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Many experimental results, both in-vivo and in-vitro, support the idea that the brain cortex
operates near a critical point, and at the same time works as a reservoir of precise spatio-temporal
patterns. However the mechanism at the basis of these observations is still not clear. In this paper
we introduce a model which combines both these features, showing that scale-free avalanches are
the signature of a system posed near the spinodal line of a first order transition, with many spatio-
temporal patterns stored as dynamical metastable attractors. Specifically, we studied a network of
leaky integrate and fire neurons, whose connections are the result of the learning of multiple spatio-
temporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that
the network shows a first order transition between a low spiking rate disordered state (down), and
a high rate state characterized by the emergence of collective activity and the replay of one of the
stored patterns (up). The transition is characterized by hysteresis, or alternation of up and down
states, depending on the lifetime of the metastable states. In both cases, critical features and neural
avalanches are observed. Notably, critical phenomena occur at the edge of a discontinuous phase
transition, as recently observed in a network of glow lamps.

I. INTRODUCTION

Recently, many experimental results have supported
the idea that the brain operates near a critical point [1–
8], as reflected by power law distributions of avalanche
sizes and durations. The maximization of fluctuations
near a critical point is believed to play an important role
in the ability of the brain to respond to a wide range of
inputs, to process the information in an optimal way [9–
13], and to enhance stimulus discriminability [14]. The
theoretical framework commonly used to explain this be-
haviour is the branching process, which undergoes a sec-
ond order transition when the branching parameter be-
comes greater than one. The order parameter, that is
the probability to observe an infinite avalanche, indeed
continously grows above the transition.

On the other hand, metastability and hysteresis are
ubiquitous in the brain. They are related to the ability
of the brain to sustain stimulus-selective persistent activ-
ity for working memory [15]. The brain rapidly switches
from one state to another in response to a stimulus, and
it may remain in the same state for a long time after the
end of the stimulus, suggesting the existence of a reper-
toire of metastable states. The presence of metastability
and criticality could be reconciled if the system is posed
near the edge of instability (spinodal line) of a first order
transition.

Recently it has been shown that a simple network of
glow lamps (nonlinear devices that share some similar-
ity with leaky neurons) show a critical behaviour near
the edge of a first-order (discontinuous) phase transition
[16]. Critical phenomena and avalanches indeed emerge

not only in second order transitions, but also in discon-
tinuous ones, as one enters the metastability region and
approaches the spinodal curve [17, 18]. Close to the spin-
odal, which for long range interactions denotes the limit
of existence of the metastability region, transition precur-
sors are observed which follow power-law scaling having a
cut-off diverging to infinity on the spinodal itself; exam-
ples are found, for instance, in geophysical phenomena,
breakdown of solids, and spontaneous network recovery
[19–22]. Bistability with critical features is observed also
in non-equilibrium phase transitions [23].

In the present paper, our goal is to understand if a
first order transition with spinodal instabilities may be
a correct scenario in neural cortical experiments. We
study a simple stochastic leaky spiking model, whose
quenched disordered connectivity is the result of learn-
ing multiple spatio-temporal patterns, and simulate the
spontaneous activity of the network applying a Poisso-
nian noise to individual neurons, related to the sponta-
neous neuro-transmitter release at individual synapses,
as well as other sources of inhomogeneity and randomness
that determine an irregular background synaptic noise.

We observe that there is a parameter region charac-
terized by a first order transition which notably shows
hysteresis and metastability. The phase transition is be-
tween a low activity state, with uncorrelated firing and
low rate, and a state characterized by collective activ-
ity with high firing rate and high spatio-temporal order,
where one of the stored patterns emerges. At higher val-
ues of the noise, or smaller network sizes, lifetimes of the
states become smaller then the observation time, so that
instead of hysteresis we observe an alternation of the two
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phases.
Scale-invariant spatio-temporal avalanches occur at

the edge of the transition, both inside the hysteresis
region (lifetimes of the metastable states longer than
the observation time) and near the alternating region
(lifetimes smaller than the observation time). Notably
we find that the average avalanche size as a function
of the avalanche duration s(T ), collapse on a universal
power law with an exponent close to the experimental
one [24, 25].

Another important characteristic of avalanches in the
brain, is that they contain highly repeatable patterns,
both in-vitro [26] and in-vivo [27], supporting the hy-
pothesis that scale-free neural avalanches are the signa-
ture of a critical behaviour in a system that has stored
multiple dynamical spatio-temporal patterns. Notably,
it has been shown [27] that spike avalanches, recorded
from freely-behaving rats, form repertoires that emerge
in waking, recur during sleep, are diversified by novelty
and contribute to object representation. They consti-
tute distinct families of recursive spatio-temporal pat-
terns, and a significant number of those patterns were
specific to a behavioral state.

Storing precise spatio-temporal patterns as dynamical
attractors of the network is a useful strategy for brain
functioning, coding and memory, and many experimental
results on the replay of precise spatio-temporal patterns
of spikes suggest this possibility [28–33].

Our model captures such additional features of neu-
ronal avalanches, such as the underlying first-order tran-
sition between attractor dynamics and quiescence, the
stable recurrence of particular spatio-temporal patterns,
and the conditions under which these precise and diverse
patterns can be retrieved.

Critical avalanches were observed in a leaky integrate
and fire model of neurons [34, 35], but for a single value of
the noise and of the size of the system, where no hystere-
sis was observed, and the type of underlying phase tran-
sition was not thoroughly investigated. The role of first
order phase transition for criticality in cortical networks
was firstly pointed out by Ref. [36], and successively elab-
orated in a leaky integrate and fire model [37]. How-
ever, as shown in [38], in such models criticality emerges
only with a definition of avalanches that takes in account
the causality of different firings. To our knowledge, our
model is the first that exhibits neural avalanches at the
edge of a first order transition, and are identified with the
same temporal proximity criterion used in experiments.

II. RESULTS

We study a model of leaky integrate and fire neurons,
whose connectivity is the result of the learning of mul-
tiple spatio-temporal patterns, using a learning rule in-
spired by spike-time dependent plasticity (STDP). The
emerging spontaneous dynamics is simulated in presence
of noise, with fixed sparse connections, and a small frac-

tion of leader neurons (see Appendix). Two parameters
characterize the dynamics. The first is the parameter
H0 that sets the average strength of the connections, the
second is the parameter α that is the coupling of each
neuron to the noise. The number of neurons goes from
N = 3000 to N = 12000, with a number of encoded
patterns from P = 2 to P = 10.

We simulate the spontaneous dynamics of the model in
absence of external stimuli, as a function of the param-
eters H0 and α. Depending on the value of the parame-
ters, two different dynamical states are distinguishable: a
quiescence state (“down” state), characterized by uncor-
related spiking with low firing rate, and an active state
(“up” state) characterized by a high rate and high spatio-
temporal order, and by a long-lasting collective replay of
stored patterns.

To characterize the dynamics, we define the instanta-
neous rate r and the normalized variance F (also called
Fano Factor or index of dispersion), as follows:

r =
Ntot

N∆
, (1a)

F = N∆
〈r2〉 − 〈r〉2

〈r〉
, (1b)

where Ntot is the total number of spikes over all the net-
work in the time interval ∆, N is the number of neurons
of the network, and the average 〈· · · 〉 is evaluated over a
sliding window [t−T, t+T ]. We use a time interval ∆ = 1
ms to compute the firing rate, and a half-width T = 100
ms for the sliding window. The normalized variance (1b)
can also be written as

F =
〈N2

tot〉 − 〈Ntot〉2

〈Ntot〉
, (2)

showing that, if neurons are uncorrelated and Poisso-
nian, then F = 1. If F > 1 the spiking activity is
over-dispersed: this corresponds to the existence of clus-
tered activity, with some intervals having a much higher
activity than the mean, and others a very low activity,
compared to a Poisson distribution. If on the other hand
F < 1, activity is under-dispersed, with many intervals
having spike counts close to the mean.

In Fig. 1, we show the dynamics of the network at
fixed noise α = 0.033, while we increase parameter H0

from 0.1 to 0.3 in 50 seconds. (Note that, throughout
the paper, the time is always measured as the “physical”
time appearing in Eq. (4), not the CPU time needed to
simulate the system.) At low values of H0, the spiking
rate is low, less than 1 Hz, and normalized variance is
near to one, signaling uncorrelated Poissonian activity
(down state). At time t = 36 seconds, when H0 reaches
the value H0 = 0.244, we observe an abrupt transition to
a state corresponding to the sustained collective replay
of one of the stored patterns with high firing rate (up
state). In Fig. 1A and B we show the raster plots of
the dynamics in the same interval of time, with neurons
ordered on the vertical axis by the two patterns encoded
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FIG. 1. Spontaneous dynamics for N = 3000 at noise
α = 0.033, showing a transition while we increase parame-
ter H0 from 0.1 to 0.3 in 50 seconds. A transition, between a
quiescence state (down) and a state with emerging of collec-
tive replay of stored patterns (up), is shown to occur at time
t = 36 seconds, corresponding to a value H0 = 0.244. Raster
plots (A) and (B) show the same spontaneous spiking activity
with two different sorting of neurons on the vertical axis. In
(A) neurons are sorted by the spiking time in pattern 1, while
in (B) they are sorted by the spiking time in pattern 2. The
replay of the pattern corresponding to the sorting on the ver-
tical axis is apparent by the saw-tooth ordering of the spikes:
from time t = 36 s to time 36.75 s stored pattern number
two is replayed, while from t = 36.75 s stored pattern number
one is replayed. Note that, when a pattern is replayed, there
seems to be a lower density of dots, due to the fact that the
dots overlap. In (C) we show the average instantaneous firing
rate, corresonding to both the raster plots A and B. The rate
is measured as the total number of spikes in a time interval
of ∆ = 1 ms divided by N∆. In (D) we show the normalized
variance of the firing rate (see text). In the down state nor-
malized variance is equal to one, while in the up state it goes
to values σ > 3, signaling a non-Poissonian dynamics, with
temporal clustering. When the system has a transition to the
up state, the firing rate abruptly increases, and normalized
variance has a peak. Inset: value of H0 as a function of time.

in the network. It can be seen that the transition to the
up state corresponds to the replay of one of the stored
patterns.

Note that Fig. 1A and B refer to the same spike train.
The different ordering on the vertical axis makes the
spikes appear in a saw-tooth shape when the pattern cor-
responding to the order is replayed, while they appear
as completely random (and deceitfully denser) when an-
other pattern (not corresponding to the ordering of the
vertical axis) is replayed. In Fig. 1C we show the rate
corresponding to the dynamics shown in both the raster
plots 1A and B. It can be seen that, at time t = 36
seconds, when the collective replay of the first patterns
starts, the rate sharply increases from a very low value, to
an average value of 13 Hz, fluctuating between 5 and 30
Hz. Correspondingly, normalized variance F jumps from
one (Poissonian dynamics) to a value between 2 and 5
(temporally clustered). Note that values of normalized
variance greater than one, are found experimentally in
persistent activity in cortical circuits [39]. Exactly at
the transition, the normalized variance has a high peak.

A. Hysteresis and first order transition

The observed discontinuous behaviour of the rate and
variance suggests that the transition is of a first order
kind. An important characteristic of first order transi-
tions is hysteresis, so here we investigate if our model
actually shows hysteresis while varying parameters H0

and α. At fixed value of α, we start with the system in
the down state and H0 = 0.1, and cycle H0 from 0.1 to
0.4 in the first 50 seconds, and back from 0.4 to 0.1 in
the last 50 seconds. In Fig. 2 we show the instantaneous
rate and variance as a function of H0 in the first half of
the run (increasing H0, red lines) and in the second half
(decreasing H0, blue lines). Both rate and variance are
averaged over four different runs, with different realiza-
tion of stochastic noise.

For low values of the noise, we observe a strong hys-
teretic behaviour of the dynamics. Looking for example
at figure 2A, where α = 0.015, we observe that when H0

is increased, down → up transitions take place between
H0 = 0.31 and 0.32. As the rate and variance are av-
eraged over four runs, there are actually four different
transitions at slightly different values of H0, depending
on the realization of the stochastic noise.

On the other hand, when H0 is decreased, up → down
transitions take place at lower values of H0, in this case
around H0 = 0.2. In 2B, C, and D, we show the same
experiment for higher values of the noise parameter α.
When α ≥ 0.45, the value of the rate and variance does
not depend anymore on the history, and is equal within
fluctuations when H0 is increased or decreased. More-
over one can observe multiple back and forth transitions
up → down and down → up , during the same run, giv-
ing rise to a large peak in the variance. In Fig. 3, we
show the behaviour of the system for a higher value of
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FIG. 2. Firing rate and normalized variance during sponta-
neous dynamics while sweeping H0 at fixed α, for N = 3000
and P = 2, and for values of the noise A) α = 0.015, B)
α = 0.03, C) α = 0.045, D) α = 0.1, showing a hysteretic be-
haviour at low values of the noise. The strength of connections
H0 is increased from H0 = 0.1 to H0 = 0.4 during the first
50 seconds of the simulation (red line), and then decreased
back to H0 = 0.1 during the last 50 seconds (blue line), with
a linear schedule. Transitions between two dynamical states,
a “down” state with low rate and normalized variance equal
to one, and an “up state”, with much higher rate and nor-
malized variance F > 3, are observed at different values of
H0 while ramping up or down, showing hysteresis at low val-
ues of the noise. Peaks in the normalized variance signal the
transitions. At high values of the noise, α ≥ 0.045, there is
an interval of H0, around H0 = 0.22 ∼ 0.24, where multiple
transitions down → up and up → down are observed.

FIG. 3. Firing rate and normalized variance while sweep-
ing H0 as in Fig. 2, for N = 12000 and P = 10, and noise
α = 0.01. The hysteretic behaviour is robust with respect to
increasing size and number of patterns.

the number of neurons, and of the number of patterns.

Hysteresis is a hallmark of first order transitions, char-
acterized by the presence of two (or more) possible states
of the system, separated by barriers difficult to over-
come. If the systems stays in one state, it will tend
to remain in that state also when external parameters
would favour another one. Therefore the state of the
system, depends on the past history, for example if H0

is being increased or decreased. The nucleation time, i.e.
the lifetime of metastable states, depend critically on the
range of the connections. If the model is characterized by
long range connections, one could expect a “mean field
like” behaviour, with the transitions from the metastable
to stable states happening on the spinodal lines. How-
ever, in our case, albeit the connections do not depend
on distance (that is they are long range), the number of
units is not very large, so we expect that, at any point
in the space of parameters, there will be a nucleation
time sufficient to switch the system from one state to the
other, that can also be interpreted as a typical lifetime of
the state. Transitions down → up will be observed when
the lifetime of the down state becomes comparable or
smaller than the experimental time, taken as the inverse
rate of change of H0, while on the contrary transitions
up → down will be observed when the lifetime of the up
state becomes smaller than the experimental time. At
high values of the noise, or at small system sizes, the life-
time of both up and down states becomes smaller than
the experimental time, so that an alternation of up and
down states can be observed.

In Fig. 4, the phase space of the system for N = 3000
(A) and N = 12000 (B) is shown. A red line marks
the boundary where the dynamics switches from down
to the up state when H0 increases, at a fixed value of α.
while a blue line marks the boundary from up state to
down state whenH0 decreases. Bars indicate the width of
the region where the transition may happen, namely the
lowest and highest values of H0 where the transition was
observed, for several realizations of the patterns and of
the stochastic noise. Inside the strip defined by the bars,
one may observe multiple back and forth transitions, i.e.
an alternation of down and up states.

Red and blue lines can be interpreted as “pseudo-
spinodal” lines, that mark the point where the lifetime
of the state (or nucleation time) becomes smaller than
the observation time. While in systems with short range
connections the nucleation time is independent from the
size of the system, when connections are long range, as
in our case, we expect that the nucleation times grow
with the size of the system. Indeed, as shown in Fig.
4B, increasing the number of neurons from N = 3000 to
N = 12000, the hysteresis region broadens, showing that
lifetime of the states increases.

This means that the convergence of the “pseudo-
spinodal” lines at α = 0.045, for N = 3000, is actually a
finite size effect, but the transition is still first order at
these values of the parameters. As shown in the inset of
Fig. 4B, for N = 12000 lines meet at a much higher value



5

FIG. 4. (A) Hysteresis region and “pseudo-spinodal” lines
for N = 3000 and P = 2. The red line marks the (aver-
age) value of H0 where the dynamics switches from down to
up state when H0 increases, at a fixed value of α. The blue
line the (average) value where the dynamics switches from
up to down state when H0 decreases. Bars indicate the low-
est and highest values of H0 where transition was observed
(with several different realizations of the stochastic noise). At
high value of the noise, α > 0.04, we observe no hysteresis,
and bars indicate the interval in which multiple down → up
and up → down transitions are observed. (B) Same plot for
N = 12000 and P = 2. Lifetimes of the states increase with
respect to the N = 3000 case, so that the up and down alter-
nating region at these values of the noise disappears, and the
hysteresis region broadens. In the inset a larger range of pa-
rameters is investigated, showing that “pseudo-spinodal” lines
merge at a higher value of noise and H0.

of the noise, and a higher value of H0. It is reasonable
to expect that, in the thermodynamic limit N →∞, the
point where line meet will tend to a definite value of α
and H0, corresponding to a second order transition point,
terminating the first order transition line.

To check the behaviour of the nucleation time with
network size, in Fig. 5 we investigate the nucleation time
for network size N = 12000, 7500, 3000 at loading pa-
rameter P/N = 1/1500 and noise α = 0.03. Notably
the nucleation time grows with the size of the system,
supporting the hypotesis that metastable states have in-
finite lifetimes in the termodynamic limit, as is expected
for a system with long range interactions undergoing a
first order transition.

B. Critical behaviour at the edge of instability

The presence of metastability and hysteresis indicate
that the transition is a non-equilibrium first order one.

FIG. 5. Average nucleation times are shown for network
sizes N = 12000, 7500, 3000, at a loading parameter P/N =
1/1500 and noise α = 0.03, as a function of H0. Notably
the nucleation time grows with system syze, as expected in a
system with long range connections undergoing a first order
transition.

We here show that, when one enters the metastable re-
gion from below, precursor phenomena in the form of
scale-invariant spatio-temporal activity bursts can be ob-
served, that are distributed following power laws both in
size and in duration.

Indeed when approaching the down → up transition
from below, before falling in the persistent up state, the
network may have high fluctuations with transient pe-
riods of high activity. One can observe that inside this
short periods of high firing rate, at a finer level, the ac-
tivity is made of a series of cascades or “avalanches”, sep-
arated by short drops in the rate, distributed with high
diversity in spatio-temporal scale, resulting in power-law
distributions.

We perform the following experiment: we fix a value
of the noise α and connection strength H0, and simulate
the spontaneous dynamics of the network. At low val-
ues of the noise, as the system is in a metastable state,
that has a finite lifetime, after some non predictable time
it will fall in the state of persistent replay of one of the
stored patterns. We identify this event by looking when
the average firing rate of the neurons stays above 10 Hz
for an interval of time longer than 10 seconds. When the
network falls in this “persistent up” state, we terminate
the simulation and start the dynamics again from the be-
ginning with a different realization of the noise. During
the run before falling in the state of persistent replay, we
measure the rate of the network and identify the bursts
of activity or avalanches. In Fig. 6A, we show the rate
during a run with α = 0.03, N = 3000 and H0 = 0.22.
Note that in the last seconds of the simulation the rate
remained above 10 Hz for 10 seconds, so the run was
terminated. In the first 25 seconds, three bursts of ac-
tivity can be seen, which were identified as a series of
avalanches.

In contrast, for higher values of the noise, α ≥ 0.045
for N = 3000, the lifetime of the metastable states be-
come smaller, and one observes an interval of values of H0

where the system shows bursts of activity, with short up
and down alternation, without ever falling into the state



6

of persistent replay, as shown in Fig. 6B. Indeed, in this
model with structured connectivity and replay of stored
patterns, the noise has a two-fold effect, on one hand it
stimulates the start of a burst of activity, i.e. initiates a
short collective replay of one of the stored patterns, but,
on the other hand, it can also stop its propagation and
therefore hinder its persistent replay.

Note that up and down alternation, with bursts of gen-
eralized spiking that last for many seconds, have been
observed to occur spontaneously in a variety of systems
and conditions, both in vitro [40, 41] and in vivo [42, 43].
These bursts are composed by many avalanches.

As recently pointed out in Ref. [38], two different meth-
ods have been used to define avalanches. The first is
based on the temporal proximity of neural activity, so
that if activity happens in contiguous time bins, it is
considered belonging to the same avalanche. The second
takes in account the causality of firing, so that activity
of two neurons belong to the same avalanche if the spike
of the first neuron directly causes the second neuron to
fire. A novel tool for detect cascades of causally-related
events experimentally has been found, and it shows that
indeed neuronal avalanches are not merely composed of
causally-related events [44]. We define avalanches ac-
cording to first method, that is the one used in exper-
iments, where causal information is not usually acces-
sible. In particular, we use the methods implemented
by Refs. [10, 45, 46], which altered the original method
used by Ref. [1], to make it more suitable when the ac-
tivity of a large number of neurons is measured. In Ref.
[46], both methods were used, finding consistent results.
Avalanches are therefore defined as periods of time where
the population firing rate exceeds a threshold. As the
population firing rate distribution is bimodal, reflecting
the existence of the two phases, we set the threshold
slightly higher then the minimum of the bimodal rate
distribution, to minimize the probability of concatenat-
ing different avalanches. The minimum slightly changes
with system size, therefore we use a threshold of Rmin = 7
Hz at N = 3000, and Rmin = 10 Hz at N = 6000 and
12000, using a time bin of ∆t = 1 ms to measure the pop-
ulation firing rate. Note that the rate is defined in terms
of average spiking rate of single neurons, therefore a rate
R in Hz corresponds to RN/1000 spikes per milliseconds,
where N is the number of neurons. We define the size
of an avalanche as the total number of spikes, that is the
integral of the rates over the avalanche duration.

In Figure 7A and B, we show the distribution of the
sizes and durations of the avalanches for α = 0.06 and
N = 3000, near the pseudo-spinodal line, H0 = 0.22, and
both above and under it. We find a clear subcritical be-
havior at H0 = 0.19, where the system mostly remains in
the down state with very low activity, a scale-free behav-
ior at H0 = 0.22 where up/down alternation emerges,
and a supercritical behaviour with an excess of large
avalanches above the pseudo-spinodal line at H0 = 0.27.
AtH0 = 0.22, near the pseudo-spinodal line, the distribu-
tions are well described by power laws, with an exponent

τ = 1.47 ± 0.1 for the sizes and β = 1.55 ± 0.1 for the
durations.

We used the “powerlaw” python package [47] to com-
pute the log-likelihood ratio of the power law fit with
respect to an exponential fit, finding R = 76 for the size
and R = 14 for the duration (positive values mean that
power law is more likely), with a significance p < 10−40

in both cases, indicating that the power law fit is much
better than the exponential fit.

While the exponent τ of the sizes is compatible with
the largest part of the experimentally measured values,
the value of β found originally (and predicted by models
based on a branching process) was β = 2 [1]. However,
values similar to the one found here have been observed
in some experiments, for example β = 1.7 ± 0.2 in Ref.
[25].

In Fig. 7C, we show the average size of the avalanche
as a function of its duration, that follows a power law
with an exponent k = 1.12± 0.01 which is in agreement,
within errors, with the value predicted by the relation

k =
β − 1

τ − 1
. (3)

This relation was derived in Ref. [48] in relation to
crackling noise.

It can also be derived by this simple reasoning: for
values of the duration T ′ lower than the power law cut-
off T ∗, the probability that an avalanche has a duration
T > T ′ goes as P (T > T ′) ∼ (T ′)1−β , and analogously
P (s > s′) ∼ (s′)1−τ if s′ is lower than the cutoff s∗. Now
if s′ is the average size of an avalanche of duration T ′,
and fluctuations in the size fixed the duration can be ne-
glected, then P (s > s′) ∼ P (T > T ′). It follows that
(T ′)k(1−τ) ∼ (T ′)1−β and therefore k satisfies Eq. (3), at
least for sizes and durations below the cut-off. Notably,
the relation s(T ) ∼ T k holds also quite far from critical
regime, both experimentally [25] and in our model (see
Fig. 7C).

Note that the branching process, which is usually con-
nected with the critical behaviour in cortical networks,
predicts values of τ = 1.5 and β = 2, so that k = 2,
substantially greater than the one that we observe. On
the other hand, different experiments reported values of
the exponent lower than 2, and more similar to the value
that we have measured [24, 25], with τ and β satisfing
the relation (3).

A value of k slightly larger than one is in agreement
with the fact that avalanches are segments of collective
spatio-temporal patterns, having a constant average rate
of spikes, so that the total size of the avalanche is almost
proportional to its duration, except for the beginning and
end of the burst. The shape of avalanches in the branch-
ing process, on the other hand, corresponds to a rate of
spikes having a maximum proportional to the duration T
of the avalanche, giving rise to a total size proportional
to T 2.

It is interesting that relation (3) between the critical
exponents, is verified in our model and experimentally
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[24, 25], while it is not verified in models where power
law is not a manifestation of a critical point [49].

In Fig. 8, we show the avalanches distribution at
N = 3000, 6000, 12000, P = 2, α = 0.06 and respec-
tively for H0 = 0.22, 0.23 and 0.265. The parameters
for N = 12000 are inside the hysteresis region of Fig. 4,
where lifetime of the metastable state is longer then ex-
perimental time, and near the spinodal instability. The
distributions follow power laws with exponents compati-
ble within errors for different sizes, and with experimen-
tal results[6, 25]. For N = 12000 the exponents found are
τ = 1.52± 0.05 for the sizes, and β = 1.58± 0.05 for the
durations. Also in this case we compared the power law
fits with the exponential ones, finding a log-likelihood ra-
tio R = 6.2 for the sizes and R = 7.2 for the durations,
with a significance p < 10−10 in both cases. Notably, as
reported in Fig. 8A,B, the cut-off of the avalanche distri-
butions scales with system size, supporting the scale-free
behavior of the model near the pseudo-spinodal line. As
shown in Fig. 8C, the average size as a function of the
duration follows a power law also a large sizes, with an
exponent k = 1.09 ± 0.05 at N = 12000, that is again
in agreement within errors with the value predicted by
relation (3) and with experimental results [24, 25]. In
Fig. 9A and B we show the finite size data collapse of
the avalanche size and duration distribution. It is ex-
pected that the cutoff of the sizes and durations scale
respectively as smax ∝ N1/σν and Tmax ∝ N1/σνk at the
critical point, and their distributions are given by

P (s) = N−
τ
σν P̃s (s/smax) ,

P (t) = N−
β
σνk P̃T (T/Tmax) ,

where P̃s(x) and P̃s(T ) are master curves that go as

P̃s(x) ∝ x−τ and P̃T (x) ∝ x−β at small values of x.
The best data collapse is given by a value 1/σν = 2.2 of
the exponent.

Note that, due to the heterogeneity and quenched dis-
order in the network connectivity, the region with scale-
free avalanches of activity in the model is not limited to
a single point or a single line in the phase-space, but it is
an extended region, similar to a Griffiths phase [50]. A
broad region of hysteresis is observed, and at high noise
or small size where there is no hysteresis a broad region
of up/down alternation with burst composed of scale-free
avalanches is observed.

III. DISCUSSION

Scale-free avalanches and critical behaviour in corti-
cal dynamics are frequently associated with second-order
(continuous) phase transitions. However power law and
critical phenomena also emerge in first-order phase tran-
sitions as one enters the metastability region and ap-
proaches the spinodal line, in systems with long range
interactions [17, 18].

A B

FIG. 6. Firing rate at fixed values of the noise and connection
strength, for (A) α = 0.03, H0 = 0.22 and (B) α = 0.045,
H0 = 0.22, at N = 3000. At lower values of the noise, the
system eventually falls into a state of “persistent up”. We
identify this as an interval of 10 seconds where the rate is
always larger than 10 Hz (last seconds of simulation in A), and
stop the simulation. Avalanches are identified as consecutive
time bins of ∆t = 1 ms, with a rate higher than a threshold
Rmin = 7 Hz. Three or four intervals (respectively in A and
B) in which the system is in an up state are shown, that are
in turn composed of many avalanches.

Non equilibrium first-order phase transition can be in-
duced by additive noise [23, 51] in spatially extended sys-
tems where coupling favors coherent behaviour. Varying
the parameters of the systems, or the noise, the order of
the phase transition may change. First-order phase tran-
sition with a coexistence region where the system displays
hysteresis, and a crossover to a second-order transition
for large values of the noise, has been studied in a vari-
ety of systems such as surface growth [52]. Hysteresis in
a stochastic non-leaky integrate and fire model has been
studied in [53], but scale free avalanches were not inves-
tigated. A pioneer model that has hypothesized a new
scenario for cortical dynamics, combining self organized
criticality with a first order transition, is the one stud-
ied in Refs. [36, 54, 55]. More recently [56] it has been
suggested that cortical networks are not self-organized
to a critical point (SOC), as usually considered, but to
a region of bistability (SOB) near a first order transi-
tion. A most referenced model that displays criticality in
a network of leaky integrate-and-fire neurons, has been
studied in Ref. [37]. In that model, however, criticality
emerges only with a definition of avalanches that takes
in account the causality of different firings. If one uses
a criterion based only on temporal binning and prox-
imity, as done usually in experiments where causality
is not observable, one finds exponential distributions of
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A

B

C

FIG. 7. (A) Size and (B) duration distribution of the
avalanches at N = 3000, P = 2 and α = 0.06 (curves
are shifted for clarity). For H0 = 0.19 a subcritical be-
haviour is observed. Power laws are observed near the pseudo-
spinodal at H0 = 22, where the system shows alternation of
up and down states. Increasing the value of H0 above the
pseudo-spinodal, the distribution shows a peak signaling a
super-critical behaviour. The exponents of power laws are
τ = 1.47 ± 0.1 for the sizes, and β = 1.55 ± 0.1 for the du-
rations. (C) Average size of the avalanche as a function of
the duration. The dependence is always a power law, with an
exponent k = 1.12 ± 0.01, in agreement with Eq. (3) within
errors.

avalanches, and no critical behaviour is observed [38].
In this paper, we studied a model of leaky integrate

and fire neurons, characterized by structured long range
connectivity, corresponding to the encoding of spatio-
temporal patterns. We showed that the model exhibits
a first order transition between a down state character-
ized by low activity, and an up state characterized by
the collective replay of one of the spatio-temporal pat-
terns encoded in the network. Notably the role of noise
is crucial. Indeed, depending on the noise and size of the
system, one observes hysteresis (low noise or large size)
or up/down alternation (high noise or small size) at the
transition.

Increasing the size of the system, the lifetimes of states
increase, and one observes hysteresis also for values of the

A

B

C

FIG. 8. (A) Size and (B) duration distribution of the
avalanches at N = 3000, 6000 and 12000, P = 2, α = 0.06,
and near the spinodal instability at respectively H0 = 0.22,
0.23 and 0.265. For N = 12000 the exponents are τ =
1.52 ± 0.05 for the sizes, and β = 1.58 ± 0.05 for the dura-
tions. (C) Average size of the avalanche as a function of the
duration, for the same values of α and H0. For N = 12000
the exponent of the power law is k = 1.09 ± 0.05, in agree-
ment with Eq. (3) within errors, taking points with duration
T < 50. Note that for higher values of the duration the expo-
nent seems to decrease and tend to one, as observed in [25].

noise that showed alternation of states at smaller sizes,
showing that the alternating behaviour is a finite size ef-
fect, and the underlying transition is of a first order kind.
Both in the region of hysteresis, approaching the spinodal
instability, and in the region of alternation, we observe
scale-free bursts of activity (avalanches). Notably this
was found identifying avalanches using the same crite-
rion of temporal proximity used in experiments.

While scale-free avalanches alone are not sufficient to
assess criticality [49, 57, 58], we have independently iden-
tified a (first-order) transition by the discontinuity in the
rate and the hysteretic behaviour. Power law distribu-
tions, and a peak in the normalized variance, are then
observed near the edge of the spinodal instability, as is
expected for a first order transition in a model with long
range connections.
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A

B

FIG. 9. Data collapse of the size (A) and duration (B) dis-
tributions of the avalanches. The exponent 1/σν describes
the dependence of the cut-off of the sizes as a function of the
system size at the critical point, smax ∝ N1/σν , while for the
durations Tmax ∝ N1/σνk.

The model therefore incorporates both criticality and
the functioning of the network as a memory, or reser-
voir of dynamical patterns. When the system is posed
at the edge of the instability, it shows spontaneous on-
going activity with critical scale free behavior. However
the state is a metastable one. If a cue stimulation (a
short train of input spikes, with order similar to one of
the stored patterns) is given, then the system switches
in the persistent up state and responds with a (non-
critical) sustained replay of the pattern stimulated. This
behaviour reminds the one observed experimentally in
Ref. [24], where a transient state characterized by large
non-critical avalanches is observed in response to an ex-
ternal stimulus.

The exponents of the size and duration distribution,
and the exponent k giving the dependence of the size on
the duration of the avalanche, s(T ) ∼ T k are compatible
with the range of values found experimentally [6, 24, 25].
The value of k near to one is due to the mechanism of
avalanche propagation. Indeed in our case avalanches are
segments of patterns having an almost constant average
spiking rate, so that the total size is almost proportional
to the duration.

In a branching process model [59] it was shown that
exponents of size and duration distributions are not uni-
versal, but they vary depending on a small external driv-
ing of the system. The effect of the driving, in the class
of branching processes that they consider, is to merge
smaller avalanches to form larger ones, therefore the rel-
ative weight of larger avalanches increases, and exponents
decrease with the driving, while the exponent k remains

equal to 2 independently from the driving. In our model,
on the other hand, avalanches are related to the emer-
gence of a collective coordinated activity. Therefore the
effect of noise is not only to merge avalanches, but also
to hinder their propagation, decreasing the probability
of longer avalanches. A higher noise decreases the life-
time of the metastable states, and hysteresis turns into
up/down alternation, and even higher noise makes the
region of up/down alternation broader.

Another paper that has considered the effect of the
noise is Ref. [60]. They studied a “cortical branching
model”, that has a non equilibrium phase transition only
in the limit of zero spontaneous activation (that has a
similar role of our noise), and a quasi-critical behaviour
on the Widom line at finite values of the spontaneous ac-
tivation, with a broadening of susceptibility. Also in our
case we observe a broadening of the susceptibility (nor-
malized variance), with the increase of the noise. How-
ever, in our model we observe a (first order) transition
also at non zero values of the noise, that produces (for
not too low noise) an alternation between up and down
states. Therefore the broadening of the variance is not
connected to a Widom line, but to the broadening of the
region where alternation of up and down states is ob-
served.

The main characteristic of our model is the structure
of the connections, that are not chosen randomly, but are
the result of a learning rule inspired by spike-time depen-
dent plasticity (STDP), where different spatio-temporal
patterns (corresponding to different sequences of firing
of the neurons) are encoded. Connections are set at the
beginning, and are held fixed during the dynamics of the
network. Due to the fact that the learning kernel has a
zero integral over time (see Appendix), connections are
characterized by a balance between excitation and inhi-
bition, which is one of the ingredients to observe a crit-
ical behaviour, as observed experimentally [11, 61] and
also in models [62]. However, balance is not the only
ingredient, since the topology and structure of the con-
nectivity, with collective patterns carved as attractors of
the dynamics, are crucial to observe the non-equilibrium
first-order transition. Preliminary results indeed indi-
cate that, reshuffling the connections randomly between
neurons, the transition disappears. One observes on the
contrary a continuous increasing of the spiking rate when
the strength of the connections is increased, with a nor-
malized variance always near to one, showing that the
dynamics is Poissonian, and no critical behaviour is ob-
served [63]. This is also in agreement with recent results,
showing that topology is crucial for the emergence of crit-
ical states [64].

The presence of a non-equilibrium first order transition
and the critical precursor phenomena in our model are
crucially related to the interplay between noise and a con-
nectivity which promotes collectivity. Criticality emerges
naturally near the edge of an instability, in an associa-
tive memory network, with many metastable dynamical
states.
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Another model that study criticality together with as-
sociative memory was proposed in [65]. In their model, a
Hebbian learning rule is used to store static patterns.
However, they found that Hebbian learning alone de-
stroys criticality even when the synaptic strength is prop-
erly scaled. Applying an optimization procedure that
drives the synaptic couplings either toward the critical
regime, or toward the memory state in an alternating
fashion, they finally arrive at a configuration both critical
and that retains an associative memory. The reason why
in our model the learning procedure does not destroy crit-
icality may be due to the difference in the learning rule,
that in our case is based on STDP and stores dynamical
attractors, as opposed to static ones.

Previous studies based on the branching process have
explained the repeatability of spatiotemporal patterns
[66, 67], together with power laws in avalanches distri-
bution. In their model however, patterns are not shown
to be attractors of the dynamics in any parameter space
region. They show repeatability only in the critical re-
gion, where the dynamics is “neutral” (Lyapunov expo-
nent equal to zero). On the other hand, in our model
the stored spatiotemporal patterns emerge as collective
attractors of the dynamics in the region above the tran-
sition. The systems is therefore both able to work as a
stimulus-activated reservoir of spatiotemporal attractors,
and as a more flexible device when used at the border of
the instability.

In our model, an alternation of up and down states is
obtained with a fixed value of the excitability H0, inside
a certain range of external parameters near the transi-
tion. The same value of H0, lowering the noise, gives
rise to hysteresis, with persistence of one or the other
state, depending on the previous history. However, it is
plausible that the brain is able to change its state also
by changing the value of H0, going out of the critical re-
gion toward a persistent up (more suited for either spon-
taneous or cue-triggered reactivation of previous experi-
ence) or down state (which favors faithful representation
of sensory inputs) depending on the different behavioural
state. For example Ref. [68] shows that focused attention
pulls the system out of criticality towards subcriticality.
The switch between different states, between sleep and
wakefulness or from inattentive to vigilant states, may be
induced by specific neuromodulators that, among other
effects, can also change the efficacy of the connections.
Neuromodulation is important for regulating brain states
[69], but the specific mechanisms of these switching are
not yet well understood.

Another important ingredient of the network connec-
tivity in our model is the presence of a small percentage of
neurons that has higher incoming connection strengths,
and is responsible for focusing the noise and initiating
the collective activity (and avalanche propagation). The
presence of a few highly active sites, driving cortical neu-
ral activity (leaders), has been reported experimentally
[29, 70–72]. Notably it has been shown that these leader
sites are reliably and rapidly recruited within both spon-

taneous and evoked bursts [71]. As shown in Ref. [70],
initiation of bursts of collective activity in cultured net-
works is a noise-driven nucleation phenomenon. The nu-
cleation sites seem to be highly localized, they collect and
amplify activity originated elsewhere. This noise focus-
ing effect is realized in the model with this higher H0

to incoming connections to a bunch of neurons which fo-
cus noise and cooperate to initiate the emergence of the
pattern.

There are some predictions that could be investigated
in experiments, to discriminate between the first-order
transition scenario considered here and other models. A
prediction is that, lowering the noise, the lifetime of the
states increases, and the system goes from a phase with
alternation of up and down states, to a phase character-
ized by metastability and hysteresis. The noise can be
related for example to spontaneous neuro-transmitter re-
lease. Another prediction of our model is that, increasing
the strength of the connections but mantaining the bal-
ance between excitation and inhibition, the patterns that
in the critical region appear during the alternation of up
and down states, become more attractive, and can be re-
played for a longer time. To our knowledge this kind of
experiment has not been realized. What has been done
is something quite different, that is changing the balance
between excitation and inhibition. This tunes the net-
work into a phase characterized by high activity, far from
the critical regime and with an excess of long avalanches.
It is not clear however if this corresponds to the same
kind of transition that we observe.

To our knowledge, this is the first leaky integrate and
fire model, which shows how both dynamical attractors
and neuronal avalanches converge in a single cortical
model. This work therefore may help to link the bridge
between criticality and the need to have a reservoir of
spatiotemporal metastable memories.

APPENDIX: THE MODEL

We simulate a network of N spiking neurons, modelled
as leaky integrate-and-fire units and represented by the
Spike Response Model [73], in presence of a Poissonian
noise distribution. We study the spontaneous dynamics
of the neurons connected by a sparse structured connec-
tivity in absence of any external inputs. Between consec-
utive spikes, the membrane potential of neuron i is given
by

ui(t) =
∑
j

∑
ti<tj<t

Jij

[
e−(t−tj)/τm − e−(t−tj)/τs

]
+

∑
ti<t̂i<t

J(t̂i)
[
e−(t−t̂i)/τm − e−(t−t̂i)/τs

]
, (4)

where Jij is the synaptic strength between presynaptic
neuron j and postsynaptic neuron i, tj are the spiking
times of neuron j coming after the last spike ti of neu-
ron i, t̂i are random times extracted from a Poissonian
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distribution with rate ρ = 1 ms−1, J(t̂i) is a Gaussian
variable extracted at time t̂i with zero mean and stan-

dard deviation
√

αN
3000ρ

∑
j J

2
ij , τm is the characteristic

time of membrane (τm = 10 ms) and τs is the character-
istic time of synapse (τs = 5 ms). When the membrane
potential ui(t) hits the threshold Θ = 1, it is reset to
zero, and spikes are transmitted to all the neurons that
receive input from neuron i.

The strengths of the connections are determined by a
learning rule [34, 35, 74, 75], inspired by STDP (spike-
time dependent plasticity), which gives rise to a highly
heterogeneous and disordered distribution of weights.

We build the connections Jij forcing the network to
store P spatio-temporal patterns. Each pattern is a pe-
riodic train of spikes, with one spike per neuron and per
cycle, with the neuron i firing at times tµi + nT , with tµi
randomly and uniformly extracted in the interval [0, Tµ].
In the present work, we use a number of neurons between
N = 3000 and N = 12000, and a number of patterns be-
tween P = 2 and P = 10, with period Tµ = 333 ms.
After the learning stage, the strength of connection Jij
is given by

Jij =
fiH0

N

P∑
µ=1

∞∑
n=−∞

A(tµi − t
µ
j + nTµ) (5)

where A(τ) is the STDP learning window [76, 77], given
by

A(τ) =

{
ape
−τ/Tp − aDe−ητ/Tp if τ > 0,

ape
ητ/TD − aDeτ/TD if τ < 0,

(6)

with ap = A0/[1 + ηTp/TD], aD = A0/[η + Tp/TD],
A0 = 3000, Tp = 10.2 ms, TD = 28.6 ms, and η = 4.
To take account of the heterogeneity of the neurons, we
use two values of fi, fi = 1 for ”normal” neurons and
fi = 3 for ”leader” neurons, i.e. neurons with higher
incoming connection strengths, that amplify activity ini-
tiated by noise [29, 70–72]. In other words, leaders are
neurons that fire more than other ones and give rise to a
cue able to initiate the short collective replay. They are
chosen as a fraction of 3% of neurons with consecutive
phases, for each pattern µ. The connection Jij between
neurons i and j does not depend therefore on the spatial
distance between them, if they are embedded in a 2D or
3D space. Therefore this form of the connections is a
“long range” one, for which one could expect a “mean
field like” behaviour, with long lifetimes (infinite in the
thermodynamic limit) of the metastable states. Long
lifetimes can be expected also if connections are not in-
dependent from the distance, but the range is not too
small.

Note that Jij are proportional to N−1, so that the
noise is independent from N at fixed value of α. On the

other hand, due to the shape of the STDP learning ker-
nel that has time integral equal to zero, this learning
procedure assures the balance between excitation and
inhibition, i.e.

∑
j Jij is of order 1/

√
N . At the end

FIG. 10. Distribution of the positive connections after the
learning procedure, for N = 3000 neurons and P = 2 pat-
terns.

of the learning procedure, part of the connections are
positive (excitatory) and part are negative (inhibitory).
Inhibitory neurons are not explicitly simulated, but neg-
ative negative connections can be considered as connec-
tions mediated by fast inhibitory interneurons. Alterna-
tively, one could introduce a global inhibition and explic-
itly simulate only the positive connections.

The result of learning multiple spatio-temporal pat-
terns, each with quenched randomly-chosen phase order-
ing, gives rise to quenched disorder. The distribution
of weight that results from this learning procedure is
highly heterogeneous, with many small connections and
few strong ones. In Fig. 10 we show the distribution
of the positive weights for N = 3000 neurons and P = 2
patterns. The distribution is very skewed and long-tailed,
as observed in the cortex [78, 79] and in other STDP-
based models [80–82]. Note however that in our model
the distribution of the weights is not a sufficient condi-
tion to determine the dynamical phase transition. In-
deed, shuffling the connections leaving their distribution
unchanged, this kind of transition disappears [63]. It
seems therefore that the topology of the network, such
as the relative abundance of motifs, is crucial for the
manifestation of the first order dynamical transition.

To get a sparse connectivity, like in the brain cortex, we
prune the smallest connections. The pruning procedure
keeps still the balance between excitation and inhibition,
and leaves only 30% of the original connections. Once
this connectivity structure is built, it is kept fixed during
all the network dynamics simulations.

Note that, apart from the quenched random values
of the times tµi defining the encoded patterns, and fi
defining the leader neurons, the dynamics of the model
depends only on the parameters α, determining the
strength of the noise, and H0, determining the strength
of the connections.
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[23] A.A. Zaikin, J. Garćıa-Ojalvo, and L. Schimansky-Geier,
“Nonequilibrium first-order phase transition induced by
additive noise,” Phys. Rev. E 60, R6275 (1999).

[24] W.L. Shew, W.P. Clawson, J. Pobst, Y. Karimipanah,
N.C. Wright, and R. Wessel, “Adaptation to sensory
input tunes visual cortex to criticality,” Nat. Phys. 11,
659 (2015).

[25] N. Friedman, S. Ito, B.A.W. Brinkman, M. Shimono,
R.E. Lee DeVille, K.A. Dahmen, J.M. Beggs, and T.C.
Butler, “Universal critical dynamics in high resolution
neuronal avalanche data,” Phys. Rev. Lett. 108, 208102
(2012).

[26] J.M. Beggs and D. Plenz, “Neuronal avalanches are di-
verse and precise activity patterns that are stable for
many hours in cortical slice cultures,” J. Neurosci. 24,
5216 (2004).

[27] T.L. Ribeiro, S. Ribeiro, and M. Copelli, “Repertoires of
spike avalanches are modulated by behavior and novelty,”
Front. Neural Circuits 10, 16 (2016).

[28] D. Ji and M.A. Wilson, “Coordinated memory replay in
the visual cortex and hippocampus during sleep,” Nat.
Neurosci. 10, 100 (2007).

[29] A. Luczak and J. MacLean, “Default activity patterns
at the neocortical microcircuit level,” Front. Integr. Neu-
rosci. 6, 30 (2012).

[30] D.R. Euston, M. Tatsuno, and B.L. McNaughton, “Fast-
forward playback of recent memory se-quences in pre-
frontal cortex during sleep,” Science 318, 1147 (2007).

[31] K. Diba and G. Buzsaki, “Forward and reverse hip-
pocampal place-cell sequences during ripples,” Nat. Neu-
rosci. 10, 1241 (2007).

[32] M.A. Montemurro, M.J. Rasch, Y. Murayama, N.K. Lo-
gothetis, and S. Panzeri, “Phase-of-firing coding of natu-
ral visual stimuli in primary visual cortex,” Curr. Biology
18, 375 (2008).

[33] M. Siegel, M.R. Warden, and E.K. Miller, “Phase-
dependent neuronal coding of objects in short-term mem-
ory,” PNAS 106, 21341 (2009).

[34] S. Scarpetta and A. de Candia, “Neural avalanches at the
critical point between replay and non-replay of spatio-
temporal patterns,” PLoS One 8, e64162 (2013).

[35] S. Scarpetta and A. de Candia, “Alternation of up and
down states at a dynamical phase-transition of a neu-
ral network with spatiotemporal attractors,” Front. Syst.
Neurosci. 8, 88 (2014).

[36] A. Levina, J.M. Herrmann, and T. Geisel, “Phase transi-
tions towards criticality in a neural system with adaptive
interactions,” Phys. Rev. Lett. 102, 118110 (2009).

[37] D. Millman, S. Mihalas, A. Kirkwood, and E. Niebur,



13

“Self-organized criticality occurs in non-conservative neu-
ronal networks during up states,” Nat. Phys. 6, 801
(2010).

[38] M. Martinello, J. Hidalgo, S. di Santo, A. Maritan,
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K.D. Harris, “Sequential structure of neocortical sponta-
neous activity in vivo,” PNAS 104, 347 (2007).

[44] R.V. Williams-Garćıa, J.M. Beggs, and G. Ortiz, “Un-
veiling causal activity of complex networks,” Europhys.
Lett. 119, 1 (2017).

[45] S.S. Poil, R. Hardstone, H.D. Mansvelder, and
K. Linkenkaer-Hansen, “Critical-state dynamics of
avalanches and oscillations jointly emerge from balanced
excitation/inhibition in neuronal networks,” J. Neurosci.
32, 9817 (2012).

[46] T. Bellay, A. Klaus, S. Seshadri, and D. Plenz, “Irregular
spiking of pyramidal neurons organizes as scale-invariant
neuronal avalanches in the awake state,” eLIFE 4, e07224
(2015).

[47] J. Alstott, E. Bullmore, and D. Plenz, “A python pack-
age for analysis of heavy-tailed distributions,” Plos One
9, e95816 (2014).

[48] J.P. Sethna, K.A. Dahmen, and C.R. Myers, “Crackling
noise,” Nature 410, 242 (2001).

[49] J. Touboul and A. Destexhe, “Power-law statistics and
universal scaling in the absence of criticality,” Phys. Rev.
E 95, 012413 (2017).
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