arXiv:1812.00211v2 [hep-ph] 8 Dec 2018

Gravitational production of super-Hubble-mass
particles: an analytic approach

Daniel J. H. Chung?, Edward W. Kolb?, and Andrew J. Long®

@ Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
bKavli Institute for Cosmological Physics and Enrico Fermi Institute, University of Chicago, Chicago,
IL 60637, USA
¢Leinweber Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Through a mechanism similar to perturbative particle scattering, particles of mass m,,
larger than the Hubble expansion rate Hi,s during inflation can be gravitationally produced
at the end of inflation without the exponential suppression powers of exp(—m, /Hint).
Here we develop an analytic formalism for computing particle production for such massive
particles. We apply our formalism to specific models that have been previously been
studied only numerically, and we find that our analytical approximations reproduce those
numerical estimates well.
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1 Introduction

At the end of a quasi-de Sitter phase of inflation [1-4] there is a transition period, often referred
to as reheating (see e.g., Refs. [5-9] for a review), that eventually leads to a universe dominated
by relativistic particle degrees of freedom and the commencement of the radiation-dominated
phase. In the context of slow-roll inflation this reheating occurs during coherent oscillations of
a scalar field. In the simplest models of single-field, slow-roll inflation the oscillating scalar field
is the inflaton field itself. If the inflationary potential contains an inflection point, as in hilltop
inflationary models (see e.g. [10]) and certain hybrid inflationary models (see e.g., [11-16]),
then the oscillation frequency of the scalar field during coherent oscillations can typically be
much larger than the Hubble expansion rate during inflation. In such situations, gravitational
particle production can occur without an exponential suppression even when the mass m, of
the particles being gravitationally produced is much larger than the Hubble expansion rate Hi,s
during inflation [17-19]. (A different strategy for super-Hubble mass production is presented in
Ref. [20].)

Unlike the case of parametric resonance [21-24], this particle production can be qualitatively
interpreted perturbatively as a 2 — 2 scattering process [17] where two cold inflaton ¢ particles
produce two final-state x particles through gravitational interactions. These particles in principle
can serve as dark-matter particles if they are stable or sufficiently long lived. They can also,
in principle, cause unwanted late-time decay problems. In Ref. [17] the gravitational particle
production was analytically estimated in the perturbative scattering picture, and numerically
computed using the Bogoliubov formalism (i.e., computing the time evolution of the SU(1,1)
rotation matrix). In the numerical calculation there are two classes of rates: the fast frequencies
of the oscillation frequency w, of the coherently oscillating field and that of the spectator field
X (typically m,) and the slow frequency of the expansion rate of the universe, H. Because of
the disparate timescales of the fast and slow frequencies the numerical system is stiff, and the
oscillatory nature of the system makes the brute-force numerical integration difficult. Hence, an
analytic formalism is desirable.

In this paper, we provide such an analytic formalism to compute the spectrum of particles
that are gravitationally produced in the regime where the background geometry has a rapidly-
oscillating component, w, > H, and where the spectator field is heavy, m, > H. An analytical
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Figure 1: Rapid oscillations of the inflaton field at the end of inflation lead to the production
of heavy spectator particles via the coupling of each field to gravity. In the regime where the
inflaton field oscillates quickly, w, > H, and the spectator particles are heavy, m, > H, we show
that an the particle spectrum can be calculated analytically using the Bogoliubov formalism.

calculation is made possible by the double expansion in the small ratios A ~ H/w, < 1 and
e ~ H/m, < 1. We provide a graphical representation of the essential ingredients of our
calculation in Fig. 1.

The formalism applies for a canonically normalized single real scalar field ¢ with a potential
V(¢) dominating the coherent oscillations period. We do not deal with the inhomogeneities of
the inflaton condensate in the inflated Hubble patch and focus on the homogeneous condensate
effects. Any inhomogeneous effects are expected to be complementary to the subject of this
paper as long as parametric resonance effects are unimportant.

As an application of this formalism we consider the model of gravitational particle production
presented in Ref. [17]. That reference evaluated the number density of x particles, which are
produced in the first few Hubble times after time t¢.,q marking the end of inflation, with a
qualitative perturbative calculation, finding

my a(tena) )’
ny(t) = CCHﬁlfm—Z O(my —m,) ( a(e:) ) (conformally-coupled scalar) (1.1)
¢
CL<tend>

ny(t) = CoH O(my — m,) ( > (minimally-coupled scalar) (1.2)

a(t)
where the coefficients were estimated using numerical techniques. Here we show that C. =
(3/32)(1/167) ~ 0.002 and C,, = (3/8)(1/167) ~ 0.007 and compute mass dependent factors.
We also provide a more general analytic formula applicable to the case of arbitrary gravitational
coupling ¢ and larger range of m, and mg masses.



The order of presentation is as follows. In Sec. 2 we briefly review the formalism of particle
production in an expanding universe. In Sec. 3 we discuss the origin of the usual exponential
suppression for m, > H. In Sec. 4 we develop a general, model-independent formalism for
evaluating particle production by expressing the Bogoliubov coefficient ;. in terms of the Fourier
transforms of the Hubble parameter and the Ricci scalar. In Sec. 5 we present details of the
decomposition of the energy-momentum density and the evolution of the background geometry
into fast and slow components. Sec. 6 summarizes the simple computational procedure of the
formalism explicitly. In Sec. 7, we apply the procedure of Sec. 6 to a simple phenomenologically
relevant quadratic coherent oscillation potential. Sec. 8 concludes the paper.

2 Particle production in an expanding universe

We begin by briefly reviewing the machinery behind gravitational particle production. We work
in the Friedmann-Lemaitre-Roberston-Walker (FLRW) spacetime; its metric can be written as

ds? = g, dztde” = dt* — a?(t) |dz|* = a*(n) (dn* — |daz|2) (2.1)

where the scale factor a is a function of a temporal coordinate: either coordinate time ¢ or
conformal time 7. The Hubble parameter H and Ricci scalar R are given by

a a
H=-=— 2.2
i (2.2a)
a d2 a//
R=—6-——6—=—-6— 2.2b
a a? a3 ( )
where @ = 0a and o’ = J,a. The geometry responds to the energy-momentum tensor 7",

which is assumed to arise primarily from a nearly homogeneous scalar field ¢(t) with canonically-
normalized kinetic term. In the (¢, Z) coordinates that we defined above, the energy momentum
tensor has the usual energy density and pressure components T, = (p + P) §",6°, — Pé*, with

1. 1.
p=38+V(e) and  P=¢—V(g). (2.3)

Einstein’s equations give
3M3H?=p  and — MAR=T"g,, =T=p—3P (2.4)

where My, = (87Gy)~Y2 =~ 2.43 x 10'® GeV is the reduced Planck mass.

Consider a real scalar field x(x) with mass m, that is non-minimally coupled to gravity with
coupling parameter £. The Fourier modes of this field satisfy a mode equation, x} + wiy;, = 0,
where the dispersion relation is given by

1
Wy = \/k:2 +a?m2 + 6(1 —6£)a’R , (2.5)



and k = |k| is the magnitude of the comoving wavevector. The Fourier modes can be broken
up into Bogoliubov coefficients, a; and [, and the mode equation becomes

1 )
), = 5 Ny, By, €' (2.6a)

Be=75 Nk ay e (2.6b)

where the time-dependent phase is defined by

@Eﬁ%wmv /dmw (2.7)

1 t1 (t/) ’

where 7, and t; set the phase ®(1n1) = ®x(f1) = 0, and the non-adiabaticity parameter Ny is
defined by Ny = wj,/wy or equivalently Ni/a = wy/wy. If gravitational particle production is a
small perturbation on the field, then o ~ 1 and

L / N —i®r(n’)
Br(n) = Br(np) + 5/ dn’ Ni(n') e "+ (2.8)
ne

Note that t; > tp fixes the phase convention, and ¢p partially controls the adiabaticity with
which one-particle states are defined. If the field y is initially in its vacuum state then |SBx(np)| <

|Bk(n)], and we have
! / w; . 4 1
B = dn’ —= exp | —21 dn" wi| . (2.9)
np 2wk m

Using the dispersion relation (2.5) and moving to coordinate time gives the master equation

ot [ HE)m+ A1 - 6¢) BR@’HH(t')R(t’)} Y w(t)
54“ () /()] em}mLMCWJ’
(2.10)

B =

where the term in curly brackets is simply wy/wg. Assuming that the non-gravitational interac-
tions of x can be neglected, in terms of 55 the spectrum of gravitationally-produced y-particles
is given by

d3k 1 k3 dln k:

dnx = (2 )3 tli)m 3 |5k| = ) t—)

|5k| : (2.11)

Integrating over the spectrum gives the total x-particle density, and the relic abundance, 2, =
myny /3M2HG, given by

m Ny /S0
O h? =~ (0.0271) (1010 éeV> (13_20) (2.12)



where Hy = 100h km/sec/Mpc, so = (27%/45)gus.0Ty, grso == 3.91, and Ty ~ 0.234 meV. Thus,
the typical procedure is to solve for H(t), R(t), and a(t) through Einstein’s equations and ¢(t)
equations of motion. Afterwards, one uses Eqgs. (2.10) and (2.11) to compute the spectator y
particles that are produced, where the neglect of y particle production back reactions are often
well justified away from the parametric resonance regime.

With this information in hand, the integral in Eq. (2.10) can be performed to evaluate [y (t)
and the spectrum is given by Eq. (2.11).

3 Heavy particles and exponential suppression

In many models of inflation and reheating, gravitational production of heavy particles leads to an
exponentially-suppressed abundance (see for example [25, 26]). In this context, “heavy” particle
species have masses that are larger than the Hubble scale at the time of particle production.
For such models we can write

Ny X exp[—c,m,/H] (3.1)

where ¢, is a model-dependent coefficient. Evidently gravitational particle production is negligi-
ble for m, > H. However, the generic expectation in Eq. (3.1) is not universally applicable, and
in the remainder of this section we discuss a class of models in which the exponential suppression
is evaded.

Let us first understand how the exponential suppression in Eq. (3.1) arises generically. From
Eq. (2.11) we recall that n, ~ |B|%, and from Eq. (2.10) we recall that 8, ~ [dt' (Wp/wr) ¥
[phase factor]. In the regime of interest for heavy particles, m, > H, the phase factor is simply
exp|—2iwgt’]. If wy/wy is slowly varying then the time integral over a rapidly-oscillating phase
leads to a small |8k|. To put it another way, the integral over ¢’ is a Fourier transform that
selects out oscillations on the time scale 7 ~ (2w;) ™!, but if wy /wy only varies on a much longer
time scale, 7 ~ H~!, then the Fourier transform gives fj ~ exp[—bywi/(aH)] with b, = O(1).
Such models lead to the exponential suppression observed in Eq. (3.1).

However, the would-be exponential suppression can be avoided in models of inflation and
reheating for which wy, also contains a rapidly-oscillating component. Suppose that w;, oscillates
with a period 7 such that m; ' < 7/2m < H™'. Then oscillations in Wy, /wy, are cancelled by the
phase factor in Eq. (2.10) when 27 /7 ~ (k?/a® + mi)l/Q. In other words, the Fourier transform
picks out the rapidly-oscillating mode, which does not have an exponentially-suppressed ampli-
tude. For models in which the exponential suppression is avoided, one can also view gravitational
particle production as a result of 2 — 2 scattering [17].

A rapidly-oscillating dispersion relation arises in many interesting models of inflation and
reheating. Coherent oscillations of the inflaton sector during reheating (this includes the wa-
terfall field in the case of hybrid inflation) lead to an oscillating energy density, which induces
oscillations in the scale factor a(t) through Einstein’s equations, and consequently the spectator
field’s dispersion relation, wy, also acquires an oscillating component. In the following sections
we present a general formalism for studying gravitational particle production in such models.



4 Particle production from background oscillations

We have argued in Sec. 3 that the relic abundance of gravitationally-produced particles may
evade the generic exponential suppression for m, > H provided that the dispersion relation, wy,
has a rapidly-oscillating component. For such models, it is generally difficult to evaluate the relic
abundance with numerical techniques, since the integrand of Eq. (2.10) is rapidly oscillating.
In this section we develop a more general, model-independent formalism for evaluating the relic
abundance analytically. By doing so we show that the Bogoliubov coefficient 3 can be expressed
simply in terms of the Fourier transform of the Hubble parameter and Ricci scalar.

4.1 Assumption #1: small-fast much larger than large-slow

We are interested in a system for which the energy-momentum tensor can be written as the sum
of two terms: the first term is large in magnitude and evolves slowly, whereas the second term is
small in magnitude and evolves (oscillates) quickly. This is the situation, for instance, in many
models of reheating where the inflaton energy density is slowly redshifting while a sub-dominant
component is also rapidly oscillating. Thus, we decompose the energy-momentum tensor as
TMV = Tslfgw + )\ Tfigt (41)

where the dimensionless variable A\ will be used to perform a formal expansion in the ratio
[small & fast]/[large & slow], and we will eventually take A — 1 at the end of the calculation.
We provide additional details of the slow-fast decomposition in Sec. 5. There, we will explain
how this is an expansion in the asymptotic limit of H/w, which can be accomplished by taking
M, — oo with the energy-momentum tensor fixed.

Einstein’s equations (2.4) describe the response of the spacetime metric to the energy-
momentum tensor. Thus we can also decompose the FLRW scale factor, the Hubble parameter,
and the Ricci scalar into large-slow and small-fast components. In summary we will write

4 = Qglow + A Qs + O(A?) (4.2a)
H = Hgopyw + A Hysy + O(N?) (4.2b)
R = Ryow + A Rpast - (4.2C)

The relation between R and T is linear, but the relations with @ and H are nonlinear.
Using the slow/fast decomposition in Eq. (4.2), we evaluate the Bogoliubov coefficient [y



from Eq. (2.10). We perform a formal expansion in powers of A to obtain

1 t -Hslowm + = (1 — 65) ( slow + Hsloszlow>
/ at
tp

== 4.3
o 2 (kQ/aslow + mi + 6(1 — 6£) sloW) (4.3)
rE /1 : 1 e
+ 2 <_(1 - 6€>RSIOW + 2Hslowmi + - (1 - 6&) slow slow) (st
L Cslow 6 3 slow

1 k2 1

+ (mi +e(l- 6§)Rslow) ( — my+2(1 = 6§)Rslow> Hiast
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+ = (1 - 6&) ( slowag_ — 54 ]- - 65 slow
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slow 26 fost
k
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5100 (o
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2
+ m + 1 - 65 slow>
slow
)\1 5 + O(N?) b exp | —2i / dt” wk(i ) .
(kg/aslow + m?( + 6(1 - 6§)Rslow) i1 (t )

The terms of O()\?) are negligible as long as the fast terms are small in magnitude as compared
to the slow terms; this assumption is justified and clarified in Sec. 5.

Rfast:|

4.2 Assumption #2: Expansion rate much less than mass of spec-
tator field

We are interested in systems for which the Hubble expansion rate is small compared to the mass
of the spectator scalar field, H < m,, and the spectator particles are heavy. If we employ the
slow-fast decomposition from Eq. (4.2), we can write Hp,g, < Hgow &~ H < m,, and therefore
the small expansion parameter is Hgjow /M,

How do Ryoyw and Reow compare with m,? We assume that the Hubble expansion rate
controls the time rate of change of the slow components. In other words, dgow ~ Hslow@slow,
Aolow ~ H. ZIOWQSIOW’ Rgow ~ H?_ . and Rslow ~ HgowRgow. Therefore, in order to keep track of

S slow?
the expansion in Hgey/m, < 1 we replace

0 1 2 : 37
mx — € mx; Hslow — € HSIOW7 Rslow — € Rslowa Rslow — € Rslow . (44)

At the end of the calculation we will take ¢ — 1 again.
Using the replacements in Eq. (4.4) we evaluate the Bogoliubov coefficient from Eq. (4.3).



We perform an expansion in small € to find

[ ' mi 2 k? 2 Ofast 2 2
B = 5/ dt HSIOWE_g e+ 0(E)| + W(zﬂslwmx) - € +my By Hyagt
P slow slow

k? 1 . A
+ (1 - 6£)HSIOW2_RfaSt €+ E(l - 6£)E£Rfast + O(€2>1

Ej

D=

slow

+0(\?) } exp [—% / “ar Ey(t") +0(e?)| (4.5)

t1

where we have also defined Ej(t) = \/ k2/aZ,.(t) +m2.

4.3 Further simplifications

Subject to the assumptions of the previous subsections, the Bogoliubov coefficient Sj is given
by Eq. (4.5). We now retain only the leading-order terms to obtain

¢ Haow Hpse 1 Rpase | M2 v
By, = / dt’ {—1+ fast 4 (1= 6¢) f;} —X exp —Zi/ dt” By (t")
tp m

(4.6)
2 2 2 2 [ E7 "

where we have also set A = ¢ = 1. This expression can be simplified further.

Term with Hg,,. We now argue that the first term in 5, can be neglected. Recall that Hygoy,
only varies on a time scale At ~ O(H, -1 ). However, on this time scale, the phase factor is

slow

rapidly oscillating, because At ~ E, < my '« H;! . Therefore the first term in f; integrates

slow *
down to zero when we send t — oo, and it can be neglected.

Term with Rps. The third term involves a time derivative, Rfas.t. We can evaluate the integral
by parts. The boundary terms vanish, and the term that goes as E, ~ Hgow Er can be neglected.
Thus we are left with

t / . / / 2 t
Bult) = / a {Hth(t)Jri(l—Gf)Rfm(t)Ek(t)} ™ exp [—21’ / At E(t")

2 12 m? Ei(t') "

(4.7)

Time scales. In practice the rapidly-oscillating contributions to the Hubble parameter and
Ricci scalar are not present for all times, but they only appear after inflation has ended and the
inflaton sector experiences coherent oscillations about the minimum of its potential. Thus we
expect most of the gravitational particle production to occur just after the end of the quasi-dS
phase of inflation at time t.,q, and it is convenient to take t; = tenq. If the fast components
oscillate with a period 7 then the Fourier transform will pick out modes with Ej ~ 27/7 = w,,
and since we are interested in fast oscillations w, > H it follows that the integral will be



dominated by t' ~ tena+O(E, 1), since the phase factor is rapidly oscillating on larger time scales.
Since Ey(t) only changes on the much longer time scale, At ~ O(H 1), we can approximate
Ex(t) = Ek(tena) and evaluate the integral in the exponent. Since we know that the ' integral is
dominated by times (#' — tenq) < H™', we can extend the limits of integration to infinity. After
these manipulations we have

o > / Hfast (t/) { Rfast (t/) Ek (tend) m2 . ’
Br = /_ dt { 5 + E(l — 6¢) 2 } Eﬁ(t:nd) exp [—2iEy(tena) (' — tena)] -

[e.e]

(4.8)

Identify Fourier transform. The remaining time integral now takes the form of a Fourier
transform. We define the Fourier transform by

®dw - . - o0 o
Hfast(t> - / g Hfast (w) e_ZWt and Hfast (W> - / dt, Hfast (t,) let (49)
R _ Fdw A —iwt D, _ > / N iwt!
fast (1) = o Rt (w) e and Rpast(w) = dt’ Rpasi (') €, (4.10)

and the expression for 3, in Eq. (4.8) becomes simply

B = ™ (1 66) R (4.11)
k — 9 fast Eg 12 fast Ek: .
where ﬁfast(w) and Rfast(w) are evaluated at w = —2F}), and Ej(t) is evaluated at t = tepq.

This formula is a main result of our paper; it illustrates how fast oscillations in a sub-leading
contribution to the Hubble parameter and Ricci scalar leads to gravitational particle production.

Apply Einstein’s equations. The Hubble parameter and Ricci scalar acquire components
which are rapidly oscillating components because they respond to a rapidly-oscillating energy-
momentum tensor through Einstein’s equations (2.4). We will make this mapping explicit in
Sec. 5.2, but let us now anticipate that result here by writing

1 Prast My . 1—6¢ [~ 5 1
- e S e A —3Pas]— 4.12
Bk 4\/§Mp1 vV Pslow E}% 12M§1 Plast fast Ek ( )

where ppgt(w) and ISfast<(JJ) are evaluated at w = —2Ej, and Ej(t) and pgow(t) are evaluated at
t = tena- It is remarkable that the evaluation of 5, reduces to simply calculating the Fourier
transforms of the energy density and pressure.

5 Details of the slow-fast decomposition

In the previous section we derived Eq. (4.11), which expresses the Bogoliubov coefficient [
in terms of Hpg and Ry, which are the Fourier transforms of the rapidly-oscillating parts

10



of the Hubble parameter and the Ricci scalar. We begin this section by defining the slow-fast
decomposition more precisely. We also derive expressions for Hpo and Ry that relates them to
the energy density and pressure, pr.s and Prast, which justifies the formula for g5, in Eq. (4.12).
Next we impose energy-momentum conservation to solve for the time-dependence of pg.s(t) and
Prasi (1), and we evaluate their Fourier transforms. Finally we assume a Gaussian spectral model
to evaluate the Fourier coefficients that appear in Eq. (4.12).

5.1 Slow-fast decomposition of the energy-momentum tensor

Previously in Eq. (4.1) we wrote 7" = ThY + X T}, which assumes that the energy-momentum
tensor can be decomposed into a slowly- evolvmg term and a rapidly-oscillating term. Let us
now provide more precise definitions of T/" and T{. . This is done in the following way. The

energy-momentum tensor admits a Fourier decomposition,

THY (t) = /_ ‘;‘; T (w)e ™ where — TW(w) = [TW(—W)]. (5.1)

To quantitatively separate the “fast modes” which have large w and the “slow modes” which
have small w, we introduce a fiducial separation scale, Az, which satisfies Ay > H, and define

A
IR d ~ )
T (1) = [ Ge T e
T =T + \T'  with A 2T

slow fast A
MV - ,uu —iwt
Tfast ( / / ) T )
IR

Now, T,S‘fgw encodes the time dependence of the slow modes and T}, represents the fast modes.
Ideally, T“”(w) is bimodal having a peak at |w| < Ay corresponding to the slow modes, and
a second peak at |w| > Ay corresponding to the fast modes, and in this case the distinction
between slow and fast is insensitive to the arbitrary choice of A.

With the definition of Eq. (2.3), the energy density and pressure inherit the slow-fast de-

composition of Eq. (5.2):

(5.2)

P = Pslow + A Ptast (53&)
P = Pslow +A Pfast . (53b)

Previously in Sec. 4 we have assumed that |Ti.| < |ThY | As we will discuss further in
Sec. 5.4, the origin of this hierarchy is the smallness of the rate at which energy conservation
is violated due to the expansion of the universe compared to the quasi-periodic oscillation time
scale associated with the field potential. In the limit of exact energy conservation (no expansion),
the fast component is negligible since the energy density is all in the slowest mode, i.e., constant
energy density. After we make the formal expansion in A, we will check the self-consistency of

the assumption in Eq. (5.15).

11



5.2 Slow-fast decomposition of the background geometry

Once a slow-fast decomposition is performed for the energy-momentum tensor 7", then slow-
fast decompositions for the Ricci scalar R, Hubble parameter H, and scale factor a are derived.
Einstein’s equation (2.4) provides a linear relation between R and 7", and we find

slow — 3Ps ow
Raow = _plTl
R = RleW _I_ )\ Rfast Wlth R pfast _ ?F_lpfast (54)
fast — — a0
M

where p and P admit slow-fast decompositions via Eq. (5.2). The relation between H and T
is nonlinear (2.4), but nevertheless H admits a slow-fast decomposition as a series expansion in
powers of A\, which gives

Hslow v/ Pslow

H = Hslow + A_Hfast + O(AQ) with 1\/3]\14131 Drast (55)
Has = = =
fast 2 \/gMpl v/ Pslow
Finally, the relation between a and H is also nonlinear (2.2),
" t
log [ alt) } _ / At [Hyon (') + A Hut (1)) (5.6)
a(tend) tend
but if we focus on short time scales, (t — tonq) < HgL , then we can write
Qslow (t) Afast (t) /t / /
1 1 — =1 A——=| = Hyow(tend) (t — ten A dt’ Hee (1) - 5.7
o { * (a(tend) ) * a(tend) o Fena) 2+ tend ) 57)
We expand in powers of A and match terms to find
(
Aslow <t> Pslow (tend)
=14 Vel (¢,
a(tend) \/gMpl ( 2
_ 2 : t
a4 = Qglow + A Ggast + O(X7) with / A i () (5.8)
afast (t) — 1 1 tend
\ a<tend) 2 \/gMpl \V4 Pslow (tend)

where we have also used the expressions for Hye, and Hpg from Eq. (5.5). Since pgow appears
in the denominator of the expression for asgs, the power counting in M, depends on whether
we keep Hgjow O pgiow fixed as we take My — oo.

12



5.3 Evolution from energy-momentum conservation

In this section we will use energy-momentum conservation to derive expressions for pp.s(t) and
Prast (t), which will allow us to evaluate their Fourier transforms in the next section.
The energy-momentum conservation condition, V,T* = 0, gives

p+3H (p+P)=0. (5.9)

We can evaluate this formula using the slow-fast decompositions from Secs. 5.1 and 5.2. At
O()\%) we obtain

pslow + 3Hslow (pslow + Pslow) =0 ) (510)

which governs the evolution of pgey. At O(A!) we obtain

. 3 Ps ow
Prast + 3[—[slow (pfast + Pfast) + §Hslowpfast (1 + P 1 ) =0 (511)
slow

where we have also used Eq. (5.5) to write Hpst = Hglow Ptast /2 slow-

Next we seek to solve Eq. (5.11) for pes(f). To evaluate pgasy + Prast, we recall that the
energy-momentum tensor is dominantly controlled by the evolution of a scalar field (2.3); this
gives p+ P = ¢2. As long as the frequency scale w, for the oscillation of ¢ is much larger than
H, we can neglect the Hubble expansion rate in describing gﬁQ time evolution on a time scale
smaller than H~!. This means if we denote ¢ as the solution to the equation of motion that
neglects H (i.e. an energy conserving solution to ¢ +3H¢+V'(¢) = 0 with H = 0), then ¢* will
be dominated by the w, scale oscillation behavior without any slow time evolution coming from
H. This means we can approximate ¢2 ~ ((bQ)fast on a time scale smaller than H~!, allowing us
to conclude

Prast + Pfast - (¢2>fast ~ Qﬁ (1 + O()‘>) (512)

where the identification of neglecting H with the A expansion that appears on the right hand
side will be justified later by imposing that result obtained from (gi.)z)fast R gf)g approximation be
self-consistent with the A expansion that we have been using (see Eq. (5.17)). Although one can
in principle solve for ¢c(t) implicitly in terms of integrals, it is not very useful for computing
the desired Fourier integral that are needed to evaluate .

Now Eq. (5.11) is solved for pgs:(t) by direct integration. If we focus on short time scales,
(t — tena) < H™1, then the slow parameters can be treated as constants and we find

3 ! -
pfast(t) = Prast (tend) €xXp |:_§Hslow(1 + Pslow/pslow)(t - tend):| — 3Hslow / dt/ Qb?; (t/)

tend

t
N Pfast (tend) - 3Hslow/ dt/ ¢(2:(t/) ) (513)

tend
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where Hgow, Psiow, and Py are evaluated at t = t.,q. The first term is approximately constant,
which does not belong in p.g, but it is cancelled by the second term with a judicious choice of
tend- Using Eq. (5.12) we find

t
Prase(t) = 02(t) — 3Hgow / dt’ ¢2(t') (5.14)

tend
where Hgow = Hgow(tena). Hence, we see that the oscillatory time scale of ppas(t) and Prg (%) is

set by the period 7 of ¢(t). (We will give an explicit expression for 7 in terms of the potential
in Eq. (5.22).)

5.4 Understanding the expansion parameters

Let us now pause to discuss briefly the nature of the book-keeping variable A that we have been
using to keep track of the [small & fast]/[large & slow] expansion. Using the expression for pea
from Eq. (5.13) we can check the self-consistency of the A expansion. Consider the ratio

«(t b L
|Prast (1) | — 3Hy,., / d¢ 2%c(t) < 3HgowT , (5.15)
Pslow (t) tend Pslow (t)
where Hgow = Hglow(tena). The integrand is no larger than one, since p contains P /2. Moreover,

the integral does not grow without bound like ~ (t —t.nq), because the integrand also oscillates,
and then the integral is largest when it equals 7, the period of ¢.. Thus we understand that
powers of \ are keeping track of powers of the small quantity, HgowT:

O([HsowT]") = kept track of by A" terms . (5.16)

The formal expansion in powers of A is a reliable approximation as long as ¢ oscillates on a
time scale that is short compared to the Hubble time.

We can further develop our understanding of the A expansion by inspecting Eq. (5.10) and
Eq. (5.11). Suppose that we send Hgoy — 0. Since Hgoy and pgoy are related by the Friedmann
equation, which is M2 H3 ., = psiow at O(A?), the limit Hyo, — 0 also corresponds to My — oo
with pgow held fixed. Taking Hgow — 0 enforces pgow — 0, which is realized when pgoy is
approximately constant and energy is conserved, but it also enforces pg.s; — 0, which implies a
small amplitude for pgs;, since the rapidly-oscillating term pg,s; cannot be constant by definition.
In other words, the expansion in [small & fast]/[large & slow| that we have been parametrizing
with the variable A can also be viewed as the limit in which energy is conserved:

Mpl%OO

A—=0] <= [Hyw —0 <= {
Pslow = const.

} — 0. (517

[Muminating these connections is a main result of this study.
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5.5 Fourier transforms of energy density and pressure

In order to evaluate (3 using the expression in Eq. (4.12) we must first evaluate ppg(w) and
Prast(w), which are the Fourier transforms of pp.g () and P (t). Using the expression for pg (t)
from Eq. (5.13), it is straightforward to evaluate the Fourier transform, which gives

Cdw' W (w— W) ~ ~

Prast (W) ~ —SiHslow(tend)/ (W) Ppe(w — ') . (5.18)

oo 2T w

Similarly we could evaluate Prg(w) by taking the Fourier transform of P (t) from Eq. (5.14),
but a more useful expression is obtained by taking the transform of Eq. (5.11) instead to find

o N ~ 3 N
— W Ptast + 3[{slovv (pfast + Pfast) + §Hslowpfast (1 + w) =0 ) (519)

and solving for pfast gives

Hslow - 2 * 2 Pslow

Pfast (5 . 20)

~ ~ W 11 3 Ps ow ~
Ptast — 3Pfast = (_ oo )

where Hgow, Psiow, and Py, are evaluated at t = to,q. Note that for w > Hg,, we can neglect
the term containing w = Piow/Pslow, Since Py is always smaller than pgey. This says that
the particle production is insensitive to the equation of state of the slowly evolving part of the
background spacetime to leading order in \.

5.6 Gaussian spectral model

Further evaluation of pp.s(w) from Eq. (5.18) requires an expression for be (w). By construction
¢c(t) is periodic and smooth, since it corresponds to the energy-conserving solution. Therefore
we now adopt the Gaussian spectral model,
~ A
fe(w) =
() V2mo?

Note that ¢c(w) = ¢*(—w) such that ¢c(t) = @%(t).

The three parameters w,, A, and o can be extracted from the scalar potential, V(¢). The
dominant mode has a frequency w, = 27 /7, where 7 is the period of oscillation, ¢¢(tena) =
¢c(tena + 7). The energy-conservation constraint implies

¢c(tenat+3) do !
x = 5.22
¢ " </¢;C(tend) \/2V(¢C(tend)) - 2V(¢)) ( )

where we have assumed V(¢c(tena + 7/2)) = V(¢c(tena)) and ¢(tena + 7/2) > ¢(tena). The
amplitude A is calculated as

[e,(w,w*)Z/(gﬁ) +67(w+w*)2/(202)] e*iwtend . (5.21)

—(w-w.)?/(20%) | e—<w+w*>2/(2a%} _

A dw A
Pc(tend) = m/% [e ( —. (5.23)
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The variance is calculated as
e 2 iwten
L P N ()
= —w* —|— -~ N7z
ch (tend)

We are now equipped to evaluate pr.s(w) from Eq. (5.18). Employing the Gaussian spectral
model gives

(5.24)

~ ~ _3Zﬁ HSIOW(tend)¢g (tend) (WZ — 202) —(wH2wy)? /402 —(w—2wy)? /40 —iwlend
Prast (U)) ~ 16 \/03 o (& + e e .
(5.25)

Note that we have dropped the “cross term,” which contains a factor of e~w?/ 4"2, because it does
not contribute to fast modes.

It is illuminating to investigate this expression in the limit o — 0. We find

~ 3w 9 W + 2wy w — 2w, it
pfast(w) ~ _W Hslow(tend) (bc(tend) w (5 [T‘| + 5 |:T‘|) (& d 5 (526)
and the inverse Fourier transform is
3 .
Ptast (t) = Z Wi Hslow (tend) Cbg (tend) Sln[2w* (t - tend)] . (527)

For comparison consider the model of a real scalar field with a harmonic potential, V' (¢) =
mZ¢? /2. The equation of motion is solved by

etz

cos[rme(t — tond)] {1 +0 (H _ %)} | (5.28)

and the corresponding energy density is given by Eq. (5.27) with w, = my. This gives us a
nontrivial check of the Gaussian formalism for the case of the quadratic potential.

6 General formalism

Here we use the results of the previous sections to state a simple algorithm for computing the
spectrum of heavy spectator particles that arise from gravitational particle production for a
given inflaton potential V' (¢) and in the limit m, /H (tena) > 1 where tenq is the time at the end
of the quasi-dS era. We assume that the energy-momentum tensor is dominated by a single real
scalar field ¢ with a canonically normalized kinetic term.
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1. Compute the peak frequency w,. For a given potential V' (¢) one can solve

% () -

for ¢enq to find the field value at the time period just after the end of the quasi-dS phase when
€v(tena) = 1. This provides an initial condition for the energy-conserving solution ¢¢(tenq) =
®ena- Then one can solve

V (@c(tena)) =V (dc(tena +7/2)) (6.2)

for ¢c(tena + 7/2) to find the turning points of the potential. Note that this definition of
the turning point ignores the dissipation by Hubble friction as when constructing an adiabatic
invariant, which is reasonable for w, > H (tenq). Finally one can evaluate Eq. (5.22):

-1

[/¢c(tend+g) do
Wy = ’
"otwn V2V (0e(tona)) — 2V(0)

(6.3)

which assumes ¢¢(tena) < ¢c(tena + 7/2). If the integral can be done analytically, one does not
have to explicitly compute ¢enq. If the integral cannot be computed analytically due to the
complexities of the potential, one can fix @¢(teng) and compute w,. However, it is important
to recognize that it is far easier to numerically evaluate this integral (and work through the
following procedure) than it is to perform the numerical integration in Eq. (2.10) that’s required
to evaluate B by “brute force” methods, because H < m,,.

2. Compute the Fourier transforms of the energy density and pressure, pgs(w) and Prost (w).
Assuming that the oscillations of ¢¢(¢) can be described by the Gaussian spectral model, the
energy density is given by Eq. (5.25):

. 2,2 2
Prast (W) =~ 321\(? HS]OWjC w20 (e_(”+2“*)2/ 402 4 o= (w=2w)?/ 4"2> g'¥tend | (6.4)
o w

and Friedmann’s equation relates

Pslow — 3M§l s210w = V(¢C) (65)

where pgow, Hsiow, and ¢ are evaluated at t.,q both here and below. The spectral variance is
given by Eq. (5.24):

V/
o? = (9c) _ w? . (6.6)
e
The pressure is given by Eq. (5.20):
~ w 11
~as _3Pas =\ — e ~a,s 5 6.7
Prast fast ( Hslow+2)pft (6.7)

where a term of order Pyow/psiow < 11/2 has been dropped inside the parantheses.
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3. Compute the Bogoliubov coefficient 8;. One can evaluate Eq. (4.12):

1 ﬁfast mi 11— 66 [~ > 1
= —_— = — as—3Pas]— 6.8
= M, Vi B2 T2ap, [P T 3 (68)
where pr.s; and Pr are evaluated at w = —2F},, and Ex(t) is evaluated at fepq:

k2

a’slow (teﬂd )

One can interpret k/agow (fena) as the free-particle momentum of the x particle at time tepqg. If
the field x is conformally coupled to gravity (£ = 1/6) then the second term in (35 vanishes.
Otherwise we have

Br [second term]

2F}
B [first term] ~ (1-6¢) (m ) (6.10)

X

where we have dropped a sub-leading term that is O(Hgow/Er) < O(Hgow/my) < 1 in the
regime of interest. Particle production is most efficient for modes with E; ~ w,, and therefore
modes with Ej > m, will dominate the phase space as long as w, > m,. (This is equivalent to
there being a hierarchy in the book-keeping expansion parameters, ¢ > \). Consequently the
second term in [y is generally larger than the first one, except when & ~ 1/6.

4. Compute the spectrum of y-particle production rate. Most of the particle production occurs
within the first few Hubble times after the oscillations begin, i.e times ¢ such that O(w;!) <
t — tena < O Slolw) The rapid ¢ oscillations that are driving particle production have their
amplitude damped away on a time scale Hblolw, and therefore particle production shuts off and
the comoving spectrum is conserved at later times, i.e. a*(t)dn,/dk|; = const. for t — tenq >
O(H Slow) To determine the late time relic abundance of y particles we can calculate the spectrum
of particle production rate close to teng. The assumptlons that underlie our analytic result restrict
its regime of validity to times ¢ ~ ¢, such that O(E, ") < t3 — tena < O( slow) the lower limit
follows from validity of the Fourier transform in Eq. (4.8), and the upper limit follows from
neglecting the damping of ¢¢ in Eq. (5.12). We calculate the production rate spectrum during

this time using Eq. (2.11), which gives

o k?

dy(tena) 1 dn, - L 1
o /21212 ad,, (tena)

dk tog — tena dk

Brta)? for B <ty — fona < o,
(6.11)

If By, > |o| (e.g. close to quadratic potential), the expression simplifies as

dy(tena) _ (Ef —m)2Ey o \' B} 2(Bx — w,)?
~ Tx o1 - Tk exp [~ 2R (6.12
dE, 2048 E2 - ( 65) My) Voro ¥ = (6.12)
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This gives the production rate as a function of time t.,q, and with the replacement of the
time parameter to,q — t, this can be used in Boltzmann equations as a function of time ¢ to
compute the particle production in a standard manner.! This expression for the spectrum is an
approximation in the limit that Ej/H > 1 with an error budget of max[H/w., H/E})]. Another
source of error in this computation is the Gaussian modeling of the frequency distribution. Such
approximations are invalid if the coherent oscillations contain many strong frequencies as might
be the case for multi-field coherent oscillations with many oscillation scales. Furthermore, since
the natural correspondence is 07! = (ty — tena)/ V27, one cannot rigorously apply the Gaussian
ansatz for 071 > (ty — tena)/V/27, but as long as Fourier transform is a good approximation
(which effectively treats to — teng as an infinite time period), one can allow for even smaller
widths.

7 Application to a quadratic potential

To illustrate a simple and phenomenologically useful application of this formalism, we now

consider a class of models that can be described by a quadratic inflaton potential,
1
V(o) = §m§>¢2 : (7.1)

near the local minimum at ¢ = 0 where reheating occurs. Away from ¢ = 0 the quadratic
potential may be extended (as in the hilltop inflation model of Ref. [17]). We use this potential
to compute the number of x particles that are gravitationally produced for m, > H by following
the steps laid out in Sec. 6.

1. To compute the peak frequency (Eq. (6.3)), we evaluate

H(tena+%) do T
- 7.2
/qs(tend) V2V (c(tena)) — 2V (9) Mg (72)

and the peak frequency is found to be

We = My . (7.3)

2. We compute the frequency dispersion, finding
o =0. (7.4)

Consequently the Fourier transforms of the energy density and pressure are evaluated in the
0% — 0 limit, which gives

. i w+2m w—2m i
Pfast ~ W Hslow¢gw ((5 |:T¢:| + ) [T¢:| ) e lend (75)
~ w 11
Dfast — I3 Past = | — — ) Prast - .
Ptast 3 fast ( Hslow + 9 ) Ptast (7 6)

1Such a Boltzmann equation is defined to be coarse grained on a time scale of ty — tepnq.
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Here and throughout the rest of this section, Hgow, @c, Prast, and ]5fast are evaluated at tepnq.
Friedmann’s equation gives

1
patone = BM Hioye = 5mid; (7.7)

3. The Bogoliubov coefficient is then given by

2

7TH510W¢C —2iEt mX
- By 6(—V2E, + /2 iBitena
O [ T6my My VBELO(=V2E; + V2my) e E?

R e

where Ej is evaluated at te,q. In the second term we have assumed Hgoy/Er < 1.

2
Ek

4. - Conformal Coupling: If the spectator is conformally coupled to gravity (£ = 1/6) then

. RV H2 2 m4
|ﬁk(t2)|2 ~ Ahm At slowPc

5(Ey — 7.9
theo = 1024 M3 m2E2 (B =) (7.9)

where we have used 0(v/27)? = lim, ,(y/47) d(z). The spectrum’s rate of change is given by

d7§:1/6 (tend> . 3 k2 slowgb2 m4
dk 20487 a? Mgl 2E2

5(Ek - md)) y (710)

slow

where agoy is evaluated at t.,q. Integrating the spectrum gives the density production rate

9 m* m2
Ye=1/6(tend) = T02dr How % \/1- m—%: O(mg —my) . (7.11)
Eq.

We can integrate the Boltzmann equation using
t%/3. This gives at t > tenq + 1/H

(7.11) with teng promoted to t and agjoy (t) o<

2

mi my a(tena) ’
) = Co M it 4 [1= 73 O, =y () (7.12)

(3 1
C. = <§> (16_7r> ~ 0.0019 . (7.13)

The main result in Eq. (7.12) gives the cosmological density of x particles that arise from
gravitational particle production due to the rapid oscillations of the inflaton field at the end of
inflation; the formula assumes Hgqow < m, and that y is conformally coupled to gravity (§ =
1/6). The volume dilution scaling assumes that the x particles are free from particle-number-
changing interactions at later times. Note that this analytical calculation of C. is consistent
with the numerically-estimated coefficient of Eq. (34) in Ref. [17]. Due to our approximations,
the error on Eq. (7.12) is expected to be of order Hyow(tend)/my-
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4. - Minimal Coupling: If the spectator is minimally coupled to gravity (£ = 0), then both
terms in Eq. (7.8) contribute to f§, but the second is larger by a factor of 2E3 /m7 = 2mj/m?.
Keeping only the second term, we follow the same calculations as before to now find

d7£=0(tend) 1 k? Eﬁ é
~ 5(Ey — 7.14
dk 102i7 af,, arh Ok me) (7-14)

slow

9 m?
Ye=o(tend) = 50 Hiow 1|1 — —5 O(my —my) (7.15)
256m S\ T T w2 x
m? CL(tend) ’
ny(t) = Con Hyout |1 — —5 O(m —m)( 7.16)
X ) 1 qub () X a(t) (

Con = @) <16i7r) ~ 0.0075 . (7.17)

Equation (7.16) valid for ¢ >> teng + 1/H is another main result of this paper. The derivation of
this result has assumed Hgq, < m,, < my and that y is minimally coupled to gravity (£ = 0).
As m,, approaches mg, the two terms in the expression for i from Eq. (7.8) become comparable
in magnitude, and this is why Eq. (7.16) is only reliable for m, < mg4. Thus the threshold
factor (1 — mi /mi)l/ 2 ~ 1 must be close to one, but we have retained this factor anyway to
illustrate that our formalism, i.e. the double expansion in A\ and ¢, allows the computation
of such terms. It is remarkable that the analytical computation of C,, matches the numerical
estimate in Eq. (44) of [17] very well. The error in C,, is expected to be O(Hgow /My )-

4. - General Coupling and Masses: Keeping both terms in Eq. (7.8) or using Eq. (6.12)
we can also compute

malt) = o o H () (% Fo(1- 65)) 1 s 0ms =) () s

for ¢ > tena + 1/H where unlike in Eq. (7.16) we have not made the m, < m, approximation.

8 Conclusions

In this work, we have presented a formalism to compute the scalar particle x spectrum produced
by gravitational interactions of the inflaton during the coherent oscillations in the kinematic
regime in which m, > H. Unlike the parametric resonance case, this is qualitatively the limit
of 2 — 2 scattering through gravitational interactions.

The most general formula in terms of relevant Fourier components is given in Eq. (4.12).
Next, we used the vanishing divergence of the energy-momentum tensor and a Gaussian approx-
imation to the coherent oscillation frequency spectrum of a real canonically normalized scalar
field to compute the relevant Fourier components. The result is in terms of the properties of the
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potential and the value of the inflaton at the end of inflation. The computational procedure is
summarized in Sec. 6 and a phenomenologically relevant quadratic coherent oscillation potential
case is worked out in Sec. 7. In the process, a compact small spectral width limit formula for
the particle production rate spectrum is also presented in Eq. (6.12).

One can apply the formalism in this paper to dark matter production in scenarios similar
to [17] as well as to moduli problem considerations in the spirit of [27-29]. It would also be
interesting to understand how different features in the coherent oscillation potential (such as
cubic terms and radiative corrections) will change the gravitational production parametric de-
pendence. The formulae could also be generalizable to higher-spin particle production. Finally,
it would be interesting to systematically expand beyond a single Gaussian peak distribution
model to more complicated multifield coherent oscillation frequency structure.
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