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Abstract

According to the Axionic String Anstaz (ASA) confining flux tubes in pure gluo-
dynamics are in the same equivalence class as a new family of integrable non-critical
strings, called axionic strings. In addition to translational modes, axionic strings carry
a set of worldsheet axions transforming as an antisymmetric tensor under the group
of transverse rotations. We initiate a study of integrable axionic strings at general
number of space-time dimensions D. We show that in the infinite tension limit world-
sheet axions should be described by a peculiar “pseudofree” theory—their S-matrix is
trivial, but the corresponding action cannot be brought into a free form by a local field
redefinition. This requirement fixes the axionic action to take a form of the O(D − 2)
Wess–Zumino–Witten (WZW) model.
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1 Introduction and Summary

Understanding confining strings stands out as one of a few remaining major open problems

in the Standard Model of particle physics that can be solved while waiting for a new collider

to be built to shed light on more murky issues, such as the hierarchy problem. Thinking

about this problem has proven to be extremely fruitful in the past. Among other things

this lead to discoveries of critical string theory [1], the large N expansion [2], the Polyakov

action [3], holography [4–7] and integrability of N = 4 supersymmetric Yang–Mills [8].

Over the last two decades holography has been considered the most promising ap-

proach for constructing a quantitative description of confining strings. Its major qualita-

tive prediction—the existence of an additional worldsheet scalar mode, corresponding to the

warped holographic direction—perfectly matches the expectation from the Liouville descrip-

tion of non-critical strings.

However, there is mounting evidence that non-critical strings describing confining flux

tubes in non-supersymmetric gluodynamics are different. By now a considerable amount

of lattice data on the excitation spectrum of confining flux tubes in D = 3, 4-dimensional

SU(N) Yang–Mills theory has been accumulated [9–13]. This data does not show any sign of

a scalar excitation on the worldsheet of confinings strings in the fundamental representation

of the gauge group1. Instead, a massive pseudoscalar mode has been found at D = 4 [15],

while D = 3 data is consistent with a massless translational Goldstone being the only

degree of freedom on the string worldsheet [14]. The latter conclusion is strongly supported

also by the analysis [16] of the glueball spectrum in D = 3 gluodynamics [17]. Finally,

the analytically tractable D = 2 case also supports the conclusion that confining strings

in QCD-like theories are different from what one may expect based on holography in the

(super)gravity approximation [18].

Let us stress that this disagreement does not imply that the holographic intuition is

completely useless for QCD-like theories. Instead, more likely this is just another indication

that the (yet to be found) string theory background holographically dual to the real world

QCD is very strongly curved, so that the (super)gravity description is not adequate and the

full power of string theory is required. In the meantime, holography does serve as a useful

inspiration for phenomenological string models [19]. Still, new ideas are clearly needed to

construct a non-critical string theory describing confining flux tubes.

A concrete proposal in this direction—the Axionic String Ansatz (ASA)—has been put

forward in [20,16]. It is based on the observation that both in D = 3 and D = 4 Yang–Mills

the matter content on the worldsheet, as observed with the current lattice data, matches

the one of an integrable theory enjoying target space Poincaré symmetry ISO(1, D− 1). In

both cases the integrable phase shift between any two scattering particles is of the Dray–’t

1Massive scalar breathing modes are present on the worldsheet of flux tubes in higher representations
of the gauge group [14] (“k-strings”). These are unrelated to the holographic direction and indicate that
k-strings are bound states of fundamental flux tubes.
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Hooft form [21],

e2iδ(s) = ei`
2
ss/4 , (1)

where 1/`2s is the string tension. At D = 3 the corresponding integrable theory contains a

single massless scalar boson X (the Goldstone mode of the string). At D = 4 there are two

massless scalar Goldstones X1, X2 and a massless pseudoscalar axion. In both cases the

integrability on the confining string worldsheet is not exact—at D = 4 it is broken by the

axion mass, and at D = 3 deviations from the phase shift (1) [14] as well as non-vanishing

multiparticle amplitudes [22] have been extracted from lattice data.

At first sight the idea of approximate integrability of confining strings may appear com-

pletely ad hoc. However, approximate integrability has prominently emerged in the past in

several perturbative QCD contexts [23–27, 8, 28, 29]. In the worldsheet scattering, approxi-

mate integrability at low energies directly follows from the non-linearly realized target space

Poincaré symmetry [30, 14]. A more surprising aspect of the ASA is that integrability is

expected to get restored also at high energies2. This can be understood [31] by identifying

high energy worldsheet excitations with partons of perturbative QCD. Asymptotic freedom

implies that their hard scattering is trivial at high energies and the worldsheet scattering is

dominated by linearly growing time delays, associated with the phase shift (1), and caused

by long strings stretched between the partons.

Within the ASA approach the first step towards a quantitative understanding of confining

strings is to build a comprehensive description of integrable axionic strings. For instance,

these are expected to produce a spectrum of short strings (glueballs) with exact degen-

eracies at each level similarly to conventional critical strings. The actual glueball spectra

exhibit a well pronounced level structure, but level degeneracies are only approximate [16].

After integrable axionic strings are well understood it should be possible to calculate the

corresponding splittings using various perturbative approximations, such as the large J ex-

pansion [32]. With this program in mind, our goal here is to develop a better understanding

of integrable axionic strings.

To start with, it is instructive to compare, following [20], axionic strings to the con-

ventional non-critical strings [3]. Integrability provides a natural language to describe both

on the same ground. In this language conventional critical strings are defined by the in-

tegrable S-matrix (1) [33] describing scattering on a worldsheet of a single infinitely long

string. In a non-critical case D 6= 26, and in the absence of additional massless excitations

on the worldsheet, integrability is necessarily broken by the universal one-loop particle pro-

duction [30,34] associated with the Polchinski–Strominger (PS) term [35]. The only notable

exceptional case is D = 3 strings, where the PS particle production vanishes as a result of

kinematical cancelations.

It is natural to then ask what kind of additional massless matter can be added on

2Here and in what follows the large N limit is implied, which makes it possible to define the high energy,
E � ΛQCD, asymptotics of the worldsheet theory. For details see, e.g., [20].
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the worldsheet to allow for an integrable theory enjoying the non-linearly realized target

space Poincaré symmetry ISO(1, D − 1). In principle, the number of options is quite large.

For instance, one may add a compact c = 26 − D CFT, which does not transform under

ISO(1, D − 1). This corresponds to considering a conventional compactification of critical

bosonic strings. Alternatively, one may add fermions which transform non-trivially under

ISO(1, D − 1). Depending on the choice of the fermion representation, one may reproduce

this way either the Ramond–Neveu–Schwarz (RNS) or Green–Schwarz description of critical

D = 10 superstrings3.

The “old-fashioned” non-critical strings [3] in a sense correspond to the minimal option

available at any D—one introduces a single massless scalar field φ and makes use of the

linear dilaton coupling
∫
φR to cancel the PS particle production.

However, as noticed in [20], atD = 4 another equally minimal option is available. Namely,

one introduces a single massless pseudoscalar field a (the worldsheet axion) and makes use

of the coupling to the string self-intersection number [38] to cancel particle production,

Sa = Qa

∫
d2σ aεijK

i
αγK

jγ
β ε

αβ , (2)

where Ki
αγ is the worldsheet extrinsic curvature. Intriguingly, the value of the coupling

constant Qa required for integrability,

Qa =

√
7

16π
≈ 0.373176 . . . (3)

agrees within error bars with the value of the corresponding coupling constant for the massive

worldsheet axion, as extracted from the lattice data [15],

Qlattice ≈ 0.38± 0.04 .

This piece of numerology provided the initial motivation for the ASA. Note that the world-

sheet axion is a very natural degree of freedom in the context of D = 4 confining strings [31]—

it is created by an insertion of a transverse plaquette into a Wilson line operator,

Oa = Pe
∫∞
−∞ dzAzFxy .

It was suggested in [20] that it is natural to think about D = 3 and D = 4 integrable

axionic strings as members of a family of non-critical integrable strings which can be defined

for a general D in the following way. In addition to translational Goldstones X i one intro-

duces a set of worldsheet pseudoscalars Aij = −Aji (i, j = 1, . . . , D − 2) transforming as

3In the conventional formalism [36] the critical central charge c = 15 in the RNS case is different from the
bosonic c = 26 value because of the extended gauged (super)symmetry resulting in a different (super)ghost
system. In the integrability language the difference can be traced to different ISO(1, D− 1) transformation
properties of additional massless excitations, c.f. [37].
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an antisymmetric tensor under the O(D − 2) group of unbroken transverse rotations. The

axionic coupling (2) is replaced by

SA = QA

∫
d2σAijK

i
αγK

jγ
β ε

αβ . (4)

The goal of the present paper is to initiate a detailed study of this proposal. Clearly if

such a family of integrable models indeed existed it would be very interesting, independently

of the expected connection to confining strings. In addition, this is likely to provide a better

understanding of the physically relevant D = 3 and D = 4 cases. Indeed, these cases

on their own are quite degenerate—at D = 3 an antisymmetric tensor does not carry any

local degrees of freedom and at D = 4 it is equivalent to a pseudoscalar. Understanding a

non-degenerate D > 4 case is likely to provide a further insight in the structure of axionic

strings. Furthermore, for many purposes it has been fruitful to consider a formal analytic

continuation of quantum field theories in D. Hence, if the relation between axionic and

confining strings is correct, one may expect the (formal) analytic continuation of axionic

strings in D to exist, mirroring the analytic continuation of Yang-Mills theory.

A priori, it is not obvious that for integrable axionic strings at D > 4 all the scattering

should be described just by the phase shift (1). In particular, axion self-interactions may be

different. However, in this paper by D-dimensional axionic strings we will mean the theory

where the whole S-matrix is given just by the universal diagonal phase shift (1). This is

what happens in other integrable examples mentioned above4, and presents the simplest

generalization of D = 3 and D = 4 models.

As we explain in section 2, axionic strings at general D are much more subtle than the

D = 4 ones already at the tree level. Indeed, at the leading order in derivative expansion

the action of D = 4 axionic strings is simply the D = 5 Nambu–Goto action with an axion

a entering as an additional coordinate. This is no longer compatible with a non-linearly

realized ISO(1, D− 1) symmetry at general D because axions Aij transform in a non-trivial

representation of the rotation group now. Restricting to terms with one derivative per field,

it turns out impossible to build an axionic theory without tree level particle production, or

even one reproducing the phase shift (1) at the level of the leading order 2 → 2 scattering.

The only way out is to introduce a cubic axion self-interaction with one less derivative,

SAAA = g3,1

∫
εαβTrA∂αA∂βA . (5)

By combining this vertex with a cubic vertex coming from (4) (which has two extra deriva-

tives) one may then reproduce the correct leading order 2 → 2 amplitude. At first sight

this is not much of a remedy though. Indeed, (5) is a marginal `s-independent axion self-

interaction, so one may worry that it gives rise to `s-independent particle production in the

4If the S-matrix can be defined at all, which may be not the case for compactifications with an interacting
internal CFT.
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scattering processes involving axions, which is not even suppressed at low energies. Even

worse, two-dimensional theories of massless scalar particles with marginal self-interactions of

this kind typically suffer from nasty IR divergences. So starting with section 3 we set `s = 0

and focus on the leading order axionic self-interactions.

The chance to proceed is related to the following peculiar property of the coupling (5).

The three particle amplitude corresponding to (5) identically vanishes on-shell, even if the

momenta of external particles are allowed to take complex values. Conventionally, this

implies that the corresponding coupling can be removed by a local field redefinition. It is

straightforward to see that no such field redefinition exists for the coupling (5). This opens

a route to construct axionic strings at general D (at least in the strict `s = 0 limit) by

supplementing (5) with an infinite number of higher order in A marginal vertices in such

a way that all tree level amplitudes vanish and no IR divergences arise. This is the main

goal of the present paper. We achieve this goal in section 3. This is done by generalizing an

inductive procedure allowing one to build classically integrable actions based on a clever use

of multi-Regge limits as presented recently in [39] (see also [40]; some of the early work can

be found in [41–43]). Imposing that all tree level amplitudes vanish allows one to uniquely

fix all higher order terms in the axionic action in terms of the g3,1 coupling introduced in

(5). In section 4 we take a closer look at the resulting “pseudofree” theory and recognize

that in this roundabout way we arrived at a very well-known model—the O(D − 2) Wess–

Zumino–Witten (WZW) theory [44] at the scale invariant point. Its rank k (or, equivalently,

the value of g3,1) remains undetermined in the strict `s = 0 limit. To fix k as well as QA,

one needs to revisit one loop interactions between axions Aij and Goldstones X i at finite `s.

We postpone this calculation untill a separate publication. In the concluding section 5 we

explain why this is more subtle at general D as compared to the D = 4 case and discuss

future directions.

2 Axionic Strings at General D: Preliminaries

A straight infinitely long string spontaneously breaks the bulk Poincaré groupG = ISO(1, D−
1) down to

H = ISO(1, 1)×O(D − 2) .

A systematic recipe to build a general low energy effective action describing such a system

is provided by the Callan–Coleman–Wess–Zumino (CCWZ) construction [45, 46] or more

precisely, by its generalization [47, 48] to spontaneously broken space-time symmetries (see,

e.g., [49], for a recent user friendly introduction). The theory is guaranteed to contain

massless Goldstone modes X i associated with the spontaneous breaking of space-time trans-

lations. In addition to the shift and O(D − 2) rotational symmetries,

X i → Oi
jX

j + ai
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they enjoy a symmetry under non-linearly realized off-diagonal boosts/rotations Jαi, which

act as

δαiX
j = −

(
δijσα +X i∂αX

j
)
. (6)

Recent reviews of the effective string theory covering the case when X i’s are the only light

fields on the worldsheet can be found in [30,50]. In particular, the leading order interactions

of X i’s are governed by the Nambu–Goto action,

SNG = `−2s

∫ √
− det (ηαβ + ∂αX i∂βX i) , (7)

where

ηαβ =

(
0 −1
−1 0

)
is the flat Minkowski metric, and we always work in the light cone coordinates (σ+, σ−). In

what follows we also use the convention

ε+− = −ε−+ = 1 .

Additional fields in the CCWZ formalism are characterized by their quantum numbers

w.r.t. the unbroken subgroup H. In axionic strings one introduces a set of worldsheet scalars

Aij = −Aji transforming as an antisymmetric O(D − 2) tensor. The CCWZ construction

provides a systematic way to work out their transformations under the non-linearly realized

generators Jαi. In Appendix A we sketch this procedure (a recent detailed discussion of the

analogous procedure for effective strings carrying fermionic worldsheet degrees of freedom

can be found in [37]). The resulting transformations of Aij take the following form,

δαiA
kl ≈ −X i∂αA

kl +
1

2
∂αX

j
(
δikAjl − δilAjk

)
− 1

2
∂αX

kAil +
1

2
∂αX

lAik + . . . (8)

This transformation law is approximate, because (unlike in (6)), we dropped higher order

terms in X here, as indicated by dots. As a check, note that commutators of these transfor-

mations satisfy the target space Lorentz algebra at the leading order in X. As an additional

check, restricting to D = 4 and plugging in

Aij = aεij ,

one obtains that only the first term in the r.h.s. of (8) survives, giving the correct transfor-

mation law for a (pseudo)scalar

δαia = −X i∂αa .

The leading order term in the Aij action is their kinetic term

SAA = −
∫

1

4
(∂βA

kl)2 . (9)
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A variation of this term under (8) takes the following form,

δSAA =
1

2

∫ (
∂βA

kl∂αA
kl∂βX i − 1

2
(∂βA

kl)2∂αX
i + ∂α∂βX

k
(
∂βA

klAil − ∂βAilAkl
))

. (10)

Note that the first pair of terms in (10) has a different flavor structure as compared to the

remaining two terms. The first two can be cancelled by the variation of the following quartic

vertex,

SAAXX =
1

4

∫
∂βA

kl∂αA
kl∂βX i∂αX i − 1

2
(∂βA

kl)2(∂αX
i)2 . (11)

This vertex has the same form as one would get from expanding the Nambu–Goto action

describing X i, `sA
kl on equal footing. It is straightforward to check that its variation under

(6) indeed cancels the first two terms in (10). Also this vertex on its own gives the desired

XXAA amplitude at this order, so we need to make sure that no additional contributions

arise. To cancel the remaining two terms in (10) we need to introduce a quartic vertex of

the form

SXAAX =
1

2

∫
∂βA

klAil
(
∂αX

i∂α∂βXk − ∂αXk∂α∂βX i
)
. (12)

This vertex gives rise to the amplitude of the form

MXAAX = −i`
2
s

2
(p1p2)((q1 − q2)(p1 − p2))X1(p1)[A1(q1), A2(q2)]X2(p2) , (13)

where X1(p1), X2(p2), A1(q1), A2(q2) are the flavor wave functions of colliding particles with

incoming momenta p1, p2, q1, q2, and we suppressed all flavor and tensor indices5. This

amplitude needs to get canceled for integrable axionic strings.

Note that there are two additional quartic vertices invariant under Galilean shifts X i →
X i + σα, and hence unconstrained by the non-linearly realized Poincaré symmetry,

Sinv =

∫
C1∂α∂βX

iAikAkj∂α∂βXj + C2(∂α∂βX
i)2(Akl)2 . (14)

The second vertex in (14) has the same flavor structure as (11), so it should vanish, C2 = 0,

for integrable axionic strings. The first vertex gives rise to the amplitude of the form

Minv = 2C1i`
2
s(p1p2)

2X1(p1){A1(q1), A1(q2)}X2(p2) , (15)

which is different from the one in (13). This implies that the only chance to cancel the

amplitude (13) is to set C1 = C2 = 0 and to introduce a lower order in derivative cubic

self-interaction of axions (5). Combining this vertex with the axionic AXX interaction

SAXX = QA

∫
εαβ∂α∂γX

iAij∂β∂
γXj , (16)

5Here and in what follows, whenever flavor indices are suppressed, the matrix notation is adopted. For
instance, in (13)

X1[A1, A2]X2 ≡ Xi
1(Aij

1 A
jk
2 −Aij

2 A
jk
1 )Xk

2 .
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Figure 1: A cubic axion self-interaction (9) combined with the AXX vertex (16) added
together with the contact quartic amplitudes allows to reproduce the correct structure
of the XXAA amplitude.

coming from expanding (4) to the leading order in X, one obtains an additional O(`2s)

contribution to the XAAX amplitude. As shown in Fig. 1, this contribution may be used

to cancel (13). Indeed, the corresponding amplitude is

MAAA,AXX = −6ig3,1QA`
2
s((p1q1)

2 − (p1q2)
2)X1(p1)[A1(q1), A2(q2)]X2(p2) . (17)

This amplitude has the same flavor structure as (13) and it is straightforward to check that

for all on-shell configurations of the massless momenta it is indeed proportional to (13).

Hence, we can choose the value of g3,1 in such a way that (17) cancels against (13), namely

g3,1 =
1

6QA

. (18)

This completes the construction of the leading order axionic string action that reproduces

the tree level XXAA amplitude in agreement with (1).

3 Pseudofree Axions

We see that D > 4 integrable axionic strings, if they exist, necessarily have a marginal cubic

interaction of the form (5). This interaction survives even in the `s → 0 limit, which is

somewhat surprising given that the worldsheet S-matrix (1) becomes trivial in this limit.

In the rest of the paper we will study the resulting axion “self-interactions” at `s = 0.

We will see that the above contradiction gets resolved in a rather interesting way. The

cubic vertex (5) exhibits the following unconventional property. It identically vanishes on-

shell even if particle momenta are analytically continued in the complex domain. Normally,

interaction vertices with such a property can be removed from the action by a local field

redefinition. It is straightforward to check that this is impossible in the present case. Hence,

8



for integrable axionic strings to exist we need to show that higher order two-derivative axion

self-interactions can be introduced in such a way that the axion S-matrix stays trivial at

`s = 0. If it exists, the resulting `s = 0 theory is quite peculiar—it has a trivial S-matrix,

however, its action cannnot be brought into a free form by a local field redefinition. It is

natural to refer to a theory with this property as a pseudofree one.

Let us start with a straightforward inductive argument demonstrating that the pseudofree

theory can indeed be constructed. We will limit our analysis to tree level. Note first that the

structure of axion self-interactions is not restricted by the non-linearly realized symmetry,

given that the transformation rule (8) necessarily involves Goldstone fields (and also increases

the number of derivatives). Then to construct the leading order axionic Lagrangian one

needs to calculate axionic scattering amplitude with larger and larger number of external

legs. The cubic amplitude is determined by (5) and vanishes, providing the base for the

inductive argument. To prove the inductive step, assume that we managed to construct the

action including axionic vertices with up to n legs, such that all amplitudes involving n or

smaller number of axions vanish. Then the amplitudes with (n + 1) external legs following

from this action cannot have any factorization poles. Hence it can be cancelled as well with

an appropriate choice of a local axionic vertex with (n+ 1) legs, which completes the proof.

After a pseudofree theory is built at the tree level, there should be no obstruction to

extend the construction at an arbitrary loop order. Indeed, the singularities of higher loop

amplitudes are fixed by lower order amplitudes. Hence if all lower loop amplitudes are trivial

one should be able to extend the theory at the next order in the loop expansion.

However, one may worry that this reasoning is too fast and may be spoiled by IR diver-

gences. Indeed, the axion self-interaction (5) contains an axion field without any derivative

acting on it, which usually implies the presence of IR divergencies in two dimensions. So,

to eliminate these concerns, in the rest of this section we elaborate on this argument and

will explicitly follow through the tree level inductive procedure. This will allow us to derive

a set of recursion relations on the axion couplings, which completely fix the form of the

action. The corresponding analysis is somewhat technical though and an impatient reader,

who trusts our skills in manipulating tree level Feynman diagrams, may skip directly to the

final result (37).

3.1 General Structure of the Lagrangian and Feynman Rules

To set the stage let us describe a convenient way to organize Feynman rules in the axionic

theory. Given that our seed cubic vertex (5) is a single trace operator, one expects also the

full pseudofree Lagrangian to be a sum of single trace operators to all orders in A. Hence,

9



we are led to search for the axion action in the form

SA = SAA +

∫ ∞∑
J=2

(
J−1∑
m=1

g2J,mη
αβTr ∂αAA

m−1∂βAA
2J−m−1 +

g2J,J
2

ηαβTr ∂αAA
J−1∂βAA

J−1

)

+

∫ ∞∑
J=1

J∑
m=1

g2J+1,mε
αβTr ∂αAA

m−1∂βAA
2J−m−1 , (19)

where the free action SAA is given by (9). Taking into account the cyclic property of the

trace, (19) includes all possible parity invariant marginal axion self-interactions. An extra

factor of 1/2 in the definition of g2J,J couplings is included here for the later convenience.

Normally, for matrix theories like (19) ’t Hooft double-line notations [51] provide a con-

venient way to keep track of the flavor factors. However, axions belong to the orthogonal

algebra O(D−2) rather than to a unitary one, so that double-line notations are not directly

applicable. Nevertheless, the counting of flavor factors for the orthogonal groups is also gov-

erned by topology, although one needs to allow for non-orientable surfaces as well [52]. In

particular, at the leading order in 1/D expansion there is no difference between orthogonal

and unitary groups [53, 54]. Even though we are not performing the 1/D expansion here,

our analysis is restricted to tree level, where no subleading contributions in 1/D arise. In

particular, just like in the unitary case, any tree level amplitude can be written in the form

M
(
{p1, T 1} · · · {pn, T n}

)
=

∑
σ∈Pn/Zn

TrT σ(1) · · ·T σ(n)Mc(p
σ(1), · · · pσ(n)) , (20)

where {pi, T i} are the momenta and O(D− 2) polarizations of colliding axions. The sum in

(20) is performed over all permutations which are not related by cyclic reorderings. Color-

ordered amplitudesMc(p
1, · · · , pn) can be calculated using color-ordered Feynman rules very

similar to those in the unitary case (c.f. [55]). Namely, one needs to

1. Draw all tree graphs with n external legs and without self-intersections, where the

cyclic ordering of external momenta matches the one in Mc.

2. Evaluate each graph using the vertices and propagators of Fig. 2.

Note that a two-point function of the axion fields following from (9) is equal to

〈Aij(p)Akl(−p)〉 = − i

p2
(δikδjl − δilδjk) (21)

which translates into an extra factor of 2 in the color-ordered propagator in Fig. 2.

3.2 Absence of IR divergences

Before going into details of the inductive procedure, which generalizes the one presented

in [39] and makes it possible to fix all gn,k couplings in terms of g3,1, let us comment on

possible IR divergences (a detailed discussion of these issues in a very close context just
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Figure 2: Feynman rules for color-ordered amplitudes.

appeared in [56]). Generically, theories of massless particles in two dimensions are plagued

with IR divergences. Physically, these arise because a bunch of massless left- (or right-)

movers emitted from an interaction region never get spatially separated in a linear kinematics,

so that no asymptotic states can be defined. A notable exception occurs when a massless

theory at low energies flows into a free CFT perturbed by a set of irrelevant operators

(cf. [57, 33]).

However, all interactions in (19) are marginal, so a priori one expects to find IR issues in

the corresponding on-shell amplitudes. Indeed, these were encountered in the analysis of [39]

(see also [56] for a dedicated discussion). There the goal was to construct an integrable

model for an U(N) analogue of (19) with all odd couplings set to zero, g2J+1,m = 0. It

turned out possible to rediscover an integrable non-linear U(N) sigma model by requiring

that IR safe multiparticle amplitudes, such as Mc(+ − · · · + −), vanish6. However, some

other amplitudes in [39], such asMc(+ · · ·+− · · ·−) remain non-zero even in an integrable

theory. This indicates the presence of IR ambiguities.

As we will see now, the situation in a pseudofree case is different. Namely, it is possible

to find a set of coupling constants gn,m in (19) such that all on-shell scattering amplitudes

vanish, including ones which do not correspond to IR safe kinematics. Indeed, as the physical

argument above indicates the trouble is caused by scattering of left- (or right-) movers off

6Here and in what follows, +’s and −’s show whether a corresponding momentum is left- or right-moving.
Also, we treat all momenta as incoming.
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Figure 3: IR ambiguities are associated with Feynman diagrams containing subdia-
grams where all massless particles move in the same direction.

each other. For instance, on-shell diagrams involving only left-movers Mc(+ · · ·+), are not

well-defined at face value. On one side they look singular, because all internal propagators

are on-shell, on the other hand all interaction vertices in these diagrams vanish as well.

However, these diagram on their own don’t cause much trouble. It is natural to try to

define a massless theory as a limit of a massive one. Upon taking the m2 → 0 limit in such a

way that all external particles become left-movers any amputated tree level diagram scales

as

Mc(+ · · ·+) ∝ m2(V−P ) = m2 ,

where V is the number of vertices, and P is the number of internal propagators. So it is

natural to set all amplitudes of this kind to zero in the massless limit.

Instead, the real problem arises when an amplitude like that arises as a subdiagram in a

process with a larger number of particles and gets attached to some non-trivial amplitude,

see Fig. 3. In this case upon taking the massless limit one obtains an additional singular

propagator—the one connecting the purely left-moving subdiagram B with the rest. As a

result, contributions like this stay finite at m2 = 0, which looks unphysical. For instance, in

general this limit looks ambiguous, because the result depends on the mass ratios of different

particles as their masses are being taken to zero. Indeed, the non-linear sigma model avoids

these ambiguities by leading to factorized scattering of massive particles at the end of the

day.

However, the situation is better in a pseudofree case. Indeed, we will be constructing

this theory inductively in the number of colliding particles. Then for the diagram shown in

Fig. 3 the A subamplitude also goes on-shell and hence vanishes in the massless limit. As a

result the diagram as a whole vanishes as well. Hence, in this case it is consistent to set to

zero all diagrams of this kind and no IR ambiguities arise.

12



Figure 4: Momentum configuration in the multi-Regge kinematics we consider for
Mc(m,n).

3.3 Vanishing of Mc(+ · · ·+− · · ·−)

The discussion in section 3.2 indicates that IR divergencies do not spoil the argument pre-

sented in the beginning of the section, and that a pseudofree theory can indeed be con-

structed. To construct the corresponding action we follow the strategy of [39]. Namely,

we fix all the coefficients gn,m by requiring that a sufficiently large subclass of amplitudes

vanishes. The evaluation of the corresponding amplitudes is made tractable by considering

convenient kinematical limits. The procedure is inductive in the number of external legs.

It is immediate to see that the presence of an irreducible cubic vertex in our case does not

allow to use the same kinematics as in [39]. Instead, to start with we consider amplitudes

with m left-movers and n right-movers ordered according to

Mc(+ · · ·+− · · ·−) ≡Mc(m,n) .

These amplitudes do not factorize in the integrable theory constructed in [39] as a conse-

quence of IR ambiguitites, but as discussed in section 3.2, they still have to vanish in a

pseudofree theory. We will consider the multi-Regge limit defined by the following choice of

momenta

p+j = Exj , j = 1, . . . ,m− 1 (22)

p−j = Eyj−m , j = m+ 1 . . .m+ n− 1 . (23)

Here E is an arbitrary energy scale, which we set to one in what follows. We work in the

limit

x, y � 1 (24)

13



Figure 5: Mc(m,n) amplitudes receive contributions only from the chain diagrams of
the type shown here.

and impose that amplitudes vanish at the leading order in x and y. Momentum conservation

determines the remaining momenta p+m and p−n+m to be given by

p+m ≈ −xm−1 + . . . (25)

p−n+m ≈ −yn−1 + . . .

where dots stand for subleading terms in x and y. In the later formulas and figures the dots

will be implied, but not written explicitly. This configuration of external momenta is shown

in figure 4.

A nice property of Mc(m,n) amplitudes is that only chain diagrams shown in Fig. 5

contribute in this kinematics. Indeed, any non-chain diagram corresponds to a tree with at

least three branches. Then at least one of these branches contains either all left-movers or

all right-movers, so that the corresponding diagram vanishes according to the argument in

section 3.2 (assuming, for instance, the mass regularization as done there).

Suppose now that we managed to set to zero all Mc(m1, n1) amplitudes with less than

(m + n) external legs by an appropriate choice of gk,l with k < m + n. Then it is straight-

forward to see that among non-trivial chains with (m + n) legs only the ones where all

x, . . . xm−1 momenta enter into the left-most vertex, and −xm−1 + . . . momentum enters into

the right-most vertex contribute at the leading O(xm−1) order in x, see Fig 6. Indeed, for

all other chain diagrams there is an internal line such that there is at least two x momenta

on the right of it, see Fig 7. In general this line is not on-shell, but its x momentum is

necessarily smaller than all x momenta on the right. Hence, at the leading order in x the

subdiagram B on the right is on-shell (with the internal line carrying y momentum). By

summing all diagrams of this kind with the same subdiagram A on the left of the internal

line we get zero at the leading order in x, as a consequence of the inductive assumption.

The same arguments applies to y momenta. As a result we conclude that at the leading

order both in x and in y only two tree level diagrams survive—a chain of length one, and

a “trivial” chain (the contact vertex), see Fig. 8. It is straightforward to calculate these

two diagrams using the Feynman rules shown in Fig. 2. At intermediate steps one needs to
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Figure 6: Chain diagrams which contribute intoMc(m,n) at the leading order at large
x.

Figure 7: Internal lines in a generic chain diagrams are approximately on-shell in the
large x limit. As a result generic chains give a subdominant contribution in the multi-
Regge kinematics.

treat separately the cases of even and odd (m + n), but the final result can be written in a

universal compact form. Namely, at the leading order at large x, y, the contact contribution

turns into

Mcontact(m,n) = i(−1)m+n+1(2gm+n,m − gm+n,m−1 − gm+n,m+1)x
m−1yn−1 . (26)

Note that the coupling constants gm+n,m in (19) are only defined for m ≤ n. In (26) we

defined them also at m > n via

gm+n,m ≡ (−1)m+ngm+n,n , for m > n , (27)

where a minus sign for odd (m+ n) is due to the presence of the εαβ tensor in a vertex with

an odd number of external legs.

Similarly, for the chain contribution at leading order in x, y one gets

Mchain(m,n) = i(−1)n+1(2gm+1,1 − gm+1,2)(2gn+1,1 − gn+1,2)x
m−1yn−1 . (28)
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Figure 8: The only two diagrams which contribute intoMc(m,n) at the leading order
in the multi-Regge kinematics.

By requiring

Mcontact(m,n) +Mchain(m,n) = 0 , (29)

we obtain a number of recursion relations for the coupling constants gm+n,m. However, it

is straightforward to see that we need additional relations to fix all gm+n,m’s in terms of

g3,1. Indeed, independent couplings are gm+n,m with 1 ≤ m ≤ n. On the other hand,

as a consequence of parity invariance, relations M(m,n) = 0 with m > n follow from

M(n,m) = 0. In addition, there is no relation for m = 1 because those amplitudes vanish

trivially. Hence we are missing one relation for each (m+ n).

In fact, we are doing slightly better than that. Indeed, by making use of field redefinitions

of the form

A→ A+
∞∑
J=1

αJA
2J+1 , (30)

we may impose one additional constraint on gn+m,m at any even (n + m). This still leaves

us with one undetermined coupling at any odd n+m > 3. Therefore we do need to impose

an additional set of relations.

3.4 Vanishing of Mc(+−+− · · ·−)

To obtain an additional set of recursive relations let us consider amplitudes with (2J + 1)

external legs of the form

Mc(J) ≡Mc(+−+− · · ·−) =Mc(x,−y2J−2 + . . . ,−x, y2J−2, . . . , y) (31)

at y � 1. A nice property of these amplitudes is that, similarly to Mc(m,n) considered

previously, Mc(J)’s are also given by a sum of chains, see Fig. 9. Although this greatly

reduces the number of tree-level diagrams involved in the calculation, a significant number

of diagrams still remain. A calculation in the high energy limit greatly simplifies if in addition

16



Figure 9: Chain diagrams contributing into Mc(J).

Figure 10: Off-shell chains contributing into Cc(n).

a field redefinition can be found that sets to zero the leading in y piece of the sum of all

chain diagrams of the form (see Fig. 10)

Cc(n) ≡ Cc(α,+,− · · ·−) = Cc((x,−yn + . . . ),−x, yn, . . . , y) . (32)

with n > 1. Here α stands for an off-shell momentum. The name Cc(n) emphasizes that

this object is a sum of chain diagrams only, rather than a full off-shell amplitude. Since

this is an off-shell object, in principle it may be set to zero through a field redefinition.

However, we require that this sum of chains vanish (at the leading order in y) for both even

and odd number of external legs, and naively we don’t have enough parameters αJ ’s in the

field redefinition (30) to ensure this. Luckily, it turns out that the remaining chains vanish

automatically. Namely, let us prove that the following iterative procedure can be consistently

implemented:

1. For a given J assume that couplings gk,m with k ≤ 2J − 1 are chosen in such a way

that all on-shell amplitudes and all n > 1 chains Cc(n) with (2J − 1) or smaller number of

external legs vanish (for chains only at the leading order in y).

2. Impose that the Cc(2J − 2) chain vanishes at the leading order in y. This gives a new

condition for the g2J,k couplings that can be satisfied by making use of a field redefinition of

the form

A→ A+ αJ−1A
2J−1 ,

with an appropriately chosen αJ−1.

3. Impose that Mc(J) vanishes at the leading order in y. This gives an additional

equation which g2J+1,k couplings must satisfy.
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Figure 11: The only two chains contributing to Cc(2J − 2) under the assumption that
Cc(n) = 0 at 1 < n < 2J − 2.

Figure 12: Diagrams conrtibuting to Mc(J).

4. Check that the new conditions obtained in steps 2 and 3 combined with (29) auto-

matically imply that Cc(2J−1) = 0 at the leading order in y. This ensures that the iterative

procedure is consistent and can be carried over to a larger number of legs.

To carry out step 2, note that as a consequence of 1 it is only the two chains shown in

Fig. 11 that contribute to Cc(2J − 2). Moreover, it is straightforward to check that at the

leading order in y only the right diagram in Fig. 11 contributes because of the antisymmetry

of the odd vertex, resulting in the condition

g2J,2 = 0 . (33)

At the step 3 we need to set Mc(J) to zero at the leading order in y. As a consequence

of 1, one is left with three diagrams shown in figure 12. To the leading order in y these yield

Mc(J) = ixy2J−2(−6g3g2J,3 + 3g2J+1,1 − g2J+1,3) = 0 . (34)

Finally, we need to check that Cc(2J − 1) = 0 at the leading order in y (step 4). The

diagrams that contribute are shown in Fig. 13 and the result is

Cc(2J − 1) = ixy2J−1(−6g2J,1g3 + 2g2J+1,1 − g2J+1,2) = 0 . (35)

To see that (35) indeed vanishes, note that combining (33) with (29) applied to Mc(2, n)

gives

2g2J+1,2 − g2J+1,1 − g2J+1,3 + 6g3g2J,1 = 0 , (36)
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Figure 13: Diagrams conrtibuting to Cc(2J − 1).

which, taking into account (34), implies (35). As a result, (33) and (35) provide us with one

additional constraint on the coupling constants gn,m for any number of external legs n > 3,

which is exactly what is needed to fix all these couplings in terms of g3,1.

4 Reuniting with WZW

To summarize, (29), (33) and (35) give us the following set of recursion relations on the

coupling constants gn,m

2gn,m − gn,m−1 − gn,m+1 + (−1)m(2gm+1,1 − gm+1,2)(2gn−m+1,1 − gn−m+1,2) = 0 (37)

g2J,2 = 0 (38)

6g3,1g2J,3 − 3g2J+1,1 + g2J+1,3 = 0 . (39)

Here (37) hold for all n ≥ 4 and 2 ≤ m ≤ bn/2c with the convention (27) applied when

necessary. Relations (38) and (39) hold for J ≥ 2.

Given that we have enough relations to fix all couplings in terms of g3,1 it suffices to

guess the solution to (37)-(39) and check it afterwards. This is exactly what we did, using

numerical Mathematica results as well as a solution to a similar problem presented in [39] as

a guidance. This leads to the following expression for the coupling constants,

g2J,2k = 0 , 1 ≤ 2k ≤ J (40)

g2J,2k+1 =
1

2
(3g3,1)

2(J−1) , 1 ≤ 2k + 1 ≤ J (41)

g2J+1,2k = − k

(2J + 1)
(3g3,1)

2J−1 , 1 ≤ 2k ≤ J (42)

g2J+1,2k+1 =
J − k
2J + 1

(3g3,1)
2J−1 , 1 ≤ 2k + 1 ≤ J , (43)

where J > 1. It is straightforward to check that (40)-(43) indeed solve all the recursion

relations (37)-(39).

The next natural question is whether the pseudofree action can be written in a simple

closed form, rather than as an infinite series. Fortunately, for even couplings g2J,k we don’t

need to do any work to answer this. Namely, even couplings given by (40), (41) are equal
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to those obtained in [39], which implies that the even part of the action is the O(D − 2)

non-linear sigma model

Seven = −F
2

4

∫
Tr ∂αG∂

αG−1 , (44)

where G is an O(D − 2) group element in the Cayley parametrization

G =
1 + A

2F

1− A
2F

, (45)

and the axion “decay constant” F is given by

F =
1

6g3,1
. (46)

Given this result, it is natural to expect that the odd part of the action takes the form of

the Wess–Zumino (WZ) term [58,59,44],

SWZ =
n

24π

∫
d3σεαβγTrG−1∂αGG

−1∂βGG
−1∂γG (47)

for some rank n. To see that this is indeed the case, note first that in the Cayley parametriza-

tion (45) the WZ term (47) turns into

SWZ =
n

24πF 3

∑
a,b,c≥0

∫
d3σεαβγTr

(
A

2F

)2a

∂αA

(
A

2F

)2b

∂βA

(
A

2F

)2c

∂γA . (48)

On the other hand the odd part of the action (19) can be trivially written as a three-

dimensional integral of the form

Sodd =

∫
d3σ

∞∑
J=1

J∑
m=1

g2J+1,mε
αβγ∂γ

(
Tr ∂αAA

m−1∂βAA
2J−m−1) . (49)

It is a matter of a straightforward (even if a bit tedious) calculation to check that for the

values of the coupling constants given in (42), (43) the two actions (48) and (49) indeed

coincide, and the rank n is given by

n =
π

9g23,1
. (50)

Comparing (47) and (50) we find that the relation

n = 4πF 2

is satisfied, implying that the pseudofree theory has an identically vanishing β-function [44],

which is quite natural. Hence, at integer values of the rank n our search for pseudofree theo-

ries has led us in a rather roundabout way to a famous family of conformal theories—WZW
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models. A posteriori this result is not surprising, given that WZW models are equivalent

to free fermionic systems [44]. This equivalence also supports the expectation that even

though our analysis is restricted to tree level diagrams, the resulting theory is pseudofree to

all orders in the loop expansion. It is worth noting also that an observation that tree level

four- and five-particle amplitudes in the WZW model vanish at the conformal point has been

made already back in [60].

5 Future Directions

It is intriguing and encouraging that the logic outlined in the Introduction lead us from QCD

strings to a classic rational CFT—the O(N) WZW model. It was envisaged already in [44]

that WZW models can lead to generalizations of conventional critical strings. Indeed, WZW

models have been used extensively as a building block for numerous worldsheet theories since

then. An unusual aspect of the construction presented here is that WZW fields transform

non-trivially under the Poincaré symmetries of flat physical coordinates. Conventionally,

additional scalar degrees of freedom on the worldsheet are associated with extra spatial

dimensions. Interpreted this way, axionic strings might arise in a strongly non-factorizable

geometry, such that the physical Lorentz symmetry acts both on physical and Kaluza-Klein

coordinates.

On the other hand, the appearance of the WZW model suggests that axionic strings may

have a natural reformulation in the fermionic language—the WZW model at integer rank

is equivalent to a system of free fermions. In this picture axionic strings start looking very

similar to the conventional RNS strings, but to see whether this description is appropriate one

needs to understand how to reformulate the axionic coupling (4) in the fermionic language.

Either way, the next natural step towards understanding axionic strings is to calculate

the rank n of the WZW as a function of D. At first sight, we have all ingredients to do

this. Namely, one may try to combine the relation (18) with the expression for QA, proposed

in [20], which generalizes (3) to a general D. This allows one to determine g3,1, and hence

both the WZW decay constant F and rank n, as a function of D.

However, it should be clear by now that both (18) and the proposal of [20] are too

naive. As a result of `s independent self-interactions of the axionic field the relation (18)

may receive an infinite set of loop corrections and the same applies to the expression given

in [20] at D > 4. It definitely looks at this point that this calculation should be done using a

natural set of operators present in the WZW model (such as group elements G) rather than

perturbatively in A. We hope to accomplish this in the near future.

As an interesting byproduct of our analysis, we arrived at a somewhat roundabout con-

struction of the O(N) WZW model. It will be interesting to generalize this analysis and to

reconstruct a larger class of CFT’s by looking for general pseudofree theories starting with
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a general seed cubic coupling of the form

Sseed =

∫
εαβfijkφ

i∂αφ
j∂βφ

k .

It looks that if fijk are the structure constants of a semisimple Lie algebra, the analysis

presented above should go through and will lead to the corresponding WZW model. It is

interesting to check whether this exhausts the list of pseudofree models.
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A CCWZ Construction for Axionic Strings

A straight infinitely long string spontaneously breaks the bulk Poincaré groupG = ISO(1, D−
1) down to H = ISO(1, 1) × O(D − 2). In what follows we will employ the static gauge,

Greek indices denote the directions along the string and Latin the transverse ones. To find

the transformation of the fields we begin by introducing an element of the quotient group

G/H in the exponential parametrization

L = exp{iσαPα + iX i(σ)Pi}exp{iφαiJαi} . (51)

Under the action of the element g of group G it is transformed as follows

g1L = L′ exp{i u1 + i v1} , (52)

where the exponent on the r.h.s. is introduced to compensate for a change of the represen-

tative of the coset and we introduced the notation u1 ≡ uγδ1 Jγδ and v1 ≡ vij1 Jij. From the

group action it follows that

g2L
′ = L′′ exp{i u2 + i v2}

g2g1L = L′′ exp{i u2 + i v2} exp{i u1 + i v1}
exp{i u3 + i v3} = exp{i u2 + i v2} exp{i u1 + i v1} , (53)

which leads to a natural definition of the left G action on the matter fields

ψ′(σ′) = D
(

exp{i u+ i v}
)
ψ(σ) , (54)

where D stands for the appropriate representation and in particular

A′kl(σ′) =
(

exp{i v}
)k
p

(
exp{i v}

)l
q
Apq(σ) . (55)
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Thus, to find the transformation of the field Akl we need to find u and v, which can

be done by expanding equation (52) to linear order. We define a group element of the

non-linearly realized boosts

g = exp
{
− i ε

2
Jαi

}
, (56)

for some fixed Jαi and use the expressions for the generators and the commutators of the

Poincaré algebra (
Jρσ

)µ
ν

= i
(
ησνδ

µ
ρ − ηρνδµσ

)
[
Jµν , Pρ

]
= −i

(
ηµρPν − ηνρPµ

)
[
Jµν , Jρσ

]
= −i

(
ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ

)
. (57)

As a result one finds the transformations of the Goldstone fields

δαiσ
β =

ε

2
Xi δ

β
α

δαiX
j = − ε

2

[
δjiσα +Xi∂αX

j
]
, (58)

and also the recursive relations for u and v(
1− iε

2
Jαi

)(
1 + iφ− 1

2
φ2 + . . .

)
=
(

1 + iφ′ − 1

2
φ′

2

+ . . .
)(

1 + i u+ i v
)
. (59)

To the leading order in φ the solution of (59) is

φ′ = φ− ε

2
Jαi , and i (u+ v) =

ε

4
[Jαi, φ] . (60)

For the action of the group on Akl in particular, we note that explicitly

i vmn Jmn = −i ε
4
φβj Jij ηαβ . (61)

As a final step we need to eliminate the auxiliary fields, which can be done most simply by

introducing the Maurer-Cartan form

L−1dL = d σβ
(
ieβγP

γ + iDβkP
k + iV ij

β Jij + iUγδ
β Jγδ + iΦαi

β Jαi

)
, (62)

and setting the covariant derivative equal to zero

iDβk P
k = 0. (63)

To find the expression for covariant derivative we substitute expression (51) into (62)

L−1dL = d σβ e−iφ
(
iPβ + iPj∂βX

j + i∂βφ
αi Jαi

)
eiφ , (64)
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and expand to leading order in φ

e−iφ Pβ e
iφ ≈ Pβ − iφαi

[
Jαi , Pβ

]
= Pβ − φαi Pi ηαβ ,

e−iφ Pj e
iφ ≈ Pj − iφαi

[
Jαi , Pj

]
= Pj + φαi Pα ηij . (65)

The covariant derivative is thus

iDβk P
k = i Pi

(
∂βX

i − φαi ηαβ
)

= 0 , (66)

hence the auxiliary fields are

φαi ηαβ = ∂βX
i . (67)

Substituting the above expression into (61) finally leads to the leading order transformation

of Akl field

A′kl(σ′) ≈
(

exp{−i ε
4
∂αX

jJij}
)k
p

(
exp{−i ε

4
∂αX

jJij}
)l
q
Apq(σ) , (68)

or to the first order in ε

δαiA
kl ≈ − ε

2
Xi ∂αA

kl +
ε

4
∂αX

j
((
ηjpδ

k
i − ηipδkj

)
Apl +

(
ηjqδ

l
i − ηiqδlj

)
Akq
)
. (69)

As a check, one can observe that the commutators of transformations of X and A satisfy

the Poincaré algebra,[
δβj, δαi

]
Akl =

ε1ε2
4

(
ηij
(
σβ∂αA

kl − σα∂βAkl
)

+ ηαβ
((
ηipδ

k
j − ηjpδki

)
Apl +

(
ηiqδ

l
j − ηjqδli

)
Akq
))

[
δβj, δαi

]
Xk =

ε1ε2
4

(
ηij
(
σβ∂αX

k − σα∂βXk
)

+ ηαβ
(
δkjXi − δkiXj

))
.
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