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The diagrammatic t-matrix approximation has often been adopted to describe a dilute Fermi gas.
This approximation, originally considered by Galitskii for a repulsive inter-particle interaction [1],
has later been widely utilized for an attractive Fermi gas to describe the BCS-BEC crossover from
strongly overlapping Cooper pairs in weak coupling to non-overlapping composite bosons in strong
coupling. Several variants of the t-matrix approximation have been considered in the literature,
which are distinguished by the degree of self-consistency allowed in the building blocks of the dia-
grammatic structure. Here, we perform a systematic and comparative study of all possible variants
on the degree of self-consistency for the t-matrix approximation in an attractive Fermi gas, which
enables us to confront their outcomes for thermodynamic and dynamical quantities on the same
footing in an unbiased way. For definiteness, only the normal phase above the superfluid critical
temperature is considered. The dispute that can be raised in this context, about the adequateness
of introducing progressive degrees of self-consistency over and above the non-self-consistent t-matrix
approximation for an attractive Fermi gas, parallels the recent interest in the literature on assessing
the importance of various degrees of self-consistency in the context of semiconductors and insulators.

I. INTRODUCTION

The method of functional derivatives provides a gen-
eral framework to deal with quantum many-particle sys-
tems in a non-perturbative fashion. This method, that
was originally introduced in condensed matter by Mar-
tin and Schwinger [2] and later adopted by Hedin [3] (see
also Ref. [4]), starts from the exact equations for the
single- and two-particle Green’s functions (namely, the
Dyson and Bethe-Salpeter equations, respectively) and
introduces approximations only at the level of the ker-
nels of these integral equations.

A systematic method for selecting non-perturbative
approximations which satisfy the conservation laws (the
so-called “conserving approximations”) has been formu-
lated by Baym and Kadanoff [5]. This method intimately
relates the kernel of the Dyson equation (namely, the
single-particle self-energy) with the kernel of the Bethe-
Salpeter equation. In both cases, these kernels are ex-
pressed as functionals of the single-particle propagator
that solves the Dyson equation. In this context, the
need for a “Φ-derivable” choice of the single-particle self-
energy and for the self-consistent solution of both equa-
tions has been emphasized [6].

Although the use of a fully self-consistent and conserv-
ing approximation appears mandatory when dealing with
physical problems that involve transport and localiza-
tion, in other circumstances non-self-consistent or partly
self-consistent approximations may provide physically
more sensible results with respect to the self-consistent
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one. An example is provided by the fluctuation exchange
(FLEX) approximation introduced for the repulsive Hub-
bard model (even at half-filling), whereby both the self-
consistent and the non-self-consistent versions have been
investigated [7, 8]. More recently, interest in compar-
ing the results of the self-consistent vs non-self-consistent
approaches has arose also in the context of the GW ap-
proximation for semiconductors and insulators. In this
case, the non-self-consistent calculations turn out to bet-
ter compare with the experimental values of the band
gaps with respect to the self-consistent calculations [9].
Similar conclusions have further been drawn in the con-
text of a simpler model [10].

In the context of a (dilute) Fermi gas with an attrac-
tive inter-particle interaction, the t-matrix approxima-
tion appears as a natural candidate to describe the sys-
tem while it evolves throughout the BCS-BEC crossover.
The first pioneering approach in this respect goes back
to the work by Nozières and Schmitt-Rink (NSR) [11],
where a simplified version of the non-self-consistent t-
matrix approximation proved sufficient to highlight the
main features of the crossover physics in the normal phase
above the superfluid critical temperature. Later on, the
NSR approach was extended, either to improve on the
treatment of the non-self-consistent t-matrix approxima-
tion [12], or to include various degrees of self-consistency
within this approximation, ranging from partial [13–15]
to full [16, 17] self-consistency. As expected, depending
on the degree of self-consistency different numerical re-
sults were obtained for various physical quantities, rang-
ing from thermodynamic to dynamic. However, direct
comparison among the results obtained with various de-
grees of self-consistency has been hindered by the (some-
times even drastic) numerical approximations that were
introduced in the calculations on top of a specific choice
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about the degree of self-consistency. For these reasons,
it appears that a systematic and direct comparison of
the results obtained by adopting various degrees of self-
consistency on the t-matrix approximation is still lack-
ing, especially when this comparison would be made in
an unbiased way by retaining the same level of numerical
accuracy for all different approaches.

Primary purpose of this paper is to fill this gap, by un-
dertaking the above systematic study on all the five de-
grees of self-consistency that have been considered thus
far in the literature within the t-matrix approximation in
the normal phase above the superfluid critical tempera-
ture [12–17]. Although the results of the present study
may not lead to definite conclusions, about which one of
the above five approximations could account best for the
thermodynamic and dynamical properties of a (dilute)
Fermi gas undergoing the BCS-BEC crossover, it appears
nevertheless interesting and relevant (if not timely) to
discover how these properties get modified when passing
from one to the other of these five approaches. In ad-
dition, the high precision of the numerical calculations
that we have implemented has enabled us to accurately
check how the two distinct (BCS) and (BEC) limits of
the crossover are recovered by the alternative t-matrix
approaches. Specifically, in the BEC limit the residual
interaction among composite bosons extracted from our
numerical calculations turns out to be in excellent agree-
ment with the analytic estimates that we also provide
(which correct a previous analytic estimate obtained in
Refs. [16, 17] within the fully self-consistent t-matrix ap-
proach). In the BCS limit, on the other hand, we have
found that a partially self-consistent t-matrix approach,
developed in Ref. [14] and often utilized in the literature,
breaks down when one avoids using the set of approxi-
mations that normally accompany its implementation.

Finally, it should be recalled that, in order to get a
refined agreement with Quantum Monte Carlo and ex-
perimental data available for a Fermi gas in the unitary
region of the crossover intermediate between the BCS and
BEC regimes, it may in any case be required to go be-
yond the t-matrix approximation [18] and include on top
of it also a class of vertex corrections associated with the
Gorkov-Melik-Barkhudarov (GMB) contribution [19].

The plan of the paper is as follows. Section II sets
up the theoretical framework and specifies in details how
the alternative t-matrix approaches with various degrees
of self-consistency need to be handled. Sections III and
IV report on the numerical results obtained within the
above alternative t-matrix approaches, for the thermody-
namic and dynamical quantities of interest, respectively.
Sections V gives our conclusions. Appendix A gives a de-
tailed account about the numerical procedures we have
adopted to achieve (partial or full) self-consistency within
the various t-matrix approaches, for all relevant sub-
units of the many-body structure. Appendix B discusses
the optimization procedure that was found necessary to
achieve the required convergence toward self-consistency,
within some of the above alternative t-matrix approaches.

Finally, Appendix C compares the results of two partially
self-consistent t-matrix approaches with that of their ap-
proximate treatments usually utilized in the literature.

II. ALTERNATIVE t-MATRIX APPROACHES

In this Section, we set up the theoretical framework for
the alternative t-matrix approaches that can be used to
describe a Fermi gas with an attractive contact interac-
tion throughout the BCS-BEC crossover, in the normal
phase at a temperature T above the superfluid critical
temperature Tc. Only a balanced situation, with equal
number of spin up and spin down fermions, will be con-
sidered in this paper.

A. Basic equations

Within this framework, the basic expressions read (in
the following, we set the Planck constant ~ and Boltz-
mann constant kB equal to unity):

G(k) =
(
G0(k)−1 − Σ(k)

)−1

(1)

Σ(k) = −
∫

dQ

(2π)3
T
∑
ν

Γ(Q)G(c)(Q− k) (2)

Γ(Q) = −
(

m

4πaF
+Rpp(Q)

)−1

(3)

Rpp(Q) =

∫
dk

(2π)3

(
T
∑
n

G(a)(k)G(b)(Q− k)− m

k2

)
.(4)

Here, G is the single-particle fermionic propagator and
G0 its non-interacting counterpart, Σ is the self-energy,
Γ is the particle-particle propagator, and Rpp is the (reg-
ularized) particle-particle bubble. These quantities are
drawn pictorially in Fig. 1. In addition, k = (k, ωn) is a
fermionic four-vector with wave vector k and fermionic
Matsubara frequency ωn = (2n + 1)π T (n integer), and
Q = (Q,Ων) a bosonic four-vector with wave vector Q
and bosonic Matsubara frequency Ων = 2πν T (ν inte-
ger). Finally, m is the fermionic mass and aF the scat-
tering length of the associated two-fermion problem.

Note that, in the above equations, the single-particle
propagators have been distinguished as G(a), G(b), and
G(c), meaning that each of them can be either the dressed
G or the bare G0, in such a way that different t-matrix
approaches can be realized by selecting different combi-
nations of these functions. Specifically, the short-hand
notation (G(a)G(b))G(c) will be used to identify a given
t-matrix approach, where the propagators G(a) and G(b)

within the parentheses correspond to those entering the
particle-particle bubble (4), while the external propaga-
tor G(c) enters the self-energy (2). In the following, we
shall consider the five combinations of G(a), G(b), and
G(c) reported in Table I, with the corresponding refer-
ences where the various approaches have been discussed
for a Fermi gas with an attractive contact interaction.
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FIG. 1. (Color online) Diagrammatic representation of the
t-matrix approximation. Thick and thin lines represent the
single-particle propagator G and its non-interacting counter-
part G0, respectively, while broken lines stand for the inter-
particle interaction. The colored ellipse corresponds to the
self-energy Σ and the colored square to the particle-particle
propagator Γ, where fermion lines connected by interaction
lines are meant to have opposite spins. The positions where
the three types of propagators G(a), G(b), and G(c) occur in
the diagrams are also indicated.

(G(a)G(b))G(c) Reference

(G0 G0)G0 Ref. [12]

(G0 G0)G Ref. [13]

(GG0)G0 Ref. [14]

(GG)G0 Ref. [15]

(GG)G Refs. [16, 17]

TABLE I. Short names adopted for the various t-matrix ap-
proaches, according to the conventions introduced in the ex-
pressions (4) and (2), with the corresponding key references
to these approaches.

B. Routes toward self-consistency

Except for the non-self-consistent (G0G0)G0 approach,
the equations (1)-(4) must be solved in a self-consistent
way. To this end, we follow the numerical procedure de-
veloped originally in Refs. [16] and [17]. The procedure
makes use of the Fourier transforms from the (k, ωn) and
(Q,Ων) space to the (r, τ) space, according to the ex-
pressions:

G(r, τ) =

∫
dk

(2π)3
T
∑
n

ei(k·r−ωnτ)G(k, ωn) (5)

Γ(r, τ) =

∫
dQ

(2π)3
T
∑
ν

ei(k·r−Ωντ)Γ(Q,Ων). (6)

Analogous transformations hold for Σ(k, ωn) and
Rpp(Q,Ων). Here, τ is the imaginary time which varies

G(k, ωn)

G(r, τ)

∆Rpp(r, τ)

Rpp(Q, Ων)

Γ(Q, Ων)

Γ(r, τ)

Σ(r, τ)

Σ(k, ωn)

G0(r, τ)

G(k, ωn)

G(r, τ)

Γ0(r, τ)
Σ(r, τ)

Σ(k, ωn)

G0(k, ωn)

G0(r, τ)
Γ0(r, τ)

Σ0(r, τ)

Σ0(k, ωn)

R
(0)
pp (Q, Ων)

Γ0(Q, Ων)

G(k, ωn)

G0(r, τ)

R
(0)
pp (Q, Ων)

(a)

(c)

(b)

G(k, ωn)

G(r, τ)

∆Rpp(r, τ)

Rpp(Q, Ων)

Γ(Q, Ων)

Γ(r, τ)

Σ(r, τ)

Σ(k, ωn) G0(r, τ)

R
(0)
pp (Q, Ων)

(d)

FIG. 2. (Color online) Flowchart for the routes toward self-
consistency of the various t-matrix approaches: (a) non-self-
consistent (G0G0)G0; (b) extended t-matrix (G0G0)G; (c)
partially self-consistent (GG0)G0 and (GG)G0; (d) fully self-
consistent (GG)G.

in the interval (0, 1/T ). In the r = (r, τ) space, the equa-
tions (2) and (4) acquire the simple form:

Σ(r) = −Γ(r)G(c)(−r) (7)

Rpp(r) = G(a)(r)G(b)(r)− Λδ(r), (8)

where Λ is an appropriate regularization constant that
depends on the cutoff in the k-integral of Eq. (4) and
becomes infinite together with that cutoff [16]. To avoid
dealing directly with Λ, in r-space it is convenient to work
in terms of the difference

∆Rpp(r) = Rpp(r)−R(0)
pp (r) = G(a)(r)G(b)(r)−G0(r)2,

(9)

where R
(0)
pp (r) is the regularized particle-particle bubble

built on the non-interacting G0. Equations (1), (3), (7),
and (9), together with the Fourier transforms (5) and
(6), form a complete set of equations that need to be
solved self-consistently. The flowchart shown in Fig. 2
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summarizes schematically the various routes toward self-
consistency to be followed when adopting the alternative
t-matrix approaches of Table I.

Although the non-self-consistent (G0G0)G0 approach
does not require any self-consistent cycling, we have re-
ported it in Fig. 2(a) since its calculation has always to
be performed at a preliminary level, to the extent that
it is also used as input for the self-consistent calcula-

tions. In this approach, R
(0)
pp (Q) is directly calculated

according to Eq. (4) with two non-interacting propaga-
tors G0 in the place of G(a) and G(b). Figure 2(b) shows
the flowchart for the (G0G0)G approach (referred to as
the “extended t-matrix” approach in Ref. [13]), where
self-consistency is present only in the external G, while
the particle-particle propagator Γ coincides with its bare
counterpart Γ0 built on R(0)(Q). Figure 2(c) shows
the flowchart for both the (GG0)G0 and (GG)G0 ap-
proaches, where self-consistency enters only the particle-
particle propagator Γ, while the external propagator G(c)

is a non-interacting G0. Finally, Fig. 2(d) shows the
flowchart for the fully self-consistent (GG)G approach.
Note that, in the flowcharts of Figs. 2(c) and (d), the reg-
ularized particle-particle bubble Rpp(Q,Ων) is obtained
by Fourier transforming the difference ∆Rpp(r, τ) de-
fined in Eq. (9) and then by adding to it the regular-

ized particle-particle bubble R
(0)
pp (Q, τ) of the non-self-

consistent approach.
Most functions appearing in the flowcharts of Fig. 2

suffer from a slowly decaying tail in the variables (k, ωn)
or (Q,Ων), which implies a corresponding singular be-
havior when (r, τ) → 0. For this reason, the Fourier
transforms should be performed on a logarithmic scale,
following the prescriptions given in Refs. [17] and [20].
In addition, one also needs to subtract appropriate semi-
analytic expressions from the functions to be numerically
Fourier transformed, in order to make their slow decay
faster (or, alternatively, their singular behavior weaker).
These semi-analytic expressions have to be known also
for the transformed representation, so that they can
be added back to the functions after having performed
the Fourier transform. A detailed account of the semi-
analytic expressions used in the numerical calculations is
given in Appendix A.

C. Thouless criterion

As already mentioned, all five t-matrix approaches con-
sidered in this paper will be examined on equal foot-
ing throughout the whole BCS-BEC crossover (also with
emphasis on the analytic results that can be obtained
separately in the BCS and BEC limits). The BCS-
BEC crossover is spanned in terms of the (dimensionless)
coupling parameter (kFaF )−1, where kF = (3π2n)1/3

is the Fermi wave vector associated with the particle
density n. In practice, the crossover between the BCS
and BEC regimes is essentially exhausted within the
range −1 . (kFaF )−1 . +1 across the unitary limit
at (kFaF )−1 = 0 (for a recent comprehensive account of
the BCS-BEC crossover, see Ref. [21]).

In the present paper, we are interested in the normal
phase above the the critical temperature Tc of the su-
perfluid transition, where the numerical value of Tc de-
pends on the specific theoretical approximation one is
adopting to describe the Fermi gas. For all five t-matrix
approaches we are considering, Tc is determined by the
Thouless criterion [22], in the form:[

Γ(Q = 0,Ων = 0;T, µ)
]−1

= 0. (10)

This condition has to be supplemented by the density
equation to determine the chemical potential µ

n = −2G(r = 0, τ → β−;T, µ) (11)

(with β = 1/T the inverse temperature), where the fac-
tor of 2 accounts for the spin multiplicity. In practice,
one fixes the values of the coupling (kFaF )−1 and of the
temperature T to determine µ from Eq. (11), and then
uses this value of µ to determine Tc from Eq. (10). How-
ever, for temperatures close to Tc this simple iterative
procedure may not work properly as far as the (GG0)G0,
(GG)G0 and (GG)G approaches are concerned, where
difficulties are found in the convergence of the iterative
procedure toward self-consistency. To overcome these dif-
ficulties, we have found it necessary to introduce two dif-
ferent refinements of the above iterative procedure, the
first of which enables us to get close to Tc from T > Tc
while the second one allows us to work exactly at T = Tc.
These refinements are described in detail in Appendix B.

III. NUMERICAL RESULTS FOR
THERMODYNAMIC QUANTITIES

Several thermodynamic quantities of interest can be
obtained directly in terms of the single-particle fermionic
propagator G of Eq. (1) and of the particle-particle prop-
agator Γ of Eq. (3). Here, we report on the numerical
results obtained within the five alternative t-matrix ap-
proaches that we are considering, for the critical tem-
perature and chemical potential as well as for the Tan’s
contact.

A. Critical temperature

The results for the critical temperature Tc obtained
from the Thouless criterion (10) are shown in Fig. 3 over
a wide coupling range for all the five t-matrix approaches
reported in Table I. Several interesting features can be
highlighted when comparing the results of the various
approaches:
(i) All approaches are seen to interpolate rather well be-
tween the BCS and BEC critical temperatures (indicated
by black dotted lines in Fig. 3), with the notable excep-
tion of the (GG0)G0 approach which fails to reach the
BCS limit since in this case the critical temperature col-
lapses abruptly to zero at coupling (kFaF )−1 ' −1. We
attribute this failure to the asymmetric treatment of the
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FIG. 3. (Color online) Critical temperature Tc (in units of
the Fermi temperature TF ) as a function of (kF aF )−1 within
alternative t-matrix approaches. The black dotted lines corre-
spond to the BCS critical temperature (12) when (kF aF )−1 <
−1 and to the critical temperature (13) for a condensate
of non-interacting composite bosons when (kF aF )−1 > 1.
Quantum Monte Carlo (QMC from Ref. [23] - circles) and
Diagrammatic Monte Carlo (DMC from Ref. [24] - squares)
data are also shown for comparison. The inset shows the ex-
trapolation of the ratio Tc/T

BCS
c in the weak-coupling limit

(kF aF )−1 � −1. Here, thick lines correspond to numerical
data and thin dotted lines to parabolic fits of the data that
extrapolate Tc in the weak-coupling limit.

single-particle propagators G(a) and G(b) in the particle-
particle bubble (4) that enters the particle-particle prop-
agator Γ. The asymmetry generates an artificial imbal-
ance between spin up and down species, which acts to
suppress the critical temperature of the superfluid tran-
sition (cf. also Appendix C). This feature has apparently
passed unnoticed in the literature. It is for this reason
that, in what follows, the results of the (GG0)G0 ap-
proach will not be reported for the BCS limit.
(ii) The behavior of the critical temperature in the BCS
(weak-coupling) limit (kFaF )−1 � −1 is shown as a func-
tion of kFaF in the inset of Fig. 3), for all t-matrix ap-
proaches with the exception of the (GG0)G0 approach for
the reasons discussed in point (i) above. In all cases, the
numerical results have been extended toward the extreme
BCS limit kFaF → 0− through a parabolic extrapolation
(dots). Within a numerical error of the order of 1% [25],
in this limit we obtain that the (GG)G and (GG)G0 ap-
proaches recover the value of the BCS temperature:

TBCS
c =

8eγEF
πe2

exp
( π

2kFaF

)
(12)

where γ is the Euler’s constant. On the other hand, the
(G0G0)G and (G0G0)G0 approaches reproduce the BCS
critical temperature only within logarithmic accuracy, in
the sense that they recover the result (12) with the pre-
factor divided by e1/3 (see Ref. [18] for a discussion of the

origin of this spurious factor in those approaches that do
not dress the bare particle-particle propagator Γ0).
(iii) In the crossover region about unitarity, it turns
out that the inclusion of (even a partial degree of)
self-consistency in the particle-particle propagator Γ of
Eq. (3) acts to suppress the maximum of Tc, which other-
wise occurs for the (G0G0)G and (G0G0)G0 approaches.
(iv) In the BEC (strong-coupling) limit (kFaF )−1 � 1,
all approaches reproduce the value of the critical tem-
perature for a condensate of non-interacting composite
bosons made up of fermion pairs (with mass mB = 2m
and density nB = n/2):

TBEC
c =

2π

ζ(3/2)2/3

(
nB
)2/3

mB
' 0.218EF . (13)

However, alternative t-matrix approaches differ in the
way the value (13) is reached when (kFaF )−1 � 1.
Specifically, the sub-leading behavior of Tc when ap-
proaching TBEC

c can be characterized by the expression

Tc − TBEC
c

TBEC
c

=
α

3π
(kFaF )3, (14)

where the values of the coefficient α for the various t-
matrix approaches are listed in Table II.

(G(a)G(b))G(c) α(th) α(extr)

(G0G0)G0 1 1.02

(G0G0)G 1.07 1.12

(GG0)G0 -0.5 -0.48

(GG)G0 na -2.00

(GG)G -1 -1.02

TABLE II. Values of the coefficient α of Eq. (14) obtained
within the various t-matrix approaches, both from analytic
calculations (th) and extrapolation of numerical results (extr).
One analytic value is not available (na).

The theoretical values reported in Table II for
the (GG)G and (GG0)G0 approaches are taken from
Refs. [16] and [26], respectively, while we have calculated
independently those for the (G0G0)G0 and (G0G0)G ap-
proaches (the corresponding analytic calculations are not
reported here owing to their complexity). Note that,
for those approaches that include even a partial degree
of self-consistency in the particle-particle propagator Γ,
α < 0 such that the value (13) is approached from below;
the opposite occurs for the remaining approaches.

We have also compared the numerical values we
have obtained for Tc within the various t-matrix ap-
proaches with other published data for the same quan-
tity. For the (G0G0)G0, (G0G0)G, and (GG)G ap-
proaches we found good agreement with the data pub-
lished in Refs. [12], [27], and [17], respectively. For the
(GG0)G0 and (GG)G0 approaches, on the other hand,
direct comparison with previous data throughout the
BCS-BEC crossover is not possible, since within these
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FIG. 4. (Color online) Chemical potential µc at Tc (in units
of the Fermi energy EF when µc > 0 and of half the binding
energy ε0 = (ma2

F )−1 of composite bosons when µc < 0) as a
function of (kF aF )−1 within alternative t-matrix approaches.
The black dotted line in weak coupling corresponds to the
Galitskii’s result (15). Comparison with QMC data from
Ref. [23] (circles) is also shown. In the inset, ε0/2 has been
added to µc for (kF aF )−1 > 0 to amplify the values of the
chemical potential of composite bosons due to their mutual
interaction.

approaches the curves for Tc have only been calculated
with additional approximations affecting the form of the
particle-particle propagator and of the self-energy [28]
[15]. In these cases, our data compares well with those
of Refs. [28] and [15] only in the strong-coupling regime
(kFaF )−1 & 1, where the additional approximations in-
troduced in those references remain valid at T ' Tc (see
also Appendix C).

Finally, a comparison with available quantum Monte
Carlo (both QMC and DMC) data has been reported in
Fig. 3. Note how these data show a steeper coupling de-
pendence with respect to the t-matrix calculations. As
already mentioned in the Introduction, this steeper de-
pendence can be accounted for by a further inclusion of
the GMB vertex corrections [18].

B. Chemical potential

The corresponding results for the chemical potential
µc calculated at the critical temperature Tc are reported
in Fig. 4 as a function of coupling (kFaF )−1, for each of
the five t-matrix approaches here considered. The main
features that can be identified from this plot are:
(i) In the weak-coupling (BCS) limit (kFaF )−1 � −1,
the (GG)G and (G0G0)G approaches recover the Galit-
skii’s expression [1]

µGal

EF
= 1 +

4

3π
(kFaF ) +

4

15π2

[
11− 2 ln 2

]
(kFaF )2 (15)

up to second order in (kFaF ), while the (G0G0)G0 and

(G0G0)G approaches recover this expression up to first
order only.
(ii) In the strong-coupling (BEC) limit (kFaF )−1 � 1,
all approaches recover the value µc = −ε0/2 at leading
order in kFaF , where ε0 = (ma2

F )−1 is the binding en-
ergy of the composite bosons. At sub-leading order, on
the other hand, the behavior of µc depends on the ap-
proach. In particular, for the (G0G0)G0 and (G0G0)G
approaches the sub-leading term vanishes exponentially
when (kFaF )−1 � 1, while for the (GG0)G0, (GG)G0,
and (GG)G approaches the sub-leading term vanishes lin-
early in (kFaF ) (a behavior which has been evidenced in
the inset of Fig. 4). This difference is due to the fact that
self-consistency in the particle-particle propagator intro-
duces a residual repulsive interaction between composite
bosons, as discussed in subsection III-C.
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FIG. 5. (Color online) Chemical potential µ (in units of
EF ) as a function of the temperature T (in units of TF ) for
various couplings (kF aF )−1 = (−0.5, 0, 0.5) within alterna-
tive t-matrix approaches. Comparison with QMC data from
Ref. [29] (circles) is also shown in panel (b).

By the present methods, the chemical potential µ can
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be calculated not only at Tc but also above Tc. Fig-
ure 5 shows µ as a function of temperature for three
characteristic couplings [(kFaF )−1 = (−0.5, 0, 0.5)] span-
ning the crossover regime, for all five t-matrix approaches
we are considering. On the low-T side, the curves ter-
minate at the respective critical temperature Tc given
in Fig. 3. Note that, for the (G0G0)G0 and (G0G0)G
approaches where no degree of self-consistency is intro-
duced in the particle-particle propagator, the curves of
µ(T ) show a maximum above Tc. We have also verified
that the curve of Fig. 5(b), which corresponds to the
(GG0)G0 approach at unitarity, compares well with the
numerical results reported in Ref. [30]. To the best of our
knowledge, this is, in fact, the only other reference where
a calculation based on the complete (GG0)G0 approach
was performed, without recourse to additional simplify-
ing approximations (albeit in Ref. [30] the calculation
was limited to the coupling (kFaF )−1 = 0 only).

In both Figs. 4 and 5, comparison has also been added
with available QMC data, which show overall good agree-
ment with the results of the t-matrix approaches.

C. Scattering length of composite bosons

The residual repulsive interaction between composite
bosons is characterized by a finite value of the scattering
length aB . This can, in turn, be determined by com-
paring the chemical potential for the composite bosons
µB = 2µc+ε0 in the strong-coupling limit (kFaF )−1 � 1
with the chemical potential µ0

B = 8πaBnB/mB of a di-
lute Bose gas at Tc. This comparison yields:

aB
aF

= lim
kF aF→0+

3π

4(kFaF )

µB
EF

. (16)

The values of aB extrapolated in this way for the (GG)G,
(GG)G0 and (GG0)G0 approaches are shown in Fig. 6(a).
Note, in particular, that the (GG)G fully self-consistent
approach yields aB/aF ' 1.16, which contrasts with the
value aB/aF = 2 obtained analytically in Ref. [16].

The above limiting numerical values for the bosonic
scattering length aB , obtained within the t-matrix ap-
proaches that include the dressed single-particle propaga-
tor G in the particle-particle propagator Γ, can be com-
pared with the corresponding analytic results obtained
by expressing the self-consistently dressed Γ as an infi-
nite series of diagrams in terms of the bare G0 and Γ0,
and then by retaining only the leading-order corrections
to the bare particle-particle propagator Γ0 in the BEC
(µ/T → −∞) limit.

For the (GG)G0 approach, this corresponds to con-
sidering the left diagram of Fig. 6(b) (together with
the corresponding diagram where is the lower fermionic
line to get dressed). Comparison of the analytic eval-
uation of this diagram in the BEC limit as done in
Refs. [16] and [31] with the leading self-energy correc-
tion ΣB = 8πaBnB/mB for a dilute Bose gas yields the
value aB/aF = 2 (cf. the upper curve of Fig. 6(a)).

For the (GG0)G0 approach, on the other hand, the ab-
sence of the self-energy correction in the lower fermionic
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FIG. 6. (Color online) (a) Values of aB/aF extrapolated from
the expression (16) within alternative t-matrix approaches.
Thick lines correspond to numerical data, while thin dotted
lines correspond to parabolic fits to numerical data which ex-
trapolate to the value of aB/aF in the strong-coupling limit
kF aF → 0+. (b) Diagrams contributing to the bosonic scat-
tering length aB within the (GG)G approach. Like in Fig. 1,
thin lines correspond to the bare fermionic propagator G0.

line then eliminates the multiplicity of 2 for the left di-
agram of Fig. 6(b), yielding aB/aF = 1 (cf. the lower
curve of Fig. 6(a)) Note, however, that this reduction
of aB by half in comparison with the more symmetric
(GG)G0 approach is somewhat artificial, since it corre-
sponds to an incomplete symmetrization of the bosonic
interaction vertex.

Finally, for the (GG)G approach also the right dia-
gram of Fig. 6(b) contributes at the leading order, again
with a multiplicity of 2 due to the corresponding dress-
ing of the lower fermionic line. This diagram (which had
apparently escaped to the analysis of Ref. [16]) yields
a correction −0.842aF to the bosonic scattering length
aB in the BEC limit, thereby resulting altogether in the
value aB/aF = 2− 0.842 = 1.158 in excellent agreement
(within 0.2%) with that obtained by our numerical ex-
trapolation (cf. the middle curve of Fig. 6(a)). This
analytic estimate for the right diagram of Fig. 6(b) can
be readily obtained by noting that, in the BEC limit,
its leading-order behavior coincides with that of the di-
agram introduced in Ref. [18] to include the GMB cor-
rection for Tc throughout the BCS-BEC crossover, whose
contribution to aB in the BEC limit was there estimated
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function of (kF aF )−1 within alternative t-matrix approaches.
The black dotted line stands for the leading term of the con-
tact Cc/k

4
F = 4/(3πkF aF ) in the strong-coupling limit (cf.

Ref. [21]). The inset reports the contact on the weak-coupling
side, where the black dotted line now corresponds to the ex-
pression (19) within the Galiskii’s approximation up to next-
to-leading order in (kF aF ).

to be −0.842aF . It should also be remarked that this
identification between (the numerical values of) the two
diagrams holds in the BEC limit only. For this reason,
the self-consistent t-matrix approximation fails to recover
the GMB reduction factor for Tc in the BCS limit [18].

D. Tan’s contact

An important physical quantity that characterizes a
Fermi gas with short-range interaction is the Tan’s con-
tact [32–34], which connects two-particle correlations at
short distances with thermodynamics. Here, we calcu-
late the contact Cc at Tc within the various t-matrix ap-
proaches as the trace of the particle-particle propagator

Cc =

∫
dQ

(2π)3
T
∑
ν

Γ(Q,Ων)eiΩν0+

= Γ(r = 0, τ → β−),

(17)
according to an expression introduced in Ref. [35]. The
results are shown in Fig. 7 throughout the BCS-BEC
crossover. For internal consistency, we have also verified
numerically that the values of the contact Cc obtained
by Eq. (17) coincide with the coefficient of the k−4 tail
of the wave-vector distribution (per spin component σ)

nσ(k) = −G(k, τ → β−). (18)

We have further verified that, at Tc (� TF ) in weak
coupling, the expansion for the contact in powers of
(kFaF )

Cc
k4
F

=
4(kFaF )2

9π2

(
1 +

12

35π
(11− 2 ln 2)(kFaF )

)
, (19)

(kF aF )−1 Tc/TF µc/EF Cc/k
4
F

0.08495 0.7997 0.01462

0.07294 0.7381 0.01139

-1.0 na na na

0.07132 0.8006 0.01930

0.06776 0.7375 0.01874

0.1649 0.6846 0.04595

0.1358 0.6018 0.03076

-0.5 0.1132 0.7230 0.03999

0.1112 0.7269 0.04099

0.1077 0.6226 0.03892

0.2429 0.3655 0.1479

0.2034 0.3059 0.1036

0.0 0.1709 0.5096 0.1108

0.1451 0.5734 0.09513

0.1505 0.4000 0.09170

0.2588 -0.1890 0.3075

0.2361 -0.2005 0.2638

0.5 0.1975 0.04935 0.2522

0.1674 0.2176 0.2148

0.1870 -0.02339 0.2182

0.2351 -0.9986 0.4759

0.2320 -0.9987 0.4666

1.0 0.2097 -0.8042 0.4418

0.1918 -0.6250 0.4150

0.2062 -0.8092 0.4342

TABLE III. Numerical values of the critical temperature Tc,
chemical potential µc, and contact Cc at Tc are reported for
five characteristic couplings in the crossover region about uni-
tarity and for all t-matrix approaches. A few numerical values
are not available (na) for the reasons discussed in the text.
For each coupling, reference to different t-matrix approaches
follows the conventions (from top to bottom) of Table I.

that results by taking the derivative with respect to a−1
F

of the expression for the total energy at T = 0 obtained
by Galitskii in powers of (kFaF ) [1], is recovered by the
(G0G0)G0 and (G0G0)G approaches up to the leading
order and by the (GG)G and (GG)G0 approaches up to
the next-to-leading order in (kFaF ).

E. Summary of the main thermodynamic results

The numerical values of the critical temperature Tc,
and of the chemical potential µc and the contact Cc at
Tc, can be read off directly from Figs. 3, 4, and 7, re-
spectively, for each of the five t-matrix approaches that
we have considered in this paper. It might be useful,
however, to summarize the values of the above physi-
cal quantities for a few characteristic couplings in the
crossover region of most interest. Accordingly, we report
in Table III a list of these values for five couplings in the
interval −1 ≤ (kFaF )−1 ≤ +1. In this way, differences
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in the results of the various t-matrix approaches can be
most readily appreciated.

IV. NUMERICAL RESULTS FOR DYNAMICAL
QUANTITIES

The results obtained in Section III, about the single-
particle fermionic propagator G of Eq. (1), can now be
utilized to obtain a number of spectral features for the
attractive Fermi gas in the normal phase throughout the
BCS-BEC crossover. To this end, a suitable method is
required to perform the analytic continuation from Mat-
subara to real frequencies, as discussed next.

A. Method for analytic continuation

To assess the dynamical properties of a Fermi gas,
the analytic continuation Ḡ(k, z) of the single-particle
fermionic propagator G(k, ωn) is required over the com-
plex z-plane. The function Ḡ(k, z) takes the values
G(k, ωn) along the imaginary axis at the Matsubara fre-
quencies z = iωn, and is analytic everywhere except on
the real frequency axis where its imaginary part is dis-
continuous due to the time-reversal symmetry condition
Ḡ(k, z∗) = Ḡ(k, z)∗. The single-particle spectral function
A(k, ω) is then obtained in terms of the discontinuity of
Ḡ(k, z) across the real frequency axis:

A(k, ω) = − 1

2πi

[
Ḡ(k, ω + i0+)− Ḡ(k, ω − i0+)

]
= − 1

π
Im
[
Ḡ(k, ω + i0+)

]
. (20)

The positive definite function A(k, ω) is normalized ac-
cording to: ∫ +∞

−∞
dω A(k, ω) = 1. (21)

To evaluate the single-particle spectral function (20),
a procedure is required to obtain the function Ḡ(k, z)
just above the real frequency axis from the known values
Ḡ(k, z = iωn) = G(k, ωn) on the imaginary axis. To this
end, we make use of the method of Padé approximants
[36, 37] which consists in approximating Ḡ(k, z) for given
k by a ratio of polynomials, in the form:

Ḡ(k, z) =
p1 + p2 z + · · ·+ prz

r−1

q1 + q2 z + · · ·+ qrzr−1 + zr
. (22)

Here, the 2r (real) coefficients {pi, qi; i = 1, · · · , r} are
determined from the values of Ḡ(k, z) at 2r points on
the imaginary axis.

This procedure, however, turns out to be quite sen-
sitive to the presence of numerical uncertainties in the
values of the input function G(k, ωn), in such a way that
the resulting shape of the function A(k, ω) may turn out
to be rather distorted or even to acquire negative values.
To mitigate the occurrence of this sort of problems, we

have followed a prescription proposed in Ref. [38] and
averaged over several (typically, 12) runs of analytic con-
tinuations with different sets of 2r (typically, 50) points
selected on the imaginary axis, consistently discarding
those runs that yield A(k, ω) < 0 for some ω intervals.
In addition, even though the analytical continuation is
performed over the half-plane with Im(z) > 0, we have
sometimes found it useful to include in the sets of 2r
points the first few (from one up to three) frequencies on
the negative imaginary axis, as also proposed in Ref. [38].

B. Single-particle spectral function

The single-particle spectral function A(k, ω), obtained
at unitarity and Tc for all t-matrix approaches, is shown
in Fig. 8 for several values of k = |k|. A notable differ-
ence results by comparing the various panels of Fig. 8,
between the approaches that dress the fermionic propa-
gator G(c) in Eq. (2) (cf. panels (b) and (e)) and those
that do not (cf. panels (a), (c), and (d)). As a matter
of fact, in the (GG)G and (G0G0)G approaches there is
essentially no evidence of a double-peak structure (ex-
cept at k ' 0), such that the shape of A(k, ω) is mostly
represented by a single peak that shifts from negative to
positive frequencies upon increasing k. Yet, this behav-
ior appears not to be consistent with what one would
expect for a Fermi liquid, as sometimes claimed instead
in the literature [39]. This is because the single peak
broadens up just at k ' kF with a width of the order
of EF , both features being not consistent with the be-
havior of a Fermi liquid [40, 41]. On the other hand, the
(GG)G0, (GG0)G0 and (G0G0)G0 approaches (whereby
G(c) in Eq. (2) remains G0) present a persistent double-
peak structure through k ' kF , with an exchange of
weight occurring for increasing k between the peaks at
negative and positive frequencies.

C. Single-particle density of states

To avoid reference to a specific wave vector in the
the single-particle spectral function, yet maintaining the
main features of its frequency dependence, one can inte-
grate A(k, ω) over all k and obtain the density of states:

N(ω) =

∫
dk

(2π)3
A(k, ω). (23)

Figure 9 shows the density of states obtained in this way
at Tc for the coupling values (kFaF )−1 = (−0.5, 0.0, 0.5),
within the alternative t-matrix approaches. In all cases,
a depletion is apparent in the density of states about
ω = 0. The energy width of this depletion is associ-
ated to a pseudo-gap that develops in the normal phase
above Tc due to pairing fluctuations, as a precursor of
the pairing gap that occurs in the superfluid phase below
Tc. Although all t-matrix approaches present evidence of
a pseudo-gap, its detailed structure depends on the spe-
cific approach. Let’s consider, for instance, panel (b) of
Fig. 9 for the coupling (kFaF )−1 = 0. Here we observe
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FIG. 8. (Color online) Spectral function A(k, ω) (in units of
E−1
F ) at (kF aF )−1 = 0 and T = Tc for different values of k

(in units of kF ) within alternative t-matrix approaches.

that, similarly to A(k, ω), also for N(ω) the approaches
can be divided in two classes, namely, those that dress
the fermionic propagator G(c) in Eq. (2) and those that
do not. The first ones present only a narrow and shallow
pseudo-gap feature, while the second ones present a wide
and deep pseudo-gap feature (which is especially ampli-
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FIG. 9. (Color online) Density of states N(ω) at T = Tc
for the coupling values (kF aF )−1 = (−0.5, 0.0, 0.5) within al-
ternative t-matrix approaches. The non-interacting density
of states N0 = mkF /(2π

2) per spin component at the Fermi
level is used to normalize N(ω).

fied by the (G0G0)G0 approach). This is, of course, a
direct consequence of the behavior of the single-particle
spectral functions shown in Fig. 8, where the single peak
in A(k, ω) that crosses ω = 0 tends to partially fill
the pseudo-gap region for the (GG)G and (G0G0)G ap-
proaches, while for the (GG)G0, (GG0)G0 and (G0G0)G0

approaches a depletion persists about ω = 0 owing to the
double-peak structure of A(k, ω). For the weaker cou-
pling (kFaF )−1 = −0.5 (cf. panel (a) of Fig. 9), on the
other hand, the density of states has the overall shape
N0(ω) = m3/2

√
2(ω + µ)/(2π2) of the non-interacting

system, with only a rather minor pseudo-gap feature oc-
curring about ω = 0. While for this coupling the quali-
tative behavior of N(ω) is essentially the same for all ap-
proaches, the (GG)G and (G0G0)G approaches still have
a weaker pseudo-gap behavior than the other approaches.
Finally, for the coupling (kFaF )−1 = 0.5 (cf. panel (c) of
Fig. 9) more marked differences appear among the var-
ious approaches. In particular, the (GG)G0, (GG0)G0,
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FIG. 10. (Color online) Evolution of the density of states
N(ω) at unitarity for temperatures T ≥ Tc within alternative
t-matrix approaches.

and (G0G0)G0 approaches all present quite a wide and
deep pseudo-gap feature, the (G0G0)G approach presents
a wide but rather shallow pseudo-gap feature, and the
(GG)G approach shows almost no evidence of a pseudo-
gap (to the extent that the density of states does not
even go through a local minimum near ω = 0).
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FIG. 11. (Color online) Temperature T ∗ for the appearance
of a pseudo-gap in the density of states, as a function of
(kF aF )−1 within alternative t-matrix approaches. The non-
connected regions that appear for the (G0G0)G and (GG)G
approaches signal that there T ∗ cannot be identified, to the
extent that a local minimum near ω = 0 cannot be found in
N(ω) even at T = Tc.

D. Pseudo-gap temperature

For given coupling, the evolution of the shape of N(ω)
vs ω can be followed for increasing temperature starting
from Tc. As an example, Fig. 10 shows this temper-
ature evolution when (kFaF )−1 = 0 for each t-matrix
approach we are considering. Quite generally, the de-
pletion of the pseudo-gap region about ω = 0 gradually
fades away upon increasing temperature, in such a way
that a “crossover” temperature T ∗ can be identified as
the highest temperature at which the local minimum of
N(ω) near ω = 0 eventually disappears.

The crossover temperature T ∗ obtained in this way
throughout the BCS-BEC crossover is reported in Fig. 11
for all t-matrix approaches. It turns out that the cou-
pling dependence of T ∗ differs considerably for the var-
ious approaches, especially for positive couplings on the
BEC side of unitarity. In particular, one notices that T ∗

is considerably suppressed for the (GG)G and (G0G0)G
approaches with respect to the other approaches. In ad-
dition, for the (GG)G and (G0G0)G approaches there
occurs a coupling interval where T ∗ cannot be defined,
because the density of states N(ω) does not have a local
minimum near ω = 0 even at T = Tc. This occurs when
(kFaF )−1 ' 0.3 for the (G0G0)G approach and when
(kFaF )−1 ' 0.6 for the (GG)G approach. Finally, for all
approaches T ∗ begins to increase rapidly with coupling
around (kFaF )−1 ' 0.5 − 0.7. This is because this cou-
pling regime is where the actual crossover occurs, from
a pseudo-gap phase where the depletion in the density
of states is rather shallow and due to a truly many-body
effect, to a normal-Bose-gas phase where the depletion in
the density of states becomes deep and is just evidence
of the two-body binding energy of composite bosons [42].

11



E. Luttinger wave vector

The above crossover, between the pseudo-gap and
normal-Bose-gas phases, can be characterized in terms
of the Luttinger wave vector kL. This wave vector was
originally considered in Ref. [43] within the (G0G0)G0

approach, as the wave vector k at which the back-bending
of the lower branch ε(k) of the single-particle dispersion
occurs. In Ref. [43], this branch was obtained by fol-
lowing the k-dependence of the low-energy peak in the
single-particle spectral function A(k, ω) (cf. panel (a)
of Fig. 8), and then by fitting the dispersion of the lower
branch ε(k) obtained in this way through a BCS-like form

ε(k)

EF
= µ′ −

√
(k2 − k2

L)2 + ∆′2. (24)

Here, µ′ and ∆′ are fitting parameters (in units of EF ),
with the energy shift µ′ needed to account for the dis-
persion ε(k) away from the weak-coupling regime, and k
and kL are in units of kF . On physical grounds, a non-
vanishing value of kL signals the presence of an underly-
ing Fermi surface, which endows the system with a persis-
tent fermionic character even in the presence of a strong
attractive inter-particle interaction. In these terms, the
crossover from the pseudo-gap to the normal-Bose-gas
phase is considered complete only when kL reaches zero
at some critical coupling, thus signaling the eventual dis-
appearance of the underlying Fermi surface.

The above definition of kL, introduced in Ref. [43]
within the (G0G0)G0 approach, can as well be extended
to the (GG0)G0 and (GG)G0 approaches here considered,
whereby a lower branch of the dispersion can be clearly
identified from the spectra of A(k, ω) (cf. panels (c) and
(d) of Fig. 8) and a back-bending occurs. However, this
definition of kL cannot be transferred to the (G0G0)G
and (GG)G approaches, where only a single peak ap-
pears in the A(k, ω) (cf. panels (b) and (e) of Fig. 8)
and there is no observable back-bending in the disper-
sion for most couplings. As a consequence, for the latter
two approaches we make use of an alternative operative
definition of kL which is closer in spirit to the description
one would adopt for a Fermi liquid, and identify kL as the
wave vector for which the single peak in A(k, ω) passes
through ω = 0. Nevertheless, this definition appears to
work properly up to when kL/kF & 0.5, because at that
point a double-peak structure begins to appear in A(k, ω)
even for the (G0G0)G and (GG)G approaches. To be able
to extend the kL-vs-coupling curve up to kL → 0 when
the full collapse of the underlying Fermi surface occurs,
for the coupling regime where the double peak occurs
we thus found it more appropriate to identify kL as the
wave vector at which the peaks in A(k, ω) at negative
and positive frequencies mutually exchange the height of
their maxima.

Figure 12 reports the values of the Luttinger wave vec-
tor kL as a function of (kFaF )−1 obtained for all t-matrix
approaches using the procedures described above. Here,
depending on the approach, kL is seen to vanish for cou-
plings values in the rather narrow range between 0.55
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FIG. 12. (Color online) Luttinger wave vector kL (in units
of kF ) vs (kF aF )−1 obtained at T = Tc within alternative
t-matrix approaches (the definition of kL for the different ap-
proaches is given in the text).

and 0.7, with the largest critical coupling reached by the
(GG)G fully self-consistent approach.

V. CONCLUDING REMARKS AND
PERSPECTIVES

In this paper, we have performed a systematic theoret-
ical study about several variants of the t-matrix approx-
imation for an attractive dilute Fermi gas in its normal
phase above the superfluid critical temperature Tc. This
study was extended to the whole BCS-BEC crossover and
has regarded both thermodynamic and dynamical quan-
tities that characterize the Fermi gas. Although these
variants of the t-matrix approximation have already been
separately considered in the literature, the novelty here
is that all these variants have been treated on equal foot-
ing (with the same numerical accuracy also having been
pursued for all of them) and in an unbiased way, in order
to evidence their individual virtues and shortcoming.

As far as the thermodynamic quantities that we have
considered are concerned, from one t-matrix approach to
the other we have found mostly quantitative differences
but similar qualitative trends, apart from the presence vs
absence of a maximum for the critical temperature in the
intermediate-coupling regime (cf. Fig. 3) and of a resid-
ual bosonic interaction affecting the chemical potential in
the strong-coupling (BEC) regime (cf. Fig. 4). The most
distinctive differences (not only at a quantitative but also
at a qualitative level) among the outcomes of the vari-
ous t-matrix approaches have instead been found for the
dynamical quantities, specifically, about the occurrence
of a one-peak vs two-peak structure in the single-particle
spectral function (cf. Fig. 8). This qualitative difference
appears relevant, not because it hinges on a dispute about
the Fermi liquid vs non-Fermi liquid behavior of an at-
tractive Fermi gas at unitarity [39], but rather because it
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affects the width (if not the presence itself) of a tempera-
ture interval above Tc where a pseudo-gap regime would
show up, with the simultaneous presence of preformed
pairs and of an underlying Fermi surface.

That a fully self-consistent diagrammatic approxima-
tion may end up in giving (even considerably) smaller val-
ues for the excitation energies with respect to its non-self-
consistent version(s) (and possibly “overshoot the mark”
when comparing with experimental values) has also been
evidenced in other physical contexts. One can specifically
refer to the spectra associated with electronic excitations
that can be described in terms of the GW approxima-
tion, not only for semiconductors and insulators [9] but
also for complex molecules [44]. In these cases, attempts
have recently been made to mitigate the effects of self-
consistency by introducing vertex corrections on the GW
calculations [45–47].

In the present context of the t-matrix approximation
for an attractive Fermi gas, too, vertex corrections have
recently been included on top of a partially self-consistent
version of this approximation, ending up with rather
good results for the critical temperature Tc [18] and the
pairing gap at zero temperature [48] throughout the BCS-
BEC crossover, when compared with available quantum
Monte Carlo calculations and experimental data. It could
therefore be interesting to assess whether, including a
similar kind of vertex corrections on top of the fully self-
consistent t-matrix approximation, may result in more
favourable conditions for the presence of a pseudo-gap
regime about unitarity.
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Appendix A: DETAILS OF THE NUMERICAL
PROCEDURES FOR ACHIEVING

(PARTIAL OR FULL) SELF-CONSISTENCY

In this Appendix, we present in detail the numerical
procedures that are needed to implement the cycles of
self-consistency depicted schematically in Fig. 2. For the
sake of definiteness, we will specifically consider the fully
self-consistent (GG)G approach whose cycle is shown in
Fig. 2(d), since all procedures discussed for this approach
can as well be applied to the partially self-consistent ap-
proaches. We remark that the procedures here presented
for the (GG)G approach are in line with those previously
suggested in Ref. [17] and partially with those reported
in Ref. [49].

All expressions reported in this Appendix are given
in dimensionless units, such that energies are in units
of the Fermi energy EF = k2

F /(2m) and wave vectors
in units of the Fermi wave vector kF . Accordingly, the
single-particle fermionic propagator G(k, ωn) is in units
of E−1

F , the fermionic self-energy Σ(k, ωn) in units of EF ,

and the particle-particle propagator Γ(Q,Ων) in units of
(mkF )−1. In addition, to further shorten the notation,
here we use the symbol v = (kFaF )−1 for the coupling.

1. Transforming from G(k, ωn) to G(r, τ)

The first function to be Fourier transformed in the
self-consistent cycle of Fig. 2(d) is the single-particle
fermionic propagator G. For this function the Fourier
transform can be done in two steps, namely,

G(k, ωn)→ G(k, τ)→ G(r, τ) (A1)

with the Fourier transform over the wave vector k fol-
lowing that over the frequency ωn.

In the first step, to get the Fourier transform over the
frequency ωn, we note that the dressed fermionic propa-
gator G(k, ωn) for large frequencies behaves like the free
propagator G0(k, ωn):

G(k, ωn) '
ωn→∞

G0(k, ωn) =
1

iωn − ξk
(A2)

where ξk = k2 − µ. One can thus calculate numerically
the Fourier transform from ωn to τ of the difference

∆G(k, ωn) = G(k, ωn)−G0(k, ωn), (A3)

which is easier to obtain than the Fourier transform of
G(k, ωn) since the function (A3) converges like ∼ ω

−5/2
n

for large frequencies. One then adds to this result the
Fourier transform of G0(k, ωn), which is known analyti-
cally in the form [50]

G0(k, τ) = e−ξkτ
(
f(ξk)− 1

)
, (A4)

where f(ξk) = (eβξk + 1)−1 is the Fermi distribution
function.

In the second step, to get the Fourier transform over
the wave vector k, it is further convenient to split the
expression (A4) in two parts:

G0(k, τ) = G
(n)
0 (k, τ) +G

(a)
0 (k, τ) (A5)

where

G
(n)
0 (k, τ) = e−ξkτf(ξk) (A6)

G
(a)
0 (k, τ) = −e−ξkτ . (A7)

Here, the labels (n) and (a) signify that the term (A6) has
to be numerically Fourier transformed over k, whereas
the term (A7) admits an .pdfr transform of the form:

G
(a)
0 (r, τ) = − eµτe−

r2

4τ

8π3/2τ3/2
(A8)

which in the limit τ → 0+ is a representation of the
Dirac delta function δ3(r). This property is related to the
anticommutator between fermionic field operators that
appears in the fermionic propagator when passing from
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τ = 0− to τ = 0+. The term (A8) thus describes the
singular behavior when (r, τ)→ 0+, not only for the free
propagator G0 but also for the dressed propagator G. It
is then convenient to define a new function

∆̃G(k, τ) = G(k, τ)−G(a)
0 (k, τ), (A9)

which can be readily Fourier transformed over k numeri-
cally. The desired Fourier transform G(r, τ) is eventually

obtained by adding G
(a)
0 (r, τ) of Eq. (A8) to the Fourier

transform of ∆̃G(k, τ) [51].

2. Transforming from Γ(Q,Ων) to Γ(r, τ)

The next function to be Fourier transformed in the
self-consistent cycle of Fig. 2(d) is the particle-particle
propagator Γ. Also in this case, the Fourier transform
can be done in two steps, namely,

Γ(Q,Ων)→ Γ(Q, τ)→ Γ(r, τ), (A10)

with the Fourier transform over the wave vector Q fol-
lowing again that over the frequency Ων .

To perform the first Fourier transform over Ων , we be-
gin by noting that the large-frequency behavior of the
particle-particle propagator Γ(Q,Ων) coincides with that
of its non-self-consistent counterpart taken in the strong-
coupling limit −βµ� 1, which is given by the expression
[31]:

Γ(Q,Ων) '
Ων→∞

Γsc(Q,Ων)

= − 4π

v −
√

Q2

4 − µ− i
Ων
2

. (A11)

However, using Γsc(Q,Ων) as the reference function to
be subtracted in the Fourier transform may lead to prob-
lems, because for Ων = 0 the function (A11) has a pole

at |Q| = 2
√
v2 + µ when v > 0. To the extent that we

are interested only in taking care of the large-frequency
behavior of Γ(Q,Ων), we are led to introduce the new
reference function

Γ′sc(Q,Ων) = Γsc(Q,Ων)− Γsc(Q,Ων=0) (A12)

with the zero-frequency term removed from the expres-
sion (A11). Although the Fourier transform of the func-
tion (A12) cannot be calculated analytically, it can be
computed with limited effort by writing it as an integral
over the complex z-plane as follows:

Γ′sc(Q, τ) = T
∑
ν

e−iΩντΓ′sc(Q,Ων)

=
1

2πi

∮
C
dz

ezτ

(eβz − 1)
Γ′sc(Q, z) (A13)

where the contour C surrounds the poles of the Bose func-
tion b(z) = 1/(eβz − 1) on the imaginary axis. Here, the
function Γ′sc(Q, z) has a branch cut along the negative
real axis starting at zc = 2(µ−Q2/4) as well as a pole at
zp = 2v2 +zc when v > 0. The integral in Eq. (A13) then
reduces to the calculation of an integral along the branch
cut and of the residue of the pole, and can accordingly
be split in the following way:

Γ′sc(Q, τ) = Γ(n)
sc (Q, τ) + Γ(a)

sc (Q, τ) (A14)

+ Γres(Q, τ)− T Re[Γsc(Q,Ων=0)]

where the first two terms are contributed by the branch
cut and the third term by the pole. Like in Eq. (A5),
the labels (n) and (a) in the first line of Eq. (A14) sig-
nify that these contributions are calculated numerically
or analytically, respectively.

The first term in Eq. (A14) can be cast in the form

Γ(n)
sc (Q, τ) =

8
√

2ezcτ√
τ

∫ +∞

0

dx
e−x

2

x2

(e−β(zc−x2/τ) − 1)(x2 + 2τv2)
(A15)

for zc < 0 (that is, for µ < Q2/4), and in the form

Γ(n)
sc (Q, τ) =

8
√

2ezcτ√
τ

∫ +∞

√
τ(zc−z0)

dx
e−x

2

x2

(e−β(zc−x2/τ) − 1)(x2 + 2τv2)
(A16)

+ 8

√
2

τ

∫ √τ(zc−z0)

0

dx
1

e−β(zc−x2/τ) − 1

(
ezcτ−x

2

x2

x2 + 2τv2
−
x
√
zc

zp
√
τ

)
+

4
√

2zc

zp

(
z0 − zc − T ln

∣∣∣∣e−βzc − 1

e−βz0 − 1

∣∣∣∣)

for zc ≥ 0 (that is, for µ ≥ Q2/4), where z0 is any point
along the negative real axis (typically, we have taken z0 =
−2T ). The second term in Eq. (A14) has instead the
semi-analytic form:

Γ(a)
sc (Q, τ) = 4

√
2π c(τ, v)

e2µτe−Q
2τ/2

√
τ

(A17)

with the coefficient c(τ, v) given by

c(τ, v) =
2√
π

∫ +∞

0

dx
x2 e−x

2

x2 + 2τv2
. (A18)

Note that this coefficient is unity for τ → 0+ or v = 0.

The term (A17) admits also an .pdfr transform from
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(Q, τ) to (r, τ), which is given by:

Γ(a)
sc (r, τ) =

2 c(τ, v) e2µτe−
r2

2τ

πτ2
. (A19)

One can show that this is the leading term of the singular
behavior of the full Γ(r, τ) for (r, τ) → 0+, not only in
the strong-coupling regime but also throughout the BCS-
BEC crossover. Finally, the third term in Eq. (A14) is
the residue of the pole at z = zp, given by:

Γres(Q, τ) = −θ(v)
16πv ezpτ

eβzp − 1
. (A20)

One can also show that the divergence of this term for

zp = 0 (that is, for |Q| = 2
√
v2 + µ) is exactly compen-

sated by the fourth term of (A14), in such a way that
Γ′sc(Q, τ) is always a smooth function of Q.

At this point, we calculate numerically the Fourier
transform from (Q,Ων) to (Q, τ) of the difference

∆Γ(Q,Ων) = Γ(Q,Ων)− Γ′sc(Q,Ων) (A21)

to obtain ∆Γ(Q, τ), and then add to it Γ′sc(Q, τ) given
by Eq. (A14) to obtain Γ(Q, τ).

Finally, for the remaining Fourier transform from

(Q, τ) to (r, τ), we can make use of Γ
(a)
sc (Q, τ) defined

by Eqs. (A17) and (A18) to subtract the leading term of
the singular behavior when (r, τ)→ 0+, similarly to what
we did in Eq. (A9). Accordingly, we define the difference
function:

∆̃Γ(Q, τ) = Γ(Q, τ)− Γ(a)
sc (Q, τ) (A22)

and Fourier transform it from Q to r to obtain ∆̃Γ(r, τ).
The desired function Γ(r, τ) eventually results by adding

to ∆̃Γ(r, τ) the semi-analytic expression (A19) for

Γ
(a)
sc (r, τ) [52].

3. Transforming from Σ(r, τ) to Σ(k, ωn)

The last function to be Fourier transformed in the self-
consistent cycle of Fig. 2(d) is the self-energy Σ. Also
in this case, the Fourier transform is done in two steps,
namely,

Σ(r, τ)→ Σ(k, τ)→ Σ(k, ωn) (A23)

where now one first transforms from r to k and then from
τ to ωn, in the reversed direction to what was done for G
(cf. Eq. (A1)) and for Γ (cf. Eq. (A10)). This is because
from Eq. (7), once G(r, τ) and Γ(r, τ) are know, Σ(r, τ)
is also known.

From Eq. (7) one can also determine the singular be-
havior of Σ(r, τ) for (r, τ) → 0+ in terms of those of
G(r, τ) [cf. the discussion after Eq. (A8)] and of Γ(r, τ)
[cf. the discussion after Eq. (A19)]. To this end, we
rewrite Eq. (7) in the alternative forms:

Σ(r, τ) = −2 Γ(r, τ)G(−r,−τ) (A24)

= 2 Γ(r, τ)G(r, β − τ) (A25)

(where the factor of two originates by having expressed
the particle-particle propagator Γ in terms of dimension-
less quantities). In the second line we have used the spa-
tial isotropy and the anti-periodicity in τ of the fermionic
propagator, to write G(−r,−τ) = −G(r, β − τ). As dis-
cussed previously, both G(r, τ) and Γ(r, τ) are strongly
peaked for (r, τ) → 0+. We then expect the singular
behavior of Σ(r, τ) to be captured by the following alter-
native expressions:

Σ(+)(r, τ) ' 2 Γ(r, τ)G(r = 0, β−) (A26)

in the limit (r, τ)→ (0, 0+) and

Σ(−)(r, τ) ' 2 Γ(r = 0, β−)G(r, β − τ) (A27)

in the limit (r, τ) → (0, β−). Out of the above terms,
(A26) is the dominant one because Γ(r, τ) [cf. Eq. (A19)]
is more strongly peaked than G(r, τ) [cf. Eq. (A8)] in the
limit τ → 0+.

Accordingly, in order to perform the Fourier transform
of Σ(r, τ) from r to k, we consider the difference

∆Σ(r, τ) = Σ(r, τ)− Σ(+)(r, τ) (A28)

with the term (A26) only. In addition, to the extent
that in Eq. (A28) we are interested in the leading behav-
ior of Σ(+) for (r, τ) → (0, 0+), we can approximate the
particle-particle propagator Γ(r, τ) in Eq. (A26) by the
analytic result (A19) and write

Σ(+)(r, τ) = −2n
e−

r2

2τ

πτ2
, (A29)

where we have consistently set c(τ, v) → 1 and eµτ → 1
and used the result n = −2G(r = 0, β−) in terms of the
fermionic density n (in dimensionless units). [For the t-
matrix approaches that use an external G0 in the place of
G, the expression (A29) needs to be modified by replacing
n by the free-fermion density n0 = −2G0(r = 0, β−).]

The expression (A29) has the further advantage that
its Fourier transform from τ to ωn can be obtained ana-
lytically in terms of the error function [53], in the form:

Σ(+)(k, ωn) = −8πn
erf
(√

β(k2 − 2iωn)/2
)

√
k2 − 2iωn

. (A30)

This expression correctly reproduces the leading ω
−1/2
n

behavior of Σ(k, ωn) for large frequencies. [Similarly,
Σ(−) of Eq. (A27) can be shown to behave like ∼ ω−1

n

for large frequencies [49], thereby confirming that this is
a sub-leading contribution also in the frequency domain.]

Once the difference (A28) has been Fourier trans-
formed numerically (first from r to k and then from τ
to ωn) according to the above prescriptions to obtain
∆Σ(k, ωn), one can eventually add to it the analytic ex-
pression (A30) and obtain the desired function Σ(k, ωn).
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Appendix B: OPTIMIZING THE CONVERGENCE
TOWARDS SELF-CONSISTENCY

In this Appendix, we discuss the procedures that we
have adopted to achieve optimal convergence toward self-
consistency within the t-matrix approaches considered in
this paper. A judicious optimization in achieving conver-
gence is, in fact, especially required for those approaches
that implement partial or total self-consistency in the
particle-particle propagator Γ, to the extent that these
approaches become intrinsically unstable when the tem-
perature approaches Tc when one uses the straightfor-
ward iterative procedure sketched in Section II (cf. Fig. 2
therein). The origin of this problem can be highlighted
through the following analytic considerations.

1. General considerations on the iterative
procedure

For definiteness, we shall consider in detail the fully
self-consistent (GG)G approach. The equations (1)-(4),
that need to be self-consistently solved, can be written
in a compact way as a functional equation for the self-
energy Σ, in the form:

Σ(k) = F
[
Σ(p)

]
(k) . (B1)

This is because, once Σ is know, G and Γ in Eqs. (1)-
(4) can also be readily obtained. Let us then see what
happens when trying to solve Eq. (B1) iteratively.

Suppose that ΣSC(k) = F
[
ΣSC(p)

]
(k) is the self-

consistent (SC) solution to Eq. (B1) which the iterative
method is expected to reach. At a generic iteration step
(i) toward self-consistency, the self-energy Σ(i)(k) devi-
ates from ΣSC(k) by some amount δΣ(i)(k):

Σ(i)(k) = ΣSC(k) + δΣ(i)(k). (B2)

Provided one is close enough to the self-consistent solu-
tion, Eq. (B1) can be linearized about ΣSC, to write:

ΣSC(k) + δΣ(i)(k) = F
[
Σ(i−1)(p)

]
(k)

' ΣSC(k) +

∫
dp

[
δF [Σ(p)](k)

δΣ(p)

]
SC

δΣ(i−1)(p) . (B3)

Here, the subscript SC indicates that the functional
derivative is taken at self-consistency, and the integral
over p contains both an integral over the wave vector p
and a sum over the Matsubara frequency ωn. This pro-
vides a relation between the distance δΣ from the self-
consistent solution between the steps (i− 1) and (i):

δΣ(i)(k) =

∫
dp

[
δF [Σ(p)](k)

δΣ(p)

]
SC

δΣ(i−1)(p). (B4)

When Σ(k) is calculated on a k-grid of points, like it is
done in our numerical calculations, δΣ can be regarded
as a vector which is acted upon by the functional deriva-
tive matrix [δF/δΣ]SC. The convergence of the iterative

procedure, from (i− 1) to (i) and so on, is then governed
by the behavior of this functional derivative matrix.

To find an explicit expression for [δF/δΣ]SC, we
rewrite it in the form:

δF [Σ(p)](k)

δΣ(p)
=
δF [Σ(p)](k)

δG(p)

δG(p)

δΣ(p)
. (B5)

Here, the factor on the right is given by

δG(p)

δΣ(p)
= G(p)2 (B6)

with the use of Eq. (1), while the factor on the left can
be calculated by recalling that (cf. Eqs. (2) and (B1))

F
[
Σ(p)

]
(k) = Σ(k) = −

∫
dQΓ(Q)G(Q− k) , (B7)

yielding

δF [Σ(p)](k)

δG(p)
= −Γ(p+ k)−

∫
dQ

δΓ(Q)

δG(p)
G(Q− k). (B8)

In this expression, the functional derivative of the
particle-particle propagator Γ(Q) can be obtained from
Eq. (3)

δΓ(Q)

δG(p)
= −Γ(Q)2 δRpp(Q)

δG(p)
, (B9)

where the functional derivative of the regularized
particle-particle bubble Rpp(Q) is obtained from Eq. (4)

δRpp(Q)

δG(p)
= 2G(Q− p). (B10)

Grouping all the above results together, Eq. (B5) be-
comes eventually:

δF [Σ(p)](k)

δΣ(p)
= −G(p)2

[
Γ(p+ k) (B11)

− 2

∫
dQΓ(Q)2G(Q− k)G(Q− p)

]
.

When this result is used in Eq. (B4), δΣ(i) therein can
be conveniently split in two terms

δΣ(i)(k) = δΣ
(i)
1 (k) + δΣ

(i)
2 (k), (B12)

where we have defined

δΣ
(i)
1 (k) = −

∫
dpG(p)2Γ(p+ k) δΣ(i−1)(p) (B13)

δΣ
(i)
2 (k) = 2

∫
dpG(p)2

∫
dQΓ(Q)2

× G(Q− k)G(Q− p) δΣ(i−1)(p). (B14)

Suppose now that T = Tc. The Thouless criterion (10)
then implies that the particle-particle propagator Γ(Q)
has a pole for Q = 0, such that one expects Γ(Q) to
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remain strongly peaked in the vicinity of Q = 0. The ex-
pressions (B13) and (B14) can be simplified accordingly,
by setting to zero the arguments of the particle-particle
propagators in the smooth functions that multiply them.
For the term (B13) we thus have:

δΣ
(i)
1 (k) ' −G(−k)2δΣ(i−1)(−k)

∫
dpΓ(p+ k)

= −C G(−k)2 δΣ(i−1)(−k) (B15)

where C is the Tan’s contact according to Eq. (17). This
term poses no problem to the convergence, since the
quantity that multiplies δΣ(i−1)(−k) is finite. For the
term (B14) we instead obtain:

δΣ
(i)
2 (k) ' 2G(−k)

∫
dQΓ(Q)2

×
∫
dpG(p)2G(−p) δΣ(i−1)(p) (B16)

where the factor∫
dQΓ(Q)2 =

∫
dQ

(2π)3
T
∑
ν

Γ(Q,Ων)2 (B17)

is infrared divergent at T = Tc even in three dimen-
sions. This is because, for the term with Ων = 0 therein,
Γ(Q,Ων = 0) ∼ Q−2 when Q→ 0 at T = Tc [12].

This divergence represents a problem for the conver-
gence of the iterative algorithm, because it implies that,
no matter how close the step (i− 1) might be to the self-
consistent solution, the step (i) is bound to run infinitely
away from it. This problem can affect the convergence
of the iterative algorithm also for temperatures T & Tc,
depending on how much Γ(Q) is peaked about Q = 0.

The only (partially) self-consistent t-matrix approach
not affected by this problem is the (G0G0)G approach.
This is because in this approach, by construction, the
particle-particle propagator Γ coincides with the bare Γ0,
whereby δΓ0/δG = 0. As a consequence, the second term
on the right-hand side of Eq. (B8) identically vanishes
and with it the divergent factor in Eq. (B16).

We pass now to show how this problem can be over-
come in practice, both for T > Tc and T → Tc.

2. Improved method for T > Tc

Although the iterative approach (B4) to solve Eq. (B1)
cannot converge at exactly T = Tc, there exists a simple
method to make it converge for T & Tc, with the factor
(B17) keeping a finite (albeit large) value. This method,
which has already been used for the self-consistent cal-
culations of electronic structures in atoms and molecules
[54], consists in redefining the iterative steps in terms of
the weighted sum:

Σ(i)(k) = αF
[
Σ(i−1)(p)

]
(k) + (1− α)Σ(i−1)(k) (B18)

where the weight factor α ranges between 0 and 1. This
method is found to reduce the effects of the divergence

due to the term (B16), thereby making the iterative pro-
cess to converge even sufficiently close to Tc. Never-
theless, the method fails upon approaching Tc, because
smaller and smaller values of α are needed for attaining
convergence. A smaller value of α, in turn, implies that
more iterative steps are required for convergence, since
the contribution of a single step, too, becomes smaller
and smaller. In practice, we have found that this method
can conveniently been used down to temperatures for
which (T − Tc)/Tc is of order 1%, before it becomes nu-
merically too demanding.

3. Improved method for T = Tc

Alternatively, exactly at T = Tc one can rely on a
different method that avoids the convergence problem
discussed above. This method can be summarized as
follows:
(i) One begins by fixing the value n of the density,
in terms of which one obtains the Fermi wave vector
kF = (3π2n)1/3 and the Fermi energy EF = k2

F /(2m).
One also fixes a guess value Tg/TF for the temperature
in units of the Fermi energy, as well of the ratio µ/Tg be-
tween the chemical potential and the guess temperature
Tg (recall that we have set the Boltzmann constant kB
equal to unity throughout).
(ii) Next, one replaces the particle-particle propagator of
Eq. (3) with the following expression

Γ̃(Q)−1 = Rpp(Q)−Rpp(Q = 0) , (B19)

in such a way that Γ̃(Q = 0)−1 = 0 by construction. This
implies that the Thouless criterion (10) is always satisfied
by the modified particle-particle propagator (B19), no
matter what was the initial guess for Tg/EF .
(iii) At this point one can proceed and perform the itera-
tive procedure toward self-consistency on the set of equa-
tions (1)-(4), with Γ(Q) therein replaced by Γ̃(Q). It will
be shown below that this replacement avoids the occur-
rence of the infrared divergence that plagues instead the
expression (B16) obtained in terms of the original Γ(Q).
(iv) Once self-consistency has been achieved with this
modified set of equations, one can obtain the modified
density as ñ = −2 G̃(r = 0, β−), and the modified scat-
tering length ãF from the expression

1

ãF
= − 4π

m
R̃pp(Q = 0) (B20)

where R̃pp is obtained from Eq. (4) with G̃ replacing
G. The result (B20) follows directly from the Thouless
criterion corresponding to the modified density ñ.
(v) Finally, in terms of ñ one obtains the modified Fermi

wave vector k̃F = (3π2ñ)1/3 and the modified Fermi en-

ergy ẼF = k̃2
F /(2m). The desired value of the critical

temperature is then obtained by

Tc
EF

=
Tg

EF

EF

ẼF
(B21)
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in terms of the initial guess Tg/EF . From Eq. (B20) the
corresponding coupling value is given by:

1

kFaF
=

1

k̃F ãF
=

1

kF ãF

kF

k̃F
= −4πR̃pp(Q = 0)

mkF

kF

k̃F
.

(B22)
There remains to explain the reason why this method is

not plagued by the convergence problem discussed above
for the iterative procedure. The point is that, using the
modified particle-particle propagator (B19) in the place
of the original one, one also modifies the structure of the
functional derivative in Eq. (B4). Specifically, for the

functional derivative of Γ̃(Q) with respect to G̃(p) one
obtains (cf. Eq. (B9)):

δΓ̃(Q)

δG̃(p)
= −Γ̃(Q)2 δ

(
R̃pp(Q)− R̃pp(Q = 0)

)
δG̃(p)

= −2 Γ̃(Q)2
[
G̃(Q− p)− G̃(−p)

]
. (B23)

The corresponding variation of the self-energy related to
this functional derivative then becomes (cf. Eq. (B14)):

δΣ̃
(i)
2 (k) = 2

∫
dp G̃(p)2

∫
dQ Γ̃(Q)2 (B24)

× G̃(Q− k)
[
G̃(Q− p)− G̃(−p)

]
δΣ̃(i−1)(p).

Comparing this result with Eq. (B14), one notes that the

singular behavior of Γ̃(Q)2 for Q→ 0 is now suppressed

by the presence of the factor [G̃(Q − p) − G̃(−p)]. This
feature makes it possible to reach convergence exactly at
T = Tc with a limited number of iterations, without the
need for the weighted sum of Eq. (B18).

Appendix C: COMPARISON WITH THE
PSEUDO-GAP APPROXIMATION AT Tc

The (GG0)G0 and (GG)G0 t-matrix approaches have
almost invariably been implemented in the literature us-
ing a set of approximations (sometimes referred to as the
“pseudo-gap approximation”), which considerably sim-
plify the numerical calculations. Specifically, close to Tc
where the particle-particle propagator Γ(Q) is strongly
peaked about Q = 0, the fermionic self-energy (2) has
been approximated as follows [26, 55]:

Σ(k, ωn) = −
∫

dQ

(2π)3
T
∑
ν

Γ(Q,Ων)G0(Q− k,Ων − ωn)

≈ G0(−k,−ωn)

(
−
∫

dQ

(2π)3
T
∑
ν

Γ(Q,Ων)eiΩν0+

)
≡ G0(−k,−ωn) ∆2

pg . (C1)

Due to this approximation for the self-energy, the dressed
single-particle propagator G (and thus also the equation
for the particle number) coincides with that of BCS the-
ory, with the pseudo-gap energy ∆pg now playing the role
in the normal phase of the BCS gap ∆ in the superfluid
phase. In addition, the Thouless criterion (10) for the
dressed Γ coincides with the BCS gap equation (again
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FIG. 13. (Color online) Critical temperature Tc vs the cou-
pling (kF aF )−1 for the (GG0)G0 (panel a) and (GG)G0 (panel
b) approaches (full lines), and for their corresponding pseudo-
gap (PG) approximation (dashed lines). The BCS and BEC
critical temperatures are also reported for comparison (dotted
curves on the left and right sides, respectively). The data for
the pseudo-gap approximation to the (GG0)G0 and (GG)G0

approaches are taken from Refs. [28] and [15], respectively.

with the replacement ∆ → ∆pg) for the (GG0)G0 ap-
proach [26, 55], or with the BCS gap equation plus addi-
tional corrections (which become anyway negligible both
in the BCS and BEC limits) for the (GG)G0 approach
[15]. A further approximation, which is usually adopted
within the pseudo-gap approximation when calculating
∆pg by means of Eq. (C1), is the use of an expansion of
Γ(Q,Ων) for small values of Q and Ων .

It should, however, be remarked that the pseudo-gap
approximation (C1) appears justified only in the strong-
coupling (BEC) regime (kFaF )−1 & +1, where the large
fermionic energy scale |µ| (with µ < 0) dominates over
the bosonic energy scales and the approximation (C1)
becomes fully correct. This can also be verified nu-
merically as shown in Fig. 13, where a comparison is
presented for the calculation of Tc between the com-
plete (GG0)G0 and (GG)G0 approaches (full lines) and
their corresponding pseudo-gap approximations (dashed
lines). This comparison shows that a good agreement be-
tween the complete and approximate calculations occurs
only for (kFaF )−1 & 1, while significant deviations result
both at intermediate and weak couplings.

From Fig. 13 one also notices that, in the weak-
coupling (BCS) regime (kFaF )−1 . −1, the curves for Tc
obtained within the pseudo-gap approximation converge
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rapidly to the corresponding BCS curve for Tc. This is
because ∆pg(T ) is bounded by the value ∆0 of the BCS
gap at T = 0 [26], which in turn vanishes exponentially
in the weak-coupling limit. This implies that the ap-
proximate self-energy (C1), too, vanishes exponentially,
in such a way that the BCS result for Tc is recovered.
Without the use of the approximation (C1), in weak cou-
pling the self-energy would instead approach the value
Σ ' 2πaFn/m associated with a mean-field shift.

For the complete (GG0)G0 approach, whereby this
shift appears in just one of the two single-particle prop-
agators that enter the particle-particle bubble in Γ, the
equation for Tc corresponds to that of a Fermi system in

the presence of a chemical potential imbalance δµ. This
equation is known to have no solution when this imbal-
ance about exceeds the BCS gap ∆0 of the balanced sys-
tem at T = 0 [56]. Given the exponential dependence
of ∆0 on coupling, to be contrasted with the linear de-
pendence δµ ' 2πaFn/m associated with the mean-field
shift, the condition δµ > ∆0 is readily met in the weak-
coupling regime. This explains why, in the weak-coupling
regime, the (GG0)G0 approach does not admit solution
for Tc, as it was already noted in the discussion of Fig. 3.
For the complete (GG)G0 approach, on the other hand,
the differences with respect to its pseudo-gap approxima-
tion are overall less pronounced, albeit still significant.
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