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David Krejčǐŕık,a Gian Paolo Leonardi b and Petr Vlachopulos a

a) Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Tech-
nical University in Prague, Trojanova 13, 12000 Prague 2, Czechia; david.krejcirik@fjfi.cvut.cz

b) Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia,
Via Campi, 213/b, 41100 Modena, Italy; gianpaolo.leonardi@unimore.it

29 November 2018

Abstract

We compute the Cheeger constant of spherical shells and tubular neighbourhoods of complete curves
in an arbitrary dimensional Euclidean space.

1 Introduction

Given an open connected set Ω ⊂ R
d with d ≥ 1, we define the Cheeger constant of Ω to be the number

h(Ω) := inf
S⊂Ω

|∂S|

|S|
, (1)

where the infimum is taken over all non-empty bounded sets S ⊂ Ω. We denote by |S| the volume
(i.e. d-dimensional Lebesgue measure) of S. We also use the notation |∂S| for the perimeter of S.
The perimeter functional extends in the appropriate, variational way the (d− 1)-dimensional Hausdorff
measure of the boundary of S – assuming ∂S smooth, or Lipschitz – to the whole class of Borel sets;
for more details about its general definition and properties, we refer the interested reader to [14]. Any
minimiser of (1), if it exists (e.g. if Ω is bounded), is called a Cheeger set of Ω and is denoted by CΩ. We
refer to the survey papers [10, 15] for motivations to consider the problem (1), properties, history and
many references. In particular, the close connection between the Cheeger problem and the eigenvalue
problem for the p-Laplacian when p goes to 1 is studied in [6], while in the recent contribution [8] one
can find insights on the eigenvalue problem for the 1-Laplacian.

There are very few known domains Ω for which the Cheeger constant h(Ω) can be computed explicitly.
In all dimensions, these are essentially just balls Ba := {x ∈ R

d : |x| < a} with a > 0, for which one has

h(Ba) =
d

a
(2)

and CBa
= Ba. Apart from the trivial one-dimensional situation, much more is known in the planar case.

It is easy to compute the Cheeger set of rectangles and in fact there exists a constructive algorithm for
finding the Cheeger constant in any convex polygon [7].

It was pointed out in [9] that there exists another large class of planar domains for which the Cheeger
constant can be computed explicitly, namely curved strips. Given a smooth closed planar curve Γ and
a positive number a, we define the strip of radius a to be the tubular neighbourhood Ωa := {x ∈ R

2 :
dist(x,Γ) < a}. If a is so small that Ωa “does not overlap itself”, the main result of [9] says that

h(Ωa) =
1

a
, (3)

that CΩa
= Ωa and that the former remains to hold for strips about unbounded complete curves, too.

Moreover, precise estimates for the Cheeger constant and explicit characterisation of the Cheeger set
for general strips were given in [9] and further improved in [11]. See also the recent papers [12] (which
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contains a characterisation of the maximal Cheeger set within a Jordan domain of the Euclidean plane)
and [13] (where, motivated by capillarity-related issues, two nontrivial examples of minimal Cheeger sets
in the plane are constructed).

It is frustrating that already a three-dimensional cube does not admit an explicitly known Cheeger
constant and there is no explicit analytical description of its Cheeger set (see [5, Open Problem 1]). In
general, much less is known about the Cheeger problem (1) in higher dimensions.

In this paper we prove that curved tubes and spherical shells are the unique Cheeger sets of themselves
(in other words, they are minimal with respect to inclusion, hence we shall also refer to them as minimal

Cheeger sets from now on). The fact that a d-dimensional tubular neighbourhood of a closed curve is
a minimal Cheeger set corresponds to a higher-dimensional version of the main result of [9]. Given a
closed smooth curve Γ in R

d with d ≥ 2, we introduce a curved tube by

Ωa := {x ∈ R
d : dist(x,Γ) < a} . (4)

We say that Ωa does not overlap itself if the map Γ × (0, a) ∋ (q, t) 7→ q + tN(q) induces a smooth
diffeomorphism for any smooth normal vector field N along Γ. Since Γ is compact, this condition holds
for all sufficiently small a. Then our first result reads as follows.

Theorem 1. Given a closed smooth curve Γ in R
d with d ≥ 2 and a positive number a, let Ωa be defined

by (4). If a is so small that Ωa does not overlap itself, then

h(Ωa) =
d− 1

a
(5)

and CΩa
= Ωa.

Comparing (5) with (2), we see that the Cheeger constant in a d-dimensional curved tube of radius a
equals the Cheeger constant of the (d− 1)-dimensional ball of the same radius. It is worth noticing that
(contrary to the first eigenvalue of the Dirichlet Laplacian in Ωa, which highly depends on the geometry
of Γ) the shape of the underlying manifold Γ has no influence on the value of the Cheeger constant (which
can be interpreted as the first eigenvalue of the non-linear 1-Laplacian).

We now state our second result about spherical shells.

Theorem 2. Given two positive radii r < R, the spherical shell Ar,R := {x ∈ R
d : r < |x| < R} is a

minimal Cheeger set, and

h(Ar,R) = d
Rd−1 + rd−1

Rd − rd
. (6)

This theorem extends the result of [1, Sec. 11, Ex. 4] for annuli to higher dimensions. Notice that
our Theorems 1 and 2 coincide in the special case when Γ is a circle and d = 2. It is a challenging open
problem to determine the Cheeger constant of tubular neighbourhoods of general submanifolds of Rd.

2 The Proofs

Although (5) appears to be a natural generalisation of (3) to higher dimensions, the strategy of proof
that we adopt here for both Theorems 1 and 2 substantially differs from the one presented in [9]. The
latter was essentially based on the fact that taking the convex hull of a planar domain simultaneously
enlarges the area and reduces the perimeter. Since this property is unavailable in higher dimensions,
here we replace the reasoning by an argument based on “test vector fields” (cf. [4, Prop. 1]).

Proposition 1. Let Ω ⊂ R
d be an open connected set. If there exist a smooth vector field V : Ω → R

d

satisfying the pointwise inequalities

|V | ≤ 1 and div V ≥ c (7)

in Ω with some c ∈ R, then h(Ω) ≥ c.

Clearly, the proposition can be used to obtain lower bounds to the Cheeger constant. Upper bounds
can be obtained more straightforwardly by using suitable “test domains” in (1).
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2.1 Proof of Theorem 1: the upper bound

To show that h(Ωa) can be bounded from above by the right-hand side of (5), we use the whole tube Ωa

as a test domain in (1). To this aim, we first need to establish some basic facts about the geometry of
curved tubes.

Since we assume that Ωa does not overlap itself, necessarily Γ is an embedded submanifold of Rd.
Let us parameterise Γ ⊂ R

d locally by a smooth map γ : I → R
d, where I ⊂ R is an open interval. In

particular, γ(s) ∈ Γ for all s ∈ I. Without loss of generality, we can assume that γ is unit-speed, i.e.
|γ̇(s)| = 1 for all s ∈ I. We denote by e1 := γ̇ and κ := |γ̈|, the tangent vector field and curvature of Γ,
respectively.

Note that we allow curves for which the curvature may vanish on a subset of I. For such curves, the
usual Frenet frame may not exist. In any case, however, there exists a frame defined by parallel transport
(cf. [2]). More specifically, there exist smooth maps e2, . . . , ed : I → R

d and κ1, . . . , κd−1 : I → R such
that |eµ(s)| = 1 for all s ∈ I, µ ∈ {2, . . . , d} and











e1
e2
...
ed











.

=











0 κ1 . . . κd−1

−κ1 0 . . . 0
...

...
. . .

...
−κd−1 0 . . . 0





















e1
e2
...
ed











. (8)

One has κ2 = κ2
1 + · · · + κ2

d−1. Note that {e1, . . . , ed} is an orthonormal vector field along Γ and that
the vectors e2, . . . , ed forms a basis of the normal bundle.

We locally parameterise Ωa by the Fermi coordinates

φ : I ×Da → R
d ,

(s, t) 7→ γ(s) + tµeµ(s) ,

where Da := {t ∈ R
d−1 : |t| < a} is the (d − 1)-dimensional ball, t := (t2, . . . , td) and the Einstein

summation convention is assumed, with the range of Greek indices being 2, . . . , d. Using the formula (8),
one easily finds that the metric G := ∇φ · (∇φ)T acquires the diagonal form G = diag(f2, 1, . . . , 1) with
the Jacobian

f(s, t) = 1− κµ(s) tµ .

The condition that Ωa does not overlap itself in particular requires that the Jacobian is positive. A
sufficient condition for the latter is that a‖κ‖∞ < 1, where ‖ · ‖∞ denotes the supremum norm.

Now we can compute the volume of the piece ΩI
a := φ(I × Da) of Ωa. More generally, for every

r ∈ (0, a], we have

|ΩI
r | =

∫

I

∫

Dr

f(s, t) dt ds =

∫

I

∫

Dr

1 dt ds = |I||Dr| , (9)

where the second equality follows by the fact that 0 is the centre of mass of Dr, so that
∫

Dr

t dt = 0.

Here |I| and |Dr| denote the length of the interval I and volume of the ball Dr, respectively.
Let |∂ΩI

r | denote the (d − 1)-dimensional Hausdorff measure of the surface φ(I × ∂Da). Expressing
|∂ΩI

r | as the derivative of |ΩI
r | (cf. [3, Lem. 3.13]) and using the scaling |Dr| = rd−1|D1|, we get

|∂ΩI
r | =

d

dr
|ΩI

r | = (d− 1)rd−2 |I||D1| =
d− 1

r
|I||Dr| . (10)

Recalling that the curve Γ is parameterised by its arc-length via γ, the local formulae (9) and (10)
yield the global identities

|ΩI
a| = |Γ||Da| and |∂Ωa| =

d− 1

a
|Γ||Da| .

Choosing S := Ωa in (1), we therefore get the desired upper bound

h(Ωa) ≤
d− 1

a
. (11)
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2.2 Proof of Theorem 1: the lower bound

Now we employ a different local parameterisation of Ωa, namely,

φ̃ : I × U → R
d ,

(s, θ) 7→ γ(s) + a σk(θ) ek(s) ,

where σ : U → S
d−1
+ ⊂ R

d is a parameterisation of the half-sphere S
d−1
+ := {x ∈ R

d : |x| = 1 ∧ x1 > 0}
and for θ := (θ2, . . . , θd) ∈ U one can choose for instance the hyperspherical coordinates. Again, we
assume the Einstein summation convention, with the range of Latin indices being 1, . . . , d. Using the
formula (8), one easily finds that the Jacobi matrix reads

J := ∇φ̃ =











(1− a σµκµ)e1 + a σ1 κµeµ
a ∂2σk ek

...
a ∂dσk ek











,

where ek’s are arranged as row vectors.
In order to get the same lower bound as the right-hand side of (11), we employ Proposition 1. Our

choice of the test vector field reads, locally,

V (x) :=
x− γ(s)

a
= σk(θ) ek(s) , (12)

where the relationship between x ∈ R
d and (s, θ) ∈ I × U is given by x = φ̃(s, θ). Clearly, |V | = 1. It

remains to compute the divergence of V .
Employing the first equality of (12), we have

div V =
1

a
(d− e1 · ∇s) ,

where s is understood as the first component of the inverse φ̃−1(x) and the gradient acts with respect
to x. Using that |σ|2 = 1, so that σ · ∂µσ = 0 for every µ ∈ {2, . . . , d}, it is straightforward to check that

J−1 =
(σk ek

σ1

, ∗2, . . . , ∗d
)

,

where ek’s and ∗µ’s are arranged as column vectors and the explicit values of asterisks are not important
for our purposes. Indeed, this formula is enough to conclude that

∇s =
σk ek

σ1

and thus

div V =
d− 1

a
.

In view of Proposition 1, we therefore get the desired lower bound

h(Ωa) ≥
d− 1

a
. (13)

Recalling also (11), we have just established (5). Recalling in addition the way how (11) was proved,
we also have CΩa

= Ωa. This concludes the proof of Theorem 1.

Remark 1 (Unbounded tubes). Let us consider the same definition (4) with Γ being an unbounded
complete curve. Then the same test vector field V as in Section 2.2 yields the lower bound (13). At
the same time, choosing the test domain S := φ(I ×Da) in (1) and following the (local) procedure of
Section 2.1, we arrive

h(Ωa) ≤

d− 1

a
|I||Da|+ 2|Da|

|I||Da|
.

Sending the length |I| to infinity, we finally get the validity of (5) even in this unbounded case. Note,
however, that the infimum in (1) is not achieved and there is no Cheeger set CΩa

now.
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2.3 Proof of Theorem 2

Let us denote by ωd the volume of an Euclidean ball of radius 1 in R
d. Since

|∂Ar,R| = dωd (R
d−1 + rd−1) and |Ar,R| = ωd (R

d − rd) ,

we immediately obtain the upper bound

h(Ar,R) ≤
|∂Ar,R|

|Ar,R|
= d

Rd−1 + rd−1

Rd − rd
.

In order to conclude the proof we only need to show the opposite inequality and discuss the equality
case. As before, this will be accomplished by applying Proposition 1 to a suitable vector field V , that is
now defined as

V (x) := f(|x|)x ,

where

f(t) := C − (Crd + rd−1) t−d with C :=
Rd−1 + rd−1

Rd − rd
.

Notice that the function tf(t) is strictly increasing when t > 0, hence by easy computations we obtain
Rf(R) = −rf(r) = 1 and

t |f(t)| < 1 , ∀ t ∈ (r, R) .

Then |V (x)| < 1 for all r < |x| < R, and moreover V (x) agrees with the exterior unit normal on ∂Ar,R.
On the other hand, we have

div V (x) = f ′(|x|)|x| + d f(|x|) = d (Crd + rd−1)|x|−d + d
(

C − (Crd + rd−1)|x|−d
)

= dC =
|∂Ar,R|

|Ar,R|
,

hence by Proposition 1 we obtain the required lower bound

h(Ar,R) ≥ d
Rd−1 + rd−1

Rd − rd
.

The uniqueness of the Cheeger set of Ar,R follows from the fact that |V (x)| is strictly less than 1 in
Ar,R, hence the strict inequality

|∂A| > h(Ar,R) |A|

holds for any measurable set A ⊂ Ar,R, for which both |A| and |Ar,R \ A| are strictly positive. This
concludes the proof of Theorem 2.
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