for different bosonic den-
sities, as well as the study of topological solitons (i.e. kinks)
interpolating between different bond-density modulations at
commensurate fillings. The latter are a direct consequence
of the degeneracies associated to the symmetry-breaking pro-
cess. In the present work, we focus on a different topologi-
cal aspect: we give compelling evidence that, at half-filling,
the bond-ordered wave (BOW) caused by the bosonic Peierls
mechanism corresponds to an interaction-induced SPT phase.
This topological phase occurs simultaneously with the Landau
symmetry-breaking order described by the bond-density mod-
ulation. We will show that, in addition to the BOW phases of
Figs. 1(b)-(c)), the pattern of broken symmetry also allows for
topological bond-ordered waves (TBOW) phases that display
all the characteristics of an interaction-induced SPT phase: (1)
the appearance of non-vanishing bulk topological invariants
for the many-body interacting model, and (2) the presence of
non-trivial many-body edge states. We will emphasize how
interactions and symmetry breaking are fundamental neces-
sary ingredients for these topological effects to take place.

III. TOPOLOGICAL BOND-ORDER WAVE: AN
ADIABATIC VARIATIONAL ANSATZ

In this section, we provide a thorough description of our
findings supporting the existence of bosonic TBOW in our
lattice model (1)-(3). In order to guide the presentation of our
results, we start by discussing symmetry-protected topologi-
cal phases in dimerized lattice models. We then show how
similar phases arise spontaneously in our model introduced
in Eq. (4) at half filling, as a consequence of the breaking of
the translational symmetry (bosonic Peierls transition), giving
rise to a topological bond-order wave (TBOW). We analize

first the case of hardcore bosons, where clear analogies with
the standard Peierls transition in fermion-phonon systems can
be drawn, and discuss the interplay between symmetry break-
ing and symmetry protection. We then show how the TBOW
phase extends to finite Hubbard interactions. Based on differ-
ent analytical approximations, we provide arguments for the
existence of a phase transition to a non-topological phase for
small enough interactions, supporting our claim that strong
correlations are necessary to induced the symmetry-broken
topological phase.

A. Symmetry-protected topological phases

In 1D, there are two types of fermionic SPT phases with
chiral/sublattice S symmetry, the so-called BDI and AIII
topological insulators [14, 15, 73]. The BDI class also ful-
fils time-reversal T , particle-hole C , and has a simple rep-
resentative: a fermionic tight-binding model with dimerized
tunnelings

HBDI(t,δ ) = ∑
i

(
−t(1+(−1)iδ )c†

i ci+1 +H.c.
)
, (5)

where c†
i ,ci are fermionic creation-annihilation operators, and

the tunneling strengths are distributed according to a dimer-
ized pattern {t(1− δ ), t(1+ δ ), · · · , t(1+ δ ), t(1− δ )}. This
model is known as the Hückel model [74] in the context of
organic chemistry and conjugated polymers [75]. The model
is periodic with a two-atom unit cell (A,B) and, in momentum
space, the Hamiltonian reads

HBDI(t,δ ) = ∑
k

C†
k n(k) ·σσσ Ck, (6)

where we have introduced Ck = (cA(k),cB(k))t and n(k) =
−t(1−δ +(1+δ )cosk,(1+δ )sink,0) and σσσ = (σx,σy,σz)
is the Pauli vector. At half filling, the groundstate corresponds
to a BDI topological insulator in the interval δ ∈ (0,2), and
to a trivial band insulator elsewhere. These two phases can be
distinguished by a global topological invariant, the winding
number ν [73, 76], defined as

ν =
1

2π

∫ π

−π
dk (n(k)×∂kn(k))z . (7)

The winding number is a Z topological invariant and, in the
present case, has value 1 in the interval δ ∈ (0,2) (i.e. in the
BDI topological phase) the and 0 elsewhere. Let us empha-
size that, in general, this quantity is not limited to 0 or 1: it
is in fact possible to have greater winding numbers by con-
sidering Hamiltonians with long-range hopping that preserve
the chiral symmetry [77]. For hard-wall boundary conditions,
the BDI topological insulator exhibits edge states protected by
the topology of the system, this is, they are robust against per-
turbations that respect the chiral symmetry and do not close
the gap. There exists a relation between the number of edge
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states and the winding number, called the bulk-edge corre-
spondence [73, 76]: at each edge of the system, the number of
edge states is equal to the winding number. The Hückel model
has been generalized to the spinful Fermi-Hubbard Hückel
model, where the bulk-edge correspondence has been stud-
ied by means of the entanglement spectrum and the presence
of topological edge states [78–80].

Interestingly, chiral systems have another topological in-
variant, the Zak phase [81]

ϕZak =
∫

BZ
dkA−(k), (8)

written in terms of the Berry connection A−(k) =
〈εk,−|i∂k|εk,−〉 over the occupied band |εk,−〉. The Zak phase
is a Z2 topological invariant and can take values 0 or π , mod-
ulo 2π . The Zak phase can be directly related to the polar-
ization [76, 82], a physical observable, which basically mea-
sures the center of mass per unit cell. The two invariants, the
Zak phase and the winding number, can be related through
ϕZak = π [ν(mod2)] [73, 76]. Therefore, in the case of the
Hückel model (5), the Zak phase and the winding number co-
incide. In the context of topological insulators [76], Eq. (5)
is typically referred to as the Su-Schrieffer-Hegger (SSH)
Hamiltonian [83]. However, we note that the original SSH
model is a fermion-boson model describing a metal coupled
to the vibrational modes of a dynamical lattice (i.e. acoustic
phonons). In contrast to the dimerized Hückel model (5), the
SSH Hamiltonian yields a truly quantum many-body problem,
and an archetype of strongly-correlated behavior [71] that can
display a variety of exotic effects [84] not present in Eq. (5).

Although the Hückel model was initially introduced for
fermions, this model can also be studied for a Bose-Hubbard
model with dimerized tunnelings

HdBH =∑
i

(
−t(1+(−1)iδ )b†

i bi+1 +H.c.
)
+

U
2 ∑

i
ni(ni−1).

(9)
In the hardcore-boson limit U → ∞, one can apply the Jordan

Wigner transformation [85], bi → eiπ ∑ j<i c†
j c j ci , b†

i bi → c†
i ci

and recover Eq. (5). The regime of finite interactions is also
very interesting from the topological viewpoint, as discussed
in Ref. [53]. When passing from the hardcore boson limit to fi-
nite interactions, the system looses the chiral symmetry. Nev-
ertheless, the Zak phase remains quantized due to the presence
of the inversion symmetry. This model therefore passes from
a BDI topological insulator with a Z invariant to an inversion-
symmetric SPT phase with a Z2 topological invariant. It is
also important to notice that in this case, the bulk-edge corre-
spondence can be violated.

In the context of the present paper, we are interested in
the bosonic analogue of symmetry-breaking bond-order-wave
formation in polymers [84], and its interplay with bosonic
SPT phases. This phenomena require a dynamical lattice,
and cannot thus be accounted for via the dimerized Bose-
Hubbard model of Eq. (9). The goal of this section is to show
that our Z2BHM of strongly-correlated bosons coupled to Z2
fields (4), where the role of the dynamical lattice is played by
the discrete Ising spins, can indeed provide such a scenario.

B. Symmetry-breaking topological phases

1. Hardcore bosons coupled to Z2 fields

a. Born-Oppenheimer groundstate ansatz.– Let us now
elaborate on the aforementioned analogy of the groundstate
behavior of the Z2BHM (4) to the standard Peierls transition
and SSH-type phenomena. As discussed above for the sim-
pler dimerized model (9), the hardcore-boson limit U → ∞
is a good starting point to draw these analogies, since the
strongly-interacting bosons of Eq. (4) can be transformed into
free spinless fermions coupled to the Z2 fields. By applying
the previously-introduced Jordan-Wigner transformation [85]
in the hardcore-boson limit, we find

HU→∞
Z2BH

=∑
i

(
−(t +ασ z

i,i+1)c
†
i ci+1 +

β
2

σ x
i,i+1 +

∆
4

σ z
i,i+1 +H.c.

)
.

(10)
In this context, one may readily notice that a back-
round Néel-type anti-ferromagnetic ordering of the Z2 fields
| · · · ,↑i−1,i,↓i,i+1,↑i+1,i+2, · · · 〉 introduces a dimerized pattern
of the fermionic tunneling strengths (see Fig. 1(a)). This
would constitute a Z2 analogue of the dimerized lattice distor-
tion that underlies the fermionic Peierls instability at half fill-
ing [72]. However, the dynamics of the Z2 fields differs from
the acoustic vibrational branch of the original (SSH) Hamil-
tonian [83], which can lead to crucial differences.

In order to understand these differences, we shall focus
on the quasi-adiabatic regime β � t, where the Z2 fields
are much slower than the lattice bosons. Following a Born-
Oppenheimer-type reasoning, we consider that the hardcore
bosons adapt instantaneously to the background static spins.
In this way, they provide an effective potential energy for the
Z2 fields which is used, in turn, to determine the groundstate
spin configuration. In our context, this can be formalized by
means of the following variational ansatz

|Ψgs({dnnn,θθθ})〉= |ψf({dnnn})〉
⊗

e−i∑i
θi,i+1

2 σ y
i,i+1 |−〉s (11)

where |ψf({dnnn}〉=∑nnn dnnn|nnn〉f is a generic fermionic wavefunc-
tion. This wavefunction is defined by the set of variational
amplitudes {dnnn} in the Fock basis |nnn〉f = |n1, · · · ,nN〉f with
ni ∈ {0,1} fermions at site i ∈ {1, · · · ,L}. On the other hand,
this ansatz (11) describes the slow Z2 fields in terms of spin
coherent states with variational angles θθθ = (θ1,2...θi,i+1...),
and reference state |−〉s =⊗i(| ↑i,i+1〉− | ↓i,i+1〉)/

√
2.

Our Born-Oppenheimer-type variational ansatz (11) can be
applied at arbitrary boson filling, where complex Z2 fields pat-
terns (i.e. solitonic, incommensurate) may arise due to Peierls
instability [70]. Here we focus on the half-filled case in which,
according to the previous discussion, a Peierls instability can
lead to the doubling of the unit cell. Therefore, for periodic
boundary conditions, it suffices to consider only two varia-
tional angles, namely θθθ = (θA,θB) for the links joining odd-
even (even-odd) lattice sites. As detailed in Appendix A, the
variational problem reduces to the minimization of the follow-
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ing ground-state energy

εgs(θθθ) =−
2
π

t(θθθ)E
(
1−δ 2(θθθ)

)
+

∆
4
(sinθA + sinθB)−

β
2
(cosθA + cosθB),

(12)

where we have introduced t(θθθ) = t + α
2

(
sinθA + sinθB

)
,

δ (θθθ) = α(sinθA − sinθB)/(2t + α(sinθA + sinθB)), and
E(x) =

∫ π/2
0 dk(1−xsin2 k)1/2 is the complete elliptic integral

of the second kind. Note that this minimization shall yield the
particular angles θθθ ? = (θ ?

A,θ
?
B), which determine the Z2-field

background experienced by the hardcore bosons.
At this variational level, we can draw a clear analogy be-

tween the Z2BHM (4) and the standard Peierls instability of
the SSH model [83]. In the SSH model, the energy reduction
of the fermions due to a gap opening in the 1D metal compen-
sates for the elastic energy increase of the lattice distortion
(i.e. static limit of the acoustic branch) [72]. In our case,
the quadratic elastic energy of the standard Peierls problem is
substituted by a trigonometric function describing the energy
of the Z2-field background (see the second line of Eq. (12)). A
direct consequence of this difference is that, whereas the 1D
metal of the SSH model is always unstable towards a BOW
phase at T = 0, the Z2 Peierls instability of our hardcore
bosons does indeed depend on the ratio ∆/α , such that one
can observe a Peierls transition even at zero temperatures (i.e.
Peierls quantum phase transition [70]).

b. Born-Oppenheimer excitation ansatz.– In order to
carry further this analogy, we discuss the gap opening in
the Z2BHM (4), which requires generalizing the Born-
Oppenheimer ansatz (11) to account for the low-energy
single-particle excitations. In a first step, we consider that
the spin fluctuations about the Z2-field background are small,
and introduce a spin-wave-type [86] formulation based on a
Holstein-Primakoff transformation [87], namely

σ z
i,i+1 ≈ cosθ ?

i,i+1

(
ai +a†

i

)
− sinθ ?

i,i+1

(
2a†

i ai −1
)
,

σ x
i,i+1 ≈ sinθ ?

i,i+1

(
ai +a†

i

)
+ cosθ ?

i,i+1

(
2a†

i ai −1
)
,

(13)

where a†
i ,ai are bosonic creation-annihiliation operators for

the excitations of the Z2 fields localized at link (i, i+1).
In a second step, we introduce a family of single-

particle excitations over the previous variational ground-state
|Ψgs({dnnn,θθθ ?})〉 obtained from Eq. (11) by setting to the opti-
mum variational angles θθθ ? = (θ ?

A,θ
?
B), namely

|Ψexc(ηηη)〉=
(

∑
k∈BZ

ηf,kγ†
k,++

N

∑
i=1

ηs,ia
†
i

)
|Ψgs({dnnn,θθθ ?})〉,

(14)
where ηηη = (ηf,k,ηs,i) are the variational amplitudes, and γ†

k,+
are Bogoliubov-type fermion creation operators in the single-
particle conduction band of the hardcore boson sector (see Ap-
pendix A for details). In this case, the variational functional

for the excitation energies depend on

ε f
k(θθθ

?) = 2t(θθθ ?)

√
cos2 q+δ 2(θθθ ?)sin2 q,

εs
2i−1(θθθ

?) = 2β cosθ ?
A− sinθ ?

A

(
∆
2
−2αBA(θθθ ?)

)
,

εs
2i(θθθ

?) = 2β cosθ ?
B− sinθ ?

B

(
∆
2
−2αBB(θθθ ?)

)
,

(15)

which themselves depend on the properties of the variational
groundstate, such as the the fermionic bond densities between
odd-even sites BA(θθθ ?) = B2i−1,2i, and between even-odd sites
BB(θθθ ?) = B2i,2i+1, where Bi, j = 〈c†

i c j〉gs + c.c..
The variational minimization then yields two types of low-

energy excitations: (i) delocalized fermion-like excitations
with εexc(θθθ ?) = ε f

k(θθθ
?) ∀k ∈ [−π

2 ,
π
2 ), or (ii) localized spin-

wave-type excitations with εexc(θθθ ?) = εs
i (θθθ

?) ∀i ∈ {1, · · ·N}.
Therefore, in our context, the gap opening is caused by a
Néel-type alternation of the spins θ ?

A−θ ?
B 6= 0, which leads to

δ (θθθ ?) 6= 0 and, according to Eq. (15), to the aforementioned
gap opening

∆ε = minkεexc(θθθ ?) = 2t(θθθ ?)|δ (θθθ ?)|> 0. (16)

c. Adiabatic regime: Peierls transition and SPT phases.–
After introducing this variational machinery, we can explore
the rich physics of the Z2BHM (4) by focusing first on the adi-
abatic regime β = 0, where various results can be obtained an-
alytically. In this limit, where the spins are static, it is possible
to solve analytically the variational minimization of Eq. (12)
for the ground-state ansatz (11), finding two critical lines

∆±c =
4t
π

(
δ̃ ±E

(
1− δ̃ 2

)
∓1
)
, (17)

where we have defined δ̃ = α/t. These critical lines, rep-
resented in the lowest planar sections of Fig. 2, are in per-
fect agreement with our previous results [70]. For ∆ > ∆+

c
(∆ < ∆−c ), the Z2-field background θ ?

A = θ ?
B = π

2 (θ ?
A = θ ?

B =
−π

2 ) yields a polarized state |↓↓ · · · ↓〉 (|↑↑ · · · ↑〉), such that
the translational invariance remains intact. Instead, for ∆ ∈
(∆−c ,∆+

c ), the variational minimization leads to the sponta-
neous breaking of the translational symmetry, yielding two
possible perfectly-ordered Néel states, either |↓↑↓↑ · · · ↓↑↓〉
for θ ?

A = −θ ?
B = −π

2 , or |↑↓↑↓ · · · ↑↓↑〉 for θ ?
A = −θ ?

B = +π
2 .

Let us now use the variational ansatz for the excitations (14)
to show that this phase transition is marked by a gap opening,
as occurs for the standard Peierls instability in 1D metals.

According to our previous discussion (16), as a conse-
quence of |δ (±π/2,∓π/2)| = δ̃ > 0, a gap of magnitude
∆ε = 2tδ̃ will be opened. This signals a Peierls transition
accompanied by a BOW density modulation

BA

(
−π

2
,+

π
2

)
=

2
π(1− δ̃ )

(
E(1− δ̃ 2)− δ̃K(1− δ̃ 2)

)
,

BB

(
−π

2
,+

π
2

)
=

2
π(1+ δ̃ )

(
E(1− δ̃ 2)+ δ̃K(1− δ̃ 2)

)
,

(18)
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Figure 2: Born-Oppenheimer phase diagram of the Z2 Bose-Hubbard model: (a) Representation of the magnetization difference |〈σ z
A〉−

〈σ z
B〉| between the even-odd sub-lattices for the variational groundstate obtained by minimizing Eq. (12) for different paramters (∆/t,α/t,β/t).

The yellow region corresponds to the two possible Néel configurations of the Z2 fields leading to a bond-density order parameter, and a
symmetry-broken TBOW. (b) Representation of the magnetization sum |〈σ z

A〉+ 〈σ z
B〉| between the even-odd sub-lattices for the variational

groundstate obtained by minimizing Eq. (12) for different paramters (∆/t,α/t,β/t). The red and blue regions correspond to the fully polarized
configurations of the Z2 fields, which do not induce any modulation of the bosonic tunnelings, and thus lead to trivial insulators.

where we assume the symmetry-broken state |↓↑ · · · ↑↓〉 (for
|↑↓ · · · ↓↑〉, the expressions for the A and B sublattices must
be interchanged), and make use of the complete elliptic inte-
gral of the first kind K(x) =

∫ π/2
0 dk(1− xsin2 k)−1/2. Note

that BA = BB = 2/π for δ̃ → 0, whereas in the limit δ̃ → 1,
we recover the alternation BA = 0,BB = 1 between perfect
antibonding-bonding links (see Fig. 1(b)). For spin-boson
couplings α < t, there will be a period-two modulation with
a smaller antibonding-bonding character. Let us emphasize
again that, contrary to the SSH groundstate that is always
unstable towards the Peierls insulator for arbitrary fermion-
phonon couplings, the Z2BHM (4) does support a Peierls tran-
sition as the spin-boson coupling is modified.

Let us now discuss the interplay of symmetry-breaking or-
der and symmetry-protected topological features in this BOW
phase. The direct-product structure of our Born-Oppenheimer
ansatz (11) allows us to extract an effective Hamilto-
nian for the hardcore boson sector when ∆ ∈ (∆−c ,∆+

c ),
〈Ψgs({dnnn},{±π

2 ,∓π
2 })|HU→∞

Z2BH
|Ψgs({dnnn},{±π

2 ,∓π
2 })〉 =

〈ψf({dnnn})|HBDI(t,∓α)|ψf({dnnn})〉, which corresponds to two
possible instances of the dimerized Hückel model (5). The
corresponding dimerization parameter depends on the two
possible symmetry-breaking patterns for the case of hard-wall
boundary conditions:

(a) If the Z2 fields break the translational symmetry by
adopting the Néel configuration |↑↓↑↓ · · · ↑↓↑〉, the hardcore
bosons are subjected to HBDI(t,−δ̃ ) with the pattern of dimer-
ized tunnelings {t(1 + δ̃ ), t(1 − δ̃ ) · · · , t(1 − δ̃ ), t(1 + δ̃ )},
where we recall that δ̃ > 0. According to our discussion be-
low Eq. (7), this regime has a negative dimerization parameter
δ = −δ̃ < 0, and the groundstate is a trivial insulator with a
vanishing winding number ν = 0.

(b) If the Z2 fields, instead, break the translational symme-
try via |↓↑↓↑ · · · ↓↑↓〉, the hardcore bosons are subjected to

HBDI(t,+δ̃ ), and thus see the pattern of dimerized tunnelings
{t(1− δ̃ ), t(1+ δ̃ ) · · · , t(1+ δ̃ ), t(1− δ̃ )}. According to our
discussion below Eq. (7), this regime has a positive dimeriza-
tion parameter δ =+δ̃ > 0, and the half-filled groundstate is a
BDI topological band insulator with a non-vanishing winding
number ν = 1 for δ̃ < 2. Note that the symmetry-breaking
long-range order of the BOW phase (18) occurs simultane-
ously with the symmetry-protected topological invariant ν =
1. Moreover, both of these orders develop in the same degree
of freedom: the hardcore bosons. Accordingly, our model
yields a clear instance of a symmetry-breaking topological
insulator [31]: a topological bond-ordered wave (TBOW).
Let us also emphasize that this interplay between sponta-
neous symmetry breaking and symmetry-protected topologi-
cal phases is characteristic of our model of lattice bosons cou-
pled to Ising fields (4), and cannot be accounted for with the
dimerised Bose-Hubbard model (9) studied in [53].

Another feature of this non-trivial topological state is the
presence of localized edge states for finite system sizes. In
the hardcore limit, chiral symmetry guarantees that these edge
states are protected against perturbations that respect the sym-
metry, as long as the gap does not close [88]. This is the so-
called bulk-boundary correspondence, which relates a quan-
tize topological invariant in the bulk of the system with pro-
tected edge states at the boundaries [76].

d. Quasi-adibiatic regime: fluctuation-induced topolog-
ical phase transitions.– We have seen that the Born-
Oppenheimer ansatz (11) allows us to draw a clear analogy
with the Peierls transition in the β = 0 limit, and a transparent
understanding of symmetry-breaking topological insulators in
the Z2BHM (4). We can extend this analysis to the quasi-
adiabatic regime β � t, expanding thus the analytical under-
standing of the bosonic Peielrs mechanism presented in [70]
to a situation where the Z2 field dynamics introduce quantum
fluctuations that can modify the Peierls mechanism.
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As shown in Fig. 2, the quantum dynamics of these fields
competes against the formation of the bond-ordered density
modulations, modifying the static phase boundaries (17) that
delimit the TBOW phase. In fact, it is possible to get analyt-
ical expressions of how these critical lines get deformed by
considering the variational energies (12) of the previous po-
larized/Néel-type phases for small deviations of the angles θθθ
around the corresponding values θθθ ?. A comparison of these
energies leads to the following critical lines

∆±c =
4t
π

(
δ̃ ±

(
E
(
1− δ̃ 2)−1

))
∓ πβ 2

4tδ̃E
(
1− δ̃ 2

) , (19)

which are represented by the dashed white lines of Fig. 2, and
yield a very good approximation of the yellow region enclos-
ing the symmetry-broken TBOW phase. As advanced previ-
ously, these critical lines predict that the area of the TBOW
phase decreases as β increases, and lead to fluctuation-
induced topological phase transitions connecting the TBOW
phase to other trivial band insulators as the Z2 field dynamics
becomes more relevant.

2. Softcore bosons coupled to Z2 fields

In the previous subsection, we have presented a Born-
Oppenheimer variational treatment of the Z2BHM (4) in the
limit of hardcore bosons and quasi-adiabatic Z2 fields. Our
variational ansatz for the groundstate (11) and low-energy ex-
citations (14) has allowed us to draw a clear analogy with the
Peierls instability of 1D metals via the fermionization of the
hardcore bosons: at U → ∞, a Fermi surface emerges and an
energy gap can be opened. This analogy has allowed us to

show that symmetry-breaking quantum phase transitions can
take place at various (αc,∆c), delimiting a finite region of a
TBOW for hardcore bosons (see Fig. 2). The question we
would like to address in this subsection is if such a TBOW
phase can only be defined at the singular “U = ∞” point or
if, on the contrary, it persists within the physically-relevant
regime of finite Hubbard interactions.

The regime of strong, yet finite, interactions can give rise
to interesting strongly-correlated behaviour that cannot be ac-
counted for by considering solely the “U = ∞” point. For
instance, for the Fermi-Hubbard model close to half-filling,
whereas the groundstate is a fully-polarized ferromagnet [89–
91] for infinite interactions, the regime of finite repulsion 0 <
t/U � 1 gives rise to anti-ferromagnetic super-exchange in-
teractions [92, 93] that are believed to play a key role in high-
temperature superconductivity [94]. Similar super-exchange
interactions also appear in the strongly-interacting limit of
two-component Bose-Hubbard models [95]. Such spin-spin
interactions are absent in the single-component Bose-Hubbard
model, where one obtains density-density interactions be-
tween bosons at nearest-neighbouring sites, as well as density-
dependent correlated tunnelings [96].

We note that in our Z2BHM (4), despite consisting of
single-component bosons, the strongly-interacting limit can
be richer as the virtual tunnelings are dressed by the corre-
sponding Z2 link fields. Therefore, in addition to the afore-
mentioned effects, an effective spin-spin interaction between
the spins at neighboring links can also appear as corrections
to the U → ∞ limit are studied. To leading order in a 0 <
max{t/U,α/U}� 1 expansion, we find that the Z2BHM (4)
can be expressed as HZ2BH ≈ HU→∞

Z2BH
+∆H, where the leading

corrections are

∆H =−4t2

U ∑
i

(
1+2δ̃σ z

i,i+1 + δ̃ 2
)

nini+1 +
2t2

U ∑
i

(
1+ δ̃

(
σ z

i,i+1 +σ z
i+1,i+2

)
+ δ̃ 2σ z

i,i+1σ z
i+1,i+2

)(
c†

i ni+1ci+2 +H.c.
)
, (20)

and we have introduced the density operators ni = c†
i ci. The

first term describes the second-order process where the bo-
son virtually tunnels back and forth to a neighboring occu-
pied site, giving rise to a virtual double occupancy and to
density-density couplings, which cannot be accounted in the
hardcore-boson limit U → ∞. Note that this virtual tunnel-
ing is mediated by the link Z2 field, which can thus mod-
ify the strength of the density-density coupling depending on
the background configuration of the spins. The second term
describes the second-order process where a boson virtually
tunnels between two sites apart via an intermediate occupied
site, giving rise to a density-dependent correlated tunneling.
Note again, that this virtual tunneling is dressed by the link
Z2 fields, and its strength can depend on their configuration,
including spin-spin correlations. From a different perspective,
these mediated virtual tunnelings give rise to an effective cou-

pling between neighboring link spins, as announced above.
As discussed in the hardcore-boson limit below Eq. (18),

the Born-Oppenheimer approximation allows us to extract an
effective Hamiltonian for the bosonic sector, which depends
on the Z2 field configuration in the ground state. Due to the fi-
nite U corrections (20), the effective Hamiltonian for softcore
bosons contains interaction terms and cannot be reduced to a
single-particle model. Moreover, these terms break the chi-
ral symmetry of the system, which protects the TBOW phase
in the limit U → ∞ (see our discussion below Eq. (7)). Nev-
ertheless, the effective Hamiltonian with corrections (20) is
still invariant under a bond-centered inversion symmetry [53].
Therefore, in analogy to the Bose-Hubbard model with dimer-
ized fixed tunnelings (9), the ground state of the effective
Hamiltonian shall correspond to a SPT phase protected by in-
version symmetry as long as the Z2 field displays a Néel-type
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anti-ferromagnetic ordering and the gap remains open. Fol-
lowing a topological argument, as long as the gap remains
open and the symmetry is present, the many-body general-
ization [97] of the topological invariant (8) will be quantized
to the same value as in the hardcore limit, even in softcore
regimes away from the singular “U = ∞” point. In the next
section, we will confirm this prediction by computing nu-
merically the topological invariant in the strongly-correlated
bosonic regime.

In order to show that the energy gap remains open in the
softcore regime, we can explicitly calculate how the varia-
tional excitation energies (A8) get modified due to the pertur-
bations in Eq. (20). Our variational ansatz for the excitations
allows us to go beyond standard mean-field theory, and ob-
tain corrections to the excitation branches of Eq. (15), giving
rise to dispersive spin-wave-type excitations, or coupled spin-
boson quasi-particles. For the many-body gap, as discussed in
Appendix A, the TBOW energy gap (16) is shifted to

∆ε ≈ 2t(θθθ ?)|δ (θθθ ?)|

− 4t2

U

(
1+

1
π
E(1− δ̃ 2)

)(
1+ δ̃ (sinθ ?

A + sinθ ?
B)
)
,

(21)

to leading order in δ̃ � 1. At the level of our Born-
Oppenheimer ansatz, we see that the energy gap remains
finite, such that the TBOW phase extends to the soft-core
regime. Moreover, one can also see that the TBOW gap de-
creases as the interactions are lowered. This trend can be also
be understood from the following alternative perspective. As
discussed above, the virtual tunnelings give rise to an effective
coupling between neighbouring link spins. Since fermions
are much faster than the spins, and the t/U corrections (20)
are assumed to be small, the value of this coupling can be
approximated using the fermionic unperturbed groundstate in
Eq. (11) 〈ψf({dnnn})|

(
c†

i ni+1ci+2 +H.c.
)
|ψf({dnnn})〉. We can

evaluate this expectation value by applying Wick’s theorem,
as the variational ansatz is built with free spinless fermions.
This calculation shows that effective spin-spin interaction is
ferromagnetic, which would compete against the Néel-type
order of the Z2 fields, making the TBOW phase less stable
(i.e. lowering the corresponding energy gap).

Although it cannot be captured by our variational approach,
this tendency opens the possibility that the energy gap closes
for sufficiently small interactions, such that a quantum phase
transition to a non-topological phase takes place. Accord-
ingly, the TBOW phase may not be adiabatically connected
to a bosonic non-interacting SPT phase, and one could claim
that it is an instance of an interaction-induced symmetry-
breaking topological insulator. In order to explore this pos-
sibility further, and to benchmark the qualitative correctness
of our predictions based on the Born-Oppenheimer variational
approach, we now move onto a quasi-exact numerical method
based on the density-matrix renormalization group (DMRG).

IV. TOPOLOGICAL BOND-ORDER WAVE: A DMRG
APPROACH

In this section, we use the density matrix renormalization
group algorithm [98] to study the properties of the TBOW
phase. We benchmark the previous variational results by ex-
ploring the strongly-correlated regime of finite Hubbard inter-
actions U , and dynamical Z2 fields β > 0. We start by giving
compelling evidence to show that the BOW phase is indeed
a SPT phase protected by a bond-centered inversion symme-
try. To this end, we use both the entanglement spectrum and a
local topological invariant to characterize the topological na-
ture of the phase. We also show the presence of many-body
localized edge states with a fractional particle number. Fi-
nally, we study the transition from the TBOW phase to a non-
topological quasi-superfluid (qSF) phase (see Fig. 1(b-c)) as
the Hubbard interactions are lowered, and present a phase di-
agram of the model. Our numerical results clearly show the
need of both strong interactions and symmetry breaking in or-
der to stabilize the TBOW phase, which cannot be connected
to a non-interacting topological insulator.

A. Symmetry-breaking order parameters

According to our variational ansatz in the hardcore limit,
and the discussion below Eq. (18), there should be a fi-
nite region of parameter space hosting a TBOW phase (see
Fig. 2). Figure 3 shows the numerical DMRG results for
the order parameters characterizing the BOW phase of the
Z2BHM (4), focusing on strongly-correlated bosons coupled
to quasi-adiabatic Z2 fields (i.e. U = 20t, and β = 0.01t). For
these results, and for the rest of the paper, we use a chain of
L = 30 sites and a bond dimension D = 100, and fix the rest
of the Hamiltonian parameters to α = 0.5t, ∆ = 0.8t. As de-
scribed in the previous section, the BOW phase is partially
characterized by the spontaneous breaking of translational in-
variance, which is captured by the alternation of the Z2 mag-
netization 〈σ z

i,i+1〉, and the modulation of the bond density
Bi,i+1. Moreover, this phase is gapped and incompressible, as
it was shown in [70]. Long-range order develops in the system
after the symmetry breaking, whereby the unit cell of the sys-
tem is doubled. The two possible symmetry-broken ground-
states of Figs. 3 (a) and (b) are completely degenerate in the
thermodynamic limit, and they can be connected by a one-site
lattice translation. For finite lattice sizes, they differ at the
edge of the system. Let us remark, however, that these bond-
ing/antibonding order parameters do not suffice to capture all
the physics of the BOW phase, as they do not account for the
topological features that make the two symmetry-broken sec-
tors fundamentally different from each other.
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Figure 3: Symmetry-breaking order parameters: Spin pattern
〈σ̂ z

i,i+1〉 and particle density Bi,i+1 on the bonds of the lattice for
a half-filled system. Different colors depict even and odd bonds. (a)
Symmetry-broken sector with the Z2 fields in the approximate Néel
configuration |↑↓↑↓ · · · ↑↓↑〉, which leads to a period-two strong-
weak modulation of the bond density (see the scheme in Fig. 1(b)).
(b) Symmetry-broken sector with the Z2 fields in the approximate
Néel configuration |↓↑↓↑ · · · ↓↑↓〉, which leads to a period-two weak-
strong modulation of the bond density.

B. Topological characterization of the TBOW

1. Entanglement spectrum

We first explore numerically the entanglement properties
of the ground-state. In particular, we compute the entangle-
ment spectrum [99]. We define a bipartition of the system,
and write the ground-state as |ψgs〉 = ∑n λ̃n|ψn〉L ⊗ |ψn〉R,
where L and R are the two subsystems, and {λ̃n} are the cor-
responding Schmidt coefficients. The entanglement spectrum
is defined as the set of all the Schmidt coefficients in loga-
rithmic scale εn =−2log(λ̃n). It has been established that the
entanglement spectrum is degenerate for symmetry-protected
topological phases [36]. In particular, this degeneracy is ro-
bust against perturbations that respect the symmetry as long
as the many-body gap of the system is open.

In Fig. 4 (left panel), we present the entanglement spectrum
for the BOW phase in the hardcore-boson limit. We consider
a bipartition at the middle of the chain, and explore the two
possible degenerate ground-state configurations that appear as
a consequence of the spontaneous breaking of translational
symmetry. As discussed below Eq. (18), we expect that the
weak-strong bond-density modulation (cf. Fig. 3(b)) due to
the symmetry-broken background of Z2 fields gives rise to a

SPT phase. As follows from Fig. 4 (left panel), the entangle-
ment spectrum is two-fold degenerate for one of the ground-
states, while it clearly lacks an exact two-fold degeneracy for
the other configuration. These numerical results provide a
clear signature of the topological nature of the BOW phase,
and confirm the scenario of the interplay between symmetry
breaking and SPT phase of the Z2BHM (4) predicted by the
Born-Oppenheimer variational approach.

In the central panel of Fig. 4, we show the entanglement
spectrum for strongly-correlated bosons on a static lattice
(U = 10t, β = 0), thus exploring the departure from the hard-
core constraint. As discussed below Eq. (21), for strong yet
finite interactions, we expect that the energy gap is finite, and
that the TBOW phase persists as one lowers the interactions.
This expectation is supported by our numerical results, which
again display a clear two-fold degeneracy of the entanglement
spectrum in one of the symmetry-broken groundstates. Let us
finally note that, for sufficiently weak interactions (U = 5t,
β = 0), the degeneracy of the spectrum is completely lost for
the single ground-state of the system (see the right panel of
Fig. 4). This non-topological phase for the weakly-interacting
bosons corresponds to the quasi-superfluid (SF) schematically
depicted in Fig. 1(b-c), and will be discussed in more detail
in Sec. IV C below. The latter facts again support our claim
that this strongly-correlated TBOW phase has an interaction-
induced nature, as the topological features are completely ab-
sent in the weakly-interacting regime.

Let us finally emphasize that our entanglement spectrum
analysis away from the hardcore limit has been restricted to
static Z2 fields, which is necessary as the calculation of the en-
tanglement spectrum requires a bipartition of the system that
respects the protecting symmetry of the topological phase. In
the case of hardcore bosons, the system is protected by chi-
ral symmetry and the half-chain bipartition respects that sym-
metry. On the other hand, for finite interactions, the phase
is instead protected by inversion symmetry (see our discus-
sion below Eq. (20)). For our DMRG implementation, the
presence of the Z2 fields does not allow us to cut the system
into two halves in such a way that the two parts respect the
bond-centred inversion symmetry. This is only possible for
static spins (β = 0), since they form a product state and do not
contribute to the entanglement properties of the system. This
particularity of our model prevents us from using the entan-
glement spectrum to characterize the topological properties in
the regime of strongly-correlated bosons coupled to dynam-
ical fields (U finite, β > 0), although the topological nature
of the TBOW phase must also be preserved as the transverse
field β is slightly increased (see Fig. 2). For this reason, we
introduce in the next section a robust topological invariant that
yields an alternative route to characterize the topological prop-
erties of the BOW phase in any parameter regime.

2. Local Berry phase

We now characterize the topology with the help of the local
Berry phase introduced by Hatsugai [100]. It is a topological
invariant that serves as a local “order parameter” to distinguish
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Figure 4: Entanglement spectrum degeneracies: Lower 20 eigen-
values of the entanglement spectrum for different states in the TBOW
and the quasi-SF phases. For the former, we show the spectrum in
the two different symmetry-breaking sectors. We can see how the
spectrum is double degenerate in one case, which corresponds to the
non-trivial topological sector (see our discussion below Eq. (18)).
We observe how the degeneracies survive in two strongly-correlated
regimes: for hardcore bosons (U =∞) coupled to dynamical Z2 fields
(β = 0.1t), and for soft-core bosons (U = 10t) coupled to static Z2
fields (β = 0). This degeneracy is lost for small enough interactions
in the non-topological quasi-SF phase.

symmetry-protected topological phases in the presence of in-
teractions. Considering a periodic Hamiltonian H(λ ), which
depends on an external parameter λ ∈ [λ0,λf] through an adi-
abatic cyclic evolution H(λ0) = H(λf). As shown in [100],
if there exists an antiunitary operator Θ = KUΘ, where UΘ is
unitary and K is the complex conjugation, which commutes
with H(λ ), the Berry phase [101] acquired by the groundstate
|ψλ 〉 during the parallel transport on a loop C with λf = λ0,

γC = i
∮

C
dλ 〈ψλ |∂λ ψλ 〉mod2π, (22)

is quantized to finite values 0 and π . Let us note that, for non-
interacting systems, considering the quasi-momentum as the
cyclic parameter λ = k as one traverses the Brillouin zone,
Eq. (22) reduces to the previously-introduced Zak’s phase
γC = ϕZak (8). However, this free-fermion topological invari-
ant cannot be directly applied to interacting systems. Alter-
natively, we shall use Eq. (22) with a different adiabatic pa-
rameter that introduces the notion of locality, and allows us to
generalize the topological invariant to a many-body scenario.

This quantity is topological in the sense that it cannot
change without closing the gap, as long as the correspond-
ing symmetry is preserved. One can add, in particular, a local
perturbation to the initial Hamiltonian (4), like a local twist
in one of the hopping strengths t→ tλ = teiθ , which does not
close the gap of the BOW phase. Note that this is similar to the
use of twisted boundary conditions to calculate the Zak phase
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N C
|/π
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0 10 20 30i
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Figure 5: Local Berry phase quantization: local Berry phase (23)
calculated for each bond γN

C (i, i+ 1), such that even and odd bonds
are depicted in different colors. We use a value of N = 5 for three
different ground states: (a) and (b) correspond to the trivial and topo-
logical symmetry-broken sectors of the BOW phase, respectively, for
U = 20t and β = 0.02t. In the bulk, the phases are quantized to val-
ues 0 and π , alternating between even and odd bonds, and for each
bond between the two sectors. (c) Configuration for a state in the
quasi-superfluid phase, with U = 5t and β = 0.02, where the trans-
lational symmetry is not broken. In this case, the phases are not
quantized since the phase is not a SPT phase.

in the presence of interactions [97]. However, as noticed by
Hatsugai [100], this perturbation should not be necessarily put
on the edges of the system, but can be placed on any bond as
long as it preserves the symmetry. This choice is appropriate
in our case, since we can add local perturbations that respect
inversion symmetry, and constitute therefore a local measure
in the bulk of the system. Moreover, it only depends on quan-
tities that decay exponentially and, thus, this measurement is
valid not only for periodic, but also for open hard-wall bound-
ary conditions, as long as the perturbation is not applied too
close to the edge of the system.

In practice, the integral of Eq. (22) can be challenging to
compute as the integrand is gauge dependent (the integral on
the loop, however, is gauge invariant), requiring a numerical
gauge fixing at each discretized point of the loop. Alterna-
tively, we compute here the integral using a Wilson loop for-
mulation, which is gauge invariant and avoids the gauge fixing
problem [100, 102], namely

γN
C = Arg

N−1

∏
n=0
〈ψ̃n|ψ̃n+1〉 (23)

where |ψ̃n〉 = |ψλn〉〈ψλn |φ〉 is the projection of a reference
state |φ〉 onto the adiabatic groundstate, with λ0, λ1, ..., λN =
λ0 being the N points in which the loop C is discretized. The
discretized local Berry phase (23) depends in general on N and
on the way the loop is discretized, but not on the reference
state as far as it has a finite overlap with the ground-state.
However, we note that γN

C converges rapidly to the local Berry
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Figure 6: Many-body edge states: Real-space configuration of
the bosonic occupation number 〈n̂i〉, using different colors for even
and odd sites. (a) The trivial topological sector of the BOW phase is
characterized by the absence of edge states in the bosonic sector. The
non-trivial sector is represented in (b) and (c) for one extra particle
and one extra hole, respectively. We can see how the extra particle
(resp. hole) generates two edge states, each one carrying a fractional
particle number of +1/2 (resp. −1/2).

phase (22) in the large N limit.
We define the local phase γN

C (i, i+1), corresponding to the
bond (i, i+1), by adding a local perturbation to the bare tun-
neling coefficient, tei2πn/N , with n ∈ {0, ...N}. Note that this
perturbation preserves the bond-centered inversion symmetry,
and thus does not present the limitations of the entanglement
spectrum mentioned in the previous section. Therefore, we
can use it to explore the topological features of the TBOW
phase away from the hardcore boson limit and considering
dynamical Z2 fields in the quasi-adiabatic regime. Figure 5
shows the local Berry phases at every bond for the TBOW
and the qSF phases. Figs. 5(a) and (b) correspond to the
two degenerate ground states of the TBOW for U = 20t and
β = 0.02t, where we observe a Berry phase quantized to val-
ues of 0 and π in the bulk of the system. The quantized values
alternate for even and odd bonds, and the pattern is reversed
for the two ground states, allowing us to assign two different
SPT sectors using the following reasoning.

For finite system sizes, we define the two-site unit cells in
such a way that the even bonds—(i, i+ 1) with i even—are
intercell, whereas the odd bonds are intracell (i.e. they cou-
ple bosons within the same unit cell). If we then focus only
on the intercell bonds (green in the figure), we can see how
the corresponding local Berry phases are all quantized to 0
(Fig. 5(a)) for the Z2-field configuration of Fig. 3(a) adia-
batically connected to |↑↓↑↓ · · · ↑↓↑〉, which is in agreement
with our variational ansatz that predicted a trivial band insu-
lator for such symmetry-breaking pattern. On the other hand,

the local Berry phases for intercell bonds for the configura-
tion (Fig. 3(b)) adiabatically connected to |↓↑↓↑ · · · ↓↑↓〉 are
all quantized to π (Fig. 5(b)), which again is in accordance
with our variational ansatz predicting a inversion-symmetric
SPT phase. Using this convention, the latter can be regarded
as the non-trivial topological configuration, and the value of
the local Berry phase connects to that of the Zak phase ob-
tained in the previous section for hardcore bosons in the Born-
Oppenheimer approximation. These results confirm our previ-
ous expectation that the TBOW phase extends to the softcore
regime and for dynamical Z2 fields, and is characterized by a
many-body generalization of Eq. (8) with the same quantized
value. For U = 5t, the groundstate is in a non-topological qSF
phase, and the Berry phase does not show a quantized pattern.
We will show now that this ground state support many-body
edge states with fractional particle number.

3. Many-body edge states and fractionalization

For a system with boundaries, an alternative signature of
the topological nature of the TBOW phase is the presence of
localized edge states, which lie in the middle of the gap for
1D SPT phases with chiral symmetry [88]. These edge states
are topologically robust against perturbations that respect the
symmetry and do not close the gap. Let us note that this bulk-
boundary correspondence does not always hold for generic
SPT phases, since the presence of edge states might not be
guaranteed even if the bulk presents non-trivial topological
properties, as is the case of phases protected by inversion sym-
metry [103, 104]. In some of these cases, however, localized
edge states can be observed in the spectrum as remnants of
the protected edge states of a extended two-dimensional sys-
tem [105]. As shown below, this is precisely the situation for
the Z2BHM (4).

Figure 6 shows the real-space density configuration of
bosons for the two degenerate ground state configurations of
the symmetry-broken BOW phase for finite Hubbard interac-
tions (U = 20t, β = 0.02t). In the topologically-trivial con-
figuration, which is characterized by the long-range order dis-
played in Fig. 3(a), which leads to a period-two strong-weak
alternation of the bonds, we do not observe any localized edge
states (cf. Fig. 6(a)). On the contrary, for the long-range order
characterizing the other symmetry-broken sector in Fig. 3(b),
which leads to a period-two weak-strong alternation of the
bonds, we see localized peaks or drops in the occupation num-
ber when we either add (b) or subtract (c), respectively, one
particle above or below half filling.

These many-body edge states possess a fractional particle
number of ±1/2, which constitutes a bosonic analogue of
the predicted charge fractionalization in fermionic quantum
field theories [106]. In particular, the occupation number 〈n̂i〉,
which is equal to 1/2 in the bulk, differs at the edges for the
two states. Fractionalization implies that an extra particle or
hole is “divided” into two separate quasiparticles, each car-
rying half of the particle number. These quasiparticles are
localized in different parts of the system and are independent
of each other, although they can only be created/annihilated in
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pairs. The latter can be formed by two fractional +1/2 parti-
cles, two fractional +1/2 holes, or one of each.

As already mentioned, the bulk-boundary correspondence
only guarantees the presence of protected edge states in SPT
phases protected by chiral symmetry. This is the case for
hardcore bosons, where we find protected localized states at
the boundaries of the system. However, our DMRG results
show that these states are still present for finite Hubbard in-
teractions, even if the protected symmetry is changed from
chiral symmetry to a bond-centered inversion symmetry. Al-
though we can not guarantee the protection of these states,
their origin can be understood if we extend the chain to a
two-dimensional system, where the bulk-boundary correspon-
dence is restored, and the topological bulk guarantees the ex-
istence of one-dimensional conducting states at the bound-
aries [105].

With the help of these three observables, we have char-
acterized the topological nature of the BOW phase. In par-
ticular, using both the entanglement spectrum and the local
Berry phase (23), we proved that one of the two degenerate
symmetry-broken states of the BOW phase has a non-trivial
bulk topology. Moreover, this topological property persists
for finite Hubbard interactions and dynamical Z2 fields. These
numerical evidences confirm the qualitative predictions of the
Born-Oppenheimer approximation, and can also be used to
explore regimes that lie beyond the applicability of the vari-
ational ansatz. Finally, we discussed the presence of many-
body edge states in the TBOW phase. All these signatures
allow us to regard the TBOW phase as an interaction-induced
symmetry-breaking topological insulator protected by a bond-
centered inversion symmetry.

C. Interaction-induced nature of the TBOW

In this section, we discuss the importance of strong corre-
lations for the existence of the TBOW phase. Using the Born-
Oppenheimer approximation, we were able to calculate the
single-particle gap in the hardcore boson limit (16), and show
that it gets reduced if we introduce corrections (20) for large
but finite Hubbard interactions (21). This result suggested the
existence of a phase transition for small enough values of U ,
such that the TBOW phase cannot be adiabatically connected
to a non-inetracting SPT phase. Moreover, in the previous
section we showed how the signatures of non-trivial topologi-
cal properties —such as the degeneracies of the entanglement
spectrum (Fig. 4) and the quantization of the local Berry phase
(Fig. 5)—disappear for small interactions, where one expects
the ground state to be in a non-topological qSF phase. In
this section, we explore this conjecture and show that, indeed,
the TBOW phase can be considered as an interaction-induced
SPT phase as one starts from a qSF, and crosses a quantum
critical point by increasing the Hubbard interactions.

To support this claim, we present in Fig. 7 the phase dia-
gram of the model at half filling in terms of ∆/t and t/U using
DMRG. The color plot represent the staggered magnetization,

m =
1
L ∑

i
(−1)i〈σ̂ z

i,i+1〉, (24)

0.4 0.6 0.8 1.0
∆/t

0.00

0.05

0.10

0.15

0.20

t/
U

TBOW

qSF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m

Figure 7: Phase diagram: Phase diagram of the Hamiltonian (4) in
terms of the parameters ∆/t and t/U for the half-filled case using
DMRG. The rest of the parameters are fixed to α = 0.5t, β = 0.02t.
The staggered magnetization m for a system size L = 60 is repre-
sented by the color plot: it has a non-zero value in the TBOW phase
and goes to zero in the qSF, allowing the distinction between these
two phases. The black dots (with the corresponding error bars) rep-
resent the critical points in the thermodynamic limit obtained by a
finite-size scaling of m (see Fig. 8), and the dashed line connecting
them is drawn to guide the eye. The dotted vertical line corresponds
to the transition for ∆ = 0.80 represented in Fig. 8. For small enough
values of the interaction strength, the ground state of the system is
in a qSF phase for any value of ∆. This supports our claim that the
TBOW phase is an interaction-induced symmetry-breaking topolog-
ical insulator.

for a system size of L= 60. This order parameter allows one to
distinguish between the TBOW and the qSF phase. The phase
diagram also shows the critical line obtained in the thermo-
dynamic limit, separating the TBOW and the qSF phase for
small enough values of U .

We now discuss the the analysis required to calculate one
the critical points. In particular, Figure 8(a) shows the change
of m in terms of U for a fixed value of ∆ and for different
system sizes. By introducing a proper rescaling factor, we
observe how all the lines cross at the quantum critical point
Uc. In the inset, we show the collapse of the data to a univer-
sal line, mβ/ν ∼ f

(
L1/ν(U−Uc)

)
, where we observe good

agreement using the critical exponents of the Ising universal-
ity class, β = 1/8 and ν = 1. This contrasts with other transi-
tions in the one-dimensional BHM between an insulator and a
SF phase, for which the universality class is of the Kosterlitz-
Thouless type [107]. Figure 8(b) depicts the scaling of the
fidelity susceptibility,

χF = lim
δU→0

−2log |〈ψ(U +δU)|ψ(U)〉|
δU2 , (25)

which provides an alternative confirmation of the existence of
a quantum phase transition. This quantity is super-extensive
at the critical point [108], allowing to extract its location by
extrapolating the position of the peak to the thermodynamic
limit, L→ ∞ (inset). Since the TBOW phase cannot be adia-
batically connected to the non-interacting boson limit (U = 0),
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Figure 8: Finite-size scaling for the quantum phase transition be-
tween the TBOW and the qSF phase: (a) Rescaling of the stag-
gered magnetization m as a function of the interaction strength U/t
for ∆/t = 0.80 and for different system sizes. The former serves as
an order parameter to distinguish between the TBOW phase, where
it has a non-zero value, and the qSF phase, where it vanishes. The
critical point, Uc = 7.67t, is located at the crossing point between the
different lines, by assuming the critical exponents of the Ising univer-
sality class, β = 1/8 and ν = 1. Inset: These coefficients lead to the
collapse of the data to a single line. (b) The location of the critical
point is confirmed using the fidelity susceptibility χF . This quantity
develops a peak near the critical point, and its hight diverges with the
system size. In the inset, the critical point is found by extrapolating
the location of the peaks for different sizes.

it can be regarded as an interaction-induced symmetry-broken
topological phase, where the interplay between strong corre-
lations and spontaneous symmetry breaking is crucial to sta-
bilize the SPT phase.

V. CONCLUSIONS AND OUTLOOK

In this work, we characterized the TBOW phase that ap-
pears in the Z2BHM at half filling. This one-dimensional
model, composed of interacting bosons coupled to a dynam-
ical Z2 field, shares similarities with fermion-phonon models
such as the Su-Schrieffer-Heeger model for polyacetylene. In
particular, the Z2 field can be seen as a simplified version of a
dynamical lattice. Focusing first on the hardcore boson limit,
we showed how, for a quasi-adiabatic field, the system un-
dergoes a spontaneous breaking of the translational symme-
try. This can be regarded as a Peierls transition, where the
staggerization of the field opens a gap in the single-particle

fermionic spectrum. Using the Zak phase, we characterized
this gapped phase as an SPT phase protected by chiral sym-
metry, where the topological effects coexist with the pres-
ence of long-range order. For finite Hubbard interactions,
chiral symmetry is broken, but the phase is still protected by
a bond-centered inversion symmetry. Moreover, the sponta-
neous symmetry breaking remains, even though the standard
Peierls mechanism cannot be directly applied in the bosonic
case. The TBOW phase extends, therefore, for strong but fi-
nite Hubbard interactions. We confirmed numerically our pre-
dictions using DMRG. By characterizing the quantum phase
transition between the TBOW and a qSF phase for low inter-
actions, we have established the importance of strong corre-
lations to stabilize the former. Our results allow us to regard
this phase as an interaction-induced symmetry-breaking topo-
logical insulator.

In the future, it would be interesting to extend our numerical
results to characterize the full phase diagram of the model, in-
cluding parameter regimes where the adiabatic approximation
is not expected to hold, and to study other BOW phases for
different commensurate densities, characterizing their topo-
logical properties using some of the tools hereby presented.
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Appendix A: Born-Oppenheimer variational approach

In this Appendix, we present various details of the Born-
Oppenheimer-type variational ansatz for the ground-state and
low-energy excitations of the Z2BHM.

For the groundstate, the family of variational states is de-
fined in Eq. (11). The set of variational parameters {dnnn,θθθ}
can be fully determined by the minimization of

εgs({dnnn,θθθ}) =
1
L
〈Ψgs({dnnn,θθθ})|HU→∞

Z2BH
|Ψgs({dnnn,θθθ})〉.

(A1)
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Since the Z2 fields are quasi-static with respect to bosons, per-
forming average over the former in (A1) leads to the effec-
tive Hamiltonian Hf(θθθ) acting on the state of the latter, with
|ψf({dnnn}〉 as its ground state. Accordingly, the fermionic vari-
ational parameters are fully determined by the Z2-field vari-
ational angles dnnn = dnnn(θθθ) (i.e. the fermions adapt instanta-
neously to the slow spins). As discussed in the main text, for
periodic boundary conditions, it suffices to consider only two
variational angles, namely θθθ = (θA,θB) for the links joining
odd-even (even-odd) lattice sites. In such a case, the effective
Hamiltonian Hf(θθθ) turns out to be BDI (Hückel) Hamiltonian
HBDI(t(θθθ),δ (θθθ)) of Eq. (5) parametrized by the variational
fields

t(θθθ) = t +
α
2
(

sinθA + sinθB
)
,

δ (θθθ) =
α(sinθA− sinθB)

2t +α(sinθA + sinθB)
.

(A2)

For such Hamiltonian, the variational ground-state energy
(A1) takes analytical form. To set the notation, and introduce
concepts that are also used for the variational ansatz of excita-
tions, let us present diagonalisation of HBDI(t(θθθ),δ (θθθ)). We
define Bogoliubov-type fermionic operators as

γk,+ = uk(θθθ)ck + vk(θθθ)ck+π ,

γk,− = vk(θθθ)ck +uk(θθθ)ck+π .
(A3)

where we have used the Fourier transformed operators ck =
∑i e−ikici/

√
L, and ck+π = ∑i(−1)ie−ikici/

√
L, the quasi-

momenta k ∈ [−π
2 ,

π
2 ). By using the following functions

uk(θθθ) =
is√

2

√
1− 2t(θθθ)cosk

ε f
k(θθθ)

,

vk(θθθ) =
1√
2

√
1+

2t(θθθ)cosk
ε f

k(θθθ)
,

(A4)

where s = sgn{δ (θθθ)k} and

ε f
k(θθθ) = 2t(θθθ)

√
cos2 k+δ 2(θθθ)sin2 k, (A5)

one can rewrite the Hamiltonian HBDI(t(θθθ),δ (θθθ)) in terms of
these γk,+ and γk,− operators in diagonal form

HBDI(t(θθθ),δ (θθθ)) = ∑
k

ε f
k(θθθ)

(
γ†

k,+γk,+− γ†
k,−γk,−

)
, (A6)

Accordingly, the fermionic part of the variational groundstate
|ψf({dnnn})〉= ∑nnn dnnn(θθθ ?)|nnn〉f as follows

|ψf({dnnn})〉= ∏
|k|≤π/2

γ†
k,−|0〉, (A7)

where |0〉 is the fermionic vaccum, and the variational con-
stants dnnn = dnnn(θθθ) only depend on the spin variational angles

via Eqs. (A4). As advanced below, the fermions adapt in-
stantaneoulsy to the background Z2 fields, and the variational
angles can be found by minimizing the groundstate energy of
Eq. (12), where the first term stems from the addition of the
fermionic single-particle energies in Eq. (A5), while the re-
maining terms are straightforward expectation values over the
spin coherent states.

Let us now turn into the variational ansatz for the low-
energy excitations introduced in Eq. (14). The excitation en-
ergies are then derived from the minimization of

εexc(θθθ ?) = minηηη (E [ηηη ]/N [ηηη ]) , (A8)

where we have introduced the norm functional N [ηηη ] =
〈Ψexc(ηηη)|Ψexc(ηηη)〉 and the excitation energy functional
E [ηηη ] = 〈Ψexc(ηηη)|HU→∞

Z2BH
−εgs(θθθ ?)|Ψexc(ηηη)〉. In this part, the

Hamiltonian (4) is treated within the spin-wave approxima-
tion (13) for the Z2 fields up to quadratic order, such that

N [ηηη ] = ∑
k

η∗f,kηf,k +∑
i

η∗s,iηs,i,

E [ηηη ] = ∑
k

ε f
k(θθθ

?)η∗f,kηf,k +∑
i

εs
i (θθθ

?)η∗s,iηs,i.
(A9)

By solving ∂ηηη∗(E [ηηη ]/N [ηηη ]) = 0 using εexc(θθθ ?) =
minηηη{E [ηηη ]/N [ηηη ]}, one can see that in the hardcore bo-
son limit, the low-energy excitations can be: (i) delocalized
fermion-like excitations with εexc(θθθ ?)= ε f

k(θθθ
?) ∀k∈ [−π

2 ,
π
2 ),

or (ii) localized spin-wave-type excitations with εexc(θθθ ?) =
εs

i (θθθ
?) ∀i ∈ {1, · · ·N}, as discussed in the main text.

Let us now give some details on how the calculation can
be generalized for softcore bosons (20). Considering the
leading-order corrections to the ground-state energy εgs(θθθ ?)+
δεgs(θθθ ?) (12), where δεgs(θθθ ?) = 〈Ψgs(θθθ ?)|∆H|Ψgs(θθθ ?)〉, the
excitation energy (A8) will be given by εexc(θθθ ?)+δεexc(θθθ ?),
where

δεexc(θθθ ?) = min{η} (δE [η ]/N [η ]) , (A10)

and where the we have introduced the functional δE (ηηη) =
〈Ψexc(ηηη)|∆H − δεgs(θθθ ?)|Ψexc(ηηη)〉 in terms of the excited-
state ansatz (14). We can evaluate these corrections by ap-
plying Wick’s theorem, as the variational ansatz is built with
free spinless fermions. Several of the possible Wick contrac-
tions will be canceled by the substraction of the ground-state
energy shift δεgs(θθθ ?). For the evaluation of the energy gap
protecting the TBOW phase, the non-vanishing contributions
will arise from Wick contractions that include single-particle
correlations between the excited fermion and the lattice oper-
ators, e.g. 〈γk,+c†

i 〉gs〈cic
†
i+1〉gs〈ciγ

†
k,+〉gs. By performing the

corresponding calculations in detail, we find the particular
correction to the energy gap expressed in Eq. (21).
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