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Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special
kinds of measurement in quantum theory in which the statistics of their d2-outcomes are enough
to reconstruct any d-dimensional quantum state. For this reason, MIC-POVMs are referred to as
standard measurements for quantum information. Here, we report an experiment with entangled
photon pairs that certifies, for what we believe is the first time, a MIC-POVM for qubits following
a device-independent protocol (i.e., modeling the state preparation and the measurement devices as
black boxes, and using only the statistics of the inputs and outputs). Our certification is achieved
under the assumption of freedom of choice, no communication, and fair sampling.

INTRODUCTION

A minimal informationally complete positive operator-
valued measure (MIC-POVM) [1, 2] is a measurement
on a d-dimensional quantum system that: (i) is informa-
tionally complete (IC), i.e., its statistics determine com-
pletely any quantum state and allow for a simple state-
reconstruction and (ii) is minimal, since it has the mini-
mum number of outcomes a measurement must have to
be IC, namely, d2 [3]. MIC-POVMs are fundamental in
quantum information. For example, they are crucial for
optimal quantum state tomography [4, 5], quantum key
distribution with optimal trade-off between security and
key rate [6], device-independent certification of optimal
randomness from one bit of entanglement [7, 8], and opti-
mal entanglement detection [9]. Arguably, MIC-POVMs
are the “standard” measurements in quantum informa-
tion [10] and thus have a privileged role in information-
theoretic reconstructions of quantum theory [10].

Experimentally, MIC-POVMs have been aimed at in
photonic experiments of qubit [11], qutrit [12, 13], and
two-qubit [14] tomography, quantum key distribution
[11], and generalized measurements using quantum walks
[14, 15]. However, all these experiments made assump-
tions about the state preparation and the functioning of
the measurement devices and therefore have limited ap-
plicability to cryptographic scenarios.

Here, we address the problem of experimentally certi-
fying a MIC-POVM for qubits following a “device inde-
pendent” (DI) protocol [7, 8, 16, 17]. That is, modeling
the state preparation and the measurement devices as
black boxes and using only the statistics of the inputs
and outputs obtained within a Bell inequality experi-
ment. The idea behind the experiment is to integrate

the MIC-POVM within a Bell inequality experiment and
use it to produce correlations that, according to quantum
theory, are only attainable with a MIC-POVM for qubits.
Our results not only allow us to certify a MIC-POVM for
qubits in a DI protocol, but also constitute the first ex-
perimental observation of “qubit correlations which can
only be explained by four-outcome non-projective mea-
surements” [18].

CERTIFICATION METHODS

To certify a four-outcome MIC-POVM in a DI way, we
use the bipartite Bell scenario shown in Fig. 1. There, in
the middle, is a source emitting pairs of particles. One
of the particles is measured by one party, Alice, and the
other particle is measured by the other party, Bob. Al-
ice chooses her measurement from a set of four mea-
surements: three two-outcome measurements Ax, with
x ∈ {1, 2, 3}, and one four-outcome measurement A4.
Bob chooses his measurement from a set of four two-
outcome measurements By, with y ∈ {1, 2, 3, 4}. The
possible outcomes of the two-outcome measurements are
+1 and −1, and the possible outcomes of the four-
outcome measurements are 1, 2, 3, and 4. The outcomes
of Ax and By are denoted by a and b, respectively. From
the experimental results, we obtain the set of conditional
probabilities {P (a, b|x, y)}.

In our experiment, we are interested in the conditional
probabilities appearing in the following Bell inequality
introduced in Ref. [7]:

βm
el = βel − k

4∑
i=1

P (a = i, b = +1|x = 4, y = i), (1)
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FIG. 1. The scenario considered in our experiment consists of
two parties, Alice and Bob, who perform local measurements
on maximally entangled pairs of qubits. See further details in
the text.

where βel is the Bell operator of the so-called “elegant
Bell inequality” [7, 8, 19], namely,

βel = E11 + E12 − E13 − E14 + E21 − E22

+ E23 − E24 + E31 − E32 − E33 + E34,
(2)

where Exy =
∑
a,b abP (a, b|x, y). For local hidden vari-

able theories, βel is upper-bounded by 6. In contrast, in
quantum theory βel is upper-bounded by 4

√
3 ≈ 6.928.

The quantum maximum can be achieved with pairs of
qubits in state |Φ+〉 = 1√

2
(|00〉+ |11〉) and the following

projective measurements:

A1 = σx, B1 =
1√
3

(σx − σy + σz),

A2 = σy, B2 =
1√
3

(σx + σy − σz),

A3 = σz, B3 =
1√
3

(−σx − σy − σz),

B4 =
1√
3

(−σx + σy + σz),

(3)

where σi are the Pauli matrices.
According to quantum theory, our target Bell opera-

tor βm
el is also upper-bounded by 4

√
3. This quantum

maximum can be attained with state |Φ+〉 and the mea-
surements in Eq. (3). However, in this case, the second
term in Eq. (1) is zero if and only if A4 is a qubit sym-
metric MIC-POVM whose elements are anti-aligned with
Bob’s measurements By in Eq. (3). That is, if A4 is the
four-outcome POVM, defined by the following elements:

A4,1 =
1

2

(
α −β(1 + i)

β(−1 + i) 1− α

)
,

A4,2 =
1

2

(
1− α β(−1 + i)
−β(1 + i) α

)
,

A4,3 =
1

2

(
1− α β(1− i)
β(1 + i) α

)
,

A4,4 =
1

2

(
α β(1 + i)

β(1− i) 1− α

)
,

(4)

where α = 3−
√
3

6 and β =
√
3
6 . In this case, the extremes

of the four unit vectors associated to the elements of A4

define a regular tetrahedron within the Bloch sphere.
Any measurement different than the one defined in

Eq. (4) will produce a smaller value for βm
el . While certi-

fying a symmetric MIC-POVM requires ideal conditions,
we can use the property above to test whether a genuine
four-outcome, MIC-POVM has indeed been realized in
the experiment, by computing the maximum of βm

el that
can be obtained using three-outcome measurements. In
order to do this, let us consider the following generaliza-
tion of βm

el :

3∑
x=1

4∑
y=1

γxyExy − k
4∑
y=1

4∑
a=1

∑
b=±1

γbxyP (a, b|4, y). (5)

We compute the maximum value of Eq. (5) that can be
obtained using three-outcome measurements. That is,
the maximum value of

max
j=1,2,3,4

[
3∑

x=1

4∑
y=1

γxyExy

−k
4∑
y=1

∑
a6=j

∑
b=±1

γbxyP (a, b|4, y)

 . (6)

Each of the maximizations within Eq. (6) are taken with
a constraint that the jth outcome of Alice’s A4 measure-
ment has probability 0. The larger the gap between the
experimental value of Eq. (5) and the maximum possible
value of Eq. (6), the more confident we can be that indeed
a genuine four-outcome POVM has been performed.

Most crucially, as we show in the Supplemental Ma-
terial, four irreducible outcomes in dimension 2 imply
information completeness, which is arguably the most
important feature of a quantum measurement.

Finally, while Bell scenarios can in general be useful for
measurement certification, it is important to point out
that the Bell inequality in the protocol above is tailored
to the specific measurement targeted in our certification.
In order to use the same procedure for an arbitrary mea-
surement, a different Bell inequality would in general be
required. In fact, finding the optimal Bell inequality for
certifying in a device-independent protocol a given gen-
eralized measurement is, in general, a difficult problem.

EXPERIMENT

Experimental setup

A type-I spontaneous parametric down-conversion
source is used to generate entangled photon pairs in
state |Φ+〉 = 1/

√
2(|HH〉 + |V V 〉), where H and V de-

note horizontal and vertical polarization, respectively.
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Pairs of entangled photons at 780 nm are produced in
two orthogonally oriented 2 mm thick beta barium bo-
rate (BBO) crystals, pumped with a femto-second laser
at 390 nm. As shown in Fig. 2, these photons go through
1 nm spectral bandpass filters (SF), and are then cou-
pled into single-mode fibers (SMF) to have perfect spatial
mode overlap between the two polarizations. These SMFs
then bring the photons to Alice’s and Bob’s measure-
ment stations. Whenever projective measurements are
performed on both sides (i.e., whenever x ∈ {1, 2, 3} and
y ∈ {1, 2, 3, 4}), the two measurement stations are iden-
tically composed by a lambda-half wave plate (HWP),
a lambda-quarter wave plate (QWP), and a polarization
beam-splitter (PBS). Multi-mode fibers (MMF) finally
collect the photons at the four outcomes and bring them
to the single-photon avalanche photodiodes (APDs). In
addition, Bob’s station includes a phase plate (PP).

In order to implement the four-outcome POVM, Al-
ice’s measurement station couples the two-dimensional
polarization space with a counter-propagating two-path
Sagnac interferometer, which makes transformations in
an effectively four-dimensional space possible using two
HWPs. At the two outputs of the interferometer, PPs,
HWPs and QWPs are used in combination with PBSs
to perform the POVM (for more details, see Supplemen-
tal Material). MMFs connected to APDs again gather
photons at the four outcomes. Detection counting is per-

formed with a coincidence unit (CU) using 1.6 ns coinci-
dence windows.

A two-photon rate of about 150 coincidences per sec-
ond was maintained throughout the experiment. Each
measurement setting lasted 30 seconds, and all measure-
ments were repeated a total of 23 times. This was done in
order to decrease the repeatability error of the motorized
wave plate mounts.

Results

The maximization of Eq. (6) for fixed coefficients γxy
and γbxy should be made over the set of probabilities al-
lowed by quantum theory. To obtain an upper bound on
its value, we use the semi-definite programming method
of Navascués, Pironio, and Acín (NPA) [20] implemented
in the Python package Ncpol2spda [21].

To identify the values of γxy and γbxy that provide the
largest gap between the experimental value of (5) and the
maximum possible value of (6), we performed a series of
numerical optimizations using the Nelder-Mead method
[22], with target function defined as the difference be-
tween experimental value of (5) and a bound of (6), with
variable coefficients γxy and γbxy and fixed values of k.
As a result, we obtained the following Bell operator:

0.9541E11 + 0.9917E12 − 0.9767E13 − 1.0064E14

+ 0.9514E21 − 0.9921E22 + 0.8211E23 − 1.0237E24

+ 1.0641E31 − 1.0044E32 − 1.0579E33 + 1.1563E34

− 3[1.2068P (1, 1|4, 1)− 0.0374P (1, 2|4, 1)− 0.0034P (2, 1|4, 1) + 0.0140P (2, 2|4, 1)

+ 0.0006P (3, 1|4, 1) + 0.0268P (3, 2|4, 1)− 0.0163P (4, 1|4, 1)− 0.0155P (4, 2|4, 1)

− 0.0033P (1, 1|4, 2) + 0.0184P (1, 2|4, 2) + 1.1156P (2, 1|4, 2)− 0.0046P (2, 2|4, 2)

− 0.0125P (3, 1|4, 2) + 0.0401P (3, 2|4, 2)− 0.0175P (4, 1|4, 2)− 0.0240P (4, 2|4, 2)

− 0.0108P (1, 1|4, 3) + 0.0153P (1, 2|4, 3)− 0.1195P (2, 1|4, 3) + 0.1752P (2, 2|4, 3)

+ 0.6201P (3, 1|4, 3) + 0.0149P (3, 2|4, 3)− 0.0399P (4, 1|4, 3) + 0.0527P (4, 2|4, 3)

+ 0.0058P (1, 1|4, 4)− 0.0149P (1, 2|4, 4) + 0.0025P (2, 1|4, 4) + 0.0205P (2, 2|4, 4)

+ 0.0150P (3, 1|4, 4) + 0.0212P (3, 2|4, 4) + 0.9565P (4, 1|4, 4)− 0.0023P (4, 2|4, 4)].

(7)

The upper bounds on the maximum possible value of
βIC in Eq. (7), obtained using the third level of the NPA
method, in case of three-outcome measurements and in
case of any quantum measurement are:

βIC
3-outcome
≤ 6.8782

Quantum
≤ 6.9883, (8)

whereas our experimental result is:

βexp
IC = 6.960± 0.007 (9)

(more detailed results are provided in Tables I and II).
Therefore, the experimental value violates the three-
outcome bound by more than 11 standard deviations,
certifying that Alice’s A4 measurement was indeed an ir-
reducible four-outcome measurement, under the assump-
tion that the system at Alice’s laboratory is a qubit. In
order to remove this assumption, we used the SWAP
method [23] to calculate the two-qubit state fidelity with
the maximally entangled Bell state |Φ+〉 certified by the
experimental data contained in Tab. I for βel in Eq. (2).
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FIG. 2. Experimental setup. The following components are used: a beta-barium borate non-linear crystal (BBO), 3 nm narrow
spectral filters (SF), single-mode optical fibers (SMF), phase plates (PP), lambda-half wave plates (HWP), lambda-quarter
wave plates (QWP), polarizing beam splitters (PBS), multi-mode optical fibers (MMF), and single-photon detectors (DET).

FIG. 3. Tomography of the prepared maximally entangled
state. Real (left) and imaginary (right) parts.

To this end we employed the level 3+AABB of the NPA
hierarchy [20]. The resulting fidelity was 0.947.

This means that a qubit measurement occurs in at least
94.7% of times. The only alternative to a qubit MIC-
POVM is that in 0.947 of the cases a three-outcome mea-
surement on a qubit was used and in the remaining 0.053
of the cases a four-outcome measurement on a higher-
dimensional system was used. However, in such a case,
the maximal possible value to be observed is not greater
than 0.947 × 6.8782 + 0.053 × 6.9883 ≈ 6.8840, which
is smaller than the experimental value, namely, 6.960.
Similarly, one can calculate that the critical fidelity ηcrit
to two dimensional state for MIC-POVMs is given by:
(6.9883− βexp)/(6.9883− 6.8782) ≈ 0.257.

Even though our DI protocol relies on this method,
we can provide additional, non DI arguments, which sug-
gest that the actual state fidelity was considerably higher.
Firstly, we tested the quality of the polarization entangle-
ment by performing a complete nine-measurement state
tomography of the Alice-Bob system. The tomography
of the joint state is shown in Fig. 3. The experimental fi-
delity with state |Φ+〉 was near optimal at (99.6±0.1)%.

Secondly, our measured value of the Bell operator of the
Elegant Bell Inequality was βel = 6.909 ± 0.007, which
corresponds to 99.7% of the quantum bound and is less
than three standard deviations away from it. As men-
tioned above, a result equal to the quantum bound would
imply that the joint state is a maximally entangled qubit-
qubit state [7, 8].

As a final remark, although our protocol is DI, we
have assumed freedom-of-choice, fair-sampling and no-
communication in our experiment. As we show in the
Supplemental Material, closing the detection loophole
would require overall system efficiencies above 94%, out-
side the reach of state of the art photonics experiments.

Setting Theory Experiment
E11 1/

√
3 ≈ 0.577 0.553± 0.002

E12 0.577 0.573± 0.002
E13 −0.577 −0.581± 0.002
E14 −0.577 −0.543± 0.002
E21 0.577 0.589± 0.002
E22 −0.577 −0.599± 0.002
E23 0.577 0.529± 0.002
E24 −0.577 −0.579± 0.002
E31 0.577 0.584± 0.002
E32 −0.577 −0.557± 0.002
E33 −0.577 −0.621± 0.002
E34 0.577 0.601± 0.002

βel 4
√
3 ≈ 6.928 6.909± 0.007

TABLE I. Experimental values for the combinations of set-
tings needed to test the elegant Bell inequality.
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P (a = i, b = +1|x = 4, y = i) Theory Experiment
P (1,+1|4, 1) 0 0.0021± 0.0001
P (2,+1|4, 2) 0 0.0020± 0.0001
P (3,+1|4, 3) 0 0.0025± 0.0001
P (4,+1|4, 4) 0 0.0025± 0.0001

Sum 0 0.0091± 0.0002

TABLE II. Experimental values for the probabilities of the
outcomes of the MIC-POVM that are most relevant to the DI
certification protocol [see Eq. (1)].

State tomography with the MIC-POVM

In order to test the tomographic capabilities of our
certified MIC-POVM against the standard tomographic
methods based on projective measurements, we recon-
structed eight different Alice’s local qubit states (those
naturally occurring in our Bell scenario when we con-
dition Alice’s state to Bob’s measurements and results)
using both methods. Firstly, a standard tomographic
analysis from the experimental statistics of three projec-
tive measurements (in our case, A1, A2, and A3; that is,
σx, σy, and σz). Secondly, using only the experimental
statistics of our single four-outcome measurement. The
resulting reconstructed local states should be identical
for both methods and, ideally, must point to the cor-
ners of a regular tetrahedron in the Bloch sphere. In
the case of the MIC-POVM, a simple formula connects
the four experimental frequencies produced by the single
measurement with the tomographic reconstruction:

~s = 3

4∑
j=1

fj ~Aj , (10)

where ~s is the unknown Bloch vector, each ~Aj is one
of the four elements of the symmetric MIC-POVM set
(see Eq. (4)), and fj is its corresponding measured fre-
quency [5]. On the other hand, the six experimental fre-
quencies provided by the three projective measurements
were used, through linear inversion [24], to reconstruct
the same states. The results of both methods are pre-
sented in Fig. 4.

The fidelity between corresponding vectors was in all
eight cases equal to or greater than 99.5%, indicating that
the two tomographic methods yielded near-optimally
overlapping results, and the four-outcome POVM is in-
formationally complete and effectively symmetric. More
detailed results are provided in the Supplemental Mate-
rial.

All the experimental uncertainties reported were calcu-
lated with a priori evaluation of known sources of error,
and subsequent propagation in the results. The sources
of errors included in our analysis were: photon count-
ing statistics, precision of wave plate rotation, detector
dark counts. and higher order down-conversion events

FIG. 4. Reconstruction of eight Alice’s local qubit states,
conditioned on Bob’s setting and outcome, as obtained from
standard projective tomography (left) and MIC-POVM to-
mography (right).

(see Supplemental Material for more details).

CONCLUSIONS

Quantum information identifies MIC-POVMs as the
standard quantum measurements for information pro-
cessing tasks as they are informationally complete and
optimal for tomographic and cryptographic purposes. On
the other hand, the device-independent paradigm pro-
vides the arguably optimal way to test quantum devices,
as it reduces the assumptions to the minimum. Device-
independent tests are especially important within cryp-
tographic scenarios and constitute, in a sense, the high-
est level of certification attainable with quantum theory.
Here, we have reported the results of an experiment cer-
tifying for the first time a MIC-POVM for qubits fol-
lowing a device-independent protocol. For that, we have
produced correlations between separated photons that,
as we have proven, are only attributable to an informa-
tionally complete four-outcome measurement on qubits.
Our results pave the way towards realistic applications re-
quiring device-independent certification of MIC-POVMs,
and show how very refined concepts of quantum informa-
tion are now experimentally attainable and can transform
communication and information processing technologies.
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SUPPLEMENTAL MATERIAL

Here we provide supplementary information to the
manuscript above. In particular, the following will be
presented: details on the experimental realization of
non-projective measurements, proof of information com-
pleteness, results of tomographic reconstruction of Alice’s
eight local states and details on error estimation.

Experimental realization of Alice’s POVM

We will derive in this section the Kraus operators cor-
responding to the four outcomes of Alice’s non-projective
measurement (Eq. (4) in main paper). In order to get
to them, we shall work with a four dimensional Hilbert
space on Alice’s side, which includes the usual polariza-
tion space (with basis vectors |H〉 and |V 〉) and the ad-
ditional path degree of freedom added by the Sagnac in-
terferometer. Referring to Fig. 2 in the main paper, we
denote by |a〉 the mode transmitted by the polarizing
beam splitter (PBS) at the entrance of the interferome-
ter, passing through lambda-half wave plate (HWP) H1,
and transmitted again by the PBS. Counter-propagating
to it, and going through HWP H2, is instead mode |b〉.

We can then describe any four-dimensional state |Ψ〉A
as a vector with basis {|H〉 |a〉 , |H〉 |b〉 , |V 〉 |a〉 , |V 〉 |b〉},
where each element refers to one polarization-path com-
bined mode. In this context, a PBS can be described
as:

UPBS =


1 0 0 0
0 0 0 i
0 0 1 0
0 i 0 0

 , (11)

while HWP, lambda-quarter wave plates (QWP) and
phase plates (PP) as:

UH(θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
,

UQ(θ) =

(
cos2 θ + i sin2 θ (1− i) sin θ cos θ
(1− i) sin θ cos θ i cos2 θ + sin2 θ

)
,

UPP (θ) =

(
1 0
0 eiθ

)
.

(12)

The HWPs inside the interferometer act as:

UH1H2 = UH(θH1)⊕ UH(θH2) =
cos 2θH1 sin 2θH1 0 0
sin 2θH1 − cos 2θH1 0 0

0 0 cos 2θH2 sin 2θH2

0 0 sin 2θH2 − cos 2θH2

 (13)

and the whole interferometer is thus given by
Uint(θH1, θH2) = UPBSUH1H2UPBS .

After the Sagnac interferometer, each of the two out-
put paths includes a combination of PP, HWP and QWP,
PBS and two single photon detectors. Referring to Fig. 2
in the main paper, we can then express the transforma-
tions in polarization space for outcomes j = {1, 2, 3, 4}
in terms of Kraus operators as:

A1 = 〈a|UPBSUQ(θQa)UH(θHa)UPP (θPa) |a〉 〈a|Uint |a〉 ,
A2 = 〈a|UPBSUQ(θQb)UH(θHb)UPP (θPb) |a〉 〈b|Uint |a〉 ,
A3 = 〈b|UPBSUQ(θQb)UH(θHb)UPP (θPb) |a〉 〈b|Uint |a〉 ,
A4 = 〈b|UPBSUQ(θQa)UH(θHa)UPP (θPa) |a〉 〈a|Uint |a〉 ,

(14)
so that Alice’s qubit undergoes the operation |ψ〉A →
Aj |ψ〉A, and each of her non-projective measurement
operators (in Eq. (4) in the main paper) is described
by A4,j = A†jAj . As a side note, while a combina-
tion of HWP and QWP at each interferometer output
would in principle be sufficient, adding the PPs allows for
“standard” σx and σy measurement settings to be used,
together with a fixed phase given by the PPs. More-
over, since the relative phase between the interferome-
ter’s arms is fixed but unknown, the additional PP sim-
plifies the experimental task of compensating for this ad-
ditional phase.

Because of the effectively redundant PPs, there are
several combinations of settings that lead to optimal vio-
lation of Eq. (5). In our experimental realization, we used
the following: θH1 = 31.32◦, θH2 = 13.68◦, θPa = 45◦,
θHa = 0◦, θQa = 45◦, θPb = 135◦, θHb = 22.5◦, θQb = 0◦.

Information completeness of 4-outcome POVMs in
dimension 2

We will now show that if a 4-outcome POVM is im-
plemented in dimension 2, then the information retrieved
from the quantum system is complete.

Note that a system of dimension 2 contains 3 inde-
pendent parameters. Thus, in order to show that a 4-
outcome POVM obtains these parameters we need to
show that it consists of 3 linearly independent operators.

Let us assume that a POVM contains only 2 linearly
independent operators. Without loss of generality we can
write it in one of the forms:

(A,B, αA+ βB,1− (1 + α)A− (1 + β)B) , (15)

or

(A,B, αA− βB,1− (1 + α)A− (1− β)B) , (16)

with α, β ≥ 0. We now show that POVMs in (15)
and (16) can be expressed as a convex combination of
POVMs with at most 3 outcomes.
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Indeed, for (15) we have:

(A,B, αA+ βB,1− (1 + α)A− (1 + β)B)

=
1

(1 + α)(1 + β)
((1 + α)A, (1 + β)B, 0, R)

+
α

(1 + α)(1 + β)
(0, (1 + α)A, (1 + β)B,R)

+
β

(1 + α)(1 + β)
((1 + α)A, 0, (1 + β)B,R)

+
αβ

(1 + α)(1 + β)
(0, 0, (1 + α)A+ (1 + β)B,R) ,

(17)
where R = 1− (1 + α)A− (1 + β)B.

Similarly, for (16) we have:

(A,B, αA− βB,1− (1 + α)A− (1− β)B)

=
α2

(α+ β)(1 + α)

(
0,

(
1 +

β

α

)
B,(

1 +
1

α

)
(αA− βB), R′

)
+

α

(α+ β)(1 + α)

((
1 +

1

α

)
(αA− βB),(

1 +
β

α

)
B, 0, R′

)
+

αβ

(α+ β)(1 + α)

((
1 +

β

α

)
B, 0,(

1 +
1

α

)
(αA− βB), R′

)
+

β

(α+ β)(1 + α)
((1 + α)A+ (1− β)B, 0, 0, R′) ,

(18)
where R′ = 1− (1 + α)A− (1− β)B.

Detection efficiency

In order to calculate critical detection efficiency of the
modified elegant Bell expression (Eq. (7) in the main pa-
per), we first calculated its local hidden variables bound.
To this end we enumerated all possible deterministic
strategies. This revealed that the strategy assigning out-
comes + for Alice’s measurements 1 and 3, − for Alice’s
measurement 2, 2 for the POVM measurement, + for
Bob’s measurements 1, 2 and 4 and − for his measure-
ment 3 yields the value 6.1652.

For detection efficiency calculations we assumed that,
in post-processing of the experimental data whenever no-
click events occur, an outcome from the optimal LHV
strategy above is assigned. The critical detection effi-
ciency calculated using the method in Ref. [25] is equal
to 0.9439.

Tomographic reconstruction of Alice’s eight local
states

In Table III we report the eight qubit states, in Bloch
vector notation, reconstructed using both standard pro-
jective tomography (σx, σy, σz), and with single-setting
MIC-POVM tomography. These states are the local
states of Alice’s qubit, conditioned on Bob’s measure-
ment settings and outcomes. The pairwise fidelity is also
reported.

Error estimation

Here we provide a more comprehensive description of
the errors considered in the experiment.

Counting statistics

Whenever (coincident) events with a constant rate are
counted for some amount of time, the distribution of the
final amount is in very good approximation Poissonian.
We therefore considered all our empirical counts to have
an uncertainty equal to their square root, and propagated
it in the results. This is, by far, the predominant contri-
bution to the final uncertainties in our experiment, giving
errors of the order of 2 · 10−3 and 10−4 on each Eab and
P (a = i, b = +1|x = 4, y = i) term, respectively.

Motor precision

All measurement wave plates were rotated by motor-
ized mounts controlled by a computer. The step motors
have a precision equivalent to 0.02◦. This results in er-
rors of the same order of the Poissonian ones. In order to
reduce their contribution, each setting was repeated 23
times, therefore decreasing the uncertainties by almost a
factor of 5.

Detector dark counts

Each of the single photon detectors used in the mea-
surements have dark count rates of about 500 detections
per second. The chances of a coincident event stemming
from a true detection and a dark count, with the rates
used, was as low as 10−11, thus negligible.

Higher order down-conversion events

The rate of accidental coincidences acm,ij coming from
multiple down-conversion events in a single pulse, for
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Projective tomography SIC-POVM tomography Fidelity(
0.561 0.601 0.570

) (
0.544 0.508 0.668

)
0.995+0.004

−0.004(
0.570 −0.589 −0.574

) (
0.506 −0.681 −0.530

)
0.996+0.003

−0.004(
−0.572 0.525 −0.630

) (
−0.572 0.525 −0.630

)
0.997+0.002

−0.003(
−0.551 −0.590 0.591

) (
−0.526 −0.695 0.490

)
0.995+0.002

−0.005(
−0.548 −0.581 −0.601

) (
−0.518 −0.574 −0.634

)
0.999+0.001

−0.001(
−0.577 0.611 0.541

) (
−0.658 0.586 0.474

)
0.997+0.002

−0.002(
0.588 −0.532 0.610

) (
0.560 −0.603 0.569

)
0.998+0.001

−0.001(
0.540 0.573 −0.616

) (
0.480 0.570 −0.667

)
0.998+0.001

−0.002

TABLE III. Tomographic reconstruction of the states depicted in Fig. 4 in the main text, using both projective and MIC-
POVM tomography, and their pairwise fidelities. Uncertainties represent 15.9% and 84.1% quantiles of the respective results’
distributions.

measurement setting m and detectors (i, j), can be es-
timated with the formula

acm,ij =
Sm,iSm,j∆t

T
, (19)

where Sm,k are the total (single) events on detector k
during measurement time T , when coincidence windows
of length ∆t are used. While the resulting rates are fairly
minimal (of the order of 10−3 events per second), they

can still worsen, although slightly, the results obtained.
Since the DI certification protocol can, in principle, work
even if the state and measurements are not characterized,
we chose not to correct our evaluations for this type of
error. In the case of the full state tomography, the de-
rived fidelity of 99.6% (and corresponding uncertainty),
did not change whether we took accidental counts into
consideration or not, due to their very low rate.
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