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Abstract. We develop a notion of dephasing under the action of a quantum Markov

semigroup in terms of convergence of operators to a block-diagonal form determined

by irreducible invariant subspaces. If the latter are all one-dimensional, we say the

dephasing is maximal. With this definition, we show that a key necessary requirement

on the Lindblad generator is bistochasticity, and focus on characterizing whether a

maximally dephasing evolution may be described in terms of a unitary dilation with

only classical noise, as opposed to a genuine non-commutative Hudson-Parthasarathy

dilation. To this end, we make use of a seminal result of Kümmerer and Maassen

on the class of commutative dilations of quantum Markov semigroups. In particular,

we introduce an intrinsic quantity constructed from the generator, the Hamiltonian

obstruction, which vanishes if and only if the latter admits a self-adjoint representation

and quantifies the hindrance to having a classical diffusive noise model.
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1. Introduction

The phenomenon of decoherence describes the loss of quantum coherence over time, and

the resulting transition from pure quantum states to classical statistical mixtures, due to

the interaction of an open system with its environment, which may physically represent

unobserved or otherwise uninteresting degrees of freedom, or a measurement apparatus

[1]. In this work, we focus on continuous-time Markovian quantum dynamics, described

by a quantum Markov semigroup (QMS), with the corresponding generator in Gorini-

Kossakowski-Sudarshan-Lindblad canonical form [2, 3]. There has been a renewed

interest in understanding the extent to which decoherence may be described purely

in terms of random unitary dynamics arising from classical, commutative noise models

(physically akin to fluctuating external fields), with the goals of both shedding light on

fundamentally non-classical dynamical aspects and possibly obtaining computationally

http://arxiv.org/abs/1811.11784v2
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more tractable models. In fact, the class of QMS generators arising from commutative

dilations was completely determined by Kümmerer and Maassen [4] as far back as 1987.

Our main aim here, in particular, is to discuss the above question for the simplest

yet important scenario of decoherence, namely, one where the coherence decay occurs in

a dissipationless fashion, without being accompanied by unrecoverable energy exchange

with the environment - often referred to as a “pure T2-process” in physics terminology or

simply as (pure) dephasing. Since there are several competing mathematical definitions

of dephasing in the literature (see for instance [5, 6, 7]), our first step is to make the

notion of Markovian dephasing more precise. Our formulation is closest to the one in [5];

in the case of maximal dephasing, it leads to the concept of a stable basis that recovers

the “pointer basis” introduced by Zurek [8] and also embodies the simplest information-

preserving structure [9]. For more recent representative contributions on decoherence

through random unitary models see for instance [10, 11, 12, 13].

We leverage as a main tool the theory of unitary dilations of a QMS, developed

in the context of quantum stochastic calculus by Hudson and Parthasarathy [14, 15].

Specifically, Hudson and Parthasarathy gave an explicit unitary dilation theory using

Fock-space-based environments for QMSs. Their quantum stochastic calculus is based

on analogue of the Itō calculus for integrals with respect to creation, annihilation and

gauge processes, and contains classical situations as a special, commutative case. In our

context, the relevant question becomes to characterize the dephasing QMSs that are

“truly quantum,” in the sense that they actually need the full Hudson-Parthasarathy

theory: more precisely, those QMSs that cannot be described as a unitary dilation using

only classical, commutative noise processes. This is where the Kümmerer and Maassen

Theorem [4] enters. They studied QMSs on finite-dimensional Hilbert spaces that admit

a dilation to a unitary stochastic evolution with classical noise (referred to as “essentially

commutative Markov dilations”) and gave a characterization of the Lindblad generator

of such semigroups ([4, Theorem 1.1.1]). These turned out to be the semigroups driven

by classical noises that are diffusive (in the form of Wiener processes), or of the jump

type (in the form of Poisson processes), or a combination of such noises. Thus, the

problem of characterizing the type of decoherence that may ensue from classical noise

ultimately comes down to studying the Kümmerer and Maassen class.

We begin our analysis by introducing the required background on QMSs and

quantum stochastic differential equations (QSDEs) and by discussing some paradigmatic

low-dimensional examples (Sec.§2). In Sec.§3 we make our notions of dephasing

and maximal dephasing mathematically precise (Definition 12) and characterize, in

particular, maximal dephasing QMSs as being diagonal in the stable basis (Theorem 16).

In Sec.§4 we introduce the concept of Hamiltonian obstruction associated to a dephasing

QMS, and show that its vanishing is equivalent to the existence of a representation of

the QMS generator involving only self-adjoint coupling operators (Theorems 22 & 24).

In Sec.§5 we bring those tools to bear on the problem of characterizing essentially

commutative dilations of maximally dephasing QMS (Theorem 29). As a main result,

we find that vanishing of the Hamiltonian obstruction is necessary and sufficient for



3

a diffusive classical dilation to exist, whereas a non-zero obstruction may still be

compatible with the existence of a classical dilation that involves Poisson noise processes.

2. Background

For convenience, we take the Hilbert space of the system of interest to be h = CN . The

Heisenberg picture form of a QMS consists of a family Φ = {Φt : t ≥ 0} of completely

positive maps which are conservative, namely, Φt(11N) = 11N , ∀t ≥ 0. The standard

representation of the generator [3] reads (in units ~ = 1):

LX =
1

2

d
∑

k=1

[L∗
k, X ]Lk +

1

2

d
∑

k=1

L∗
k[X,Lk]− i[X,H ], (1)

where the operator H is self-adjoint. We will restrict to the special case where the index,

k, ranges over a finite set, say, k ∈ {1, . . . , d}: the coupling (or Lindblad) operators,

L = {Lk}, are bounded by assumption of a finite-dimensional Hilbert space. The

Schrödinger-picture version consists of the semigroup of dual maps, Φ⋆
t , and the density

matrix evolves as ρt = Φ⋆
t (ρ0)‡. This leads to the QMS master equation ρ̇(t) = L ⋆(ρ(t)),

where the dual generator is

L
⋆ρ =

d
∑

k=1

LkρL
∗
k −

1

2

d
∑

k=1

(

L∗
kLkρ+ ρL∗

kLk

)

+ i[ρ,H ]. (2)

It is well known that the Heisenberg representation of the generator given in (1) is

not unique [3] (see also Theorem 7 below regarding the degree of freedom in choosing

the operators Lk and H). However, once fixed, the Schrödinger version will inherit the

representation (2) by duality.

Definition 1 The representation (1) is minimal if the number d is minimal, in which

case it is referred to as the rank of the QMS. The dual representation (2) is minimal

whenever it is dual to a minimal (1).

Note that if the representation (1) is minimal, then 11N , L1, · · · , Ld are linearly

independent [15, Theorem 30.16]. A key concept in discussing Markovian dynamics

is Lindblad’s definition of dissipator [3], namely:

DL (X, Y ) , L (XY )− L (X)Y −XL (Y ). (3)

Lindblad showed that the generator of a completely positive semigroup must satisfy

the dissipativity property DL (X∗, X) ≥ 0 [3]. One sees that the dissipator vanishes,

DL (X∗, X) = 0 for all X , if and only if L is Hamiltonian. Following Lindblad [3], we

say that a generator is pure if it takes the form LX = 1
2
[L∗, X ]L+ 1

2
L∗[X,L], which can

be easily seen to correspond to the dissipator DL (X,X) = [X,L]∗[X,L]. The general

form (1) is then just a sum of d pure generators, plus a Hamiltonian term.

‡ Since in this work we consider exclusively finite-dimensional Hilbert spaces and ∗-algebras of matrices,

we identify density operators ρ with states on the ∗-algebra, by letting E[·] = tr{ρ ·}. In the general

infinite-dimensional case, one would work with von Neumann algebras and density operators would

correspond to normal (i.e., weak ∗-continuous) states of the von Neumann algebra.
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2.1. Quantum stochastic evolutions

Dilations of QMSs were realized through the quantum stochastic calculus of Hudson and

Parthasarathy [14], now also often referred to as the SLH formalism in the context of

describing quantum feedback networks [16]. We will work on the joint Hilbert space of

the system and field degrees of freedom, h ⊗ F, where F is a prescribed Fock space

on which canonical (bosonic) annihilation and creation processes Bk(t), Bk(t)
∗ (for

k = 1, . . . , d) are defined. In this formalism, the evolution with respect to d input

processes satisfies unitary quantum stochastic dynamics described by a QSDE of the

general form

dUG(t) = dG(t)UG(t), UG(0) = 11, (4)

where the differential germ is given by

dG(t) =
∑

jk

(Sjk − δjk 11N)dΛjk(t) +
∑

j

LjdBj(t)
∗ −

∑

jk

L∗
jSjkdBk(t)

−
(

iH +
1

2

∑

k

L∗
kLk

)

dt. (5)

Here, the repeated indices are summed from 1 to d, Λjk(t) are the exchange processes,

and 11 (with no subscript) is a shorthand for the identity operator on h⊗ F [14].

On this joint space, we have the triple G ∼ (S,L, H). The S denotes a d× d array

whose entries, Sjk, are system operators (N × N matrices). The L is a column vector

of length d with entries, Lj , that are system operators. Finally, we have the system

Hamiltonian H = H∗. The objects Sjk, Lk, H are operators on the N -dimensional

system space, h, and a d-dimensional multiplicity space K is also associated to the

input noise fields. Taking Ω to be the Fock vacuum state, we obtain a QMS Φt with

generator L as in (1) by the prescription

〈u, Φt(X)v〉 ≡ 〈u⊗ Ω, U(t)∗[X ⊗ 11]U(t) v ⊗ Ω〉, (6)

for each bounded system operatorX , where 〈 , 〉 denotes inner product in the appropriate

Hilbert space.

It is noteworthy that the scattering matrix S does not appear in the Lindbladian

(1), only the coupling operators and the Hamiltonian. In fact, we have the following:

Proposition 2 For G ∼ (S,L, H) the generating data for a unitary quantum stochastic

evolution UG(t) as in (4), let ΦG,t denote the corresponding QMS and LG the associated

Lindbladian. Then

U(S,L,H)(t) |v ⊗ Ω〉 = U(11,L,H)(t) |v ⊗ Ω〉, ∀v ∈ h. (7)

Moreover, L(S,L,H) = L(11,L,H) which we will denote as L(L,H) for simplicity.

Proof. As the (future-pointing) Itō increments dBj(t) and dΛjk(t) annihilate the

(future factor) of the vacuum vector |Ω〉, it follows from (4) that

dUG(t) |v ⊗ Ω〉 =
[

∑

j

LjdBj(t)
∗ −

(

iH +
1

2

∑

k

L∗
kLk

)

dt

]

|v ⊗ Ω〉,
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which does not depend on S. By the uniqueness of the quantum stochastic process [14],

we deduce (7).

In what follows, two composition rules will be relevant for combining SLH triples

of individual components [16]. Let G ∼ (S,L, H) and G′ ∼ (S′,L′, H ′) be SLH triples

with the same system space and multiplicity space. The series product is given by

G ⊳ G′ = (S′,L′, H ′) ⊳ (S,L, H) ∼
(

S′S, S′L + L′, H ′ + Im {L′∗S′L}
)

. (8)

Likewise, the concatenation product is given by

G⊞G′ = (S′,L′, H ′)⊞ (S,L, H) ∼
([

S 0

0 S′

]

,

[

L

L′

]

, H +H ′

)

. (9)

2.2. Bistochastic quantum Markov semigroups

An important class of QMS arises by demanding that the dual also defines a valid QMS:

Definition 3 A QMS {Φt : t ≥ 0} is bistochastic if its Schrödinger dual {Φ⋆
t : t ≥ 0}

is also a QMS, in particular Φ⋆
t (11N) = 11N .

Proposition 4 The QMS corresponding to G ∼ (S,L, H) is bistochastic if and only if

d
∑

k=1

L∗
kLk =

d
∑

k=1

LkL
∗
k. (10)

Proof. If the QMS is bistochastic, then L ⋆
(L,H)(11N ) = 0 which implies (10). Conversely,

if (10) holds, then L(L,H) = L(L∗,H), where L∗ means the collection of operators L∗
k.

Bistochasticity is therefore synonymous with the unital property, which means that

L ⋆
(L,H)(11N) = 0. In the case of a finite-dimensional Hilbert space as we have assumed, it

follows that the maximally mixed state, ρmax =
1
N
11N is invariant under the Schrödinger

dual semigroup. A complete characterization of bistochastic generators for the qubit

case (N = 2) is given in [18]. If we fix a density matrix ρ0 and define ρt = Φ⋆
t (ρ0) to be

the Schrödinger evolution of the state at time t, then the purity at time t is defined as

pt , tr{ρ2t}. It is known that the purity decreases monotonically for dim h < ∞ if and

only if the QMS is bistochastic [19] (in the infinite-dimensional case bistochasticity is

sufficient though not necessary [19]).

Some special cases where condition (10) is satisfied are the following:

• Self-duality (up to a Hamiltonian term): this occurs when Lk = L∗
k for each

k, that is, all the couplings operators are self-adjoint (note that the dual of L(L,H)

is L(L,−H) in this case).

• Normal operator dissipation: this occurs when L∗
kLk = LkL

∗
k for each k, that

is, all the coupling operators are normal.

For dimension N ≥ 3, it is known that the above self-duality and normality

conditions are sufficient but not necessary for the corresponding QMS to be unital [18].
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Definition 5 A triple G ∼ (S,L, H), with system space h and multiplicity space K, is

said to be minimal if there is no triple G′ with the same system space h and multiplicity

space K′ of lower dimension such that LG = LG′.

Alternatively, we say that a representation L = LG of a Lindbladian is minimal if G

is minimal: that is, we realize L through an SLH model using as few noise channels as

possible. Generally, there is no physical requirement for an actual model set-up to be

minimal. The use of this notion is purely for mathematical convenience. The minimality

condition can be restated as follows: G ∼ (S,L, H) is minimal if and only if the set

{11d, Lk : k} is linearly independent. (This means that if c011d +
∑

k ckLk = 0, with

complex coefficients satisfying |c0|2 +
∑

k |ck|2 < ∞, then c0 = 0 and ck = 0 for each k.)

Definition 6 Two SLH triples G ∼ (S,L, H) and G′ ∼ (S′,L′, H ′) with the same

system space and multiplicity space are Euclidean equivalent if their series product

G′ = Gscalar ⊳ G,

where Gscalar ∼ (T, β, e11d), with T = [Tjk11d] , β = [βk11d] and the Tjk, βk and e complex

scalars (T unitary and e real).

In terms of the actual coefficients, we have S′ = TS, L′ = TL + β, and

H ′ = H + e+ Im {β∗TL} or, explicitly,

S ′
jk =

∑

l

TjlSlk,

L′
j =

∑

l

TjlLl + βj11N ,

H ′ = H + e11N +
1

2i

∑

jk

{

β∗
jTjkLk − L∗

jT
∗
kjβk

}

. (11)

The above transformation properties recover the known conditions for invariance of the

Lindbladian under a change in representation (sometimes also referred to as “gauge

freedom” in the literature), L(L,H) = L(L′,H′) [3, 7, 20, 21]. In particular, the complex

damping operator

K , −1

2

∑

k

L∗
kLk − iH, (12)

transforms as

K ′ = K −
∑

jk

β∗
jTjkLk −

(1

2

∑

k

|βk|2 + ie
)

11N . (13)

The following result is proved in [15]:

Theorem 7 (Parthasarathy [15] Thm. 30.16) Let L be a Lindbladian on the

space of bounded linear operators on h, B(h), and let L = LG be a minimal SLH

representation. Then all other minimal representations are Euclidean equivalent.
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We remark that while several results concerning QMSs can be formulated in

terms of a representative SLH triple, G, these results must then be covariant under

transformation of G to a Euclidean equivalent one. One way of narrowing down the

possible equivalence class is to specify the average for a fixed state:

Definition 8 Let E[·] = tr{ρ ·} be a state corresponding to a density operator ρ. Then

G ∼ (S,L, H) is centered with respect to E if E[H ] = 0 and E[Lk] = 0 for all k.

Clearly, we can always center H and all the Lk using an appropriate Euclidean

transformation.

2.3. Illustrative examples

We illustrate the concepts introduced so far by revisiting some paradigmatic examples.

2.3.1. Dephasing (phase damping). With N = 2, take B(h) = M2, the space of 2 × 2

complex matrices, and consider the d = 1 input model G ∼
(

112,
√
γσz, 0

)

. Then the

Lindbladian is

LG (X) = γ (σzXσz −X) , γ > 0. (14)

In this case, L ⋆ = L so the QMS is the same as its dual, and thus automatically

bistochastic. The constants of the motion are those operators commuting with σz,

and these are precisely the operators of the form α112 + βσz for complex numbers

α, β. As the QMS is self-dual, the stationary states must have this form too, so we

find the family E = {1
2
112 +

1
2
λσz : λ ∈ R, |λ| ≤ 1}. As is well known, the master

equation, ρ̇ (t) = L ⋆ (ρ (t)) can be solved explicitly and, subject to the initial condition

ρ (0) =

[

ρ11(0) ρ10(0)

ρ00(0) ρ00(0)

]

, we have

ρ (t) =

[

ρ11 (0) e−γtρ10 (0)

e−γtρ00 (0) ρ00 (0)

]

→
[

ρ11 (0) 0

0 ρ00 (0)

]

∈ E , (15)

in the asymptotic long-time limit. The limit therefore depends on the initial state:

the diagonal terms, representing populations, are unchanged, whereas the off-diagonal

coherence terms vanish. Recall that a state ρ is faithful if, whenever X ≥ 0 and

tr{ρX} = 0, then we must have X = 0. The family E has the property that all elements

except |λ| = 1 are faithful states. To see this, note that ρ0 = |e0〉〈e0| and ρ1 = |e1〉〈e1|
are extreme elements in E , and every other element is a convex combination of these

two. It then follows that if X =

[

x11 x10

x01 x00

]

≥ 0 has vanishing expectation for both

ρ0 and ρ1, then x11 = x00 = 0 and positivity of X then requires that x01 = x∗
10 = 0 too.

Remark 9 In more general dephasing situations, we have a complete orthonormal basis,

{|ek〉}k, for which each pure state |ek〉〈ek| is stationary, whereas Φ⋆
t (|ej〉〈ek|) vanishes

for large t when j 6= k. The set {|ek〉〈ek|}k forms a family of stationary states, and the

convex combinations of these states yield all the invariant states.
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2.3.2. Depolarization. By still working with N = 2, a d = 3 input model may be

constructed by letting G ∼
(

112, (
√
γxσx,

√
γxσy,

√
γxσz), 0

)

. Accordingly,

LG (X) =
∑

u=x,y,z

γu (σuXσu −X) , γu > 0,

which corresponds to a sum of pure generators, each implementing a phase damping

process with strength γu along the u-th direction. Clearly, the resulting QMS is still

self-dual, hence bistochastic. Unlike for dephasing, however, the only stationary state

ρ∞ is now the fully mixed density operator, and no rank-one projector of the form

|ek〉〈ek| exists, that is invariant under the dynamics.

2.3.3. Relaxation (amplitude damping). Again, take B(h) = M2, but now let the triple

G ∼
(

112,
√
γσ−, 0

)

. Then the Lindbladian is

LG (X) = γ
(

σ+Xσ− − 1

2
σ+σ−X − 1

2
Xσ+σ−

)

, γ > 0,

or, equivalently,

LG

[

x11 x10

x01 x00

]

= −γ

[

x11 − x00
1
2
x10

1
2
x01 0

]

.

Since σ+σ− 6= σ−σ+, the QMS is not bistochastic. Evidently there are no faithful

stationary states other than multiples of the identity. The master equation ρ̇ = L ⋆
Gρ

can be solved explicitly, yielding

ρ (t) =

[

e−γtρ11 (0) e−γt/2ρ10 (0)

e−γt/2ρ00 (0) 1− e−γtρ11 (0)

]

→
[

0 0

0 1

]

,

for large times. Accordingly, there is a unique stationary state, ρ∞ ≡ |e0〉〈e0|, which is

pure and therefore not faithful.

2.3.4. Relaxation to a pure state and decay. The above example provides the textbook

example of a QMS that admits a pure state ρ∞ as its unique stationary state, and

can, as such, model physical processes such as purification or ground-state cooling.

In such a case, the subspace of the system’s Hilbert space that is associated to

non-decaying components is one-dimensional, with a rank-one orthogonal projector P

obeying ρ∞ = Pρ∞P , and a corresponding (N − 1)-dimensional decaying subspace

associated to Q = 11N−P [5, 22, 23]. In the general case where the steady-state manifold

is not one-dimensional, we may require the orthogonal projection P to additionally obey

tr(P ) = maxρ∞{rank(ρ∞)}, so thatQ = 11N−P gives the maximal orthogonal projection

for which limt→∞QΦ⋆
t (ρ)Q = 0, for all initial density operators ρ (see also [23, 24] for a

recent characterization of the properties of the generator based on a block-decomposition

into decaying and non-decaying components). Accordingly, no decaying subspace exists

(P = 11N) for the dephasing and depolarizing Lindbladians described in §2.3.1-§2.3.2.
Conditions under which a QMS may admit a unique pure stationary state have

been extensively investigated in the mathematical-physics literature [25, 26, 27], and
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have received recent attention in connection to dissipative quantum state stabilization,

see for instance [28, 20, 21]. The following result is worth recalling:

Theorem 10 (Frigerio [26] Thm. 3.2) Suppose that E0 is a stationary pure state

of a QMS with generator L , say E0[X ] = 〈e0, X e0〉 for a unit vector |e0〉. Then the

generator may be written in the form L = LG, where

K|e0〉 = 0, Lk|e0〉 = 0, ∀k, (16)

where K = −1
2

∑

k L
∗
kLk − iH is the complex damping operator defined in (12).

Proof. We must have

〈e0|L (X) e0〉 = 0, ∀X ∈ B(h). (17)

Setting X = |e0〉〈e0| in (17), we therefore also have

0 = 〈e0|L
(

|e0〉〈e0|
)

e0〉 = 2Re 〈e0|K e0〉+
∑

k

|〈e0|Lke0〉|2.

Without loss of generality, we may assume that G is centered with respect to E0, in

which case we must have Re{E0[K]} = 0. Specifically, we have 0 =
∑

k E0[L
∗
kLk] =

∑

k ‖Lke0‖2, but this requires that Lk|e0〉 = 0 for all k. Thus, we are left with

K|e0〉 = −iH|e0〉. Let us take {|en〉 : n ≥ 0} to be a complete orthonormal basis

of h. Then setting X = |en〉〈em| in (17), we have

0 = 〈e0|L
(

|en〉〈em|
)

= δ0n〈e0|K∗ em〉+ 〈en|Ke0〉δm0.

This implies 〈en|Ke0〉 = 0 for all n 6= 0. Hence, e0 is an eigenstate of K, and

consequently of H also. By the centering condition, the eigenvalue is zero, as stated.

The conditions (16) are stronger than just centering. In particular, they imply that

〈e0, K e0〉 = 0, which does not follow from centering alone. The following corollary, an

equivalent version of which is also proved in [28] (Proposition 2), makes this explicit:

Corollary 11 Under the same conditions as in Theorem 10, every triple G ∼ (S,L, H),

for which the generator L = LG, has the property that |e0〉 is an eigenvector of

K = −1
2

∑

k L
∗
kLk − iH and each of the Lk, for all k.

Proof. Let us take G to be the centered SLH triple in Theorem 10, and consider the

triple G′ obtained by the Euclidean triple in (11). We have L′
k|e0〉 = βk |e0〉, and, by

(13), K ′|e0〉 = −
(

1
2

∑

k |βk|2 + ie
)

|e0〉. Dropping the primes gives the result.

Note that the conditions that K and the Lk have |e0〉 as an eigenvector are properties

which transform covariantly under Euclidean transformations, but the condition that

H has |e0〉 as an eigenvector does not.

3. Dephasing quantum Markov semigroups

We say that an orthogonal projection P is invariant under a QMS Φ if Φt(P ) = P

for all t ≥ 0. Such a projector is further said to be irreducible if there is no proper

sub-projection which is also invariant under the QMS. A family of mutually orthogonal

projectors {Pn} on h is complete if PnPm = Pnδn,m and
∑

n Pn = 11N .
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Definition 12 Let P and Q be two invariant orthogonal projections that are mutually

orthogonal to each other. We say that they dephase under the QMS if

lim
t→∞

Φt(PXQ) = 0, ∀X ∈ B(h), (18)

where convergence is understood in matrix norm. A QMS is said to be dephasing if it

admits an irreducible invariant dephasing family of projectors, that is, a complete

family {Pn} such that each Pn is invariant and irreducible, and each pair Pn and Pm,

n 6= m, is dephasing as in (18). The QMS is said to be maximally dephasing if there

exists such a family where all projectors are rank one. Equivalently, for a maximally

dephasing QMS, there exists an orthonormal basis {|n〉}, referred to as a stable basis,

such that Pn = |n〉〈n| and Φt (|n〉〈m|) → 0 as t → ∞ for n 6= m.

Some comments are in order. To begin with, the above dephasing notion was

exemplified in §2.3.1 for a single-qubit model. Our definition of an irreducible invariant

dephasing family coincides with the notion of dephasing introduced by Baumgartner

and Narnhofer in [5], who formulate in the Schrödinger picture as

lim
t→∞

PmΦ
⋆
t (ρ)Pn = 0, whenever n 6= m.

In the case of maximal dephasing, the stable basis recovers the concept of a pointer

basis introduced by Zurek [8]. Indeed, transferring to the Schrödinger picture leads to

Φ⋆
t (ρ0) ≡

∑

n,m

pn,m|n〉〈m| →
∑

n

pn|n〉〈n|, pn = 〈n|ρ|n〉,

in the long time limit, for arbitrary initial density matrices ρ0, implying that classical

information stored in the index n is perfectly preserved [9].

In what follows, we shall denote the commutant of a family of operators, say, P,

by P ′, that is, P ′ = {X ∈ B(h) | [X,P ] = 0, ∀P ∈ P}.

Theorem 13 If a QMS possesses an irreducible invariant dephasing family {Pn}, then
in any representation (L, H) we have H,Lk ∈ {Pn}′, for all k.

Proof. Suppose that an orthogonal projection P is invariant, then L P = 0, and

DL (P, P ) = L P − (L P )P − P (L P ) = 0. As the dissipation, DL (P, P ), vanishes we

conclude that P must commute with each Lk, and so 0 = L P ≡ −i [P,H ]. Therefore

P commutes with H and all the Lk. It follows that if {Pn} is an invariant family then

Pn commutes with H and Lk for all n and k.

Dephasing family of projectors arise naturally if the Hamiltonian and all the noise

operators in G ∼ (S,L, H) are diagonal in the same spectral representation:

Lemma 14 Suppose that we have the spectral decompositions H ≡
∑

n εnPn and

Lk =
∑

n λk,nPn for each k = 1, . . . , d. Then for any operator X,

Φt(PnXPm) = eznmtPnXPm, (19)

where

znm =
∑

k

(

λ∗
k,nλk,m − 1

2
|λk,n|2 −

1

2
|λk,m|2

)

+ i(εn − εm). (20)
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Moreover, the family {Pn} is an invariant (not necessarily irreducible) dephasing family

if and only if
∑

k |λk,n − λk,m|2 > 0 for all pairs n 6= m.

Proof. Under the stated assumptions, the Lindblad generator takes the form

L (PnXPm) = znm PnXPm. (21)

Equation (19) follows automatically. In particular, PnXPm are the eigen-operators of

the Linbladian and the znm are the eigenvalues. These numbers can be decomposed into

real and imaginary parts, namely,

znm = −1

2
γnm − iωnm,

where the dephasing rates and dephasing frequencies are respectively given by

γnm ,
1

2

∑

k

|λk,n − λk,m|2 , (22)

ωnm , εm − εn + Im
∑

k

(λ∗
k,nλk,m). (23)

We note that znm = 0 if n = m, hence each Pn is invariant. More generally, z∗nm = zmn,

and γnm = γmn, ωnm = −ωmn. If n 6= m, then Pn and Pm dephase if and only if the

dephasing rate in (22), and hence
∑

k |λk,n − λk,m|2, is strictly positive, as claimed.

3.1. Comparison with other definitions of dephasing

An alternative definition of dephasing QMS is introduced by Avron et al., see

Proposition 17 of [6] and §2.3 of [7]. Accordingly, a QMS L = LH,L is dephasing with

respect to the Hamiltonian H if the commutant ofH , {H}′, (strictly) contains the kernel
of L . Since in general the latter obeys ker(L ) ⊇ {H,L}′ (see for instance Lemma 2 in

[21]), and {H}′ ) {H,L}′, Avron et al.’s definition can be seen to be equivalent to the

requirement that, for each k, we have Lk = fk(H), in the usual spectral sense, for some

function fk. This notion of dephasing formalizes the one most commonly employed in

physical settings, where a specified Hamiltonian H is taken to define the “quantization

axis” of the problem and dephasing does not induce transitions in the energy eigenbasis.

Our Theorem 13 requires that H,L1, . . . , Ld ∈ {Pn}′, which will typically be a non-

commutative set: this leaves open the possibility that [H,Lk] 6= 0 for some k. In fact,

the Jacobi identity tells us that [H,Lk] belongs to {Pn}′, as do all higher commutators.

Example 15 Consider a two-qubit system, N = 4, with two noise inputs, d = 2,

subject to a QMS L(L,H) involving a Heisenberg exchange Hamiltonian and single-qubit

independent dephasing channels. That is,

H = J(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz), J > 0,

L1 =
√
γ1 σz ⊗ 112, L2 =

√
γ2 112 ⊗ σz, γi > 0.

While H belongs to the commutant of the “collective error algebra” A′
z generated by

the total angular momentum operator Sz = σz ⊗ 112 + 112 ⊗ σz, we have [H,Li] 6= 0,
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i = 1, 2. Thus, the QMS does not induce pure dephasing relative to the eigenbasis of H.

Nonetheless, Sz ∈ {H,L}′ and the projectors corresponding to different Sz-eigenvalues,

P1 = |e0〉〈e0|, P2 = |e1〉〈e1| + |e2〉〈e2|, P3 = |e3〉〈e3|, where {|ej〉, j = 0, . . . , 3} denotes

the standard computational basis in C4, form a complete irreducible invariant dephasing

family under L(L,H). Hence, the latter is dephasing in the sense of Definition 12. It is

interesting to contrast this QMS to the permutation-symmetric case where γ1 = γ2 = γ

and a single collective noise input is present, L =
√
γ Sz. Clearly, [H,L] = 0, hence

L(L,H) is dephasing according to both definitions. In the collective case, two-dimensional

subspace corresponding to P2 (Sz = 0) is a “decoherence-free subspace”, with the action

of H on computational basis states implementing encoded single-qubit gates [29].

Yet another definition of dephasing has been put forward, more recently, by

Burgarth et al. [30]. For the case where the Lindbladian is pure, namely, if L = L(L,0)

for a single L, the QMS is (maximally) dephasing if it admits a stable basis or,

equivalently, if L is a normal operator. It is shown that self-duality, L = L ⋆, is a

sufficient (though not necessary) condition for LL,0 to be maximally dephasing. For

the multi-channel case where L =
∑

k L(Lk,0), the authors further show that self-

duality implies the condition given in Eq. (10), which in turns means that we may

write L ≡ ∑

k L(Xk ,0) +
∑

k L(Yk,0), where Xk = 1
2
(Lk + L∗

k), Yk = 1
2i
(Lk − L∗

k).

Accordingly, self-duality of L implies that it is a sum of pure Linbladians that are

maximally dephasing. It should, however, be emphasized that these pure Lindbladians

are not required to be maximally dephasing with respect to the same stable basis, so their

concept of dephasing does not imply a (common) invariant stable basis in general. In this

respect, this approach does not differentiate between the two-qubit QMSs considered in

Example 15 (with self-duality holding up to the Hamiltonian contribution), nor between

them and depolarization, §2.3.2, for which no common stable basis may be found.

In the same paper, the property of non-self duality is identified as a necessary

condition for bone fide “decay” (e.g., ground-state relaxation as in §2.3.3). While,

based on this approach, the authors conclude that decay cannot be ascribed to classical

noise, as captured by a QSDE driven by a classical stochastic field, some caution is

needed in interpreting this conclusion, both because it is tied to the assumed notion of

dephasing and because consideration is restricted to just the diffusive Wiener class (see

further discussion in §5). Given our dephasing notion, we will establish that dephasing

processes exist, which are (also) not ascribable to “classical noises” and, likewise, that

in cases where classical noise leads to dephasing, the generator need not to be self-dual.

3.2. Maximal dephasing

3.2.1. Characterization of a maximally dephasing QMS. While Lemma 14 does not

cover irreducibility, in the case of maximal dephasing it is easy to supply conditions:

Theorem 16 A QMS determined from the triple G ∼ (S,L, H) is maximally dephasing

if and only if the operators H and the Lk are diagonal in the stable basis, and for all pairs

n 6= m in {1, . . . , N} we have 〈n|Lk|n〉 6= 〈m|Lk|m〉 for at least one k ∈ {1, . . . , d}.
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Proof. By Corollary 11, if G ∼ (S,L, H) is a triple representing the QMS, each |n〉 is
an eigenvector of K = −

(

1
2

∑

k L
∗
kLk + iH

)

and Lk for every k. Thus, we may write

Lk ≡
N
∑

n=1

λk,n |n〉〈n|, K ≡
N
∑

n=1

κn |n〉〈n|, λk,n, κn ∈ C, ∀n. (24)

By assumption, we also have

H ≡
N
∑

n=1

εn |n〉〈n|, εn ∈ R, ∀n, (25)

whereby it follows that κn = −1
2

∑

k |λk,n|2 − iεn. With this prescription, we see that

Lemma 14 applies and we find Φt (|n〉〈m|) = eznmt|n〉〈m|. If n 6= m, then |n〉 and |m〉
dephase if and only if

∑

k |λk,n − λk,m|2 > 0, which is equivalent to the stated condition

upon noticing that λk,n = En [Lk], the expectation of Lk for pure state |n〉.
It is convenient to collect the coefficients λk,n into a matrix

L1 →
L2 →
L3 →
... . . .

Ld →















λ11 λ12 λ13 . . . λ1N

λ21 λ22 λ23 . . . λ2N

λ31 λ32 λ33 . . . λ3N

...
...

...
...

...

λd1 λd2 λd3 . . . λdN















≡ F. (26)

The kth row of F corresponds to the operator Lk =
∑N

n=1 λk,n|n〉〈n|. However, we may

also focus on the column vectors:

F ≡ [|λ1〉, . . . , |λN〉] , |λn〉 ≡







λ1,n

...

λd,n






∈ Cd ≡ K. (27)

For a maximal dephasing QMS, we therefore have that {Pn}′ consists of the

commutative set of operators diagonal in the stable basis. In particular, the relations

(24) and (25) arrived at in Theorem 16 imply that the Lk and H may be thought of

as functions of a common observable Q =
∑

n qn|n〉〈n|. If we may take Q to be H ,

we recover exactly Avron et al.’s definition in [7]. The maximally dephasing condition

from Theorem 16 requires that for all n 6= m, λk,n 6= λk,m, for at least one k. In fact,

we see that the dephasing damping rates γnm are half the length-squared of the vector

|λn〉 − |λm〉 so the condition that these do not vanish for any n 6= m is just that the set

{|λ1〉, . . . , |λN〉} consists of N distinct (though possibly linearly dependent) vectors.

3.2.2. Rank of a maximally dephasing QMS. Suppose we have a pure QMS, that is,

one with rank d = 1. Is it possible for it to realize a maximally dephasing QMS on

a system with an N -dimensional Hilbert space? In this case the matrix F in (26) is

simply F = [λ11, . . . , λ1N ] and our condition for dephasing is that |λ1n − λ1m| 6= 0 for

all n 6= m, which just means that the complex numbers λ11, . . . , λ1N are all distinct. If

so, the corresponding QMS will be a rank-1 maximally dephasing QMS.
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More generally, given the class of maximally dephasing QMSs, we can ask for

the maximal rank possible. To this end, consider a rank-d minimal representation

with coupling operators {L1, · · · , Ld}. As the set {11N , L1, · · · , Ld} needs to be linearly

independent, the extended matrix F̃ defined by

11N →
L1 →
L2 →
L3 →
... . . .

Ld →





















1 1 1 . . . 1

λ11 λ12 λ13 . . . λ1N

λ21 λ22 λ23 . . . λ2N

λ31 λ32 λ33 . . . λ3N

...
...

...
...

...

λd1 λd2 λd3 . . . λdN





















≡ F̃

must have all its 1 + d rows linearly independent. We therefore must have d + 1 ≤ N ,

so the upper limit on the rank must be N − 1.

Example 17 Consider N = 3 (a qutrit) with d = 2 noise inputs determined by

|λ1〉 =
[

1

2

]

, |λ2〉 =
[

2

4

]

, |λ3〉 =
[

1

0

]

,

so that L1 = |1〉〈1| + 2|2〉〈2| + |3〉〈3|, L1 = 2|1〉〈1| + 4|2〉〈2|. Here L1, L2 and the

identity 113 are linearly independent and the vectors |λ1〉, |λ2〉, |λ3〉 are distinct, though

not linearly independent. Indeed, |λ2〉 = 2|λ1〉. In this example we have maximal

dephasing, and the largest rank d = 3− 1 possible.

4. Hamiltonian obstruction

For a maximally dephasing QMS, an essential role in establishing Theorem 16 is played

by the dephasing rates, introduced in (22). We now turn our attention to the dephasing

frequencies ωnm in (23). First, we show that the set of frequencies {ωnm : n,m} are not,

in general, attributable to a Hamiltonian term.

To this end, we note that if z = x + iy and z′ = x′ + iy′ are a pair of complex

numbers, then Im {z∗z′} = xy′ − yx′, which geometrically is the (signed) area of the

parallelogram in the complex plane with vertices 0, z, z′, z+z′. The d coupling operators,

Lk =
∑

n λk,n |n〉〈n|, give rise to N vectors |λn〉 ∈ K = Cd. The real values that enter

the definition of ωnm, namely,

Anm = Im
d

∑

k=1

(λ∗
k,nλk,m) ≡ Im 〈λn|λm〉, (28)

are then a sum of d signed areas. (Note that the last expression in (28) is an inner

product in K = Cd, not the Hilbert space h = CN of the system.) We may think of this

as the symplectic area of the corresponding parallelogram in Cd.

Remark 18 Let {ωnm : n,m} be the dephasing frequencies appearing in (23) (i.e., the

imaginary parts of the generator’s eigenvalues). Then they generally do not take the

form ωnm = ωm − ωn for a fixed set of real numbers {ωn : n}. To see this, assume
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we did have the form ωnm = ωm − ωn. Then if n,m, l are distinct, the identity

∆nml = ωnm + ωml + ωln = 0 must hold, whereas we obtain

∆nml =
∑

k

Im
(

λ∗
k,nλk,m + λ∗

k,mλk,l + λ∗
k,lλk,n

)

= Anm + Aml + Aln, (29)

which is non-vanishing in general.

The right hand-side in equation (29) has an intrinsic geometrical meaning: it is the

symplectic area of the triangle in Cd with vertices at λn, λm, λl. Thus, vanishing of the

Hamiltonian obstruction, ∆nml, is a necessary condition for a set of frequencies ωnm

to stem from an Hamiltonian term of the form
∑

n ωn|n〉〈n|.

Example 19 Let us take h = C3 and choose d = 3 coupling operators, Lk ≡
∑

n λk,n |n〉〈n|, k = 1, 2, 3, with

|λ1〉 =







1

0

2i






, |λ2〉 =







i

0

1






, |λ3〉 =







2

0

−1






, |λ0〉 =







1

1

1






.

(We include |λ0〉 as this allows us to construct the identity operator as 113 =
∑

n |n〉〈n|.)
We readily see that the dephasing rates γ12, γ23, γ31 are all positive-definite so we have

maximal dephasing; however, ∆123 = −5 6= 0. This example is not minimal as
{

|λ0〉, |λ1〉, |λ2〉, |λ3〉
}

is clearly over-complete.

An obstruction may also arise for a maximally dephasing QMS with a minimal

representation, as the next example shows.

Example 20 Since operators Lk are identified with vectors, taking account of the

identity operator we need at least 3 operators Lk, hence the Hilbert space must have

dimension at least N = 4. Indeed, if one considers

|λ0〉 =











1

1

1

1











, |λ1〉 =











1

i

−1

−i











, |λ2〉 =











1

−1

i

−i











, |λ3〉 =











1

−1

−1

1











,

the four vectors |λ0〉 (corresponding to 114), |λ1〉, |λ2〉, |λ3〉 are linearly independent and

∆123 = −2 6= 0.

Lemma 21 The obstruction ∆nml in (29) is unchanged under a Euclidean equivalence

transformation.

Proof. We take L′
j =

∑

k TjkLk + βk. This implies a relationship of the form

λ′
j,n =

∑

k

Tjkλk + βk,

for each projection index n. Now Anm = Im
∑

k(λ
∗
k,nλk,m) is anti-symmetric, and we

compute

A′
nm =

∑

k

Im(λ′ ∗
k,nλ

′
k,m) = Anm −

∑

k

Im
{

α∗
k(λk,n − λk,m)

}

,
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where α = Rβ. Since ∆nml = Anm+Aml+Aln, we find ∆′
nml = A′

nm+A′
ml+A′

ln = ∆nml,

which completes the proof.

Lemma 21 shows that obstructions are fundamental and cannot be removed by using

an equivalent Euclidean representation of the Lindbladian. We have, in particular:

Theorem 22 Given a maximally dephasing QMS, suppose there is an obstruction (i.e.,

∆nml 6= 0 for some n 6= m 6= l). Then it is impossible to represent the generator of the

QMS in a form where all the coupling operators are self-adjoint.

Proof. Let us suppose that L∗
k = Lk for all k, then Anm ≡ 0 for all n,m. In this case,

∆nml = 0 for all n 6= m 6= l. This implies that ∆nml would vanish identically, so having

all Lk self-adjoint leads to zero obstruction. Moreover, by Lemma 21, any Euclidean

equivalent model will also have ∆ ≡ 0.

Remark 23 Note that for any maximally dephasing QMS that is obstruction-free, we

can find a representation of the generator in which all inner products 〈λn|λm〉 are real.

Indeed, multiplying vectors |λn〉 for n > 1 by an appropriate phase eiθj , we can make

〈λ1|λn〉 real. Consequently, if the obstruction vanishes,

Anm = Im 〈λn|λm〉 = Im 〈λn|λm〉+ Im 〈λm|λ1〉+ Im 〈λ1|λn〉 = 0, ∀n,m.

Exploiting the above remark, we can prove a converse to Theorem 22 (in the finite-

dimensional case we are presently considering):

Theorem 24 Given a maximally dephasing QMS, suppose there is no obstruction (i.e.,

∆nml = 0 for all n 6= m 6= l). Then it is possible to represent the generator of the QMS

in a form where all the coupling operators are self-adjoint.

Proof. We will look for a form that is minimal. Again, let h = CN denote the system

space and K = Cd be the multiplicity space, with d being the rank. We prove now

that, if all inner products 〈λn,λm〉 are real, we can find a basis of K in which all the

elements λij are real. Recall that the matrix F introduced in (26) will have d linearly

independent rows, and that d+ 1 ≤ N . The N vectors of F , |λn〉 in Cd, are










λ11

λ21

...

λd1











,











λ12

λ22

...

λd2











,











λ13

λ23

...

λd3











, . . .











λ1N

λ2N

...

λdN











and d of them are linearly independent. Relabeling coordinates in Cd we can always

assume that the first d are linearly independent. Acting with a unitary on Cd, if

necessary, we can always suppose that they are written in the form














r1

0

0
...

0















,















z12

z22

z32
...

zd2















,















z13

z23

z33
...

zd3















, . . . ,















z1N

z2N

z3N
...

zdN















,
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with r1 > 0, zij ∈ C, the first d vectors being linearly independent (and the remaining

ones being a linear combination of them). If their inner products are real, they can be

written in the form














r1

0

0
...

0















,















r2

z22

z32
...

zd2















,















r3

z23

z33
...

zd3















, . . . ,















rN

z2N

z3N
...

zdN















,

with r1 > 0, r2, . . . , rN ∈ R. Acting with a unitary of the form

U =











1 0 0 . . . 0

0 ∗ ∗ . . . ∗
0 . . . . . . . . . . . .

0 ∗ ∗ . . . ∗











,

we may get the vectors














r1

0

0

. . .

0















,















r2

s2

0

. . .

0















,















r3

z23

z33

. . .

zd3















, . . . ,















rN

z2N

z3N

. . .

zdN















,

with r1 > 0, s2 > 0, r2, . . . , rN ∈ R. Moreover, since inner products are real, z2j ∈ R for

all j ≥ 3, so that we have














r11

0

0

. . .

0















,















r12

r22

0

. . .

0















,















r13

r23

r33

. . .

rd3















, . . . ,















r1N

r2n

r3N

. . .

rdN















,

and rjj > 0 for j = 1, . . . , d. Iterating this procedure d times, it is clear that we get

N vectors in Cd with real components rkn; additionally, the above algorithm gives us

rkn = 0 for k > n. This shows that, with a unitary transformation on K, we may

represent the generator with self-adjoint operators Lk ≡
∑

n≥k rkn|n〉〈n|, as stated.
We may combine the above two theorems into the following characterization:

Corollary 25 A maximally dephasing QMS has vanishing Hamiltonian obstruction

(i.e., ∆nml = 0 for all n 6= m 6= l) if and only if there exists a representation of

the generator in which all the coupling operators are self-adjoint.

5. Classical noise in quantum theory

We now turn to the main question of determining whether a QMS may admit a classical

unitary dilation. Specifically, we give the following definition [4]:
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Definition 26 Given a QMS on the space h = CN , an essentially commutative (or

essentially classical) dilation is one specified by a dilated operator algebra of the form

B(h)⊗ C , where B(h) = MN is the space of N ×N matrices and C is a commutative

von Neumann algebra.

Consider three elementary models for unitary evolutions in the presence of classical

noise. The first is deterministic: this is just the usual Schrödinger unitary evolution,

Udet
H (t) = e−iHt, (30)

where the Hamiltonian H is taken to be self-adjoint. The second model is a diffusive

one, driven by a Wiener process W (t): namely, we take

Udiff
R (t) = e−iRW (t), (31)

where R is self-adjoint. From the Itō calculus, we obtain the QSDE

dUdiff
R (t) =

(

− iRdW (t)− 1

2
R2 dt

)

Udiff
R (t). (32)

Finally, we consider a model determined by a Poisson process Nν(t): namely,

U
jump
S,ν (t) = SNν(t), (33)

where S is taken to be unitary and ν > 0 is the rate of the Poisson process, so that

E[dNν(t)] = νdt. From the Itō calculus, the corresponding QSDE now reads

dU
jump
S,ν (t) = (S − 11N) dNν(t)U

jump
S,ν (t). (34)

Physically, each realization of the evolution described by (32) corresponds to a smooth

diffusive trajectory, whilst in case (34) one is effectively applying a unitary kick at

random times determined by the Poisson point process. Although the majority of work

in the physics literature has focused on diffusions, models based on telegraph processes

have also been considered, especially in the context of solid-state qubits, see e.g. [10].

For each of the above cases, we obtain a QMS, Φt, by evolving with the

corresponding U(t) and averaging over the noise, that is:

Φt(X) = E
[

U(t)∗XU(t)
]

.

The respective Lindblad generators read:

L
det
H (X) = − i[X,H ], (35)

L
diff
R (X) = − 1

2

[

[X,R], R
]

, (36)

L
jump
S,ν (X)=ν (S∗XS −X). (37)

Note that the deterministic and diffusive generators belong to the closure of the cone

generated by the jump generators:

L
det
H =

∂

∂u
L

jump
e−iHu|u=0 = lim

u→0+

1

u
L

jump
e−iHu,

L
diff
R =

∂2

∂u2
L

jump
e−iRu |u=0 = lim

u→0+

1

2u2

(

L
jump
e−iRu + L

jump
e+iRu

)

.
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In [4], Kümmerer and Maassen show that every QMS that admits an essentially

classical dilation as defined above also admits a Kraus representation of the form

Φt(X) ≡
∫

U(N)

V ∗XV dµt(V ),

with {µt} being a convolution semigroup of probability measures on the unitary group

U(N). A well-known theorem of Hunt [31] then implies that the generator must be a

sum of the three elementary forms L det
H ,L diff

R ,L
jump
S,ν given in (35)-(37). This result

provides the complete characterization of the possible generators for QMSs which, in

their terminology, correspond to “essentially classical noise”.

In the language of quantum feedback networks [16], we may concatenate SLH

models - that is, run them in parallel - by making use of the concatenation product

defined in (9). In the single input case (d = 1), we have Udet
H determined simply by

Gdet
H ∼ (1, 0, H), while for Udiff

R it suffices to take Gdiff
R,θ ∼ (11, eiθR, 0), where R = R∗ and

θ ∈ R is some phase. The role of this phase is to determine which quadrature process

to identify as the Wiener process: this should be

W (t) = ieiθB(t)∗ − ie−iθB(t). (38)

Finally, to obtain a jump process U jump
S,ν , it is enough to notice that for any ξ ∈ C,

Nξ(t) = Λ(t) + ξB(t)∗ + ξ∗B(t) + νt (39)

is a Poisson process with rate ν = |ξ|2 > 0 for the vacuum state. Thus, for instance,

G
jump
S,ξ ∼

(

S − 11, ξ(S − 11),
|ξ|2
2i

(S∗ − S)
)

,

would lead to an equivalent stochastic unitary. In this case we have exactly a model of

the form (33) with Nξ in the Fock vacuum state being identified as the Poisson process

Nν . (A neater approach would be to identify Nν with the number process Λ in the

coherent state with constant intensity ξ over the time period of interest [16].)

We now restate the Kümmerer-Maassen theorem in SLH language:

Theorem 27 (Kümmerer-Maassen [4]) A QMS with essentially classical noise will

be a concatenation of the single-input models as follows:

Gclassical ∼
(

⊞j G
jump
Sj ,ξj

)

⊞
(

⊞k G
diff
Rk ,θk

)

⊞Gdet
H , (40)

where the Sj are unitary operators, the Rk and H are self-adjoint operators, the complex

numbers ξj determine the Poisson rates (νj = |ξj|2) and the θk are phases. (The phases

of the ξj and the phases θk make no contribution to the generator.)

The original version of the Theorem gives the generators of the essentially classical

QMSs to have the form (with the same notation)

L =
∑

j

νjL
jump
Sj

+
∑

k

L
diff
Rk

+ L
det
H . (41)
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Additionally, they show that this is equivalent to the generators belonging to the closure

of the cone generated by the jump generators.

We readily see that there exist dilations of maximally dephasing QMSs that are

not essentially classical. Indeed, suppose that (S,L, H) leads to a maximal dephasing

QMS with stable basis {|n〉}. Theorem 16 only constrains the operators L and H :

that is, they must take the forms (24) and (25), respectively. The freedom to choose S

means that we may always perturb an essentially classical maximally dephasing model

corresponding to G ∼ (11,L, H) to get a genuine non-commutative one, G′ ∼ (S,L, H),

with a matrix S that is no longer a multiple of the identity operator on CN ⊗ Cd. The

addition of S entails adding terms involving the processes Λjk(t) to the QSDE (4). When

the bosonic fields (as the environment) are initialized in the vacuum state, the QSDE for

the essentially commutative and non-commutative dilations G and G′ described above

yields the same QMS (which is maximally dephasing for appropriate choices of L and

H , independently of the choice of S). They also produce an identical evolution of the

joint state of the system and fields. However, for other initial states of the fields for

which the solution of the QSDE is well-defined (e.g., in the linear span of the coherent

states of the fields [14, 15]), they will not, in general, yield the same joint state evolution

due to the presence of the terms L∗
jSjkdBk(t) and terms involving the processes Λjk(t).

This is illustrated in the next example for a QMS with a single decoherence channel:

Example 28 Consider a single qubit with operators H and L 6= 0 diagonal in some

fixed orthogonal basis. The associated QMS is therefore maximally dephasing. Consider

a dilation of the qubit described by the following QSDE:

dUG(t) =

[

−
(

iH +
1

2
L∗L

)

dt+ dB∗(t)L− L∗S dB(t) + (S − I) dΛ(t)

]

UG(t),

where S is unitary and different from the qubit identity operator. The QSDE is a dilation

of the QMS that is not essentially commutative since the term (S − I)dΛ(t) does not

commute with the terms dB∗(t)L and −L∗SdB(t). It can also be seen that the generator

on the right hand-side of the QSDE cannot be expressed in terms of processes that are

commuting with themselves and one another for any two times s, t ≥ 0 (i.e., they are

not essentially classical processes). Nonetheless, since H and L are diagonal, the QMS

obtained from the above QSDE, by tracing out the bosonic fields in a vacuum state, will

be maximally dephasing, as stated.

It is worth recalling that a maximally dephasing QMS can be recovered from a non-

classical dilation in which the field state is not vacuum, but this does not hold generally.

As an example, consider fixed-amplitude coherent states |f〉coh of the field, with f being a

non-zero constant function of time. The dilation G = (S, L,H) with the field initialized

in the state |f〉coh is then equivalent to a dilation G′ = (S, L+ Sf,H + Im{L†Sf}) with
the field initialized in the vacuum. However, LG 6= LG′; in particular, LG′ will have a

dependence on S, whereas LG does not. If L and H satisfy the conditions of Theorem

16, S commutes with L and H, and L + Sf also satisfy the condition of Theorem

16, then one may show that LG′ will also be the Lindblad generator of a maximally
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dephasing QMS. In general, however, one does not obtain a maximally dephasing QMS

for an arbitrary initialization of the field state, including for Gaussian states of the field

beyond coherent states, see e.g. the second reference in [16]). In fact, if the field is

initialized in states such as single-photon or multi-photon states, the reduced evolution

on the system can no longer be described by a QMS; see [17] and the references therein.

Theorem 29 Let Φt be a QMS that is both maximally dephasing with respect to a stable

basis {|n〉 : n = 1, . . . , N} and essentially classical. Then

Φt (|n〉〈m|) = Cnm(t) |n〉〈m|, (42)

where the coefficients take the form Cnm (t) = eznmt, and

znm =
∑

j∈J

νj
(

e−i(ϑj,n−ϑj,m) − 1
)

− 1

2

∑

k∈K

(rk,n − rk,m)
2 + i (εn − εm) , (43)

where the νj are positive and the parameters ϑj,n, rk,n, εn are real.

Proof. By the Kümmerer-Maassen theorem (40), there exist two non-overlapping

subsets J and K whose union is {1, · · · , d}, such that

dGclassical(t) =
∑

j∈J

(Sj − 1) dNj(t)− i
∑

k∈K

RkdWk(t)

−
(1

2

∑

k∈K

R2
k + iH

)

dt, (44)

with Nj = Λjj+ξjB
∗
j +ξ∗jBj+|ξj|2 and Wk = ieiθkB∗

k−ie−iθkBk. The quantum processes

{Nj,Wk : j ∈ J, k ∈ K} form a commuting set of self-adjoint processes. Thus, we may

decompose the multiplicity space as K = Kjump⊕Kdiff, where Kjump = CJ and Kdiff = CK .

Associated with the jumps and diffusion terms we have the respective coupling

operators Ljump
j = ξj (Sj − 1), for each j ∈ J and Ldiff

k = eiθkRk, for each k ∈ K. If the

QMS is to be maximally dephasing, these must be diagonal in the stable basis, so that

Sj ≡
N
∑

n=1

eiϑj,n |n〉〈n|, Rk ≡
N
∑

n=1

rk,n|n〉〈n|.

(Likewise, H ≡
∑N

n=1 εn|n〉〈n|.) Moreover, the set of vectors

|λn〉 =
[

[

ξj(e
iϑj,n − 1)

]

j∈J
[

eiθkrk,n
]

k∈K

]

are linearly independent in K = Kjump ⊕ Kdiff. We may therefore write

dGclassical(t) =
N
∑

n=1

|n〉〈n| ⊗ dG̃n (t) ,

in terms of a family of processes

G̃n(t) =
∑

j∈J

(

eiϑj,n − 1
)

Nj (t)− i
∑

k

rk,nWk (t)−
(1

2

∑

k∈K

r2k,n + iεn

)

t.
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Since we have (dNj)
2 = dNj and (dWk)

2 = dt, with all other products of increments

vanishing, we may integrate to get

U (t) ≡
N
∑

n=1

|n〉〈n| ⊗ e−iΘn(t), (45)

where, for each n,

Θn (t) =
∑

j∈J

ϑj,nNj (t) +
∑

k

rk,nWk (t) + εn.

The processes {Θn} all commute. It follows that the QMS obtained in this way is of the

form (42), with coefficients Cnm (t) =
〈

Ω, ei(Θn(t)−Θm(t)) Ω
〉

, with Ω being, as before, the

Fock vacuum. Noting that the Nj and Wk obey the laws of independent Poisson and

Wiener processes in this state, we are lead to the desired expression (43).

We see that the essentially commutative dilations of a maximally dephasing QMS

have the feature that they are diagonal in the stable basis, Eq. (45). As pointed out

earlier on, however, we may perturb this with an additional matrix S which need not

respect the stable basis so as to end up with a non-commutative dilation which still

retains the maximal dephasing property.

5.1. Essentially classical dilation by a diffusion or a jump process?

We note that both the diffusion and jump QMS in (36) and (37) may be expressed as

Lc(X) ≡ 1

2
[c∗, X ]c+

1

2
c∗[X, c], (46)

with c = λR, λ ∈ C, R self-adjoint, and c =
√
ν S, ν > 0, S unitary, respectively. (The

transformation c 7→ eiϕc+ β, for ϕ ∈ R and β ∈ C, leaves Lc unchanged).

Kümmerer and Maassen also showed, in Proposition 2.2.1 of [4], that a QMS with

generator of the form Lc in (46) is essentially classical if and only if c is normal and has

a spectrum which lies either on a straight line or on a circle in the complex plane. As a

corollary, a generator of the form (46), with c normal, may be both a diffusion type or

a jump type if and only if the spectrum of c consists of no more than two points (since

it lies in the intersection of a line and a circle).

For instance, in the paradigmatic example of pure dephasing of a qubit discussed

in §2.3.1, the Lindbladian (14) can be considered as either a diffusion type (with

γ = |λ|2, R = σz) or as a jump type (with ν = γ, S = σz). Therefore, the QMS

for pure dephasing of a qubit can arise as the average of either a diffusive model or

jump model. This is fortuitous, as the operators R and S can have only two eigenvalues

each in the qubit case.

In order to see that the above scenario is far from generic, let us first still assume

N = 2, but consider a simple modification to the above pure-dephasing example, where

we take the scattering matrix to be

S =

[

1 0

0 eiϑ

]

, eiϑ 6= ±1.
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The generator L
jump
S,ν (X) = ν(S∗XS −X) then becomes

L
jump
S,ν

([

x y

z w

])

= ν

[

0 (eiϑ − 1)y

(e−iϑ − 1)z 0

]

,

and the solution to the master equation reads

ρ(t) =

[

ρ11(0) eν(e
−iϑ−1)tρ10(0)

eν(e
iϑ−1)tρ01(0) ρ00(0)

]

.

In fact, the only difference compared to the usual pure-dephasing (15) is that the

damping constant is now complex. Its real part, ν(cos ϑ − 1), is strictly negative since

e−iϑ = 1 is excluded. Therefore, we once again have dephasing.

To see what is going on, observe that the corresponding unitary stochastic process

has the explicit solution determined by (33), namely,

U
jump
S,ν (t) =

[

1 0

0 eiϑNν(t)

]

,

with the result that

U
jump
S,ν (t)∗

[

x y

z w

]

U
jump
S,ν (t) =

[

x eiϑNν(t)y

e−iϑNν(t)z w

]

.

Accordingly, the dephasing in the long-time limit can be seen to be due to the random

phase accumulation on off-diagonal elements. We note that the generator is bistochastic

but, for eiϑ 6= ±1, it is not self-dual (recall the discussion in §2.2).
In higher dimension, N > 2, we may diagonalize an arbitrary unitary S in the

general form
∑

n e
−iϑn |n〉〈n|, so that

L
jump
S,ν (|n〉〈m|) = −

(

1− ei(ϑn−ϑm)
)

|n〉〈m|.
This time, we have maximally dephasing behavior with respect to the basis provided

by ϑn 6= ϑm for n 6= m. This will be self-adjoint only in the very restrictive situations

discussed above. Note that L
jump
S,ν (|n〉〈n|) = 0, so the QMS is, consistently, dephasing

with respect to the basis {|n〉}.
Evidently, in the situation of classical noise leading to dephasing, the generator

does not need to be self-dual.

5.2. Classical dilations via diffusions

To realize a maximally dephasing QMS through a diffusive dilation, take G ∼
(S = 11,L, H), where the coupling operators are of the form Lk ≡ ∑

n λk,n |n〉〈n| and
the Hamiltonian is H ≡

∑

n εn |n〉〈n|. The unitary has now the differential germ

dG (t) =
∑

k

(Lk ⊗ dBk (t)
∗ − L∗

k ⊗ dBk (t) +K ⊗ dt)

,
∑

n

|n〉〈n| ⊗ {−idQn (t) + κndt} , (47)
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where we have introduced the processes

Qn (t) = i
∑

k

{

λk,nBk (t)
∗ − λ∗

k,nBk (t)
}

.

Each of the processes (Qn (t))t≥0 has the statistics of a Wiener process for the Fock

vacuum state: (dQn)
2 = σ2

ndt, with σ2
n =

∑

k |λk,n|2. However, they may not be

compatible. In fact, we readily see that

[Qn(t), Qm(s)] = 2i Anmmin (t, s) , (48)

where Anm is the symplectic area defined in (28).

Note that the Stratonovich form of the Itō QSDE (47) is

dU (t) = −i

[

∑

n

|n〉〈n| ⊗
(

dQn(t) + εndt
)

]

◦ dU(t).

Together with (44), this leads to the following result for quantum diffusions:

Theorem 30 Consider a maximally dephasing QMS, with stable basis {|n〉 : n},
represented by G ∼ (S = 11,L, H), with coupling operators Lk ≡

∑

n λk,n |n〉〈n| and
Hamiltonian H ≡

∑

n εn|n〉〈n|. Then the QMS admits an essentially classical diffusive

dilation if and only if the symplectic areas Anm = Im〈λn|λm〉 vanish for each pair n,m.

In this case we have

U(t) =
∑

n

|n〉〈n| ⊗ e−
1

2
σ2
nt e−i(Qn(t)+εnt), (49)

where the Qn are independent, compatible quantum Wiener processes with variances

σ2
n = 〈λn|λn〉 =

∑

k |λk,n|2.

5.3. Classical dilations via jumps

The above theorem implies that vanishing of the obstruction serves as a witness to the

classicality of an underlying diffusive dilation. The situation is more subtle if general

classical dilations including Poisson processes are allowed. Recall the expression for the

coefficients znm occurring in (43). These yield the dephasing rates, see (22),

γnm =
1

2

∑

j∈J

νj|eiϑj,n − eiϑj,m |2 + 1

2

∑

k∈K

(rk,n − rk,m)
2, (50)

and we obtain a similar expression for the dephasing frequencies ωnm, see (23). We note

that the obstruction will in this case be given by

∆nml =
∑

j∈J

νj

{

sin(ϑj,m − ϑj,n) + sin(ϑj,l − ϑj,m) + sin(ϑj,n − ϑj,l)
}

. (51)

Thus, the obstruction may be non-zero and this is entirely down to the Poissonian terms.

Remark 31 By combining Theorem 30 with the above result, it follows that (i) if a QMS

is maximally dephasing, then vanishing of the Hamiltonian obstruction is sufficient (but

not necessary) for an essentially classical dilation to exist; (ii) if a QMS is maximally

dephasing and essentially classical, a non-zero obstruction can only arise due to the

presence of Poissonian noise.
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6. Conclusion

We have developed a notion of dephasing under the action of a QMS in terms of the

convergence of operators to a block-diagonal form corresponding to irreducible invariant

subspaces. An important special case is maximal dephasing, occurring when all such

invariant subspaces are mutually orthogonal and one-dimensional. Our notion includes

the definition of dephasing relative to a preferred energy basis, as formalized in [6, 7].

We have characterized the maximal dephasing setting in detail, obtaining, in

particular, the maximal rank for a maximally dephasing QMS. We further show that the

phase component in the decay terms for off-diagonal elements of an operator evolving

under such a QMS (that is, the imaginary parts of the generator’s eigenvalues) need

not come from a Hamiltonian, which we refer to as a Hamiltonian obstruction. QMSs

which are maximally dephasing and free of obstruction are precisely those for which a

representation of the generator solely in terms of self-adjoint operators exists.

A main motivating question for this work has been determining whether the

evolution under a dephasing QMS may result from a dilation to a unitary stochastic

dynamics with classical commutative noise, namely, an essentially classical dilation in

Kümmerer and Maassen’s terminology [4]. We have taken steps toward answering this

question by employing the results developed for maximally dephasing QMSs to study

their dilations by classical noise. We show that, remarkably, a diffusive dilation of such a

QMS can occur if and only if there is no Hamiltonian obstruction. From this, we further

establish that if a maximally dephasing QMS has non-zero obstruction and admits a

classical dilation, then the obstruction can only arise from classical Poisson processes.

As a result of independent interest, we also show that any maximally dephasing

QMS always admits a genuinely non-classical unitary dilation that possesses the same

rank-one invariant subspaces.

The present analysis leaves a number of open questions for future investigation.

Most importantly, it would be desirable, both conceptually and practically, to find

stronger criteria that may be able to diagnose the existence of a general classical unitary

dilation - including both diffusive and Poisson processes - directly from the structure of

the underlying dephasing QMS generator. This analysis would also extend, to the case

of continuous-time Markov dynamics, existing investigations on the extent to which

discrete-time dephasing evolutions (phase-damping channels) may be represented in

terms of classical random unitary dynamics [12]. In a similar venue, it is natural to ask

whether a non-vanishing Hamiltonian obstruction (or a possible stronger measure) could

be brought to bear on other non-classical dynamical traits - such as loss of positivity

in appropriate quasi-probability distribution functions [13], generation of entanglement

between the system and the environment [32] or some observed fraction thereof, as

relevant to understand the emergence of redundant information encoding through

spectrum broadcast structures [33]. Lastly, extensions beyond the maximal dephasing

setting (and, ultimately, beyond pure dephasing dynamics) are worth investigating in

the light of connections with more general information-preserving structures [9]. We
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plan to report on some of these issues in a separate study [34].
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