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WILSON LOOPS IN ISING LATTICE GAUGE THEORY

SOURAV CHATTERJEE

Abstract. Wilson loop expectation in 4D Z2 lattice gauge theory is

computed to leading order in the weak coupling regime. This is the first

example of a rigorous theoretical calculation of Wilson loop expectation

in the weak coupling regime of a 4D lattice gauge theory. All prior

results are either inequalities or strong coupling expansions.
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1. Introduction

Euclidean Yang–Mills theories are models of random connections on prin-
cipal bundles that arise in quantum field theory. Lattice gauge theories are
discrete approximations of Euclidean Yang–Mills theories. A lattice gauge
theory is characterized by its gauge group, and a parameter called the cou-
pling constant. When the value of the coupling constant is small, we say
that the theory is in the weak coupling regime, and when it is large, we say
that the theory is in the strong coupling regime.

Wilson loop expectations are key quantities of interest in the study of lat-
tice gauge theories, which represent discrete approximations of the integrals
along curves of the random connections from Euclidean Yang–Mills theo-
ries. Rigorous mathematical calculation of Wilson loop expectations is still
mostly out of reach in dimension four, which is the dimension of greatest
importance since spacetime is four-dimensional. The only cases where some
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2 SOURAV CHATTERJEE

rigorous approximations exist in 4D are strongly coupled theories, which are
amenable to series expansions [2, 6, 8, 20]. In the weak coupling regime, only
upper and lower bounds are known [15, 18]. This paper gives a first-order
approximation for Wilson loop expectations in weakly coupled 4D lattice
gauge theory with gauge group Z2, also known as Ising lattice gauge theory.
This is possibly the first instance of an explicit calculation of Wilson loop
expectations in the weak coupling regime of any four-dimensional lattice
gauge theory. (For a general introduction to open problems in lattice gauge
theories, see [7].)

1.1. Main result. Let us begin with the definition of 4D Ising lattice gauge
theory. A nice feature of the theory is that it is quite simple to describe as
a model of statistical mechanics. For each N , let

BN := [−N,N ]4 ∩ Z
4.

Let EN be the set of undirected nearest-neighbor edges of BN , and let

ΣN := {−1, 1}EN

be the set of all configurations of ±1-valued spins assigned to edges of BN .
A plaquette in Z

4 is a square bounded by four edges. Let PN be the set of
all plaquettes whose edges are in EN . If p ∈ PN is a plaquette with edges
e1, e2, e3, e4, and σ ∈ ΣN , define

σp := σe1σe2σe3σe4 . (1.1)

Ising lattice gauge theory on BN with coupling constant g and free boundary
condition is the probability measure on ΣN with probability mass function
proportional to e−βHN (σ) where β := 1/g2 and

HN (σ) := −
∑

p∈PN

σp. (1.2)

Although β is the square of the inverse coupling constant, we will abuse
terminology and refer to β as the inverse coupling strength in the rest of the
manuscript.

Ising lattice gauge theory was in fact the first lattice gauge theory to
be defined [30], a few years before the general definition of lattice gauge
theories [31]. It has been investigated by physicists as a toy model for
understanding phase transitions in Yang–Mills theories [1, 4, 13]. A few
rigorous results are also known [3, 11, 14, 22]. In particular, a careful study
with generalizations to lattice gauge theories with arbitrary finite Abelian
gauge groups was conducted in [3].

Let γ be a loop in BN , with edges e1, . . . , em. If no edge is repeated, we
will say that γ is a self-avoiding loop. We will say that two loops are disjoint
if they do not share any common edge. A finite collection of disjoint self-
avoiding loops will be called a generalized loop. The length of a generalized
loop γ is defined to be the number of edges in γ.
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Given a configuration σ ∈ ΣN and a generalized loop γ, the Wilson loop
variable Wγ is defined as

Wγ :=
∏

e∈γ

σe. (1.3)

Our main object of interest is the expected value of Wγ in the lattice gauge
theory defined above. This expected value will be denoted by 〈Wγ〉N,β. Note
that here Wγ is a ±1-valued random variable, and so its expected value lies
between −1 and 1. If β is large enough, it turns out that the limit

〈Wγ〉β := lim
N→∞

〈Wγ〉N,β (1.4)

exists for any γ and is translation-invariant. We will prove this in Section 5.4.
This allows us to talk about Wilson loop expectations in Ising lattice gauge
theory on the full lattice instead of finite cubes.

Given a generalized loop γ, an edge e in γ will be called a corner edge if
there is some other edge e′ ∈ γ such that e and e′ share a common plaquette.
For example, a rectangular loop with length and width greater than one has
exactly eight corner edges. The main result of this paper, stated below, gives
a first-order approximation for Wilson loop expectation of a generalized loop
when β is large and the fraction of corner edges is small.

Theorem 1.1. There exists β0 > 0 such that the following holds when
β ≥ β0. Let γ be a nonempty generalized loop in Z

4. Let ℓ be the number of
edges in γ and let ℓ0 be the number of corner edges of γ. Then

|〈Wγ〉β − e−2ℓe−12β | ≤ C1

(
e−2β +

√
ℓ0
ℓ

)C2

,

where C1 and C2 are two positive universal constants.

For the convenience of the reader, let us interpret the above result. Sup-
pose that β is large and the fraction of corner edges in the loop γ is small.
Then the error bound is small. Thus, in this circumstance, if ℓ≪ e12β , then
Theorem 1.1 implies that 〈Wγ〉β ≈ 1 (which means that Wγ is highly likely

to be 1). On the other hand, if ℓ ≫ e12β , then we get 〈Wγ〉β ≈ 0 (which
means that Wγ is nearly equally likely to be −1 or 1). Nontrivial behavior

happens if and only if ℓ is like a constant multiple of e12β , and in that case

〈Wγ〉β ≈ e−2ℓe−12β

.
Incidentally, it will be shown later (Theorem 4.2) that Wilson loop expec-

tations in 4D Ising lattice gauge theory are always nonnegative. In particu-
lar, they always lie in the interval [0, 1]. This is not obvious, since the Wilson
loop variables themselves take value in {−1, 1}. The proof of Theorem 4.2
is based on duality relations; I do not have an intuitive (or probabilistic)
explanation for this positivity phenomenon.

1.2. Open problems. It is mathematically quite interesting to understand
higher order terms in the computation of 〈Wγ〉β . In particular, this would
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shed light on what happens when ℓ≫ e12β or ℓ≪ e12β more precisely than
what is given by Theorem 1.1.

A result like Theorem 1.1 for non-Abelian lattice gauge theories with
gauge groups such as SU(2) or SU(3) (and possibly with a different kind of
approximation involving the area enclosed by γ) would be of great physical
importance. In fact, such a result would be a significant step towards the
solution of the Yang–Mills existence problem [7, 16, 19, 27].

The problem of extending Theorem 1.1 to arbitrary finite gauge groups
was posed as an open question in the original draft of this manuscript. At
the time of preparing this revision, this problem has been solved by Cao [5]
in a beautiful work that will soon be uploaded to arXiv. Cao’s work covers
both Abelian and non-Abelian finite groups.

1.3. Organization of the paper. The rest of the paper is devoted to
the proof of Theorem 1.1. The proof involves discrete exterior calculus,
duality relations, and certain discrete geometrical objects called vortices.
The basic framework of discrete exterior calculus is introduced in Section
2. The notions of discrete surfaces and vortices are introduced in Section 3.
Duality relations for Ising lattice gauge theory are derived in Section 4.
Exponential decay of correlations in the weak coupling regime is proved in
Section 5. The nature of vortices is investigated in Section 6. Finally, the
proof of Theorem 1.1 is completed in Section 7.

2. Discrete exterior calculus

A key tool in this paper is exterior calculus for the cell complex of Zn.
Although we need this tool only for n = 4, the presentation in this section
will be for general n. Discrete exterior calculus has been used in similar
contexts in the past, for example in [15] and [17]. An extensive survey of
the methods and applications of discrete exterior calculus in duality relations
for lattice models can be found in [11]. For the uninitiated reader, the basics
are presented below. We also need a few results that may be hard to find
verbatim in the literature, so those are derived here.

2.1. The cell complex of Zn. Take any n ≥ 1 and any x ∈ Z
n. There are

n edges coming out of x in the positive direction. Let us denote these edges
by dx1, . . . , dxn. For each 1 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n, the
edges dxi1 , . . . , dxik define a positively oriented k-cell of Zn. (For example,
a plaquette is a 2-cell.) We will denote this k-cell by the wedge product

dxi1 ∧ dxi2 ∧ · · · ∧ dxik .
A 0-cell is simply a vertex. We will use −dxi1 ∧ · · · ∧ dxik to denote the
negatively oriented version of dxi1 ∧ · · · ∧ dxik . The collection of all oriented
k-cells, as k ranges from 0 to n, is called the cell complex of Zn.

Now take any arbitrary 1 ≤ i1, . . . , ik ≤ n. Following the usual conven-
tions for wedge products, dxi1 ∧ · · · ∧ dxik is defined to be equal to zero if
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i1, . . . , ik are not all distinct, and to be equal to (−1)mdxj1∧· · ·∧dxjk other-
wise, where j1, . . . , jk is the increasing rearrangement of i1, . . . , ik and m is
the sign of the permutation that takes i1, . . . , ik to j1, . . . , jk. For example,
dx1 ∧ dx1 = 0 and dx2 ∧ dx1 = −dx1 ∧ dx2.

A cube B in Z
n is a set of the form

([a1, b1]× [a2, b2]× · · · × [an, bn]) ∩ Z
n,

where the ai’s and bi’s are integers, such that bi − ai is the same for each i.
We will say that a k-cell c is in B if all the vertices of c belong to B. We
will say that a k-cell c of Zn belongs to the boundary of B if every vertex of
c is a boundary vertex of B and that c is outside B if at least one vertex of
c is outside B. If c is in B but not on the boundary of B, we will say that
c is an internal k-cell of B.

2.2. Differential forms on Z
n. Let G be an Abelian group, with the group

operation denoted by +, and the inverse of a group element a denoted by
−a. For simplicity, we will write a − b instead of a + (−b). A G-valued
k-form on Z

n is a G-valued function on the set of positively oriented k-cells.
A G-valued k-form f will be denoted by the formal expression

f(x) =
∑

1≤i1<···<ik≤n

fi1···ik(x)dxi1 ∧ · · · ∧ dxik ,

where fi1···ik(x) is the value assigned to the positively oriented k-cell dxi1 ∧
· · · ∧ dxik . Note that a 0-form is simply a G-valued function on Z

n. For
k > n or k < 0, there is only one k-form, which is denoted by 0. If c is a
negatively oriented cell, f(c) is defined as −f(−c).

If B is a cube in Z
n, then a G-valued k-form f on B is simply a function

from the set of positively oriented k-cells of B into G.
Throughout the rest of this section, G will denote an Abelian group, and

k-forms will refer to G-valued k-forms. Sometimes we will require G to be
finite.

2.3. Discrete exterior derivative. For any function h : Zn → G, any
x ∈ Z

n and any 1 ≤ i ≤ n, define the discrete derivative of h in direction i
at the point x as

∂ih(x) := h(x+ ei)− h(x),

where ei is the vector that has 1 in coordinate i and 0 in all other coordinates.
For 0 ≤ k ≤ n− 1, the exterior derivative of a k-form f is the (k + 1)-form

df(x) :=
∑

1≤i1<···<ik≤n

∑

1≤i≤n

∂ifi1···ik(x)dxi ∧ dxi1 ∧ · · · ∧ dxik . (2.1)

In other words, if g = df , then for any 1 ≤ i1 < · · · < ik+1 ≤ n,

gi1···ik+1
(x) =

∑

1≤j≤k+1

(−1)j−1∂ijfi1···îj ···ik+1
(x), (2.2)
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where i1 · · · îj · · · ik+1 is the list obtained by omitting ij from i1i2 · · · ik+1.
For example, if n = 4 and

f(x) = f12(x)dx1 ∧ dx2 + f13(x)dx1 ∧ dx3, (2.3)

then

df(x) = (∂3f12(x)− ∂2f13(x))dx1 ∧ dx2 ∧ dx3
+ ∂4f12(x)dx1 ∧ dx2 ∧ dx4 + ∂4f13(x)dx1 ∧ dx3 ∧ dx4.

The exterior derivative of any n-form is zero, consistent with our convention
that 0 is the only k-form when k > n. A differential form f is called closed
if df = 0, and exact if f = dg for some g.

Let B be a cube in Z
n. If f is a k-form on B, df is defined the same

way as before, using the formula (2.2). This works because any k-cell that
is contained in a (k + 1)-cell of B must be itself a k-cell of B. Closed and
exact forms on B are defined as before.

A basic result about the exterior derivative is the following lemma, which
says that every exact form is closed. For completeness, the proof is provided.

Lemma 2.1. For any G-valued differential form f , either on Z
n or on a

cube B, ddf = 0.

Proof. First suppose that f is a differential form on Z
n. If f is a k-form

for k ≥ n − 1, then ddf = 0 automatically, so there is nothing to prove.
Assume that k < n − 1. Since the exterior derivative is a linear operator,
the formula (2.1) implies that

ddf(x) :=
∑

1≤i1<···<ik≤n

∑

1≤i,j≤n

∂j∂ifi1···ik(x)dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxik .

Inside the sum, if i = j, the term is zero since dxi ∧ dxi = 0. If i 6= j, the
(i, j)-term cancels the (j, i)-term, since dxj∧dxi = −dxi∧dxj and for any h,

∂j∂ih(x) = ∂ih(x+ ej)− ∂ih(x)

= (h(x+ ej + ei)− h(x+ ej))− (h(x+ ei)− h(x))

= (h(x+ ej + ei)− h(x+ ei))− (h(x+ ej)− h(x))

= ∂i∂jh(x).

Thus, all terms cancel, showing that ddf = 0.
If f is a differential form on a cube B, the same proof goes through. This

is because any k-cell that is contained in a (k+2)-cell of B must itself be a
k-cell of B. �

2.4. Discrete Poincaré lemma. An important result about the exterior
derivative is the Poincaré lemma. We will need a version of the classical
Poincaré lemma in our discrete setting. Again, for completeness, the lemma
is stated and proved below. Another purpose of giving a proof is that there
are several fine points in the following statement that will important for us
later, but are hard to find in off-the-shelf versions of this lemma.
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Lemma 2.2 (Poincaré lemma). Take any 1 ≤ k ≤ n. Let G be an Abelian
group. Let B be any cube in Z

n. Then the exterior derivative d is a surjective
map from the set of G-valued (k − 1)-forms on B onto the set of G-valued
closed k-forms on B. Moreover, if G is finite and m is the number of closed
G-valued (k − 1)-forms on B, then this map is an m-to-1 correspondence.
Lastly, if 1 ≤ k ≤ n − 1 and f is a closed k-form that vanishes on the
boundary of B, then there is a (k − 1)-form h that also vanishes on the
boundary of B and dh = f .

Proof. Let A be the set of G-valued (k−1)-forms on B, and let B be the set
of G-valued closed k-forms on B. By Lemma 2.1, d maps A into B. We will
first prove that for every f ∈ B there exists g ∈ A such that dg = f . This
claim will be proved by induction on n, fixing k. Note that the induction
starts from n = k. We will define g below, in several steps. In each step,
the cases n = k and n > k are treated separately. When treating the case
n > k, we will assume that the lemma has already been proved for smaller
values of n.

For simplicity of notation, let us assume without loss of generality that
B = [a, b]n ∩ Z

n, where a < b are two integers. For each a ≤ r ≤ b, let

Br := B ∩ (Zn−1 × {r}).
Let us now define the required (k−1)-form g on B. We will define gi1···ik−1

(x)
for every x ∈ B and 1 ≤ i1 < · · · < ik−1 ≤ n. In some cases, dxi1∧· · ·∧dxik−1

may not be a (k−1)-cell of B; in those cases, we will still give the definition,
but it will be irrelevant. If k = 1, then gi1···ik−1

(x) will simply mean g(x),
since g is a 0-form in this case.

Take any 1 ≤ i1 < · · · < ik−1 ≤ n. If k ≥ 2 and ik−1 = n, let gi1···ik−1
(x) =

0 for every x ∈ B. If ik−1 < n or k = 1, define gi1···ik−1
(x) as follows.

First, consider x ∈ Ba. If n = k, let gi1···ik−1
(x) = 0. If n > k, note that

f restricted to Ba is a k-form on Ba satisfying df = 0. By the induction
hypothesis, there exists some (k − 1)-form g′ on Ba such that dg′ = f in
Ba. Define gi1···ik−1

(x) := g′i1···ik−1
(x), which is legitimate since ik−1 < n or

k = 1.
Next, when x ∈ Br for some a < r ≤ b, and ik−1 < n or k = 1, define

gi1···ik−1
(x) := gi1···ik−1

(x− en) + (−1)k−1fi1···ik−1n(x− en), (2.4)

by induction on r.
Let h = dg. Take any 1 ≤ i1 < · · · < ik ≤ n and x ∈ Br for some

a ≤ r ≤ b, such that dxi1 ∧ · · · ∧ dxik is a k-cell in B. We will prove by
induction on r that

hi1···ik(x) = fi1···ik(x). (2.5)

First, suppose that r = a. If n = k, then i1 = 1, i2 = 2, . . . , in = n. Thus,

hi1···ik(x) = h12···n(x) =
∑

1≤i≤n

(−1)i−1∂ig12···̂i···n(x),
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where, as before, the notation 12 · · · î · · ·n means the list obtained by omit-
ting i from the full list 12 · · · n. By the definition of g, ∂ig12···̂i···n(x) = 0
when i 6= n. When i = n, (2.4) gives

∂ng12···(n−1)(x) = (−1)n−1f12···n(x),

completing the proof of (2.5) when r = a and n = k.
Next, suppose that r = a and n > k. If ik < n, then dxi1 ∧ · · · ∧ dxik is

a k-cell in Ba. Thus, the value of h on this cell is the same as that of dg′

on this cell. But f = dg′ in Ba. Therefore, if r = a and ik < n, then (2.5)
holds.

Suppose that r = a and ik = n. Then

hi1···ik(x) =
∑

1≤j≤k

(−1)j−1∂ijgi1···îj ···ik(x).

But by the definition of g, ∂ijgi1···îj ···ik(x) = 0 for j < k (since ik = n), and

by (2.4),

∂ngi1···ik−1
(x) = (−1)k−1fi1···ik−1n(x).

(Note that all this is valid even when k = 1.) This completes the proof of
(2.5) when x ∈ Ba.

Next, take r > a and suppose that (2.5) has been proved for all x ∈ Br−1.
Take x ∈ Br and any 1 ≤ i1 < · · · < ik ≤ n. If ik = n and r < b, the proof
of (2.5) is exactly the same as for ik = n and r = a. If ik = n and r = b,
then dxi1 ∧ · · · ∧ dxik is not a k-cell in B, so we do not have to worry about
it. This completes the proof of (2.5) when ik = n, for any r.

Finally, consider the case ik < n and r > a. Let y = x − en, so that
y ∈ Br−1. Let u = dh and v = df . Then by Lemma 2.1, u = 0, and by
assumption, v = 0. Moreover, dyi1 ∧ · · · ∧ dyik ∧ dyn is a (k + 1)-cell in B.
Thus,

0 = ui1···ikn(y) = (−1)k∂nhi1···ik(y) +
∑

1≤j≤k

(−1)j−1∂ijhi1···îj ···ikn(y), (2.6)

and

0 = vi1···ikn(y) = (−1)k∂nfi1···ik(y) +
∑

1≤j≤k

(−1)j−1∂ijfi1···îj ···ikn(y). (2.7)

Take any 1 ≤ j ≤ k. Then

∂ijhi1···îj ···ikn(y)− ∂ijfi1···îj ···ikn(y)

= (hi1···îj ···ikn(y + eij )− hi1···îj ···ikn(y))

− (fi1···îj ···ikn(y + eij )− fi1···îj ···ikn(y)).

Since ik < n, the point z := y+eij belongs to Br−1, just like y. Moreover, it

is easy to see that the k-cell dzi1∧· · ·∧d̂zij∧· · ·∧dzik∧dzn belongs to B, just

like dyi1 ∧ · · · ∧ d̂yij ∧ · · ·∧dyik ∧dyn. (Here dzi1 ∧ · · · ∧ d̂zij ∧ · · · ∧dzik ∧dzin
means the wedge product dzi1 ∧· · ·∧dzik ∧dzin with the term dzij omitted.)
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Therefore by the identity (2.5) for points in Br−1, the above expression
vanishes. Thus, by (2.6) and (2.7), we get

∂nfi1···ik(y) = ∂nhi1···ik(y)

But fi1···ik(y) = hi1···ik(y) by (2.5) for points in Br−1. Since y + en = x, the
above identity therefore reduces to (2.5) for points in Br. This completes
the proof of the claim of that d is surjective from A onto B.

To show that d is m-to-1 from A into B when G is finite and m is defined
as in the statement of the lemma, take any f ∈ B and g ∈ A such that
dg = f . If g′ is another such (k− 1)-form, then d(g− g′) = 0. So g′ = g+ h
for some h on B such that dh = 0. Conversely, if g′ = g+h for some h such
that dh = 0, then dg′ = dg = f . Thus, dg′ = f if and only if g′ = g + h for
some h on B such that dh = 0.

Finally, suppose that 1 ≤ k ≤ n − 1 and f is a closed k-form on B that
vanishes on the boundary of B. We will now prove by induction on n that
f = dh for some (k − 1)-form h that vanishes on the boundary of B.

Define g as before. Since f vanishes on the boundary, we can choose g = 0
on Ba in the first step of the construction. The iterative construction (2.4)
and the vanishing of f on the boundary ensure that g = 0 on every (n− 1)-
dimensional face of B except Bb. On Bb, f = dg = 0. Moreover, on the
(n − 2)-dimensional boundary of Bb, g = 0 since any (k − 1)-cell on this
boundary also belongs to one of the other faces of B.

If k = 1, then g is a 0-form. In this case it follows trivially from the
above observations that g = 0 on Bb, allowing us to take h = g. This also
completes the proof for n = 2, since k = 1 is the only possibility there. So
suppose that n > 2 and k > 1. Then by the induction hypothesis, g = dw for
some (k−2)-form w on Bb which vanishes on the boundary of Bb. Extend w
to a (k− 2)-form on B by defining it to be zero outside Bb. Let h = g− dw,
so that dh = dg = f and h vanishes on Bb. Now notice that w vanishes on
each of the other faces of B, because w vanishes on the boundary of Bb and
the other faces intersect Bb only at the boundary. Since g vanishes on each
of the other faces of B, this shows that h = 0 on the boundary of B. �

2.5. Discrete coderivative. The exterior derivative operator d has an ad-
joint, denoted by δ and sometimes called the ‘codifferential operator’ or
simply ‘coderivative’. Letting

∂̄ih(x) := h(x)− h(x− ei),

the operator δ is defined as

δf(x) :=
∑

1≤i1<···<ik≤n

∑

1≤l≤k

(−1)l∂̄ilfi1···ik(x)dxi1∧· · ·∧d̂xil∧· · ·∧dxik . (2.8)

The operator δ takes k-forms to (k − 1)-forms. If k = 0, then δf = 0 by
definition. As an example, suppose that n = 4 and f is the 2-form defined
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in (2.3). Then

δf(x) = (∂̄2f12(x) + ∂̄3f13(x))dx1 − ∂̄1f12(x)dx2 − ∂̄1f13(x)dx3.

Note that on manifolds, ∂i and ∂̄i are the same. But in the discrete setting,
the two operators are not the same, and we need to define δ using ∂̄i as
above.

2.6. Discrete Hodge dual. An important object for us is the dual of the
lattice Z

n, which we will denote by ∗Zn. This is just another copy of Zn,
whose vertices are the centers of the n-cells of the primal lattice. This gives
a correspondence between the n-cells of the primal lattice and the 0-cells of
the dual lattice. This correspondence extends to a correspondence between
the cell complex of the primal lattice and the cell complex of the dual lattice,
where an oriented k-cell c of the primal lattice is paired with an oriented
(n−k)-cell ∗c of the dual lattice. The cell ∗c is called the Hodge dual of the
cell c. The duality is defined as follows.

Take any x in the primal lattice. Let y denote the center of the n-cell
dx1 ∧ · · · ∧ dxn, so that y = ∗(dx1 ∧ · · · ∧ dxn) according to our convention.
Let dy1, . . . , dyn be the edges coming out of y in the negative direction.
Take any 1 ≤ i1 < · · · < ik ≤ n. Let j1, . . . , jn−k be an enumeration of
{1, . . . , n} \ {i1, . . . , ik}, and define

∗(dxi1 ∧ · · · ∧ dxik) := s dyj1 ∧ · · · ∧ dyjn−k
,

where s is the sign of the permutation (i1, . . . , ik, j1, . . . , jn−k). It is easy to
see that the right side does not depend on our choice of j1, . . . , jn−k. By the
same principle, define

∗(dyj1 ∧ · · · ∧ dyjn−k
) := (−1)k(n−k)s dxi1 ∧ · · · ∧ dxik ,

where (−1)k(n−k) is present because the sign of (j1, . . . , jn−k, i1, . . . , ik) is
equal to (−1)k(n−k)s. For example, if n = 4, ∗(dx1 ∧ dx2) = dy3 ∧ dy4 and
∗(dx1 ∧ dx3) = −dy2 ∧ dy4. With x, y, s and j1, . . . , jn−k as above, the
Hodge dual of a G-valued k-form f is defined as the following (n− k)-form
on the dual lattice:

∗f(y) :=
∑

1≤i1<···<ik≤n

fi1···ik(x)s dyj1 ∧ · · · ∧ dyjn−k
.

(Note that s and j1, . . . , jn−k depend on i1, . . . , ik in the above sum, but
this dependence has been suppressed for notational clarity.) For example, if
n = 4 and f is given by (2.3), then

∗f(y) = f12(x)dy3 ∧ dy4 − f13(x)dy2 ∧ dy4.
It is easy to check that for any f , ∗f(∗c) = f(c) and ∗∗f = (−1)k(n−k)f .

The exterior derivative operator on the cell complex of the dual lattice is
defined just the same way as on the primal lattice, but with ∂i replaced by
∂̄i, since the edges in the dual lattice are oriented in the opposite direction.
The exterior derivative on the dual lattice is also denoted by d. With this
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definition, the following lemma connects the Hodge star operator with the
adjoint of the exterior derivative on the dual lattice. This is a discrete
version of a well-known lemma about differential forms on manifolds.

Lemma 2.3. For any G-valued k-form f on Z
n,

δf(x) = (−1)n(k+1)+1∗d∗f(y),
where y is center of the n-cell dx1 ∧ · · · ∧ dxn.
Proof. Note that if f is a G-valued k-form on the primal lattice, and x, y,
s and j1, . . . , jn−k are as in the paragraphs preceding the statement of the
lemma, then

d∗f(y) =
∑

1≤i1<···<ik≤n

∑

1≤i≤n

∂̄ifi1···ik(x)s dyi ∧ dyj1 ∧ · · · ∧ dyjn−k
.

The summand on the right is zero unless i is one of i1, . . . , ik. If i = il for
some l, then

∗(dyi ∧ dyj1 ∧ · · · ∧ dyjn−k
)

= (−1)k(n−k)+n−k+l−1s dxi1 ∧ · · · ∧ d̂xil ∧ · · · ∧ dxik ,

since the sign of (il, j1, . . . , jn−k, i1, . . . , îl, . . . , ik) equals

(−1)k(n−k)+n−k+l−1s.

Thus, putting r := k(n − k) + n− k − 1, we get

∗d∗f(y)
= (−1)r

∑

1≤i1<···<ik≤n

∑

1≤l≤k

(−1)l∂̄ilfi1···ik(x)dxi1 ∧ · · · ∧ d̂xil ∧ · · · ∧ dxik

= (−1)rδf(x).

Since k(k + 1) is even, (−1)r = (−1)n(k+1)+1. �

2.7. Hodge dual on a cube. For any cube B in Z
n, define the dual cube

∗B to be the union of all n-cells in the dual lattice that are duals of the
vertices of B. It is not difficult to see that the dual of the cube

B = ([a1, b1]× · · · × [an, bn]) ∩ Z
n

is the cube

∗B = ([a1 − 1/2, b1 + 1/2] × · · · × [an − 1/2, bn + 1/2]) ∩ ∗Zn,
and

∗∗B = ([a1 − 1, b1 + 1]× · · · × [an − 1, bn + 1]) ∩ Z
n.

Recall that a k-cell c is in B if all the vertices of c are vertices of B. We
will say that a k-cell c belongs to the boundary of B if every vertex of c is a
boundary vertex of B. We will say that c is outside B if at least one vertex
of c is outside B. If c is in B but not on the boundary of B, we will say that
c is an internal k-cell of B.
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Lemma 2.4. Let B be any cube in Z
n. Then a k-cell c is outside B if and

only if ∗c is either outside ∗B or on the boundary of ∗B. Moreover, if c is
a k-cell outside B that contains a (k − 1)-cell of B, then ∗c belongs to the
boundary of ∗B.

Proof. Without loss of generality, suppose that B = [a, b]n ∩ Z
n for some

a < b. First, suppose that c is in B. Then all the vertices of ∗c belong to
∗B, and therefore ∗c is in ∗B. Moreover, one of the vertices of ∗c is the
center of an n-cell of B. The center of an n-cell of B cannot be a boundary
vertex of ∗B. Thus, ∗c cannot belong to the boundary of ∗B. This proves
the ‘if’ part of the first claim.

To prove the ‘only if’ part, take a k-cell c outside B. Suppose that
c = dxi1 ∧ · · · ∧ dxik . Let y be the center of the n-cell containing c. Since c
is outside B, at least one of the integers x1, . . . , xn, xi1 +1, . . . , xik +1 must
be outside the interval [a, b].

Suppose that xi1 +1 6∈ [a, b]. Then at least one of the two numbers yi1 −1
and yi1 + 1 is not in [a− 1/2, b + 1/2]. This allows us to produce, for each
vertex of ∗c, a neighbor that does not belong to ∗B. Therefore ∗c is either
on the boundary of ∗B or outside ∗B.

Similarly, if x1 6∈ [a, b], then either x1 > b or x1 < a. In the first case,
y1 6∈ [a − 1/2, b + 1/2], and in the second case, y1 − 1 6∈ [a − 1/2, b + 1/2].
Again, this allows us to produce for each vertex of ∗c a neighbor that is not
in ∗B. This completes the proof of the ‘only if’ part of the claim.

To prove the last part, let c = dxi1 ∧ · · · ∧ dxik be a k-cell outside B.
If c contains a (k − 1)-cell of B, then there exists 1 ≤ l ≤ k such that
xil + 1 ∈ [a, b], xij ∈ [a, b − 1] for every j 6= l, and xi ∈ [a, b] for every
i 6∈ {i1, . . . , ik}. Let yi = xi+1/2 for each i. Then yi ∈ [a− 1/2, b+1/2] for
all i, and yi ∈ [a+ 1/2, b + 1/2] for all i 6∈ {i1, . . . , ik}. This implies that ∗c
is in ∗B. By the first part, ∗c must therefore be on the boundary of ∗B. �

Suppose that f is a G-valued k-form on B. The Hodge dual ∗f of f is an
(n−k)-form on ∗B defined as follows. If c is a k-cell of B, let ∗f(∗c) := f(c)
as usual. By Lemma 2.4, this defines ∗f on all the internal (n − k)-cells of
∗B. On the boundary cells, define ∗f to be zero. Another way to say this
is the following. Extend f to a k-form f ′ on Z

n by defining it to be zero
outside B. Then define ∗f to be the restriction of ∗f ′ to ∗B. By Lemma 2.4,
the two definitions are equivalent.

The codifferential δf is defined using a similar principle: First extend f
to a k-form f ′ on all of Zn by defining it to be zero outside B, then define
δf ′ using (2.8), and finally let δf be the restriction of δf ′ to the (k−1)-cells
of B.

Lemma 2.5. Let f be a G-valued k-form on a cube B in Z
n. If f ′ is a

k-form on Z
n such that f ′ = f on B and f ′(c) = 0 for any c such that ∗c is

a boundary cell of ∗B, then δf = δf ′ in B and ∗f = ∗f ′ in ∗B.
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Proof. It follows directly from the way ∗f was defined above, the given
conditions on f ′, and Lemma 2.4, that ∗f = ∗f ′ in ∗B. To prove the other
assertion, extend f to a k-form f ′′ on Z

n by defining it to be zero outside
B. Let c be a (k − 1)-cell of B. By the formula (2.8), δf ′′(c) is a linear
combination of f ′′(c′) as c′ ranges over all k-cells c′ containing c. Take any
such c′. If c′ is inB, then f ′(c′) = f ′′(c′). If c′ is not inB, then by Lemma 2.4,
∗c′ is a boundary cell of ∗B, which implies that f ′(c′) = 0 = f ′′(c′). This
shows that δf ′ = δf ′′ = δf in B. �

2.8. Primal-dual correspondence. Lemmas 2.1–2.5 combine to yield the
following important result, which will be crucial for our calculations.

Lemma 2.6. Take any 1 ≤ k ≤ n−1. Let G be an Abelian group. Let B be
any cube in Z

n. Then the exterior derivative d is a surjective map from the
set of G-valued (n−k−1)-forms g on ∗B that satisfy dg = 0 on the boundary
of ∗B, to the set of duals of k-forms f on B that satisfy δf = 0. Moreover,
if G is finite and m is the number of closed G-valued (n − k − 1)-forms on
∗B, then this map is an m-to-1 correspondence.

Proof. Let A be the set of G-valued (n− k − 1)-forms g on ∗B that satisfy
dg = 0 on the boundary of ∗B, and let B be the set of k-forms f on B that
satisfy δf = 0.

Take any f ∈ B. Extend f to a k-form f ′ on Z
n by setting f ′ = f in B

and f ′ = 0 outside B. Then δf ′ = 0 in B since f ∈ B, and δf ′ = 0 outside
B because any (k − 1)-cell outside B can belong to only k-cells outside B,
where f ′ is zero. Thus by Lemma 2.3, we see that d∗f ′ = 0 everywhere.
Therefore by Lemma 2.2, there exists an (n−k−1)-form g on ∗B such that
dg = ∗f ′ in ∗B, and moreover, there are exactly m such g if G is finite. But
∗f ′ = ∗f in ∗B, so dg = ∗f in ∗B. Since f ′ = 0 outside B, and the dual
of any cell on the boundary of ∗B must be outside B by Lemma 2.4, dg
must be zero on the boundary of ∗B. Thus, g ∈ A. This shows that the
dual of every f ∈ B is the image of some element of A under the map d.
Moreover, if G is finite, then exactly m elements of A map to the dual of a
given element of B under the map d.

Next, take any g ∈ A. Extend g to a (n − k − 1)-form g′ on ∗Zn by

setting g′ = g in ∗B and g′ = 0 outside ∗B. Let f ′ := (−1)k(n−k)∗dg′. Then
dg′ = ∗f ′ is the dual of the k-form f ′. By Lemma 2.1 and Lemma 2.3,
this shows that δf ′ = 0. Moreover, since dg′ = 0 on the boundary of ∗B,
f ′(c) = 0 for any c such that ∗c belongs to the boundary of ∗B. Let f be
the restriction of f ′ to B. Then by Lemma 2.5, δf = δf ′ = 0 in B and
∗f = ∗f ′ = dg′ = dg on ∗B. This shows that d maps A into the set of duals
of elements of B, completing the proof. �

2.9. Poincaré lemma for the coderivative. There is a dual version of
the Poincaré lemma that will be needed for certain purposes. The proof is
essentially a combination of the Poincaré lemma and Lemma 2.3.
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Lemma 2.7 (Poincaré lemma for the coderivative). Take any 1 ≤ k ≤ n−1.
Let f be a G-valued k-form on Z

n which is zero outside a finite region.
Suppose that δf = 0. Then there is a (k + 1)-form h such that f = δh.
Moreover, if f is zero outside a cube B, then there is a choice of h that is
zero outside B.

Proof. Since δf = 0, Lemma 2.3 implies that d∗f = 0. Since f = 0 outside
a finite region, there is a large enough cube B such that f = 0 outside
B. Let f ′ be the restriction of f to B. By definition, ∗f ′ vanishes on the
boundary of ∗B. By Lemma 2.4 and the fact that f vanishes outside B,
∗f = 0 on the boundary of ∗B. Therefore, d∗f ′ = d∗f = 0 everywhere in
∗B. By Lemma 2.2, this implies that there is a (n − k − 1)-form g′ on ∗B
such that dg′ = ∗f ′ and g′ vanishes on the boundary of ∗B. Extend g′ to
a (n − k − 1)-form g on ∗Zn by defining it to be zero outside ∗B. Since g
vanishes on the boundary of ∗B and outside ∗B, dg = 0 = ∗f outside ∗B.
Combining, we see that dg = ∗f everywhere. Let

h := (−1)−(k−1)(n−k+1)−k(n−k)−nk−1∗g,
so that

∗h = (−1)−k(n−k)−nk−1g.

Thus, by Lemma 2.4,

δh = (−1)nk+1∗d∗h
= (−1)−k(n−k)∗dg = f.

Lastly, by Lemma 2.4 and the definition of h, it follows that h vanishes
outside the cube B. �

3. Discrete surfaces and vortices

In this section, we will specialize the results of Section 2 to the lattice
Z
4 and the group Z2, and make some important applications of the results.

In this section, Z2 will be treated as the quotient group Z/2Z, with the
operation of addition modulo 2.

3.1. Surfaces. Note that since x = −x in the group Z2, there is no reason
to distinguish between positively and negatively oriented cells in the cell
complex of Z4 when we are dealing with Z2-valued differential forms. Ac-
cordingly, edges may be identified with 1-cells and plaquettes with 2-cells.
A unique feature of Z4 is that duals of plaquettes are plaquettes in the dual
lattice.

Since Z2 contains only two elements, there is a natural one-to-one cor-
respondence between sets of edges and Z2-valued 1-forms on Z

4. Namely,
given a 1-form, we associate to it the set of edges where the 1-form takes
value 1. Similarly, there is a one-to-one correspondence between Z2-valued
2-forms and sets of plaquettes, and a one-to-one correspondence between
0-forms and sets of vertices.
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We will refer to a set of plaquettes as a ‘surface’. If P is surface, we will
refer to the set of dual plaquettes, ∗P , as the ‘dual surface’.

With the above correspondence, it is easy to see that if γ is a finite set
of edges, and f is the 1-form that corresponds to γ, then the 0-form δf
corresponds to the set of vertices that are contained in an odd number of
edges of γ. In other words, γ is a generalized loop if and only if δf = 0.

We define the boundary of a surface P as the set of edges that are con-
tained in an odd number of plaquettes in P . In other words, if f is the
2-form corresponding to P , then the boundary of P is simply the set of
edges corresponding to the 1-form δf . We will say that a surface is closed
if its boundary is empty. An edge of P that is not a boundary edge will be
called an internal edge.

The following result is a simple consequence of the Poincaré lemma for
the coderivative.

Lemma 3.1. If γ is a generalized loop in Z
4, then γ is the boundary of

some surface P . Moreover, if γ is contained in a cube B, then there is a
choice of P that is also contained in B.

Proof. Let f be the 1-form corresponding to γ. Then δf = 0, as observed
above. Therefore by Lemma 2.7, there is a 2-form h such that δh = f .
Moreover, if f is zero outside B, then h can be chosen such that h = 0
outside B. This completes the proof of the lemma. �

A plaquette p will be called an internal plaquette of a surface P if none
of the edges of p is a boundary edge of P . Otherwise, p will be called a
boundary plaquette of P . The following lemma is a crucial component of
our argument for establishing the perimeter law in the weak coupling limit
of Ising lattice gauge theory.

Lemma 3.2. Let P and Q be two surfaces, and suppose that the dual surface
∗P is closed. If there is a cube B containing P such that ∗∗B ∩Q consists
of only internal plaquettes of Q, then |P ∩Q| is even.

Proof. Let f be the 2-form corresponding to the surface P . Since ∗P is
closed, δ∗f = 0. Moreover, ∗f is zero outside ∗B by Lemma 2.4. By
Lemma 2.7, this implies that ∗f = δg for some 3-form g that is zero outside
∗B. Therefore by Lemma 2.3,

f = ∗∗f = d∗g.
Let

S :=
∑

p∈Q

f(p),

where the sum is in Z2. This is a finite sum since only finitely many terms
are nonzero. The proof of the lemma will be complete if we can show that
S = 0. To that end, note that

S =
∑

p∈Q

d∗g(p) =
∑

p∈Q

∑

e∈p

∗g(e) =
∑

e∈γ

∗g(e),
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where γ is the boundary of Q.
Let us say that a 3-form on the dual lattice is ‘elementary’ if its value is

1 on a single 3-cell, and 0 elsewhere. Clearly, any 3-form with finitely many
1’s is a sum of elementary 3-forms. In particular, the 3-form g is a finite
sum of elementary 3-forms that are zero outside ∗B. Since the Hodge star
operator is additive, this shows that to prove that S = 0, it suffices to prove
that ∑

e∈γ

∗g0(e) = 0 (3.1)

for any elementary 3-form g0 that is zero outside ∗B. Take any such g0.
Then ∗g0 is an elementary 1-form of the primal lattice. Let c be the 3-cell
where g0 is 1 and let e = ∗c be the edge where ∗g0 is 1. Let P0 be the set
of all plaquettes containing e. Then P0 is the set of duals of the boundary
plaquettes of c. In particular, the elements of P0 are plaquettes of ∗∗B. Let
Q0 be the set of plaquettes of Q that contain e. Then

Q0 = P0 ∩Q ⊆ ∗∗B ∩Q.

Thus, the elements of Q0 are all internal plaquettes of Q, and so e cannot
be a boundary edge of Q. Consequently, |Q0| must be even. Thus, e 6∈ γ
and hence (3.1) holds. As noted before, this implies that S = 0, completing
the proof. �

3.2. Vortices. Let Σ be the set of all spin configurations on the edges of
Z
4. Given a configuration σ ∈ Σ, we will say that plaquette p is a ‘negative

plaquette’ for this configuration if σp = −1. In the following, two plaquettes
will be called adjacent if they share a common edge. A surface will be called
connected if it is connected with respect to this notion of adjacency.

Given a spin configuration σ, a surface P will be called a vortex if the dual
surface ∗P is closed and connected, and every member of P is a negative
plaquette for the configuration σ. The term ‘vortex’ comes from similar
usage in the physics literature. Vortices have played an important role in
the physics literature on quark confinement in lattice gauge theories, starting
from [21, 23, 24, 26, 28, 29].

Lemma 3.3. For any configuration σ, the set of negative plaquettes of σ is
a disjoint union of vortices.

Proof. Let P be the set of negative plaquettes. Let f be the 2-form corre-
sponding to P and g be the 1-form corresponding to σ. Note that f = dg.
Thus, by Lemma 2.1, df = 0 and hence by Lemma 2.3,

δ∗f = ∗df = 0.

The 2-form ∗f corresponds to the dual surface ∗P . The above identity
implies that every edge of the dual lattice belongs to an even number of
elements of ∗P . In other words, ∗P is a closed surface.
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Finally, note that since there is no edge that is shared by two plaquettes
in two distinct connected components of ∗P , each connected component of
∗P must also be a closed surface. This completes the proof. �

4. Duality relations

Recall the four-dimensional Ising lattice gauge theory on BN defined in
Section 1. We will refer to this model as having ‘free boundary condition’,
since no condition is imposed on the spins on boundary edges. Let ZN (β)
be the partition function of Ising lattice gauge theory with free boundary
condition on BN at inverse coupling strength β.

There is another kind of boundary condition that will be important for
us. This is the condition that σp = 1 for all boundary plaquettes p of BN .
We will refer to this as the zero boundary condition (since the element 1 is
the zero of the group Z2).

4.1. Duality for the partition function. We will now express ZN (β)
in terms of an Ising lattice gauge theory on the dual cube ∗BN . Such
dualities are well known to physicists. One of the earliest occurrences in
the context of lattice gauge theories was in [30], where duals of Ising models
were constructed using lattice gauge theories in dimensions three and higher.
Duality for U(1) lattice gauge theory with Villain action has been used
in several important papers; for example, in [15] duality was used for the
proof of the deconfinement transition in four-dimensional U(1) lattice gauge
theory. For an extensive discussion of such duality relations, see [11].

Theorem 4.1. Let PN be the set of plaquettes of BN and EN be the set of
edges of BN . Let aN be the number of closed Z2-valued 1-forms on ∗BN and
bN be the number of boundary plaquettes of ∗BN . Let

λ := −1

2
log tanh β, α := (cosh β sinh β)1/2, (4.1)

and let Z∗
N (λ) be the partition function of Ising lattice gauge theory with

zero boundary condition on ∗BN at inverse coupling strength λ. Then

ZN (β) =
2|EN |α|PN |e−λbN

aN
Z∗
N (λ).

Proof. Let ΣN := {−1, 1}EN . For σ ∈ ΣN and p ∈ PN , let σp be defined as
in Section 1. Then

ZN (β) =
∑

σ∈ΣN

∏

p∈PN

eβσp . (4.2)

Since σp is either 1 or −1,

eβσp = cosh β + σp sinh β = α(eλ + σpe
−λ).

Substituting this in (4.2), we get

ZN (β) = α|PN |
∑

σ∈ΣN

∏

p∈PN

(eλ + σpe
−λ). (4.3)



18 SOURAV CHATTERJEE

Expanding the product on the right gives
∏

p∈PN

(eλ + σpe
−λ) =

∑

κ∈{0,1}PN

∏

p∈PN

σ
κp
p e

λ(1−2κp).

Making the change of variable τp = 1− 2κp, this gives
∏

p∈PN

(eλ + σpe
−λ) =

∑

τ∈ΓN

∏

p∈PN

σ
(1−τp)/2
p eλτp ,

where

ΓN := {−1, 1}PN .

Substituting this back in (4.3), we get

ZN (β) = α|PN |
∑

σ∈ΣN

∑

τ∈ΓN

∏

p∈PN

σ
(1−τp)/2
p eλτp

= α|PN |
∑

τ∈ΓN

e
λ
∑

p∈PN
τp
( ∑

σ∈ΣN

∏

e∈EN

σf(τ,e)e

)
, (4.4)

where

f(τ, e) :=
∑

p∈PN ,p∋e

1− τp
2

.

In other words, f(τ, e) counts the number of plaquettes p ∈ PN containing
the edge e for which τp = −1. For convenience, let us call this set of
plaquettes PN (e). The number f(τ, e) is even if and only if

∏

p∈PN (e)

τp = 1. (4.5)

Consequently,
∑

σ∈ΣN

∏

e∈EN

σf(τ,e)e =
∏

e∈EN

(1 + (−1)f(τ,e))

=

{
2|EN | if

∏
p∈PN (e) τp = 1 for every e ∈ EN ,

0 otherwise.
(4.6)

Let Γ′
N be the set of all τ ∈ ΓN for which (4.5) holds for every e. By (4.4)

and (4.6), we get

ZN (β) = 2|EN |α|PN |
∑

τ∈Γ′

N

e
λ
∑

p∈PN
τp . (4.7)

Now note that any τ ∈ ΓN naturally defines a Z2-valued 2-form f on BN ,
through the correspondence that sends spin 1 to the element 0 of Z2 and
spin −1 to the element 1 of Z2. In terms of f , the condition (4.5) precisely
means that the 1-form δf vanishes on the edge e. Thus, τ ∈ Γ′

N if and
only if the corresponding f satisfies δf = 0. On the other hand, any Z2-
valued 1-form g on ∗BN corresponds to a spin configuration σ on the set of
edges of ∗BN , and dg = 0 on the boundary of ∗BN if and only if σ satisfies
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the zero boundary condition. Take any such g and suppose that dg = ∗f .
Let P ∗

N denotes the set of plaquettes of ∗BN , and let ∗PN be the set of
dual plaquettes of PN , as usual. Note that ∗PN ⊆ P ∗

N , and by Lemma 2.4,
P ∗
N \ ∗PN is the set of boundary plaquettes of ∗BN . Notice that for any
p ∈ ∗PN ,

1− σp
2

= dg(p) = ∗f(p) = f(∗p) = 1− τ∗p
2

.

Thus, σp = τ∗p for all p ∈ ∗PN . On the other hand, if p ∈ P ∗
N \ ∗PN , then p

is a boundary plaquette of ∗BN and hence

1− σp
2

= dg(p) = 0,

implying that σp = 1. Thus,
∑

p∈P ∗

N

σp = bN +
∑

p∈PN

τp.

Let ∗ΣN be the set of spin configurations on the edges of ∗BN that satisfy the
zero boundary condition. By Lemma 2.6, there are exactly aN configurations
σ ∈ ∗ΣN that correspond to a given τ ∈ Γ′

N in the above way. Thus, the
above identity shows that

∑

τ∈Γ′

N

e
λ
∑

p∈PN
τp =

e−λbN

aN

∑

σ∈∗ΣN

e
λ
∑

p∈P∗

N
σp
.

Plugging this into (4.7) completes the proof of the theorem. �

4.2. Duality for expected values. Consider Ising lattice gauge theory on
the cube BN with inverse coupling strength β and free boundary condition.
As usual, let ΣN be the space of configurations. Let f be any real-valued
function on ΣN . We will denote the expected value of f under this theory
by 〈f〉N,β. Similarly, if ∗ΣN is the set of configurations for Ising lattice
gauge theory with zero boundary condition on the dual cube ∗BN , and f
is a real-valued function on ∗ΣN , then the expected value of f at inverse
coupling strength λ will be denoted by 〈f〉∗N,λ.

For a finite collection of plaquettes P , define

πP (σ) :=
∏

p∈P

σp, ψP (σ) :=
∑

p∈P

σp. (4.8)

The following proposition relates the expected value of πP under Ising lattice
gauge theory with a certain expectation involving ψ∗P in the dual model.

Theorem 4.2. Let P be a finite collection of plaquettes and let ∗P be the
set of dual plaquettes of P . Let N be so large that P is contained in BN .
Let λ be related to β as in (4.1). Then

〈πP 〉N,β = 〈e−2λψ∗P 〉∗N,λ.
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Proof. Let all notation be as in the proof of Theorem 4.1. Then

〈πP 〉N,β =
1

ZN (β)

∑

σ∈ΣN

∏

p∈P

σp
∏

p∈PN

eβσp .

For each τ ∈ ΓN , define a vector τ ′ ∈ {0, 1, 2}PN as:

τ ′p =

{
(1− τp)/2 if p 6∈ P,

(1− τp)/2 + 1 if p ∈ P.

Proceeding as in the proof of Theorem 4.1, we get
∑

σ∈ΣN

∏

p∈P

σp
∏

p∈PN

eβσp = α|PN |
∑

σ∈ΣN

( ∏

p∈P

σp

)( ∑

τ∈ΓN

∏

p∈PN

σ
(1−τp)/2
p eλτp

)

= α|PN |
∑

σ∈ΣN

∑

τ∈ΓN

∏

p∈PN

σ
τ ′p
p e

λτp

= α|PN |
∑

τ∈ΓN

e
λ
∑

p∈PN
τp
( ∑

σ∈ΣN

∏

e∈EN

σh(τ,e)e

)
, (4.9)

where

h(τ, e) :=
∑

p∈PN (e)

τ ′p.

Now, for each τ ∈ ΓN , define another vector τ ′′ ∈ ΓN as

τ ′′p =

{
τp if p 6∈ P,

−τp if p ∈ P.

Note that if p 6∈ P , then τ ′p is even if and only if τp = 1. On the other hand,

if p ∈ P , then τ ′p is even if and only if τp = −1. Thus, for any p, τ ′p is even
if and only if τ ′′p = 1. From this observation it follows easily that h(τ, e) is
even if and only if ∏

p∈PN (e)

τ ′′p = 1. (4.10)

Consequently,
∑

σ∈ΣN

∏

e∈EN

σh(τ,e)e =
∏

e

(1 + (−1)h(τ,e))

=

{
2|EN | if

∏
p∈PN (e) τ

′′
p = 1 for every e ∈ EN ,

0 otherwise.
(4.11)

Let Γ′′
N be the set of all τ ∈ ΓN that satisfy (4.10). Then by (4.9) and (4.11),

∑

σ∈ΣN

∏

p∈P

σp
∏

p∈PN

eβσp = 2|EN |α|PN |
∑

τ∈Γ′′

N

e
λ
∑

p∈PN
τp .
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Now recall the set Γ′
N from the proof of Theorem 4.1. Note that τ ∈ Γ′′

N if
and only if τ ′′ ∈ Γ′

N . Moreover, the map τ 7→ τ ′′ is a bijection, which is its
own inverse. Thus,

∑

τ∈Γ′′

N

e
λ
∑

p∈PN
τp =

∑

τ∈Γ′

N

e
λ
∑

p∈PN
τ ′′p =

∑

τ∈Γ′

N

e
−2λ

∑
p∈P τp+λ

∑
p∈PN

τp .

From the last part of the proof of Theorem 4.1, we know how to sum over
τ ∈ Γ′

N by identifying τp with σp for some configuration σ on ∗ΣN that
satisfies the zero boundary condition. Using the formula for ZN (β) from
Theorem 4.1, this completes the proof. �

5. Decay of correlations

The duality relations of Section 4 allow us to transfer calculations from
the weak coupling regime to the strong coupling regime. This is very helpful
since the strong coupling regime has exponential decay of correlations. The
easiest way to prove exponential decay of correlations at strong coupling
is by using Dobrushin’s condition [9, 10]. Although Dobrushin’s condition
was originally developed for proving the uniqueness of Gibbs states, it was
later realized that the criterion can be used to prove exponential decay of
correlations. A variant of this result is presented below. Since I could not
find the exact statement in the literature, a short proof is included.

5.1. Correlation decay by Dobrushin’s condition. Let (Ω,F) be a
measurable space. Recall that the total variation distance between two
probability measures ν and ν ′ on (Ω,F) is defined as

dTV(ν, ν
′) := sup

A∈F
|ν(A)− ν ′(A)|.

Recall that the total variation distance can also be represented as

inf P(X 6= Y ), (5.1)

where the infimum is taken over all pairs of Ω-valued random variables
(X,Y ) defined on the same probability space, such that X has law ν and Y
has law ν ′. Yet another representation is

1

2
sup

∣∣∣∣
∫
fdν −

∫
fdν ′

∣∣∣∣,

where the supremum is over all measurable f : Ω → [−1, 1]. (For the
equivalence of these representations, see [12, Exercise 3.6.2].)

Now suppose that Ω is a complete separable metric space. Take any n ≥ 1,
and let µ and µ′ be two probability measures on Ωn. In the following, we
shall use the notation x̄i to denote the element of Ωn−1 obtained by dropping
the ith coordinate of a vector x ∈ Ωn. For any x ∈ Ω, µi(·|x̄i) will denote
the conditional law (under µ) of the ith coordinate given that the vector
of the remaining coordinates equals x̄i. Define µ′i similarly. Since Ω is a
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Polish space, regular conditional probabilities exist (see [12, Section 5.1.3])
and therefore our definitions of µi and µ

′
i make sense.

Suppose that for any i and any x, y ∈ Ω, the following condition holds:

dTV(µi(·|x̄i), µ′i(·|ȳi)) ≤
n∑

j=1

αij1{xj 6=yj} + hi, (5.2)

where αij’s and hi’s are fixed nonnegative real numbers, and 1{xj 6=yj} = 1 if
xj 6= yj and 0 otherwise. Assume that

s := max
1≤i≤n

n∑

j=1

αij < 1. (5.3)

The above assumption is a version of Dobrushin’s condition. Let Q be the
matrix (αij)1≤i,j≤n and suppose that P is a Markov transition matrix on
{1, . . . , n} such that Q ≤ sP elementwise. For each i and j, let τij be the
first hitting time of state j starting from state i of a Markov chain with
transition kernel P . Then the following holds.

Theorem 5.1. Let all notation be as above, and suppose that (5.2) and
(5.3) hold. Let Z and Z ′ be two Ωn-valued random vectors, with laws µ and
µ′ respectively. Take any A ⊆ {1, . . . , n}. Let ν be the law of (Zi)i∈A and ν ′

be the law of (Z ′
i)i∈A. Then

dTV(ν, ν
′) ≤ 1

1− s

∑

i∈A

n∑

j=1

E(sτij )hj .

Proof. Let X0 and X ′
0 be independent Ωn-valued random vectors with laws

µ and µ′ respectively. We will now inductively define a Markov chain
(Xk,X

′
k)k≥0. Given (Xk,X

′
k) = (x, y) for some k, generate (Xk+1,X

′
k+1)

as follows. Choose a coordinate J uniformly at random from {1, . . . , n}.
Generate a pair (W,W ′) of Ω-valued random variables such that W has law
µJ(·|x̄J ) and W ′ has law µ′J(·|ȳJ), but their joint distribution is such that

P(W 6=W ′) = dTV(µJ(·|x̄J ), µ′J(·|ȳJ )).
(This can be done because the infimum is attained in the coupling char-
acterization (5.1) of total variation distance.) Having obtained W and W ′,
produce Xk+1 by replacing the J th coordinate of Xk byW (keeping all other
coordinates the same) and produce X ′

k+1 similarly using W ′. It is not hard
to see that with this construction, Xk has law µ and X ′

k has law µ′ for
every k.

Let Xk,i denote the ith coordinate of Xk. Then the above construction
and (5.2) imply that for any i,

P(Xk+1,i 6= X ′
k+1,i|Xk,X

′
k)

≤
(
1− 1

n

)
1{Xk,i 6=X

′

k,i
} +

1

n

n∑

j=1

αij1{Xk,j 6=X
′

k,j
} +

hi
n
.
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Now let ℓk denote the vector in R
n whose ith coordinate is P(Xk,i 6= X ′

k,i).
From the above inequality, it follows that

ℓk+1 ≤
(
1− 1

n

)
ℓk +

1

n
Qℓk +

1

n
h,

where the inequality means that each coordinate of the vector on the left is
dominated by the corresponding coordinate on the right. Let

ℓ := lim sup
k→∞

ℓk,

where the lim sup is taken coordinatewise. By the above inequality, it follows
that

ℓ ≤
(
1− 1

n

)
ℓ+

1

n
Qℓ+

1

n
h,

which simplifies to
(I −Q)ℓ ≤ h, (5.4)

where I is the n×n identity matrix. The condition Q ≤ sP ensures that Q
has spectral norm less than 1. Therefore, I −Q is invertible and

(I −Q)−1 =

∞∑

k=0

Qk.

Moreover, this matrix has nonnegative entries. Hence, by (5.4),

ℓ ≤
∞∑

k=0

Qkh ≤
∞∑

k=0

skP kh.

Let {Yk}k≥0 be a Markov chain on {1, . . . , n} with transition kernel P . If

p
(k)
ij stands for the (i, j)th entry of P k, then

∞∑

k=0

skp
(k)
ij =

∞∑

k=0

E(sk1{Yk=j}|Y0 = i)

≤ E

( ∞∑

k=τij

sk
)

=
E(sτij )

1− s
.

The proof is now easily completed by recalling the coupling characteriza-
tion (5.1) of total variation distance. �

5.2. Correlation decay at strong coupling. Consider Ising lattice gauge
theory in the dual cube ∗BN at inverse coupling strength λ, under zero
boundary condition. Let µ be the probability measure on ∗ΣN defined by
this theory. Let B be a subcube of BN . Consider Ising lattice gauge theory
on ∗B at inverse coupling strength λ, under zero boundary condition. The
probability measure defined by this theory can be extended to a probability
measure µ′ on ∗ΣN by defining the spins outside ∗B to be all equal to 1.
We will now prove the following result by applying Theorem 5.1 to the pair
of measures (µ, µ′).
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Theorem 5.2. Let all notation be as above. There are positive universal
constants λ0, and C0 such that the following holds when λ ≤ λ0. Let A be
any set of internal edges of ∗B. Suppose that all the vertices of all the edges
of A are at a distance at least l from the boundary of ∗B. Let j be the width
of ∗B. Let ν be the law of (σe)e∈A under µ, and let ν ′ be the law of (σe)e∈A
under µ′. Then

dTV(ν, ν
′) ≤ j3(C0λ)

C0l.

Proof. Take any internal edge e of ∗B. Define the set of neighbors N(e) of e
to be the set of all edges that belong to any one of the plaquettes containing e.
There are at most 18 such neighbors. Following the conventions of the
previous subsection, let

σ̄e := (σf )f 6=e

and let µe(·|σ̄e) be the conditional law of σe given σ̄e under µ. Define µ′e
similarly. Then it is not difficult to write down the conditional distributions
explicitly and verify that there is a universal constant L0 such that

dTV(µe(·|σ̄e), µ′e(·|σ̄′e)) ≤ L0λ

for any σ̄e and σ̄
′
e. Moreover, if σf = σ′f for every f ∈ N(e), then the above

distance is zero. Thus, if we take

αef =

{
L0λ if f ∈ N(e),

0 otherwise,

and he = 0, then the condition (5.2) holds for i = e.
On the other hand, if e is an edge of ∗BN but not an internal edge of ∗B,

then we have the trivial inequality

dTV(µe(·|σ̄e), µ′e(·|σ̄′e)) ≤ 1,

which allows us to take αef = 0 for all f and he = 1.
Let Q = (αef )e,f∈∗EN

, where ∗EN is the set of edges of ∗BN . With the
above definition of αef , it is clear that if we take P to be transition kernel
of the simple random walk on ∗EN where the jumps happen from an edge
to one of its neighbors as defined above, then Q ≤ sP , where

s := 18L0λ.

Choose λ0 so small that s ≤ 1/2 when λ ≤ λ0. Let A be as in the statement
of the theorem. Then note that there is a universal constant L1 such that
if we start the above random walk from an edge in A, it must take at least
L1(l + k) steps to reach an edge that is not an internal edge of ∗B and at
least one of whose vertices is at a distance exactly k from the boundary of
∗B. There are at most L2(j + k)3 such edges, where L2 is another universal
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constant. By Theorem 5.1, this shows that

dTV(ν, ν
′) ≤ 1

1− s

∞∑

k=0

sL1(k+l)L2(j + k)3

≤ 16L2s
L1l

∞∑

k=0

sL1k(j3 + k3)

≤ 16L2(18L0λ)
L1l

∞∑

k=0

2−L1k(j3 + k3).

This completes the proof of the theorem. �

5.3. Correlation decay at weak coupling. Let BN and B be as in the
previous subsection. As before, let 〈·〉N,β denote expectation with respect
to Ising lattice gauge theory on BN at inverse coupling strength β and free
boundary condition. Let 〈·〉B,β denote expectation with respect to Ising
lattice gauge theory on B at inverse coupling strength β and free boundary
condition. Then we have the following result.

Theorem 5.3. Let all notation be as above. There are positive universal
constants β0 and C0 such that the following holds when β ≥ β0. Let P be
a set of plaquettes of B, whose vertices are at a distance at least l from the
boundary of B. Let j be the width of B. Let f be a any function of (σp)p∈P .
Then

|〈f〉N,β − 〈f〉B,β| ≤ Cf j
3(C0e

−2β)C0l, (5.5)

where Cf is a constant that depends only on f (and implicitly on P , since
f is a function on P ).

Proof. By the Fourier–Walsh expansion for functions of binary variables
(see [25, Chapter 1]), any function of (σp)p∈P can be written as a linear
combination of (πQ)Q⊆P . Thus, it suffices to prove the theorem for f = πP .
By Theorem 4.2,

〈πP 〉N,β = 〈e−2λψ∗P 〉∗N,λ,
where λ is related to β as in (4.1). Similarly, if 〈·〉∗B,λ denotes expectation
with respect to Ising lattice gauge theory on ∗B at inverse coupling strength
λ and zero boundary condition, then

〈πP 〉B,β = 〈e−2λψ∗P 〉∗B,λ.
Let λ0 be as in Theorem 5.2, and choose β0 such that β ≥ β0 if and only if
λ ≤ λ0. Suppose that β ≥ β0. Then by Theorem 5.2,

|〈e−2λψ∗P 〉∗N,λ − 〈e−2λψ∗P 〉∗B,λ| ≤ e2λ0|P |j3(C0λ)
C0l.

By the definition of λ, it follows that λ ≤ Ce−2β for some universal constant
C. Plugging this into the above inequality, we get the desired result. �
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5.4. Existence of the infinite volume limit. In this subsection, we will
prove the existence of the limit (1.4). We will first prove the following
stronger result, and then deduce the existence of the limit as a corollary.

Theorem 5.4. There is some β0 such that whenever β ≥ β0, the following
holds. Let P be any finite set of plaquettes, and let f be a function of
(σp)p∈P . Then 〈f〉N,β converges to a limit as N → ∞. Moreover, this
limit is translation invariant, in the sense that if g is the composition of a
translation of the lattice followed by f , then 〈g〉N,β converges to the same
limit as N → ∞.

Proof. Let BN and B be as in Theorem 5.3, so that we get the bound (5.5).
Replacing N be a larger number N ′, we get the same bound, because the
bound does not depend on N . Thus, the difference between 〈f〉N,β and
〈f〉N ′,β is bounded by twice the quantity on the right side of (5.5). Since
we can choose a large B if N and N ′ are large, this shows that the sequence
(〈f〉N,β)N≥1 is a Cauchy sequence. This proves the existence of the limit.
Let α denote the limit. To prove translation invariance, simply revisit (5.5)
and send N to infinity. This shows that

|α− 〈f〉B,β | ≤ Cfj
3(C0e

−2β)C0l,

where j is the width of B. Therefore, as B increases in size, 〈f〉B,β tends
to α. Let g be the composition of a translation of the lattice followed by f .
Let B′ be the same translation applied to the cube B. Then clearly,

〈f〉B,β = 〈g〉B′,β.

As B increases in size, so does B′, and both quantities in the above dis-
play converge to their infinite volume limits. This completes the proof of
translation invariance. �

Corollary 5.5. There exists β0 > 0 such that if β ≥ β0, then for any gen-
eralized loop γ in Z

4, the limit 〈Wγ〉β := limN→∞〈Wγ〉N,β exists. Moreover,
the limit is translation invariant, in the sense that the Wilson loop variable
for a translate of γ will have the same limiting expected value.

Proof. By Lemma 3.1, any generalized loop γ is the boundary of a surface
P of finite size. Consequently,

Wγ =
∏

p∈P

σp.

The proof is now easily completed using Theorem 5.4. �

6. Distribution of vortices

In this section, we will make some deductions about the distribution of
vortices. Throughout this section, we will fix a β ≥ β0, where β0 is as
in Theorem 5.3. We will also fix an infinite volume limit µβ of Ising lattice
gauge theory on Z

4 with free boundary condition at inverse coupling strength



WILSON LOOPS IN ISING LATTICE GAUGE THEORY 27

β, obtained by taking a subsequential limit of the probability measures on
ΣN as N → ∞.

To be more precise, let Σ be the set of all spin configurations on the
edges of Z4. Equip Σ with the product topology and the cylinder σ-algebra
generated by this topology. Under the product topology, Σ is a compact
metric space. Consequently, any sequence of probability measures on Σ has
a subsequential weak limit. Consider now Ising lattice gauge theory with
free boundary condition on BN at inverse coupling strength β. The prob-
ability measure on ΣN defined by this theory can be lifted to a probability
measure on Σ by fixing the spins outside BN to be all equal to 1. The com-
pactness argument given above allows us to extract a subsequential limit of
this sequence of probability measures, which we call µβ.

By Theorem 5.3, we know that for a function of finitely many plaquettes,
the expected value under µβ does not depend on our choice of µβ. This fact
will be invoked implicitly on several occasions.

6.1. Rarity of negative plaquettes. Given a configuration σ, recall that
we call a plaquette p negative if σp = −1. When β is large, one may expect
that negative plaquettes are rare. The following theorem gives a quantitative
estimate for this.

Theorem 6.1. Let P be any finite set of plaquettes. There is a constant CP
depending only on P such that under µβ, the probability of the event that

σp = −1 for all p ∈ P is bounded above by CP e
−2β|P |.

Proof. Throughout this proof, CP will denote any constant that depends
only on P . The value of CP may change from line to line.

Let ρ be the probability of the stated event under µβ. Recall the universal
constant C0 from Theorem 5.3. Take a cube B containing P , whose width
is the smallest required to ensure that the distance of any vertex of any
plaquette in P to the boundary of B is at least |P |/C0. Let ρ

′ be the prob-
ability of the stated event in the Ising lattice gauge theory on B at inverse
coupling strength β and free boundary condition. Then by Theorem 5.3,

|ρ− ρ′| ≤ CP e
−2β|P |. (6.1)

Let ZB(β) be the normalizing constant for the Ising lattice gauge theory on

B. The configuration of all plus spins contributes eβ|P (B)| to this normalizing
constant, where P (B) is the set of plaquettes of B. Thus,

ZB(β) ≥ eβ|P (B)|.

On the other hand, any configuration that has σp = −1 for all p ∈ P con-

tributes at most eβ(|P (B)|−2|P |). The number of such configurations depends
only on B. Since the width of B is determined by P , the number of such
configurations depends only on P . Combining these observations, we get

ρ′ ≤ CP e
−2β|P |.

Combined with (6.1), this completes the proof. �
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6.2. Rarity of large vortices. An important corollary of the Theorem 6.1
is the following, which shows that large vortices are rare. Incidentally, it
also shows that with probability one, there are no infinite vortices.

Corollary 6.2. For any plaquette p, the probability under µβ that p is con-

tained in a vortex of size ≥ m is bounded above by Cme
−2βm, where Cm is

a constant that depends only on m.

Proof. Suppose that p is contained in a vortex P of size ≥ m. Since ∗P is
a connected set of plaquettes, it follows that there are at least m negative
plaquettes within a distance C ′

m from p, where C ′
m depends only on m.

Let Q be any collection of m plaquettes within this distance from p. By
Theorem 6.1, the chance that these plaquettes are all negative is bounded
by CQe

−2βm, where CQ depends only on Q. The proof is completed by
summing over all choices of Q. �

A consequence of Corollary 6.2 is the following result, which shows that
there are no large vortices is small regions.

Corollary 6.3. Under µβ, the chance that there is a vortex of size ≥ m

intersecting a set of plaquettes of size j is bounded above by Cmje
−2βm,

where Cm depends only on m.

Proof. This is just a union bound, applying Corollary 6.2 to each plaquette
and summing over all plaquettes. �

7. Proof of the main result

Throughout this subsection, we will fix some β ≥ β0 as in Theorem 5.3
and an infinite volume Gibbs measure µβ as in Section 6. We will use
the notation µβ(A) to denote the probability of an event A under µβ, and
µβ(X) to denote the expected value of a random variable X under µβ.
Also, throughout, C will denote any universal constant. The value of C
may change from line to line or even within a line.

The proof of Theorem 1.1 is divided into two lemmas, to deal with the
cases of short loops and long loops separately. The first lemma gives a bound
that is useful when ℓ is of order e12β or less.

Lemma 7.1. In the setting of Theorem 1.1, we have

|〈Wγ〉β − e−2ℓe−12β | ≤ CeCℓe
−12β

(
e−2β +

√
ℓ0
ℓ

)
.

The proof of the above lemma is somewhat lengthy, so it is divided into a
number of steps. The main idea is to reduce the Wilson loop variable Wγ to
something more manageable. We will successively reduceWγ to the variables
W 0
γ ,W

3
γ ,W

4
γ ,W

5
γ ,W

6
γ of increasing simplicity, such that the variables are all

equal to each other with high probability. The simplest variable,W 6
γ , has the

form (−1)N6 where N6 is an approximately binomial random variable with
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mean ℓe−12β . This is the key fact that allows us to show that the expected

value of Wγ is approximately e−2ℓe−12β
. To satisfy the reader’s curiosity, let

us briefly mention right away that N6 is the number of non-corner edges
e ∈ γ such that each plaquette containing e is negative.

Let us define the variables W 0
γ ,W

3
γ ,W

4
γ ,W

5
γ ,W

6
γ before proving anything

about them. Since γ has length ℓ, there is a cube B of width ℓ that contains
γ. By Lemma 3.1, there is a surface Q inside B such that γ is the boundary
of Q. Fix Q and B. For simplicity of notation, let

α := ℓe−12β , r :=
ℓ0
ℓ
.

Let σ be a random configuration drawn from the Gibbs measure µβ. Let V
be the set of vortices of σ that intersect Q. Let

N :=
∑

P∈V

|P ∩Q|.

Let V0 be the set of all members of V that have size ≤ 24. Let

N0 :=
∑

P∈V0

|P ∩Q|,

and define

W 0
γ := (−1)N0 .

Let b be the smallest number such that any vortex of size ≤ 24 is contained
in a cube of width b. By the definition of vortex, b is a finite universal
constant. Let Q′ be the set of plaquettes p ∈ Q that are so far away from
γ that any cube of width b+2 containing p does not intersect γ. Note that
Q′ may be empty. Let V1 be the set of all P ∈ V0 that intersect Q′. Let

N1 :=
∑

P∈V1

|P ∩Q|,

with the usual convention that an empty sum equals zero. Let V2 := V0 \V1
be the set of members of V0 that do not intersect Q′, and let

N2 :=
∑

P∈V2

|P ∩Q| = N0 −N1.

Geometrically, Q \ Q′ is the part of Q that is ‘close to the boundary γ’.
Thus, N2 counts the number of negative plaquettes coming from vortices (of
size ≤ 25) that are close to the boundary.

Let us denote the set of plaquettes containing an edge e by P (e). It is
easy to see that the smallest possible closed connected surface is a set of
plaquettes bounding a 3-cell. If R is such a surface, bounding a 3-cell c,
then ∗R = P (e), where the edge e is the dual of c. Thus, the smallest
possible size of a vortex is 6, and any such vortex must be P (e) for some e.
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Such a vortex will be called a minimal vortex. Let V3 be the set of minimal
vortices that intersect Q but not Q′, and let

N3 :=
∑

P∈V3

|P ∩Q|.

Define
W 3
γ := (−1)N3 .

Next, let V4 be the set of all members of V3 that are P (e) for some e ∈ γ.
Let

N4 :=
∑

P∈V4

|P ∩Q|,

and let
W 4
γ := (−1)N4 .

Let V5 be the set of all members of V4 that are P (e) for some non-corner
edge e. Let

N5 :=
∑

P∈V5

|P ∩Q|

and define
W 5
γ := (−1)N5 .

Finally, let N6 be the number of non-corner edges e ∈ γ such that all mem-
bers of P (e) are negative plaquettes (we will henceforth abbreviate this
condition as ‘P (e) is negative’), and let

W 6
γ := (−1)N6 .

We will now prove a sequence of simple lemmas to show that Wγ is equal to
W 6
γ with high probability. The proof will proceed roughly as follows. We will

begin with the observation that Wγ = (−1)N . We will then show that with
high probability, no vortex of size ≥ 25 intersects Q. This implies that with
high probability, N = N0 and hence Wγ = W 0

γ . The next step is a crucial
geometric argument, based on Lemma 3.2, showing that N1 = N0 − N2 is
even. This implies that W 0

γ = (−1)N2 . Next, we will prove that with high

probability, only minimal vortices intersect Q but not Q′. This will imply
that with high probability, N2 = N3, and hence W 0

γ = W 3
γ . After this,

we will prove that N3 − N4 is even, which implies that W 3
γ = W 4

γ . The

final steps will involve showing that W 4
γ =W 5

γ =W 6
γ with high probability,

which happens because the fraction of corner edges is small, and with high
probability, only minimal vortices intersect Q but not Q′.

Lemma 7.2. Let A1 be the event that there is no vortex of size ≥ 25 in the
configuration σ that intersects B. Then

µβ(A1) ≥ 1− Cα4e−2β .

Proof. By Corollary 6.3, µβ(A1) ≥ 1−Cℓ4e−50β . But ℓ4e−50β = α4e−2β . �

Lemma 7.3. µβ(|Wγ −W 0
γ |) ≤ Cα4e−2β.
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Proof. By Lemma 3.3, N is the number of negative plaquettes of Q, and
hence

Wγ =
∏

p∈Q

σp = (−1)N .

If the event A1 happens, then N0 = N . Therefore, by Lemma 7.2,

µβ(|Wγ −W 0
γ |) ≤ 2(1− µβ(A1)) ≤ Cα4e−2β ,

which completes the proof. �

Lemma 7.4. W 0
γ = (−1)N2 .

Proof. Take any P ∈ V1. Then by the definition of Q′ and V1, it follows
that any cube B of width b that contains P has the property that ∗∗B ∩Q
contains only internal plaquettes of Q. Therefore by Lemma 3.2, |P ∩Q| is
even. Consequently, N1 is even. Since N2 = N0 − N1 and W 0

γ = (−1)N0 ,
this completes the proof. �

Lemma 7.5. Let A2 be the event that no vortex of size ≥ 7 intersects Q\Q′.
Then µβ(A2) ≥ 1− Cαe−2β.

Proof. Since each plaquette of Q \Q′ is contained in a cube of width b+ 2
which intersects γ, it follows that

|Q \Q′| ≤ Cℓ.

Therefore by Corollary 6.3, µβ(A2) ≥ 1− Cℓe−14β ≥ 1− Cαe−2β . �

Lemma 7.6. µβ(|W 0
γ −W 3

γ |) ≤ Cαe−2β.

Proof. If the event A2 happens, then V3 = V2 and hence N3 = N2. Therefore
by Lemma 7.4, A2 implies that W 0

γ = W 3
γ . Consequently, by Lemma 7.5,

µβ(|W 0
γ −W 3

γ |) ≤ 2(1− µβ(A2)) ≤ Cαe−2β . �

Lemma 7.7. W 3
γ =W 4

γ .

Proof. For any e, P (e) ∩ Q is the number of plaquettes of Q that contain
e. In particular, if e is an internal edge of Q, then |P (e) ∩ Q| is even by
the definition of internal edge in Section 3, since e is contained in an even
number of plaquettes of Q and this set is exactly P (e) ∩Q. Thus, N3 −N4

is even, and hence W 3
γ =W 4

γ . �

Lemma 7.8. µβ(|W 4
γ −W 5

γ |) ≤ Crα.

Proof. Let A3 be the event that there is no corner edge e such that P (e) is
a vortex. By Corollary 6.3,

µβ(A3) ≥ 1− Cℓ0e
−12β .

If A3 happens, then N4 = N5, and hence

µβ(|W 4
γ −W 5

γ |) ≤ 2(1− µβ(A3)) ≤ Cℓ0e
−12β ≤ Crα.

This completes the proof of the lemma. �
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Lemma 7.9. W 5
γ = (−1)|V5|.

Proof. Notice that if P ∈ V5, then P ∩Q is odd, and hence (−1)|P∩Q| = −1.
Thus,

W 5
γ = (−1)N5 =

∏

P∈V5

(−1)|P∩Q| = (−1)|V5|,

completing the proof. �

Lemma 7.10. µβ(|W 5
γ −W 6

γ |) ≤ Cαe−2β .

Proof. If the event A2 (from Lemma 7.5) happens, thenN6 = |V5|. Therefore
by Lemmas 7.5 and 7.9, µβ(|W 5

γ −W 6
γ |) ≤ 2(1 − µβ(A2)) ≤ Cαe−2β. �

We will now calculate µβ(W
6
γ ) to first order. The key intuition in the

following calculation is that N6 is approximately a binomial random variable
with mean ℓe−12β .

Lemma 7.11. Let θ := tanh 6β. Then

|µβ(W 6
γ )− θℓ| ≤ CeCα√

ℓ
+ CreCα.

Proof. Let γ1 be the set of all non-corner edges of γ, and let γ′ be the set of
edges e ∈ γ1 such that there is at least one positive plaquette and at least
one negative plaquette in P (e). In other words, there are some p, p′ ∈ P (e)
such that σpσp′ = −1. But the product σpσp′ has no dependence on σe.
Thus, we can determine whether e ∈ γ′ without knowing the value of σe, as
long as we know the value of σf for every edge f 6= e that belongs to some
p ∈ P (e). Since a non-corner edge of γ does not share a a plaquette with
any other edge of γ, this implies that we can determine the set γ′ simply by
knowing the values of σe for all e 6∈ γ1.

Let µ′β denote conditional probability and conditional expectation given

(σe)e 6∈γ1 . Since no two non-corner edges belong to the same plaquette, it
follows that under this conditioning, (σe)e∈γ1 are independent spins. More-
over, the above paragraph shows that conditioning on the spins outside γ1
determines γ′.

If e ∈ γ1 \ γ′, a simple calculation gives

µ′β(P (e) is negative) =
e−6β

e6β + e−6β
.

On the other hand, if e ∈ γ′, then

µ′β(P (e) is negative) = 0.

Thus, by the conditional independence of (σe)e∈γ1 ,

µ′β(W
6
γ ) = θ|γ1\γ

′|,

where θ = tanh 6β. This gives

µβ(W
6
γ ) = µβ(µ

′
β(W

6
γ )) = θ|γ1|µβ(θ

−|γ′|). (7.1)
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Now,
1− Ce−12β ≤ θ ≤ 1. (7.2)

This shows that for any 0 ≤ j ≤ ℓ,

θ−j ≤ θ−ℓ ≤ (1− Ce−12β)−ℓ ≤ eCℓe
−12β ≤ eCα, (7.3)

assuming that β0 is large enough. Consequently, for any 1 ≤ j ≤ ℓ,

θ−j − 1 ≤ jθ−(j−1)(θ−1 − 1)

≤ CjeCαe−12β

≤ CjαeCα

ℓ
≤ CjeCα

ℓ
, (7.4)

where we used the inequality xex ≤ Ce2x in the last step. By (7.1), (7.2)
and (7.4), we get

|µβ(W 6
γ )− θℓ| ≤ |θ|γ1|µβ(θ−|γ′|)− θℓ|

= |θ|γ1|(µβ(θ−|γ′|)− 1) + θℓ−ℓ0 − θℓ|
≤ θ|γ1||µβ(θ−|γ′|)− 1|+ θℓ(θ−ℓ0 − 1)

≤ |µβ(θ−|γ′|)− 1|+ CreCα. (7.5)

Now recall that any negative plaquette is contained in a vortex and any
vortex has size at least 6. Therefore by Corollary 6.2, the probability that
any given plaquette is negative (under µβ) is bounded above by Ce−12β.
Consequently,

µβ(|γ′|) ≤ Cℓe−12β ≤ Cα. (7.6)

Thus, for any j > 0,

|µβ(θ−|γ′|)− µβ(θ
−|γ′|1{|γ′|≤j})| = µβ(θ

−|γ′|1{|γ′|>j})

≤ θ−ℓµβ({|γ′| > j})

≤ θ−ℓ
Cα

j
≤ CαeCα

j
≤ CeCα

j
,

where the last two inequalities follow by (7.3) and xex ≤ Ce2x. On the other
hand, by (7.2), (7.4) and (7.6),

|µβ(θ−|γ′|1{|γ′|≤j})− 1| ≤ µβ((θ
−|γ′| − 1)1{|γ′|≤j}) + µβ({|γ′| > j})

≤ θ−j − 1 +
Cα

j
≤ CjeCα

ℓ
+
Cα

j
.

Combining the above inequalities and choosing j =
√
ℓ, we get

|µβ(θ−|γ′|)− 1| ≤ CeCα√
ℓ
.

Combining this with (7.5) gives the desired inequality. �

We are now ready to prove Lemma 7.1.
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Proof of Lemma 7.1. Combining Lemmas 7.3, 7.6, 7.7, 7.8, 7.10 and 7.11,
we have

|µβ(Wγ)− θℓ| ≤ C(α+ α4)e−2β + Crα+
CeCα√

ℓ
+ CreCα.

Since α and α4 are bounded by CeCα and ℓ−1 ≤ r, this simplifies to

|µβ(Wγ)− θℓ| ≤ CeCα(e−2β +
√
r).

To complete the proof, note that as β → ∞,

θ =
e6β − e−6β

e6β + e−6β
= 1− 2e−12β

1 + e−12β

= 1− 2e−12β +O(e−24β)

= e−2e−12β

+O(e−24β).

Thus,

|θ − e−2e−12β | ≤ Ce−24β.

By the inequality |aℓ − bℓ| ≤ ℓ|a− b| for a, b ∈ [0, 1], this gives

|θℓ − e−2ℓe−12β | ≤ Cℓe−24β ≤ Cαe−12β .

This completes the proof of Lemma 7.1. �

The next lemma is useful when ℓ≫ e12β .

Lemma 7.12. In the setting of Theorem 1.1, we have

|〈Wγ〉β| ≤ e−C(ℓ−ℓ0)e−12β

.

Proof. As in the proof of Lemma 7.1, let γ1 be the set of all non-corner edges
of γ, and let µ′β denote conditional probability and conditional expectation

given (σe)e 6∈γ1 . As observed earlier, under this conditioning, (σe)e∈γ1 are
independent spins.

Take any e ∈ γ1. Then it is easy to see that

µ′β(P (e) is negative) =
e−mβ

emβ + e−mβ
,

where m is an integer between −6 and 6, depending on the spins on the
edges of the plaquettes that contain e (other than e itself). Therefore

|µ′β(σe)| =
∣∣∣∣
emβ − e−mβ

emβ + e−mβ

∣∣∣∣

=
e|m|β − e−|m|β

e|m|β + e−|m|β

= 1− 2

1 + e2|m|β
≤ 1− 2

1 + e12β
.
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By conditional independence of the σe’s, this gives

|µ′β(Wγ)| =
∏

e∈γ1

|µ′β(σe)| ≤
(
1− 2

1 + e12β

)ℓ−ℓ0
.

The proof is now completed by applying the inequality 1− x ≤ e−x. �

Finally, we are ready to prove Theorem 1.1 by combining Lemma 7.1 and
Lemma 7.12.

Proof of Theorem 1.1. First, suppose that ℓ0 ≤ ℓ/2. Then by Lemma 7.12,

|〈Wγ〉β − e−2ℓe−12β | ≤ 2e−C1ℓe−12β

for some universal constant C1. On the other hand, by Lemma 7.1,

|〈Wγ〉β − e−2ℓe−12β | ≤ C2e
C2ℓe−12β

(
e−2β +

√
ℓ0
ℓ

)

for some other constant C2. Combining these inequalities, we get

|〈Wγ〉β − e−2ℓe−12β |1+C2/C1

≤ C2e
C2ℓe−12β

(
e−2β +

√
ℓ0
ℓ

)
(2e−C1ℓe−12β

)C2/C1

= 2C2/C1C2

(
e−2β +

√
ℓ0
ℓ

)
.

This proves the claim when ℓ0 ≤ ℓ/2. If ℓ0 > ℓ/2, then the bound is
automatic, since |〈Wγ〉β| ≤ 1. �
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[4] Brézin, E. and Drouffe, J. M. (1982). Continuum limit of a Z2

lattice gauge theory. Nuclear Phys. B, 200 no. 1, 93–106.
[5] Cao, S. (2020). Wilson loop expectations in lattice gauge theories with

finite gauge groups. In preparation.



36 SOURAV CHATTERJEE

[6] Chatterjee, S. (2015). Rigorous solution of strongly coupled SO(N)
lattice gauge theory in the large N limit. To appear in Comm. Math.
Phys.

[7] Chatterjee, S. (2018). Yang–Mills for probabilists. To appear in
Probability and Analysis in Interacting Physical Systems - in honor of
S. R. S. Varadhan.

[8] Chatterjee, S. and Jafarov, J. (2016). The 1/N expansion for
SO(N) lattice gauge theory at strong coupling. Preprint. Available at
arXiv:1604.04777.

[9] Dobrushin, R. L. (1968). The problem of uniqueness of a Gibbsian
random field and the problem of phase transitions. Funct. Anal. App.
2 no. 4, 302–312.

[10] Dobrushin, R. L. (1970). Prescribing a system of random variables
by conditional distributions. Theory Probab. App. 15 no. 3, 458–486.

[11] Drühl, K. and Wagner, H. (1982). Algebraic formulation of duality
transformations for abelian lattice models. Ann. Physics, 141 no. 2,
225–253.

[12] Durrett, R. (2010). Probability: Theory and Examples. Fourth edi-
tion. Cambridge University Press, Cambridge.

[13] Fradkin, E. and Shenker, S. H. (1979). Phase diagrams of lattice
gauge theories with Higgs fields. Phys. Rev. D, 19 no. 12, 3682–3697.

[14] Fredenhagen, K. andMarcu, M. (1983). Charged states in Z2 gauge
theories. Comm. Math. Phys., 92 no. 1, 81–119.
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