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Avalanches whose sizes and durations are distributed as power laws appear in many contexts,
from physics to geophysics and biology. Here, we show that there is a hidden peril in thresholding
continuous times series –either from empirical or synthetic data– for the identification of avalanches.
In particular, we consider two possible alternative definitions of avalanche size used e.g. in the em-
pirical determination of avalanche exponents in the analysis of neural-activity data. By performing
analytical and computational studies of an Ornstein-Uhlenbeck process (taken as a guiding example)
we show that (i) if relatively large threshold values are employed to determine the beginning and
ending of avalanches and (ii) if –as sometimes done in the literature– avalanche sizes are defined
as the total area (above zero) of the avalanche, then true asymptotic scaling behavior is not seen,
instead the observations are dominated by transient effects. This problem –that we have detected
in some recent works– leads to misinterpretations of the resulting scaling regimes.

I. INTRODUCTION

Episodic outbursts of activity or “avalanches” of highly
variable durations and sizes are observed in a large va-
riety of scenarios in condensed matter physics (vortices
of type II superconductors [1] and Barkhaussen noise
[2, 3]), high-energy astrophysics (X-ray flares [4]), geo-
physics (earthquakes [5]), meteorology (rainfall [6]), neu-
roscience (neuronal avalanches [7]), as well as in other bi-
ological systems (gene knock-out cascades) [8]) and man-
made systems (failures on electrical power grids [9]). The
probability distributions of sizes and durations of such
avalanches often exhibit a “fat-tail” that can be fitted as
a power-law distribution; i.e. the fingerprint of scaling
behavior. Such scaling or scale invariance is often con-
sidered as evidence of underlying criticality and many
of the above systems are claimed to operate at (tuned
or self-organized) critical points [10–14]. In particular,
in the context of biology the idea that living systems
(parts, aspects or groups of them) may extract impor-
tant functional advantages from operating at criticality
–i.e. at the edge of two different phases– has been deeply
explored in recent years [15, 16].

In this regard, groundbreaking experimental evidence
by Beggs and Plenz [7], revealed the existence of scale-
invariant episodes of electrochemical activity in neu-
ral tissues thereafter named neural avalanches. Subse-
quently, neural avalanches were robustly detected across
a large variety of experimental settings, tissues and
species [7, 17–23]. In particular, neuronal avalanche sizes,
S, were robustly observed to be distributed as a power-
law P (S) ∼ S−τ with τ ≈ 3/2 up to some upper cut-
off; similarly, avalanche durations T were well fitted by
P (T ) ∼ T−α with α ≈ 2 up to some characteristic max-
imum time [7]. Furthermore, fundamental scaling rela-
tionships [24] were observed to be fulfilled: e.g. the av-
eraged avalanche size scales as 〈S〉 ∼ T γ and the set of

exponents obey γ = (α− 1)/(τ − 1) [25].
This set of empirically reported exponent values is in

agreement with that of the well-known critical (or “un-
biased”) branching processes, also called Galton-Watson
process, originally introduced to describe the statistics
of the extinction of family names) [26–29]. Actually, the
set of exponent values τ = 3/2, α = 2 and γ = 2 are
extremely universal as they are shared by many differ-
ent propagation processes in high-dimensional systems
as well as in many types of networks [2, 30]. In particu-
lar, they are the mean-field exponents shared by models
such as the contact process, directed and isotropic perco-
lation, susceptible-infected-susceptible, and a large list of
other prototypical models for spreading/propagation dy-
namics above their respective upper critical dimensions
[24, 31–34].

Thus, it was conjectured that neuronal systems might
operate close to the edge of marginal propagation of neu-
ral (electro-chemical) activity [7, 35], opening the door
to exciting theoretical perspectives and some debate (see
[16] for a recent review). However, as extensively dis-
cussed in the literature, diverse generative processes for
the emergence of power-laws exist [36–38], and not all
power-law distributions can be taken as a signature of
criticality. For instance, a diverging correlation length
needs to be identified to assign a given phenomenon to
criticality. In recent years, some authors have suggested
that the origin of the observed power-law scaling in neu-
ral systems might stem from other types of criticality
(rather than marginal propagation) [39–41] or even be
unrelated to critical behavior [42, 43].

In the present brief paper –leaving aside the putative
connection with criticality– we contribute with an addi-
tional piece of information to the already controversial
discussion about the statistics of neuronal avalanches. In
particular, we show that some of the reported empiri-
cal evidence in favor of the value τ = 3/2 –and thus,
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seemingly in favor of the existence of an underlying crit-
ical branching process– might be misleading as there is
a technical problem in the way avalanches are measured,
which hinders the observation of the true asymptotic be-
havior. More in general, we underline that particular
attention needs to be taken when avalanches of activity
–defined by thresholding– are inferred from a continuous
time series of activity. Our findings, add to the recent
literature warning on the “perils” associated with thresh-
olding in timeseries [44] [45, 46].

II. DEFINITION OF AVALANCHES

As discussed in the introduction, avalanching phenom-
ena are best described, at least in mean-field, as branch-
ing processes. Such processes can reach the value 0 which
is an absorbing state: avalanches are naturally defined as
excursions away from such a state caused by small per-
turbations [47]. However, in many contexts –including
neuroscience but not only– the term “avalanche” is used
to refer to excursions of time series above some given
(arbitrary) threshold, regardless of absorbing states the
existence of any absorbing state. In this section we dis-
cuss such avalanches and their statistics.

1. Avalanches in the Wiener and Ornstein-Uhlenbeck
processes

Let us consider, for argument’s sake, a time series for
a stochastic real variable x –as illustrated in Fig.1– gen-
erated by a Wiener Process, i.e. by a continuous-time
unbiased random walk (RW) defined by the following
Langevin equation [48]:

ẋ(t) = ση(t), (1)

where η(t) is a Gaussian white noise with zero mean and
unit variance, and σ is the noise amplitude. For such a
time series (which can be thought as describing the time
course of the activity of some arbitrary system) the du-
ration T of an avalanche is the amount of time for which
x stays above a given threshold, i.e. an avalanche be-
gins/ends when the activity signal crosses the threshold
from below/above; the avalanche size S is the area cov-
ered between the walk trajectory and the threshold ref-
erence line (see Fig. 1). Observe that similarly, given the
symmetry of the process, one could also define avalanches
as excursions below threshold.

The probability distribution of avalanche durations T
can be straightforwardly identified with the first-return
time statistics of random walks (see Fig.1) which is well-
known to scale with an exponent α = 3/2. Similarly, also
the size-distribution exponent τ = 4/3 and the remaining
exponent γ = 3/2 are well-known for random walks (see
Fig. 1 and Table I); pedagogical derivations of these re-
sults, as well as a comparison with the branching process
class can be found in e.g. [47, 49]. Importantly, these

results for the random walk do not depend of the value
of the chosen threshold.

P (S) ∼ S−τ P (T ) ∼ S−α P (S | T ) ∼ T γ

BP τ = 3/2 α = 2 γ = 2

RW τ = 4/3 α = 3/2 γ = 3/2

TABLE I. Summary of the avalanche (mean-field) exponents:
size (τ), duration (α) and averaged avalanche size (γ) for the
(un-biased) branching process (BP) and the (un-biased) ran-
dom walk (RW); see e.g. [47].

(a)

(b) (c) (d)

FIG. 1. (Color online) Illustration of how avalanche duration
T and size S are defined for an unbiased random walk. (a)
Illustration of a particular time series, in which two avalanches
of durations T1 and T2 and sizes, S1 and S2, respectively,
are emphasized. The threshold is set to 0 in this case (red
dashed line). Lower panels show the probability distributions
of: (b) sizes, (c) durations, and (d) average size for a fixed
given duration (straight lines correspond to the well-known
analytical predictions while symbols stand for computational
results).

In the more general case in which the walker is confined
to hover around a given mean value, one can describe
the problem, in first approximation, as an Ornstein-
Uhlenbeck process [48]:

ẋ(t) = −ax(t) + ση(t), (2)

where there is an additional linear force term, −ax (cor-
responding to the negative derivative of the parabolic
potential bounding the walker close to x = 0). Such a
force introduces an upper cutoff in the first-return times
statistics of the unbiased RW (see e.g. [49] for a detailed
derivation). Thus, avalanches intended as excursions
above a given threshold in a process with a well-defined
steady-state value, have power-law-distributed sizes and
durations, with the exponents of the RW class (as in ta-
ble I and as in Fig.1), but only up to an upper-cut-off
scale controlled by 1/a, such that it goes to infinity, i.e.
it disappears when a vanishes.

As a corollary of all this, let us remark that many
real time series describing (e.g. biological) problems in
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which some stochastic variable fluctuates symmetrically
around a given mean value exhibit effective avalanching
behavior that –up to certain scale of size and time– can
be described by the exponent values of the RW. Let us
stress again that, as argued above, it can be a matter
of debated whether this type of behavior –describable
in terms of random-walk excursions above a threshold–
can be called “avalanching”. Actually, for most of the
examples of interest in physics, as discussed in the first
paragraph of the Introduction, this does not constitute an
adequate description as it does not include any absorbing
state.

2. On the definition of avalanche size

In many other circumstances time series exhibit asym-
metric excursions around a mean value and/or may
become trapped at some absorbing state. An exam-
ple of this is obtained when the variable under scrutiny
is a positive-definite density (e.g. of neural activity),
which, by definition, is constrained to take positive val-
ues, x(t) > 0. In such cases, especially in the ones when
there is always some lingering activity so that the zero-
value is hardly reached (see Fig.2) a threshold θ > 0
is often employed to define avalanches as periods dur-
ing which the activity remains above such a threshold.
In these situations, two alternative possibilities are often
used in the literature to measure the size of a so-defined
avalanches [50]:

(A) Following the random walk analogy, as done above,
for a given avalanche, one can define its size S as the
area in between the time-series curve and the threshold
(θ) reference line.

(B) Alternatively, one can define the avalanche size
Σ as the overall integral of the time series during the
avalanche, i.e. above the reference line x = 0 (see e.g.
[51, 52] but there are other works making this choice).

The difference between the two criteria to define
avalanche sizes is sketched in Figure 2. Σ, the total in-
tegral of the activity is equal to Σ = s∗ + S, where S is
the integral of the signal above threshold, and s∗ is the
area of the rectangle under the threshold.

In what follows, we compare the statistics of avalanches
obtained using these two alternative definitions of size A
and B for an Ornstein-Uhlenbeck process. This will serve
as an illustration of a more general phenomenon that may
also occur for other processes, such as the one sketched
in Fig.2.

First we discuss computational results and then we em-
ploy scaling arguments to explain the findings. On the
one hand, as already shown in Fig.1 using S, i.e. crite-
rion A, one reproduces the expected theoretical results
for all three avalanche exponents. On the other hand, as

FIG. 2. (Color online) Sketch of a non-symmetric stochastic
process for a positive definite variable (describing, e.g. density
of neural activity). θ (red dashed line) signals the arbitrarily
fixed threshold employed to define avalanches. For the large
avalanche in the center of the graph, S is the avalanche size
using criterion A (area above threshold, colored in orange)
and T is its duration. On the other hand, using criterion B,
Σ = S + s∗ (where s∗ is the area of the rectangle between
zero and the threshold, colored in blueish color, with s∗ ∝ T )
is an often-used alternative definition of avalanche size. As
discussed in the text this definition may induce misleading
interpretations of the resulting exponents.

(a) (b)

(c)

FIG. 3. (Color online) Statistics of avalanches of activity in
a stochastic process (Ornstein-Uhlenbeck with a = 0.1) em-
ploying Σ as a measure of the avalanche size. Observe that
both, (a) avalanche-size and (b) avalanche-duration distribu-
tions obey scaling with the same exponent value for many or-
ders of magnitude. However, the exponent values τ = α = 3/2
and, consequently, as depicted in (c), γ = 1.0 (satisfying the
important scaling relation γ = (α−1)/(τ−1)) do not coincide
with the expectations for an Ornstein-Uhlenbeck process.

illustrated in Figure 3, the statistics of avalanche sizes,
as determined employing Σ for an Ornstein-Uhlenbeck
process is anomalous and does not match the expecta-
tions for the theoretically known values i.e. the measured
value τ ≈ 3/2 does not coincide with the expected value
τ = 4/3. In particular, the numerical observation of,
τ ≈ 3/2 could be (wrongly) taken as evidence of branch-
ing process-like scaling [51, 52]. The fact that there is
something suspicious with the definition (ii) can be no-
ticed observing that both sizes and durations scale in the
same way, entailing γ = (α−1)/(τ−1) = 1, which would
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imply a locally linear (i.e. “tent like”) shape of avalanches
[53–55].

3. Scaling arguments

The correction s∗ for a given avalanche (such that
Σ = S + s∗) is nothing but s∗ = θT , where T is the
avalanche duration. The distribution of first-passage
times for the Wiener process is given by P (T ) ∼ T−3/2.
As said above, the same result holds for the Ornstein-
Uhlenbeck case up to an upper cut-off. Thus, Σ has
a correction s∗ with respect to S that scales as the
avalanche duration: P (s∗) ∼ s∗−3/2. Assuming that the
probability to observe a given size S conditioned to a
given avalanche duration T , P (S|T ), is a peaked function
around its mean value (as usually occurs for avalanches
[24]) and using the fact that 〈S〉 ∼ T γ , with γ = 3/2,
then

Σ(T ) = S(T ) + s∗(T ) = c̃T 3/2 + θT, (3)

from where it follows that

dΣ = (cT 1/2 + θ)dT (4)

Thus, we can readily write (using the implicit function
theorem):

P (Σ(T )) = P (T )
dT

dΣ
= N T−3/2

cT 1/2 + θ
. (5)

From this, in the limit of vanishing threshold θ in Eq.(4),
one has

P (Σ) ≈ N
c
T−2 ≈ N

c
[(Σ/c)2/3]−2 ∼ Σ−4/3, (6)

which is the correct result for the avalanche size distri-
bution of an Ornstein-Uhlenbeck process. On the other
hand, for larger values of the threshold θ and relatively
small values of T (and, thus, also typically small values
of Σ) one has

P (Σ) ≈ N
θ
T−3/2 ≈ N

θ
[Σ/θ]−3/2 ∼ Σ−3/2, (7)

in agreement with the numerical observation above. In
other words, the additional contribution s∗ dominates
the scaling behavior of the avalanche size Σ when θ is
relatively large. It is important to emphasize that, in any
case, one should recover the correct asymptotic value –i.e.
the behavior for large values of Σ– of the avalanche size
exponent (τ = 4/3) for any value of θ but this requires
going to larger and larger avalanche sizes as θ is chosen
larger and larger. In particular, Figure 4 illustrates that
there is a crossover from the value τ ≈ 3/2 measured
for small avalanche-sizes to the true asymptotic scaling
τ = 4/3, for larger sizes. The crossover point grows with
θ, so that the effect is not observed for θ ≈ 0, but may

extend for many scales even for moderate values of θ.
In particular, given that an upper cut-off to scaling may
exist (controlled e.g. by 1/a in the case of an Ornstein-
Uhlenbeck process that we are considering here or by
finite-size effects), the transient behavior usually extends
all the way up to the cut-off, so that the true asymptotic
behavior can be unobservable with criterion B if large
values of θ are considered.

Thus, summing up, considering criterion B for the def-
inition of avalanche sizes together with relatively large
threshold values or not sufficiently large statistics, may
lead to the observation of an effective value τ ≈ 3/2; this
may induce a misinterpretation of the scaling universality
class, suggesting it is branching-process-like rather than
what it actually is: a random-walk-like process.

Let us emphasize that the previous discussion has been
done for an Ornstein-Uhlenbeck process. However, it per-
fectly illustrates the problem associated with criterion B
in more general circumstances, e.g. it also applies to
asymmetric processes as the one sketched in Fig.2. In
any case, criterion B mixes the scalings of actual sizes
and times, leading to potential interpretation errors in
general stochastic processes. This problem is at the ori-
gin of miss-classification of scaling behavior in existing
works analyzing neuronal avalanches (see e.g. [51, 52]).

III. CONCLUSION

In this brief paper we have shown that an inappropri-
ate definition of avalanche sizes as measured as excursions
above a given threshold in continuous timeseries can lead
to misleading conclusions. To illustrate this, we have
studied a simple Ornstein-Uhlenbeck process (represent-
ing e.g. the time course of activity in a mesoscopic model
of neural activity) and have measured avalanches sizes in
two possible ways: (i) as the integrated activity S over a
given threshold and (ii) integrating the total activity sig-
nal in between two threshold crossings, as illustrated in
Fig. 2. We have shown both computationally and using
scaling arguments that this latest definition can induce
strong biases in the determination of the avalanche-size
exponent τ .

In particular, if large values of the threshold θ are con-
sidered, then –for relatively small avalanches– one ob-
serves the exponent value τ ≈ 3/2 which could lead to
the erroneous interpretation that an effective un-biased
branching process dynamics exists. On the other hand,
for sufficiently small threshold values and for sufficiently
large avalanche sizes the correct scaling τ = 4/3 is re-
covered. As discussed above the problem associated with
criterion B extends to any type of stochastic process as
it mixes up the scaling of actual sizes with that of dura-
tions, giving rise to misleading results.

This is the underlying reason why recent analyses
of avalanches in mesoscopic models of neural activity
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(a)

(b)

FIG. 4. (Color online) Distribution of avalanche sizes for a
stochastic (Ornstein-Uhlenbeck) process employing Σ for the
measure of avalanche sizes. (a) Avalanche-size distribution
for the case θ = 1 (with a = 0 and σ = 1 in this case):
observe that the true exponent value τ = 4/3 is asymptoti-
cally recovered for large avalanche sizes. (b) Distribution of
avalanche sizes for different values of the threshold parameter,
θ. The associated exponent changes continuously between the
two limiting exponents 3/2 (for large thresholds) and 4/3 for
sufficiently small ones (parameter values: a = 0.1, σ = 0.5;
thresholds as marked in the figure legend).

that consider relatively large thresholds [50–52]) obtain
τ ≈ 3/2 –compatible with the scaling of a critical branch-
ing process–, a result that our analysis reveal that is not
asymptotic. Their corresponding underlying dynamics
describe fluctuations around a given mean value and,
thus, the associated avalanches should be related to ex-
cursions of random walkers and not to critical branching
processes.

As an important final remark, let us stress that it is
essential –and it should always be done– to consider the
full set of avalanche exponents i.e. τ , α, and γ as well as
the scaling relations between them, in order to avoid pos-
sible errors and misleading interpretations and properly
identify the type of scaling behavior.
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