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Abstract

As the first step of proving the Hodge-FVH correspondence recently proposed in [19],
we derive the Virasoro constraints and the Dubrovin—Zhang loop equation for special cubic
Hodge integrals. We show that this loop equation has a unique solution, and provide a
new algorithm for the computation of these Hodge integrals. We also observe the gap
phenomenon for certain special cubic Hodge free energies.
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1 Introduction

Let M ¢,n be the moduli space of stable algebraic curves of genus g with n distinct marked points,
where ¢ and n are non-negative integers satisfying the stability condition 2g — 2 + n > 0. For
1<k <nand0 < j<g, denote by ¢, the first Chern class of the k-th tautological line bundle
Ly on -A_/lg,m and by A; the j-th Chern class of the Hodge bundle E,, on /Wg,n. The rational
numbers defined by the formula

/ UL N A
Mg,n

are called the Hodge integrals. These numbers take zero value unless the degree-dimension
counting matches, i.e.

i+ Fin+j1+ -+ jm=39g—3+n. (1.1)

Denote by C4(2) := E?:o Ajz7 the Chern polynomial of E,,,. We will be particularly interested
in the following class of Hodge integrals defined via the cubic products of Chern polynomials,
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called the cubic Hodge integrals:
[ vt e nc-ac-n. (12)
Mg,n

where p,q,r are complex parameters. These integrals are called special if p,q,r satisfy the
following local Calabi—Yau condition:

pq+qr+rp=0. (1.3)

These Hodge integrals are important in the localization technique of computing Gromov—

Witten invariants for toric three-folds [14] (17, 22]. Their significance was also manifested by

the Gopakumar—Marino—Vafa conjecture regarding the Chern—Simons/string duality [13] 20].
Let H = H(t;p, q,r;€) be the cubic Hodge free energy defined by

H(t;p,q,7;5€) Z 29729 g(tsp,q,7),

g>0

Hytipar) =3 3 - / G Cy(—p)Cy(—q)Cyl(—1)-

n>041,...,in,>0
Here H4(t;p,q,r) is called the genus g part of the free energy H. Then the exponential

H(tp.qrie) . . L)
€ (tparie) = cubic(tvpa%rve) —: Zcubic

is called the cubic Hodge partition function. Clearly, H,(t;p,q,r) € C[p,q,r][[t]]. The genus
zero free energy Ho(t) is actually independent of p, ¢, r and has the explicit expression

1 ti ti,,
Ho(t)zzn(n—l)(n—2) Z il !

. - 271!
n>3 i1+-+ip=n—3

v(t) = 9 Ho(t) Z > t—lt—”, (1.4)

n>l i14+in=n—1

Define

It satisfies the following Riemann hierarchy:

ov v v

—=—— i>0. 1.5

o, oty T (15)
More generally, if one defines w = 62615207‘[(13; p,q,7;€), then w satisfies an integrable hierarchy
of Hamiltonian evolutionary PDEs [2, [3, [7], called the Hodge hierarchy for the special cubic
Hodge integrals, which is a deformation of the Riemann hierarchy. The first member of this
integrable hierarchy reads

62

12 (wtototo (p +q+ T)wtowtoto) + 0(64)'

Wt = WWt, + —=

The Hodge-FVH correspondence is given by the following conjecture [19].

Conjecture 1.1 The Hodge hierarchy for the special cubic Hodge integrals is equivalent, under
a certain Miura type transformation, to the fractional Volterra hierarchy (FVH). Furthermore,
the special cubic Hodge partition function gives a tau function of the FVH.



For the case with p = ¢, the validity of the Hodge-FVH correspondence is implied by the
Hodge-GUE correspondence established in [8]9]. The goal of this and the subsequent paper [18]
is to prove the Hodge-FVH correspondence. In the present paper, we derive the Dubrovin—
Zhang loop equation by studying the Virasoro constraints for the special cubic Hodge partition
function. We show that this loop equation together with the genus zero free energy uniquely
determines the partition function. In the subsequent paper, we will show that the fractional
Volterra hierarchy admits the same Virasoro constraints and that there exists a particular tau
function of this integrable hierarchy which is uniquely determined by the same loop equation,
and we prove in this way the Hodge-FVH correspondence.

From now on, we assume that p, ¢, r satisfy the local Calabi—Yau condition (I.3]). The case
with p,q,r € Q is called rational. Note that the Virasoro constraints for the special cubic
Hodge partition function in the general case are quite complicated. However, in the rational
case, we find explicit expressions of the Virasoro constraints which lead to the Dubrovin—Zhang
loop equation. It turns out that the loop equation for the general case can be deduced from
the one for the rational case.

Let us first consider the rational case. Due to the symmetry property of the cubic Hodge
integrals with respect to p, ¢, r, and the homogeneity property (deduced from (1))

Hg(t; AP, Ag, )‘T)‘ti»—mkifl = )\3g—37_[g (t; b,q, T)v

we can assume that

1 1 1
_+r 1 _ 1 1.
PEg 1Ty TT R (1.6)
where K1, Ky € N, (K1,K2) =1 and h := K; + Ko. We denote, for £ > 0,
a bayneh
botne := — + 4L, Cosne :i= , =0,...,K3 -1, 1.
e = o + €, Cathe (ba+hz K1> a=0 1 (1.7)
—« ba—l—héh
barhe = —+4L, corne = ) =—(Koy—1),...,—1, 1.8
e =gt b Cagne <ba+h£ K2> a=—(Ky—1) (1.8)
and
N, = (N— K)\ ({0} U (AN — K3)), where aN — Ky := {ak — Ko|k € N}.
Define Aln.5 _ )
Z($7 S; E) = exp < (:;S)> Zcubic (t(ﬂj‘,S), E) Ev _E7 6) ) (19)
where s := (sg)ren, is an infinite vector of indeterminates, S = s — cglék,h (k € Ny),
t; = = bt lerde + g +abig, 0> 0, (1.10)
keN,
and A is the quadratic series
b
A= A(z,s) Z 7 k1+kb2 Chy Chy Sky Sky + @ Z ClSk- (1.11)
kl,kzeN k1 kEN,

Note that for g > 0, H4(t(x,s); KLI, KLZ, —+) is a well-defined formal power series in C[[z—1]][[s]].
Indeed, the coefficient of each monomial (x—1)k0sy, -+ 55, in Hy(t(z,s); KLﬁ %2’ —4) is a finite
sum because of the dimension reason (LLT]).



Remark 1.2 The change of the variables (LIQ]) is not invertible, but we do not lose any infor-
mation by making the substitution (LI0)) as we will see from Theorem[17] (cf. Proposition[310)
that the special cubic Hodge integrals are uniquely determined by the loop equation (LIS]).

Denote I = {—(K2—1),..., K1 —1} and I, = I\{0}, and define a family of linear operators
L, =L, (e T,€ s,e@/@s), m >0 by

L st 2+i R (1.12)
0= Rosk 22 T 24\n K, Ky)' '
keN.
0
Z b Sk +x
fod 58k+hm OShm
2 m—1 2 2
€ 0 e 0
+ = —+ = G ) 1.13
; 081008 h(m—1) 3 el ZZ% 08 a1 heDS84h(m—1—0) (1.13)
where (Gaﬁ )a el is a symmetric nondegenerate constant matrix defined by
B gathi—Kz a,f <0;
1 a=p=0;
G = ’ ’ 1.14
Groctila a, B> 0 (1.14)
0, elsewhere.

It is easy to check that the operators L,, satisfy the following Virasoro commutation relations:

(L, Ln) = (m —n) Ly, Ym,n>0.

Theorem 1.3 For the rational numbers p,q,r given by (L0, the series Z(x,s;e) defined
by ([L9) satisfies the following Virasoro constraints:

Ly, (¢ 'z,e7'8,€0/0s) Z(x,s;€) =0, m > 0. (1.15)

Using Theorem[[3land the technique developed in [10], we derive in Section Blthe Dubrovin—
Zhang loop equation for the special cubic Hodge free energies in the rational case; see Theo-
rem

We proceed to the general case. Denote

o1=—(p+q+r), o3==20"+¢+r%). (1.16)

From the local Calabi-Yau condition (L3]) and the fact that the integral in (L2)) is symmetric
in p,q,r, we know that

Hy = Hqy(t;p,q,7) € Cloy, o3][[t]], ¢g>0. (1.17)

The following theorem is the main result of the present paper.



Theorem 1.4 The equation

; L /i OAH
Z 8@+;<]~>P]—171—]+1 e

>0
—ﬁ‘<1—6‘ﬂ>9+6 2.0 (E‘(T(s_ﬁ>@> 5
O?AH n OAH OAH
8zi<‘?zj 822' 82]' ’

2
€
tg Z P14 (1.18)
4,520
which is called the Dubrovin—Zhang loop equation for the special cubic Hodge integrals, has a
unique solution of the form

— E : 29—2 — .
AH = e Hg, Hg = Hg(Z(),. .o ,239_2,0'1,0'3)
g=>1

up to the addition of a constant to each Hy, g > 1. These constants can be uniquely determined
by the following conditions:

39—2
1 o1
Hy = —1 — jzj—2 = (29 — 2)H > 2. 1.19
1= 57 0g21+242’0, jzz:ljzg 9z, (29 —2)Hy, g=> (1.19)
Here 9 )

d:= 21—, ©O:i=-—-—-—,

kzzo 0z, 1—e®/p
the coefficients P; ; are certain polynomials in ©,01,03,21,%2,... whose explicit expressions

are given in Section[4), and p is an arbitrary parameter. Moreover, let v(t) be defined in (L4),
then the genus g (g > 1) special cubic Hodge free energy has the expression

ov(t) 0397 2y(t)
Hg :Hg (U(t)a y Ty — 01,03 | - (120)
dto o2

One can recursively solve the loop equation to obtain the free energies H,, g > 1. For
example, the first two H, are given by

1 g1

Hy =21 log 21 + ﬂZO, (1.21)

o Loz T 2z 1 28 o123 1loiz 7a§z

7115222 1920 23 3602 | 480z 576022 | 5760

3
o1 02 2

- . 1.22
- <17280 34560) “ (1.22)

These expressions agree with the results of [7].

Besides the above theorems, we present in the next proposition some properties of the Taylor
coefficients of H,(t(z,s); Kil, KLZ, —%), g > 1 in the rational case, and we give in Theorem
(see below) the gap phenomenon for the special cubic Hodge integrals in the rational case with
the additional requirement that one of p,q is equal to 1. This type of results was used by
M.-X. Huang, A. Klemm and S. Quackenbush to compute the Gromov—Witten invariants of
the quintic Calabi—Yau three-fold up to genus 51 [15].



Proposition 1.5 The free energies Fy(x,s) = Hg(t(a;,s);KLl,Kiz,—%), g > 1 with t(x,s)
defined in (LIQ) have the following property:

op—1
Fi(z,s) — o log x
RS Cl;kh...,km'(ffh Us)xbk1+---+bkm—mskl s (1.23)
m>1 ki, km €N, m
Rg(0-170-3)
Fola,8) = — 55—
_ Z Z Cg; k1,...7kml(017 03)xbkl-i-"'-i-bkm—m—(?é]—?)skl Sk, > 2. (1.24)
m!:

m21ky,....km €N«

Here gy ..k (01,03), g > 1 are certain functions of 01,03, and Ry(o1,03), g > 2 are certain
polynomials of 01,03 satisfying the condition

deg Ry <39 —3, with degoy =1, degog = 3, (1.25)
and the degree (3g — 3)-part of Ry is given by
(-1)?_|BayllBago| (0f 05)*" (1.26)
2(29 —2)! 2g(2g—2) \'3 6 ’ '
where B; denote the Bernoulli numbers.

Note that in (23] and ([[24) the indeterminates of R,(o1,03) take the values

L S N
"TK K KKy T (K + K93 KPP K3
The first two Ry, g > 2 have the expressions
- 1 1301 7o} o} o3
= 1440 + 5760 5760 + 17280  34560°
R L 1070y 14507 9610} 3los N 1130] 1130103
® 7 181440 362880 ' 290304 4354560 | 2177280 ' 4354560 8709120
6 3 2
13063680 = 13063680 52254720

When one of p, g is equal to 1, we have the following theorem.

Theorem 1.6 For the rational case satisfying the condition that one of p,q is equal to 1, the
free energies F4(x,s), g > 1 satisfy the following gap condition:

o1—1

Fila,8)lsy—0 — =5~ logz € Cllz,si]], (127)
Ry(01,03

Fo(w ) lnmo — 9T ¢ sy, 922 (129

Here 81 = (Sh, 52n, 83k, - -+ ) and Si1 = (Sk)keN,\hN-

The proofs of Proposition [[L5land Theorem [[L6] are given in [I8]. We hope that the results will
be useful in the study of Gromov—Witten invariants for toric Calabi—Yau varieties.



Organization of the paper In Section 2, we derive the explicit expressions of Virasoro
constraints for Z(x,s;e). In Section 3, we derive the Dubrovin-Zhang loop equation for the
special cubic Hodge free energies in the rational case. In Section Ml we prove Theorem [L4l
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2 Virasoro constraints

In this section we first give two versions of Virasoro constraints for Z.upic, and then we prove
Theorem [[.3l Denote by Zwk the Witten—Kontsevich partition function

ZWKt E = exp 2629 22 7/1.. Z7L/ ¢ ¢:Ln

g>0 n>0
It is well known that Zwk (t;€) satisfies the following Virasoro constraints [4], 16, 24]:
LEWV (e71%,€0/0t) Zwk (t;€) =0, (2.1)

where t; = t; — i1, and Lﬁdv = Lﬁdv (e_lt, €d/ 8‘5) are linear operators given by

2
Kdv
L= Z "ot (915 262 ’

i>1

21+ 1 1
Lé(dV ::Z v+ t'i-i——

(A Y
= 2 at;, 16
2i+2m+1I 0 2 2i + 125 + 1! 62
Lﬁdv = Z (251:_1 ;n +1 )H tiat. + 5 Z ( s ;m(-l-f i ) Ot:0t;’ m 2 L.
ZZO ( (O ) +m Z+j=m—1 ) 7
These operators satisfy the Virasoro commutation relations
[LﬁdV,LSdV] = (m—n)LXY  ymop > -1,
Lemma 2.1 ([11]) The partition function Zegwic(t;p,q,7;€) has the expression
Zewvic (t:p, g, 73 €) = €010 7y (1), (2.2)

where the operator G = G (e_lt, e@/@t) is defined by

By; . o
G (6_1t,68/8t) _ _Z 21(222_ 1) (p2z 1+q22 1+ 21— 1) D,
i>1

By, are Bernoulli numbers, and D; = D; (e‘lt, 68/81:) are given by

Zt] at

>0 J+2i—1

1
+ Z(‘%(‘%g, 121



The lemma below follows from equation ([21) and Lemma 211
Lemma 2.2 ([25]) Define a sequence of operators LEWPi¢ = [cubic (e7't,e0/0t) by
Leubic (7 't,€0/0t) := e o LKV (e7't,€0/0t) o e % m>-1
Then L& satisfy the Virasoro commutation relations

|:L;;Y1L1bic7 L;:Lubic:| — (m )Lcublc m,n > —1.

m4n>
Moreover, Z.ic(t;p,q,7;€) satisfies the equations
L (€718, €0/0t) Zewpic(t;p,q,75€) =0, m > —1. (2.3)

We call (23] the Virasoro constraints for Z.upi(t;p,q,7;€). Note that these Virasoro op-
erators LEP are in general quite complicated, and it is difficult to use (Z3) directly for the
computation of the cubic Hodge integrals. For example, the operator Lgublc has the explicit
expression

i B  o9k—1
Lcublc _ LKdV _
0 0 PIET 2k (2k — 2)!
k>1
where o9r_1 = —(2k — 2)! (p%_1 + g%+ 7’%_1), and the corresponding constraint given
in (23] has the expression

3 0 By, o9—1 0
a a. a1 /ol o ar Zcu ic
20 Zl 2% (2k — 2)! Dty b

. 2k—2
2i+1, 0 1 Boy, 0'2k 1
— L P H Zeubic-
; > oy, 16 +Z 2% ( Z 8t okt Z t; at% 2 cubie

Following [8] we consider the following linear combinations of Virasoro operators:
k+1

T cubic Tcubic [ _—1 L m cubic
>-1

As it is shown in [§], the operators Eg};bic also satisfy the Virasoro commutation relations
|Zepvie, Lgebie] = (m — n)Lge,  ¥m.n > 0.
From (23]) it follows that
L (e718,€0/0t) Zeuvic(tipq.rie) =0, m > 0. (2.5)

We call (2.3) the second version of the Virasoro constraints for Zeupic(t; p, ¢, 75 €).

Let us proceed to derive the explicit expressions of Lf,;lbic. To this end, we are to use the
Givental quantization technique [I2] to simplify the computation. Note that we will use a
slightly different convention of notations from Givental’s, and we refer to Appendix A of [8] for



the details. Let (V,w) denote the Givental symplectic space, where V is the space of Laurent
series over C, and w is the bilinear form on V defined by

o(f,9) 1=~ xeSemne f(-2)9(2) S Vg € V. (2.6

Denote by ¢;,p; (i > 0) the Darboux coordinates associated to w, and define a family of
infinitesimal symplectic transformations I, kK > —1 on V by

Iy = (=1)FH1329k+1 712 > 1, (2.7)
Then we have the following formulae [12]:

0k,0

LKAV _
k klgists 8g,—01,,>0 T g

(2.8)

Similarly, define a family of infinitesimal symplectic transformations d; := z!=%, i > 1 on V.
Then we have

D; (e_lt, €0/0t) = EZ;! (2.9)

qjr>t,0q;—01;, 520"

Note that the above results of this section hold true for general p,q,r. The local Calabi—Yau
condition (L3) for p,q,r will be needed in what follows.
Following [8] we have the following lemma.

Lemma 2.3 Assume that p,q,r satisfy the local Calabi—Yau condition ([I3]). Define

_(p s\ [T —2/p)T(A —2/q)T(A - z/r)
U(z) = (pl/ gt/ ) \/F(1 IRy (2.10)

Then the asymptotic expansion of log W(z) as z — oo within a properly chosen sector is given
by
T o Bo; 2i—1 2i—1 2—1\ 1-2i

logW¥(z) ~+— — — (p™~ i i - 2.11

og ¥(z) 1 ;22.(%_1)(1) +¢ ) 2 (2.11)
Proof One can obtain formula (Z2.I1]) by using Stirling’s formula [23] and the definition (2.10])
after a careful calculation. O

We note that the constants +mi/4 in the above asymptotic formula (2I1]) do not affect

the results of Givental’s quantization. For simplicity, denote by log ®(z) the following formal
power series of 271

[o¢]
By 2i-1 , 2i-1 , 2i—1\ _1-2i
log ®(z) := — — (p* ¢ t L 2.12
0g ®(2) ;%(2@'—1) (e P (2.12)
Lemma 2.4 The operators Zf,‘;bic, m > 0 have the expressions

+cubic ( — - A m  pt+q+r
Lewie (=g €9 /0t) = ( V, maz) —_ - 2.13
m (6 ,E / ) “ m(Z)e qp—)ti,é)qi»—)(’)ti,izo + 16 24 ’ ( )

where Vi, (2), m > 0 are given by

o P(2) ] 1
Vin(z) = Se—m\ T=m/z (2.14)




Proof Denote

P = exp <(log ()"

It follows from formula (29 and Lemma [2.2] that

qi—ti,0q,—>0r,, i20> ’

LEPe (71, 60/0t) = ® o LKWV (e71t,60/0t) 0 71, m > 0.
Then by using (2.8) we obtain

1 pt+q+r
Sl SN LI
+ m,0 24

Om,—1-
qﬂ—)ti,aqi »—>8ti 16 m7

LEe (71, 60/0t) = (P 0 Ly 0 d71)"

Note that the term —%&n’_l comes from the cocycle [I2] in the quantization of ®ol,, o®~ 1.
The quantization formula (ZI3]) then follows from (2.4]) as well as the identity

23/2 P Oe—maz o 1 — 5 CID(Z) 1 e—mﬁz
2(2) Vz2®(z) ®(z—m)\[ 1-m/z ’

The lemma, is proved. U
We are now ready to prove Theorem [[.3], where we recall that p,q,r are assumed to be

rational numbers given by (L6]).

Proof of Theorem In order to prove the validity of (LI5]), it suffices to show that the

following identities hold true:

A(z,8) ~ . ~ A(x,8)
Ly (€ 'z,e7'8,€0/0s) = K™e & o Leubie (e7't,€0/0t) oe” = , m >0, (2.15)
where
K =h'K K" (2.16)
and '
Ei = fi(x,s) = Z b;’:lckgk + $5i,0, 7 2 0. (217)
k€N

For simplicity we denote
Sk = ¢Sk, k€ N,.

Then the above substitution of the independent variables (2.17)) reads
fi(x,s) = Z b?—lgk + 1’5@0, §k = S — 5k,h' (2.18)
keN,

Since both sides of ([2.17]) satisfy the Virasoro commutation relations, we only need to prove (2.15))
form=0,1,2.

Lemma 2.5 The operator Zgubic satisfies the following relation:
A(é’é—) T cubic (_—1F _A(xié) = 0 v’ g1
e~ oL{™C (et ed/0t) o Z = bkska—% +to3t o (2.19)

10



Proof By using Lemma [2Z.4] we have
Fcubic (,—1 - g1
L(c]u 1C (6 t, 68/813) =z |Qi'—>ti76qi'_>at Z atl . 262 + ﬂ .

Under the substitution (ZI8]), we arrive at

Lgubie (e7't, ea/at)

2
S Sa] [(Sne] <2
i>1 \keN, kEN,
2
1 ~
keN. keN,
A(z,8)
The lemma is proved by applying the conjugation by e < to the above equality. O
Lemma 2.6 The operator Egubic satisfies the following relation:
A(x,8) ~ . ~ A(z,8)
e @ o [Suic (e_lt,ea/at) oe &
Ki—1
Y i a0, L+ Oy e ) O
fod " 051 05 — ba 05005K,—a
2 —1 LV 92
Y iz) 0 , (2.20)
2 _ ) ba 05605_a—K,

where Vi(z) is defined in (2.14]).

Proof Since p = 1/K;1,q = 1/Ks,r = —1/h, we find by using the definition ([2I4) and
Lemma 23] that V;(2) can be given by the asymptotic series (as z — 00) of a rational function,

namely,
19 (2 -z )
Hifill (Z - K%) HZK21 (Z - KL2>
For simplicity the above rational function will still be denoted by V7 (z) as this will not introduce
ambiguity. (Without further mentioning, similar notations will also be used for V,,(z) as they

are also asymptotic series of rational functions.) Note that the rational function Vj(z) has
simple poles at b_(x,_1),.-.,b-1, b1,..., bk, 1, and 1, therefore,

~ Vi(z).

resy—1 V1(y) resy—p, V1(y)
Vi) =1 4 2= 1ly) —=ba 1)
Hence we obtain

z):l—kZ?f" (resy 1Vily +Zb” 1resy b V1 (Y ))

11



Denote a, = by res,—p, Vi(z), a € .. By taking m = 1 in (ZI3)) we obtain

1
qi—t;, 0q .»—>8ti + 1_6 + 24

i+1 i1 i +1—j i+ 1 bn
_Z Zt( . >+Zt Z — <j+n> resy—1 Vi(y +Zaa a—t

LSubic — (le (z)e_az) :

i>0 \ j=0 acl,
+ezz %( Iy i+ 1 Vi) + 3 aabtt 02 +t2+1+01
— — res,— — 4+ —+ —.
2 £ no ) vtV foda otot;  2e2 ' 16 ' 24
4,720 \n=0 acly

Now by performing the variables substitution (2I8]) we arrive at

Lgubic (e7't,e0/0t)

- 0 0 1 - 1
keN, Skth Sho 2\ fem.
2 Kl—l 2 2 —1 2
€ 0 € 0
5 Z (om0 + 5 Z [ e —
2 = 050605K,—a 2 _ ) 05605_a—K,
Ki—1 —1 -
OA( 0 0A 0
N I

054 aSKl_a _ ) 05, 8§_a_K2

Here we used the identity
zz:z-iij (i—l— 1>>\j . (A + 1)i+1 (M+ 1)2+1
— k)TN X —

~ . . A(z,8)
Then dressing the operator L§uPic (e_lt,eﬁ/ﬁt) by e~ we obtain ([220) after a long but
straightforward computation. The lemma is proved. O
We can prove in a similar way the following lemma.

Lemma 2.7 The operator Zgubie satisfies the relation

A(z,8) A(z,8)

e~ o LW (e7't,€0/0t) oe™

= Z b Vo(—bg)s 0 + 2V (O)i—kib_1 res V(z)ai2
_kEN k72 k k8§k+2h 2 059 2N #=bn 72 08,08y,

2K111

2
+—ZZb res,—p, Va(2) == _8

= 05 0+he05 Ky —ath(1-0)

2 1 92

—i—% Z Zbalresz b Va(2)

a=—(Kz—1) £=0

. 2.21
0801+ ht038 _a— Koth(1—1) (2.21)

By using Lemma 23] we can also obtain the following lemma.

12



Lemma 2.8 The numbers ¢, k € N, defined in (LT)—(L8) have the following properties:
(i) For k € N, and £ > 1, cppope/cr = KVi(—=by).
(ii) For £>1, cpe = K'Vy(0).

(iii) For m,n >0,

h Km+n+1
Ca+hm CK{—a+hn = E b . I‘eSZ:baJrhm Vm+n+1(z)7 o = 1, PN ,Kl — 1,
a+hm
h Km—l—n—l—l
Ca+hm C—a—Koy+hn = E b N TeS2=by i him Vm—i—n—i—l(z)a o= _(KQ - 1)7 SR _17
a+hm
Km+n+2

Ch(m+1) Ch(n+1) = TeSz=h(m+1) Vintn+2(2)-

bh(m+1)

By comparing (2:20)-(221]) with the definition of the left-hand side of (2I5) and by using
Lemma 2.8 we find that (213 is true for m = 1,2. Thus Theorem [[3] is proved. O
3 Loop equation: the rational case

In this section, we derive the Dubrovin—Zhang loop equation for the special cubic Hodge inte-
grals in the rational case, namely, we take

pzl/Klv qzl/K27 T‘:—l/h,

where K1 and K5 are coprime positive integers, and h = K; + K».
Introduce a generating series for the operators L,,, m > 0 defined in ([L.I2])-(II3]) as follows:

e lx, e 18, € S
L) =) Ln(e™ 2, €78, ¢0/0s) (3.1)

/\m-‘rl
m>0

Lemma 3.1 The generating series L(\) can be represented as

B = |AOB 5 R0F | 5 (5m5), (32
where the operators Ji(A\) and Jo(N\) are defined by
Ji(N) = e —1 D DL
k€N
K- 1
/Kg 0
J2()\) . Z )\b;Le+1/2 ashf )\ba+hl+ 83a+h£

alf

| K € 0
h athets OSethe

b
a——(Kg 1) £>0 >‘

and [ ]reg,— means to take terms of the series with negative integer powers of \.

13



Proof By comparing the coefficients of A"+ for m > 0 on both sides of B2) with L,
given by ([I2)-(LI3]) we obtain the validity of the identity ([B.2]). The lemma is proved. O

Theorem [[3implies that L(A)Z(x,s;€) = 0 holds true identically in X\. From the definition
of Z(x,s;¢€) given by (L9) we know that its logarithm admits the genus expansion

log Z(x,s;¢€) = Zznga:s

g>0
Here we denote, as we do in Proposition [L.5]
Fylx,s) :=H, (t(x S); [; ; %) + A(2,8) 0g0, with 3 = sp — ¢, "0k . (3.3)
In what follows we will also use the notations
u(z,s) == 02Fo(x,s) (3.4)
and
AF =Y 2 Fy(a,s). (3.5)
g1

Lemma 3.2 The function u(x,s) satisfies the following equations

diu(z,s) = 8fov(t(x,s)), i>0. (3.6)
ou b 82f0 b
— = v — = Y keN,. .
D51 = cp0ye 9205, cre € (3.7)
Proof By using ([I0) we obtain
0
i+1
aw:at()’ _ _C Zbk‘—‘r atl GN*.
The lemma then follows from the Riemann hierarchy (L3]). g
Lemma 3.3 ([7]) For any given g > 1, there exists a polynomial Hy(z,...,239-2;p,q,1) of
D,q, T, 22,23, ... with coefficients depending smoothly on zy and rationally on z1, such that
Ju(t) 0397 2y(t)
Hy(t;p.q,7) = Hy <v(t), Do T o SN (3.8)

It should be noted that Lemma does not require p, q,r satisfy the local Calabi—Yau
condition.
Let us denote ' '
u = Pu(z,s), i>0.
Then from Lemmas we know that
Fy(x,s) = H, (u(o),u(l), .. ,u(3g_2);p,q,r) , g>1, (3.9)
where p=1/Ky, g =1/Ks, r = —1/(K; + K3). Introduce a derivation D(\) on C[[z — 1, s]] by
D(A) = = [J1(A)J2(N)] — € 2 [Ja(N)(Fo) (V)]

where Ji(\), Jo(A) are defined in Lemma B.1]

reg,— reg,— ’

14



Lemma 3.4 The series D(N\)(AF) has the following expression:

D(\)(AF)
=30 [2_;&()\)2(}'0) 52 J2<A)2(“(i))gj—£

i>0

+3 3 BNE) RN W)

4,520

(3.10)

OPAF n OAF OAF
Ou® Oud) ou@® ould) reg

Proof From Lemma [BI] we know that the Virasoro constraints L(\)Z(z,s;¢) = 0 can be
represented as

2

1
HOVEO) + g (RONFE| =0 (3.11)

AOVRONAF) + 5 2 (Fo) () (AF)

01

1 1
b5 (ROPAF) + (RO + 5z W] 4 h=0. (312
€ reg,— 24\
It is easy to see that (3.12]) can be rewritten in the form
o 1 1
D\)(AF) = ﬁ + [5 (Jg()\)z(A}") + (JQ(A)(A}"))2) + 2—62J2()\)2(.7-"0)} . (3.13)
reg,—
Since Jo(A) is a derivation, we obtain (3.I0). The lemma is proved. O
Let us proceed to simplify the equation (BI0]). Introduce the following Puiseux series:
ano ca+hnCn+KL17 Of:O,...,Kl - 17
E, = (3.14)
anoca+hngn_727 o = _(KQ_ 1)7”’7_17
where ¢ := (%) /X, Define
Bij= Y 0, (Ea) G0l (Ep), (3.15)
a,BET

where G*# are constants given by (LId)). Note that B;; € C[u®),u® ... ][[¢]] for all i,5 > 0.

Lemma 3.5 The following formulae hold true:

‘ 1 ' i, .
D()\)(u(l)) — X (8;30,0 + Z (;) le,ij—l—l) , Vi>0, (316)
j=1
—2[JA (i) () R v
[ POENLNWD)] =B, Vi 20 (3.17)

15



Proof Using Lemma B2l and the definition of J3(\) given in Lemma B] we have

1 1 Ky ! K, <
LN (0, F) + —= = — | By +4/22 E, + /22 E,|. 3.18
LI\ ( 0)\/X\/X o\/hag1 Vo > (3.18)

a=—(Ka—1)
Acting 92 on both sides of the equation (B.II)) yields

2
D) = [(e—wz(x)(amfo) + ) ] = L Boo

reg,—

which gives the validity of ([B.I6]) for ¢ = 0. Assume that the formula (310 is true for i = k;
then for i = k£ 4 1 we have

D) (u**V) = 0, D) (™) + [D(N), 8,](u™)

k
1 k
=5 ' Boo+ ) <]> (Bjk—j+1+ Bj-1,k—j+2)
j=1

+ RN @ F0) + Fr W) @®)]

reg,—

k+1

1 k+1

:X <8I;+1B070 + Z < j )le,kﬁ_g) .
j=1

Hence by induction we arrive at the formula ([B.I6]). The formula ([BI7) can be proved by using

(BI5) and (3I8). The lemma is proved. O
Let us now introduce a family of polynomials f; ; € C[u(l),u(2), . ], i,7 > 0 by requiring
the validity of the identity

Diy(C) =D iy (€O y(Q) (3.19)
j=0

for any smooth function y(¢) of ¢ = e*®3) /). Clearly, fij vanishes if 7 < j. For i > j, the
polynomials f; ; can be uniquely determined by the following recursive relations:

fi,o = 0i0,
firtjar = Oufijur +uV fi ;.

Explicit expressions for f; ; will be given in Section @ The functions B; ; defined in (B.I5) can
now be written as

i g
Bij =Y firfiiBr, (3.20)
k=0 1=0
where B
Brii= Y (€O)" (Ea) G*? (¢O) (Ep) (3.21)
a,Bel

and E, are defined by (BI4]).

16



Lemma 3.6 The functions Eim i,7 > 0 defined in B2I) satisfy the relations

~ 1 1
—k
By =+vz®
> B = V32 e (e )
k>0
Bij = Bji, (OBij = Bit1; + Bijt1.

),

(3.22)

(3.23)

Moreover, Ew are polynomials of (1 — K¢)~! with degrees less than or equal to i+ j + 1.

Proof By substituting (814]) into (321]) we obtain

Bog =Y ApnC",
n>0
where
n—1 }( —1n—
Akn =Chng,0 + thzchech (n—0) + 5~ Z Z -+ heCathlCKy —at+h(n—1—f)

/=1 a=1 ¢=0

—1 1

K «
+ T Z ZbaJrtha—irhéC a—Ko+h(n—1-£)
=—(K2—-1)

Using Lemma [2.8] we find that

n—1
— § :E :k—l = n
K nAk,n = ba-i—hf I‘eSZ:baJth Vn(Z) + Ték@.

ael (=0

In particular, we have

1
App = K" <1 —Vo(0) + —Tes:—n Vn(z)> — K"

Hence
S 2 FBop= Y s F AL =D Vil(2) (K
k>0 k,n>0 n>0
1 1 1
K" =20 .
;;(]@z—n \/ 1—n/z( "=V (Z)l—KCe—az <\/§<I>(z)>
Note that

n+1 k 8 1 k Z
KCe 1— Kce0- ZZ o _l EZ_: 1<> "

n>0 k= 1

(3.24)

(3.25)

(3.27)

So from ([B.23)) and ([B.20) it follows that éw belong to C[(1 — K¢)™!] with degrees less than

or equal to 7 + j + 1. The lemma is proved.

17
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Remark 3.7 Introduce the trinomial curve
Xyfiths _yK2 41—, (3.28)
Near X = 0 we have two Puiseux series solutions:

Y. = Z cemX™, =1,

m>0

1 k2
Y+ =X K E C+’mX Kl, Cro= 1.
m>0

By using the Lagrange inversion formula we obtain

Ki+K> m Ki+Ko 1+m%
Ky m=i=2 X K m=z=2\ X 1
(Y—) 2_Z< m2 > Ky’ (Y-i-) 1—Z< ml >7K2'
2

We also observe the validity of the following relations:

Ki—1

0
D Fa= g (7). 30 Ba= )R G (00F) G
a=—(Kz—-1)

with X = (Y52 We conjecture that the curve B28) can be used to give an alternative way
of computing the special cubic Hodge integrals by using the topological recursion of Chekhov—
Eynard-Orantin type. We note that the Ko = 1 case was considered by Bouchard—Klemm—
Marino—Pasquetti [1).

Corollary 3.8 The following formula holds true:

- [JQ(A)Q (fO)]mg,_ N % <8(1—71KC)2 - (% g) 1 —1Kg g) ' (3:30)

Proof By using the definition of J3(A) given in Lemma [B.I]and by using Lemma B.2] we obtain

- 1B B
2 [N (F0)] g - /A u(l)ldx = K%Cl d(KC). (3.31)

Here we recall that By ; is defined in ([B.I5), and the integration constant is chosen such that
the left hand side tends to zero as A — oco. From Lemma [3.6] it follows that

Fo_L 1 3 o L (L o) 1
MTUa-KO? \8 12) 0-KO2T\8 12)1-K(
which, together with ([B31]), leads to the formula ([B30]). The corollary is proved. O
By using Lemmas [3.4] and Corollary we arrive at the following theorem.

Theorem 3.9 The series AF given in B.3), B9) satisfies the Dubrovin—Zhang loop equation

ZaAfal@+ZZ Z 6AF< >a] 1( Q)Gaﬁai_j—ﬂ(Eg)

i>1 j=1a,pel
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©2 1 OAF gi+? 0?2 1 o
_1_6_<E__> 2 G (% (-5)°)

82A]: OAF OAF P e gt
+ 2 Z>:0 %;I < + ou®) Ouli )> 9y (Ea) G077 (Ep), (3.32)
2,]20

where © = —1—1KC with K = thl_KlKQ_K2, and oy =—(p+q+7r)=1— 4+ — .

Note that each side of the loop equation ([3.32]) is a power series of ©. It is understood that
this equation for AF holds true identically in ©. It is easy to check that F, also satisfy the
equations

1 ,
Fi = —logu + ﬂu(o), Z jum% =(29—-2)F, g=>2. (3.33)
u
1
Proposition 3.10 The solution to equations [B32)-[333) is unique.

Proof Expanding ([332]) with respect to e and comparing the coefficients of powers of € we
find that (3.32)) is equivalent to the following equations:

i>0

i ~ (i o 0Fy _ ivo (O 1 _a 0Fg-1
Z 8xBO,O+j§::l<j>B]—1ﬂ_]+1 ul) _;81, <1_6_ 16 24 © oul?)

i>0

-1
PF,o1 = OF, 0F
T3 Z Bitrit (a D oul) +k213“(“ a0 | 92

1,7>0

Here we used the formulae (8.15]). By using the fact that 0F;/ oul) =0 for i > 3¢g—1, and that
B; j are polynomials in © of degrees i + j + 1, we arrive at the following system of equations:

OF, oF, \*©
(6 ®3g 1) <8u(0) : ’8u(3gi2)> :(@ ®3g 1) e 9=1,

where M, is an invertible upper triangular (3g — 1) by (3¢g — 1) matrix, and Ny is a column
vector. All the elements of the matrix and the vector are polynomials of 1/ MOIRTCRTIO R
So the gradient of F, is uniquely determined. The proposition then follows from (3:33]). O

4 Loop equation: the general case

In this section we drop the rational condition (L6 and consider the general case when p,q,r
are arbitrary complex numbers satisfying the local Calabi—Yau condition ([L3). We will give
and prove the general version of the loop equation for the corresponding Hodge free energies.

As it is pointed out in Lemma B3] there are polynomials Hy(zo, 21, .. .,23g—2;P,¢,7) in
p,q,r satisfying the relations (B8] and the relations (LI9) (see [7]), where g > 1. It is then
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clear that Hy(zo,...,239—2;P,q,7), g > 1 are also polynomials of o1, 03. For simplicity, we will
denote them by Hg(2o, ..., 23g—2;01,03).
We will need the following lemma.

Lemma 4.1 Let P(o1,03) be a polynomial in Cloy,03]. If P vanishes for the values

where K1, Ky € N, (K1, Ks) =1, then P = 0.

Proof Suppose P # 0. Fix K; to be any positive integer. We observe that the points

belong to the irreducible algebraic curve
2K303 —6K101 — 6 — Kjo3 =0

on the (01,03) plane. It is easy to see that there are infinitely many of such points with
(K7, K3) = 1. Hence the polynomial

ZK%U% — 6K101 —6— K%Ug

must divide P(o1,03). This contradicts with the fact that a polynomial has a finite degree.

The lemma is proved. O
It follows from Lemma [A.T] that if a polynomial P in Cloy, 03][22, 23, . . . ] [zl, e 1] is equal
to Hg(ZQ, ceey 23g—2;01, 0'3) for

“WW{ETE‘EfE@ifﬁ‘E‘@

with K, K being arbitrary coprime positive integers, then P = H(2o, ..., 234-2;01,03), where
g > 2. For g = 1, we have the explicit expression

1 01
Hl(ZQ,Zl;O'l,O'g) = ﬂlogzl + ﬂZO.

To prove Theorem [[.4] we futher introduce some notations. Let B, 1(X1,..., Xp—x41) be
the exponential Bell polynomials. They can be defined via the generating function

S Bup (X1 X)L —esp [ -3 XY
n,k 1y An—k+1 n' — p j '
n,k>0 Jj=1

Let B,, denote the complete Bell polynomials, i.e.

n
By:=1, Bu(X1,...,Xp):= ZBn,k (X1, s Xpgr1), n>1
k=1
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Now we define 150,”(5; o1,03) € Cloy,03)[(1 — €)1, n > 0 by the equation

= ] B ) 1 1
;;)2 Pon(&o1,03) = VaP(z:01,08) 17— oo <\/E<I>(z; 0_1’03)> ; (4.1)

where

P(z;01,03) =exp | — Z 721.(22.21 0 (R N A EP U PR

Denote ® = ®(z;01,03). Then the equation ([I]) can be written more explicitly as follows:

n—l—l

Zz "Pon(&01,03) = ZZ (n kk Z Qmml 2m—1)) Z27"e o™ (é), (4.2)

n>0 n>0 k= 1

where Q(n, k) are the numbers defined in (B.27]), and

@8§ <é> =B, (—ZL log®,..., —Gﬁ log <I>> , £>0. (4.3)

We define, for 7,5 > 0, PJ = M({; o1,03) by the following recursion:

P’j—Pju

)

faﬁ J = PZHJ +P7]+1

Note that the functions f; , defined in ([B.19) are just the Bell polynomials B; j,(21, . - ., Zi—k+1)-
By using these functions we introduce the following notations:

i
Py =Y Birlz1, - zicks)Bia(21, - zjg1) Pra(§ 01, 08), i,§ > 0.
k=0 ¢=0

We are now ready to prove Theorem [[.4

Proof of Theorem It is easy to verify that the functions P;; defined above coincide with
the functions B; ; that are given in (B.20) when { = K¢ and

(01,03) = <E—E—E7ﬁ—K—%—F
(z1,22,...) = (u(l),u(2),...>,

where K1, K5 are arbitrary coprime positive integers. It then follows from Theorem that
AH = Z >1 €2972H (20, ..., 239—2;01,03) satisfies equation ([LIS) for the particular values
of (o1,03), Where H (zo, ..., 23¢g—2;01,03) are introduced in the beginning of this section. By
definition we also see that P; ; € Cloy,03][(1 — €)™Y 21, 29,...]. Then by using Lemma F.T] we
find that AH is a solution to the loop equation (LI8]). As we do in the proof of Proposition .10
we deduce from ([LI8)) the following equation for each g > 1:

~ OH, oH, \" ~
(@,"' ,®3g—1) Mg(01,0'3) <az(;‘7,... 9 ) — (@7... 7@39—1) Ng(01,0'3),

)
8z3g—2
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where Mg(al, o3) is an invertible (3g — 1) by (3¢ — 1) matrix, ]\79(01, o3) is a column vector,
and their entries are polynomials of o1,03. Therefore we verified that the gradient of H, is
uniquely determined by (LIS). The theorem is proved. O

Example 4.2 By taking the coefficient of € in (LIR)), we obtain the following equation for Hy:

OH, 0H, ©? 1 o
Pyo—0t Poo+Py1) — = — — [ — -2 )e.
%992 +(0Ro0 + For) 9z 16 \16 24 ©

The coefficients read
Z1

Pyo=0, Pyi= 5 (0*-0).

So we have

321 8H1 2 8H1 3Z1 8H1 _@2 1 g1
— e 5 . )9=1 )
which gives

8H1 g1 aHl 1

aZO n ﬂ7 621 - 2421 '

Hence we obtain (LZ2I)). In a similar way, we obtain formula (L22]) and the following expression
Of H3 N

H, — 1 2z T 22 53z 353 23z 103 2}
82944 z7 46080 z{ 161280 z§ = 322560 z} 483840 z{
1273 292324 83 23z 59 23 83 2223 59 25z
322560 20 15120 20 6451227 7168 26 ' 3024 T
5 2§ Toy 26 38301 2225  Alo? zz 6890y 2324 1850y 2524
T G4S.7 13824027 967630 3 | 530608z 967680 z3 | 96768 -1
37307 2924 2303 1103 86901 2225  6lo? 22
1451520 22 <580608 a 2903040) “7T322560 22 322560 22
9343 2323  15l0% 2323 1907 1905 \ 2223 1310y 23
T 1451520 27 207360 7 (1451520 _2903040> 21 45360 20
1907 23 < 410 410103> < o} o3 > 23
- 1 + - 2123 + - )
53760 22 ' \ 4354560 8709120 108864 217728 ) 22
N < 3lof _ 3loyog > 2 < ob B o303 n o3 ) " (4.4)
4354560 8709120 13063680 13063680 = 52254720
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