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Abstract

The colours of metals have attracted the attention of humanity since ancient times, and coloured

metals, in particular gold compounds, have been employed for tools and objects symbolizing the

aesthetics of power. In this work we develop a comprehensive framework to obtain the reflectivity

and colour of metals, and show that the trends in optical properties and the colours can be predicted

by straightforward first-principles techniques based on standard approximations. We apply this

to predict reflectivity and colour of several elemental metals and of different types of metallic

compounds (intermetallics, solid solutions and heterogeneous alloys), considering mainly binary

alloys based on noble metals. We validate the numerical approach through an extensive comparison

with experimental data and the photorealistic rendering of known coloured metals.
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INTRODUCTION

Optical properties of metals are important for novel technological applications where the

optical response needs to be engineered for specific purposes, such as for plasmonic devices

(e.g. in spectrally-selective coatings [1, 2]), for optoelectronics devices (e.g. in ultra-thin

films for transparent conductive electrodes [3, 4]), and also for microscopy and optical data

storage [5]. Also, the colours of metals (which are related to the optical properties within

the visible range of the electromagnetic spectrum) play a significant role in the jewellery

industry, decoration and dentistry. For these applications, the most used materials are

metallic alloys based on gold or other coinage or precious metals, such as silver, copper,

palladium and platinum. In particular, gold and copper are the few elemental metals that

show a characteristic colour, due to the presence of a drop in the reflectivity curve inside the

visible range; reflectivities of nearly all other metals are instead generally high and flat for

all visible frequencies, making them appear shiny and silvery white. Moreover, gold alloys

and intermetallics are known to show a broad spectrum of colours (yellow, red, purple, to

name a few), which can be tuned by varying the alloying elements and concentrations in the

material [6]. Since in the jewellery industry there is the demand, due to market and fashion

trends, for new precious-metal alloys with specific colours, it is also of great interest there

the search and identification of novel alloys with novel optical properties.

Generally speaking, the common route followed by researchers and manufacturers in order

to identify any type of novel materials is through trial-and-error experiments which, how-

ever, have the drawback to be time-consuming and, if dealing with precious-metal-based

systems, expensive. In order to streamline this process, an alternative route that can help

in guiding the search for new promising candidate systems is computational modelling, so

that the physical properties under investigation are assessed through computer simulations

rather than by real experiments. Here, we show and discuss how it is possible to perform

photorealistic simulations of metals by means of first-principles methods and, as a con-

sequence, predict the colour of novel metallic alloys. Previously published studies about

first-principles simulation of optical properties of both elemental metals and alloys already

point towards the feasibility of this approach. Indeed, in 1988 Maksimov et al. [7] com-

puted the optical properties of several elemental metals whereas, more recently, Werner et

al. [8] performed a similar study on 17 elemental metals; both studies found qualitative
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agreement with experimental results. For compounds, on the other hand, Blaber et al. [9]

calculated the optical properties of several intermetallic compounds, with a particular focus

on alkali-noble intermetallics, for new possible candidates as plasmonic materials while, in

another work, Keast et al. [10] computed the density of states and dielectric function of

gold intermetallics compounds and gold binary alloys. Regarding the simulation of spe-

cific coloured intermetallic compounds, the reflectivity and colour of the three well-known

coloured gold intermetallics AuAl2, AuGa2 and AuIn2 was first computed in Ref. [11] and,

afterwards, Keast et al. [12] studied the influence of alloying concentrations on the reflec-

tivity and colour of the intermetallic AuAl2 by considering the ternary compounds having

the Au1−xPtxAl2 composition, with x = 0.0, 0.5, 0.75, 1.0; equivalent computational results

were obtained independently by Kecik [13]. Calculated and experimental [14, 15] reflectivity

curves and colours for these compounds showed good agreement and the trends in colour

as a function of the composition were well reproduced. In addition, the effect of disorder

on the optical properties of Au0.5Cu0.5 was studied by comparing the dielectric function of

the random solid solution, simulated using the supercell approach, with that of the ordered

intermetallic compound [16], and the main spectral differences between the two different

types of compounds were captured by the simulations.

In this work, first we establish a general computational approach that can be used for the

photorealistic simulation of metals, showing how the reflectivity and colour of metallic crys-

tals can be estimated by means of first-principles techniques. We then demonstrate through

a systematic study on elemental metals and extensive comparisons with experimental data

that the theoretical and numerical approximations adopted are able to reproduce the correct

behaviour of the reflectivity curves and to capture the main differences in optical properties

across the periodic table. Finally, we perform a similar study on metal alloys by consid-

ering different types of compounds, i.e. ordered intermetallics, disordered solid solutions

and heterogeneous alloys. In particular, we show through a comparison with experimental

results that, if the appropriate methods are used for the simulation of the different types

of compounds, (i) the simulated colours of known coloured intermetallics are in qualitative

and most often in quantitative agreement with experiments and that (ii) one can reproduce

the main colour trends in noble-metal-based binary alloys.
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RESULTS

Computational approach

The computational workflow that allows one to obtain the reflectivity and colour of a given

metal from an initial crystal structure, schematically depicted in Fig. 1, can be divided into

four main computational steps: (i) evaluation of the electronic structure, (ii) calculation of

the dielectric function, (iii) calculation of the reflectivity and colour and (iv) photorealistic

rendering of the material.

The quantity we consider for the first-principles simulation of optical properties is the com-

plex, wavevector- and frequency-dependent, dielectric function ε(q, ω) = ε1(q, ω)+iε2(q, ω).

In fact, the knowledge of the dielectric function gives then access to all the optical constants

measurable by optical experiments, such as absorption coefficient and reflectivity.

Throughout this work the electronic structure is computed using density-functional theory

(DFT) [17] within the generalized gradient approximation (GGA) and relying on the PBE

exchange-correlation functional [18]. We emphasize here that the electronic structure could

alternatively be obtained with more accurate techniques; for example, the accuracy of the

band structures could be improved by computing quasi-particle corrections on top of PBE

results (typically at the GW level [19–21]), albeit at a largely increased computational cost.

So, while in the present work we just rely on the Kohn-Sham (KS) PBE bands [22], the

use of conceptually and quantitatively correct GW bands would take place seamlessly inside

this workflow. Subsequently, we calculate the dielectric function within the independent

particle approximation (IPA), which amounts to neglecting (i) effects related to electron-

hole interactions (excitonic effects), since these are effectively screened by the conduction

electrons and (ii) effects related to the rapidly varying microscopic electric fields inside the

material (local-field effects) since these are typically small in homogeneous systems such

as bulk metals [23]. In the optical regime the momentum q transferred by the photon is

negligible so that we can consider the optical limit, q → 0, of the expression for the IPA

dielectric function ε(q, ω). In general, the dielectric function still depends on the direction

q̂ = q/|q| of the perturbing electric field and only for crystals with cubic symmetry it is

the same in every direction. In the optical limit it is convenient to divide the evaluation of
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the IPA dielectric function of metals into two separate contributions, an intraband Drude-

like term εintra(q̂, ω) due to the conduction electrons at the Fermi surface and an interband

term εinter(q̂, ω) due to vertical transitions between occupied and unoccupied bands, so that

ε(q̂, ω) = εinter(q̂, ω) + εintra(q̂, ω). Using the solutions of the one-particle Schrödinger equa-

tion for periodic systems, HKS |ψnk〉 = Enk |ψnk〉 (where HKS is the KS Hamiltonian from

DFT), the explicit expression of the IPA dielectric function can be written as [23–25]

εinter(q̂, ω) = 1− 4π

V

∑
k

∑
n,n′

n6=n′

| 〈ψn′k| q̂ · v |ψnk〉 |2

(En′k − Enk)2
fnk − fn′k

ω − (En′k − Enk) + iη
, (1)

εintra(q̂, ω) = − ω2
D(q̂)

ω(ω + iγ)
, (2)

where we have defined the IPA Drude plasma frequency as

ω2
D(q̂) =

4π

V

∑
k

∑
n

| 〈ψnk| q̂ · v |ψnk〉 |2
(
− ∂fnk
∂Enk

)
. (3)

In the expressions above v = −i [r, HKS] is the velocity operator, fnk is the Fermi-Dirac

occupation function of the KS Bloch state |ψnk〉 identified by band index n and wavevector

k within the Brillouin zone (BZ) and V is the volume of the crystal. Instead η is an in-

finitesimal broadening introduced to perform the adiabatic switch of the perturbation within

linear-response theory and, in practical calculations, it is used as an empirical broadening

which accounts for scattering processes, always present in real materials, and/or for finite

experimental resolution. Similarly, γ is an empirical broadening representing dissipation ef-

fects of the conduction electrons (see the Methods section for more details on the parameters

effectively used in the simulations). A more extensive discussion on the first-principles the-

ory of optical properties and the derivation of the expression of the IPA dielectric function

in the optical limit (Eq. 1, Eq. 2 and Eq. 3) can be found in Ref. [26].

As the most typical experimental situation is to have polycrystalline materials in which

grains have random orientations, in the following we always deal with the dielectric function

averaged over the three Cartesian directions

ε(ω) =
ε(x̂, ω) + ε(ŷ, ω) + ε(ẑ, ω)

3
, (4)
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so that we can drop the dependence on the direction q̂. Similarly we also define a corre-

sponding average IPA Drude plasma frequency as ω2
D = [ω2

D(x̂) + ω2
D(ŷ) + ω2

D(ẑ)]/3.

In order to compute the reflectivity from the knowledge of the dielectric function we first

introduce the refractive index n(ω) and the extinction coefficient k(ω) that are defined from

the equation [n(ω) + ik(ω)]2 = ε(ω). The reflectivity at normal incidence and assuming

a vacuum-material interface is then simply linked to n(ω) and k(ω) through the Fresnel

equations of classical electromagnetism (see for example Ref. [27]):

R(ω) =
[n(ω)− 1]2 + k(ω)2

[n(ω) + 1]2 + k(ω)2
. (5)

Eventually, we relate the reflectivity of a material to its perceived colour using the standard

colour spaces introduced by the Commission Internationale de l’Eclairage (CIE) [28] for

quantitative measures of colour. For this purpose trichromatic theory gives the rigorous

mathematical framework that permits to estimate the colour of an opaque material (e.g. a

metal) by knowing its reflectivity R(λ) for all the wavelengths λ in the visible range (i.e. in

the range [380, 780] nm), and to condense this information into three numbers, i.e. the colour

coordinates [29]. In particular, according to the CIE 1931 standard colorimetric observer,

the tristimulus values (X, Y , Z) which define the CIE-XY Z colour space completely describe

a colour stimulus and are given by the following integrals over the visible range

X = k

780 nm∫
380 nm

dλ x̄(λ)R(λ)S(λ), (6)

Y = k

780 nm∫
380 nm

dλ ȳ(λ)R(λ)S(λ), (7)

Z = k

780 nm∫
380 nm

dλ z̄(λ)R(λ)S(λ), (8)

where x̄(λ), ȳ(λ) and z̄(λ) are the three so-called colour-matching functions and describe

the chromatic response of the observer, being related to the sensitivity of the three differ-

ent colour-sensitive photoreceptors present in the human eye. S(λ) is instead the spectral

power distribution of one of the standard CIE illuminant (throughout this work the D65

illuminant is used which corresponds to average daylight) while the constant k is chosen so
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that Y = 100 for objects for which R(λ) = 1 for all visible wavelengths.

In practice, it is more convenient to work within the CIELAB colour space rather than in

the CIE-XY Z colour space, which is defined by three coordinates (L∗, a∗, b∗) that are easily

computed from the knowledge of the tristimulus values (X, Y , Z) through a coordinate

transformation [29]. Indeed, since the CIELAB colour space is nearly uniform, euclidean

distances can be used to approximately represent the perceived magnitude of colour differ-

ences between two objects in the same external conditions. Therefore, if (L∗1, a
∗
1, b

∗
1) and

(L∗2, a
∗
2, b

∗
2) are the CIELAB coordinates of two objects, their colour difference is simply

given by

∆E =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2) + (b∗1 − b∗2)2. (9)

Typically, a difference ∆E > 1− 2 can be perceived by the human eye. In addition, we use

photorealistic rendering, which is based on the solution of the light-transport equation [30],

to simulate the actual appearance of an object made of a material with specified optical

constants in the visible range within a realistic 3D scene.

Our goal is to apply the computational approach described above to study metals in their

crystalline form. From the point of view of first-principles calculations, elemental crystals

are the easiest and most computationally efficient systems to simulate since they are periodic

and their primitive cell, which typically consists of only a few atoms, can simply be taken as

the simulation cell. For multi-component systems instead (in this work we focus on binary

alloys), we distinguish different types of compounds according to their atomic configuration

and microstructure. In particular, we consider the following three limiting cases: (i) perfectly

ordered phases, i.e. pure intermetallic compounds, (ii) perfectly disordered phases, i.e. pure

solid solutions, and (iii) heterogeneous alloys, i.e. alloys consisting of a mixture of two

different phases. Since we are exclusively interested in the study of the intrinsic bulk colours

of metals, we neglect the influence on the optical properties of defects (e.g. vacancies,

dislocations, etc.) and any type of surface effects.

We use different simulation methods in order to properly model the reflectivity and colour

of these three different types of compounds, as summarized in Table 1. As for the case

of elemental crystals, pure intermetallic compounds are periodic systems and are simply

simulated in their primitive cell. On the other hand, we use the supercell approach, based on

the use of special quasi-random structures (SQS) [31, 32], to take into account effects related
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to disorder in the simulation of the optical properties of solid solutions (see Supplementary

Discussion 1 for a comparison between the SQS supercell approach and the virtual-crystal

approximation). Instead, for heterogeneous alloys made of two phases α and β, we use the

Bruggeman model [33] to estimate the optical properties of the alloy. Within the Bruggeman

model the dielectric function of the mixture, that we indicate as εBr(ω), is given by the

following expression

(1− xβ)
εα(ω)− εBr(ω)

εα(ω) + 2εBr(ω)
+ xβ

εβ(ω)− εBr(ω)

εβ(ω) + 2εBr(ω)
= 0, (10)

in terms of the dielectric functions εα(ω) and εβ(ω) of the single phases, and where xα and

xβ (with xα + xβ = 1) are the fractions of the two phases present in the material. The

dielectric function of the single phases can be obtained with the methods of Table 1 for

intermetallic compounds and solid solutions.

In the following, we apply and validate the computational approach described here, and

discuss its limitations, on several elemental metals and binary compounds.

Elemental metals

Fig. 2 shows the comparison between IPA results and experimental data for the reflectivity

curves of 18 elemental metals, focusing on frequencies centered around the visible range (i.e.

in the range [1.59, 3.26] eV). Experimentally, we observe high and flat reflectivities along the

visible spectrum for the “precious” transition metals (i.e. Rh, Ir and Pd) while we observe

flat but slightly lower reflectivities for the other transition metals considered (i.e. V, Nb,

Ta, Cr, Mo and W). As a consequence, in terms of CIELAB colour coordinates, metals in

the first group have a large CIELAB brightness L∗ and thus whitish colour, while the others

have smaller brightness and thus a more greyish colour (e.g. rhodium has L∗=90 while vana-

dium has L∗=78). An interesting exception among the transition metals is osmium, that

shows a reflectivity curve that is low in the low-energy part of the visible spectrum but then

suddenly rises in the blue-violet part, thus giving a bluish tint to pure osmium. A similar

behaviour is found also in tantalum, but the rise of the reflectivity curve in the blue-violet

region is significantly smaller and, consequently, also the bluish tint of the material is less

pronounced. Instead, the simple sp metals lithium, potassium and aluminium all have very
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high and nearly flat reflectivity curves in the visible range (and therefore whitish colour)

while in beryllium the intensity of the reflectivity is lower, and comparable to that of the

transition metals (and thus having a greyish colour). Interestingly, the reflectivity curve

of caesium decreases significantly within the visible range, so that red and yellow radiation

is strongly reflected, while all other visible frequencies are absorbed, giving a yellow tint

to the material. As clearly shown in Fig. 2, the IPA simulations reproduce these different

features of the elemental metals. In contrast, for noble metals, while the characteristic drop

in the reflectivity curve in the visible range (for Cu and Au) or in the ultraviolet (for Ag) is

also reproduced by the simulations, it happens at smaller energies compared to experiments

due to the well-known underestimation of the interband gap between valence d bands and

conduction sp bands of PBE band structures. This discrepancy can be corrected using ap-

proaches beyond DFT, such as the GW approximation of many-body perturbation theory.

By correcting the DFT band energies at the G0W0 level, a quantitative agreement with

respect to experiments is obtained for the optical spectra of Cu [34] and Ag [35] but not

for Au, for which G0W0 gives very similar results to PBE [36]. For this latter case, the

quasi-particle self-consistent GW (QSGW ) [37, 38] approach is required for the occupied 5d

bands of gold to be lowered in energy by the right amount [36].

A quantitative measure of the accuracy of the simulations can be obtained through the

colour difference ∆E (given in Eq. 9) with respect to experiments. Its average value is

found to be < ∆E >= 6.4. For a more qualitative visual comparison, Fig. 3 shows the

simulated rendering of a metallic surface of elemental gold, osmium and caesium together

with the appearance of experimental samples of the same materials. In gold, the shift of the

reflectivity edge in the simulations with respect to experiments makes the rendered colour

more reddish than the true red-yellow colour of pure gold. On the other hand the bluish

colour of osmium and the yellow colour of caesium are well reproduced by the IPA simula-

tions.

Moreover, as shown in Table 2, the IPA results for the Drude plasma frequency are in good

agreement both with experiments and with previous simulations [25] performed at the same

level of theory for some elemental metals.

From all these results, we conclude that the IPA approach applied on top of PBE band struc-

tures predicts the reflectivity and colour of elemental metals surprisingly well. Although the

colour is not always in quantitative agreement with experiments, the shape and the main
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features of the experimental reflectivity curves are reproduced in elemental metals. These

results are somewhat surprising because it is known that quasi-particle corrections modify

significantly the PBE band structure in metals and the corrections are k-dependent [34, 35]

(i.e. they do not act as a simple scissor operator). Nonetheless, these approximated simu-

lations manage to capture the correct features of the optical constants. This can intuitively

be understood by the fact that the dielectric function is given by the sum of all possible

vertical transitions over all the BZ and small differences in the positions and features of the

bands (like gradient and curvature) are averaged out in the spectra. In the special case of

noble metals, the position of the occupied d bands in PBE is not correct and, since there are

no other allowed interband transitions in that energy range, the onset of interband optical

absorption (i.e. εinter2 (ω)) in PBE is also not at the correct position (similar to the case of

semiconductors for which the PBE band gap is systematically underestimated [20]). On the

other hand, the shape of ε(ω) for noble metals is reasonably well reproduced.

Alloys

In order to validate the theoretical approach used on binary compounds, we first compare the

reflectivity and colour between simulations and experiments for known coloured intermetal-

lic compounds, as previously done for elemental metals. Second, we check the predictive

accuracy of the simulations by studying in noble-metal-based alloys both the trends in re-

flectivity with respect to composition (in Ag-Au and Ag-Cu) and the differences in optical

properties among different types of compounds for a given alloy composition (in Au-Cu and

Ag-Cu).

Intermetallics. We first simulate the reflectivity and colour of intermetallic compounds

that are experimentally known to be coloured. The compounds studied are the purple

AuAl2, blue AuIn2, bluish AuGa2, yellow PtAl2, red PdIn, blue-grey NiSi2 and dark blue

CoSi2 [6, 39]. All these intermetallics have cubic symmetry: AuAl2, AuGa2, AuIn2, PtAl2,

CoSi2 and NiSi2 crystallize in the FCC CaF2 prototype structure (space group Fm3̄m) while

PdIn crystallizes in the BCC CsCl prototype structure (space group Pm3̄m).

As shown in Fig. 4, the experimental shape of the reflectivity curve for the coloured inter-

metallics is well reproduced by the simulations. The colour differences between simulations

and experiments are summarized in Table 3, where the comparison with other first-principles
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simulations [11, 12] is also reported. The agreement with previous simulations is satisfac-

tory and, moreover, we reproduce the true colour of the intermetallic compounds studied

(although the CIELAB brightness is typically overestimated by the simulations). For ex-

ample, the comparison between photorealistic rendering and real material samples clearly

shows that the simulations predict the correct colours of purple AuAl2, bluish AuGa2 and

yellow PtAl2 (see Fig. 5). The characteristic colours of these highly symmetric intermetallic

compounds are due to selective optical absorption in confined regions of the visible spec-

trum [39]. For the gold compounds, the optical absorption inside the visible range is given

by transitions from sp conduction states below the Fermi level to unoccupied states above

the Fermi level. The bands originating from the 5d states of gold, that are problematic in

the study of elemental gold, are located at ∼ 5 eV below the Fermi level and these do not

contribute to the characteristic colours of these compounds [40]. This explains the better

agreement with experiments found for the gold intermetallics compounds compared to the

case of elemental gold.

Au-Ag-Cu. The Au-Ag-Cu system is an ideal test case for the application of the com-

putational approach described above to alloys since (i) several experimental optical data

on this system are available, (ii) its constituent binaries show very different behaviours in

terms of phase stability and so different types of compounds are observed and (iii) it is the

basis of the most common jewellery and dental alloys in use today. Concerning the phase

stability of the constituent binaries, Ag is completely soluble in Au thus Au and Ag form

solid solutions for each composition and no long-range order is observed at low tempera-

tures. Also Au and Cu form solid solutions over all concentrations at high temperatures

but, for certain composition ranges, ordered intermetallic phases can be obtained at lower

temperatures. In particular the known intermetallic compounds are the cubic AuCu3 and

Au3Cu (space group Pm3̄m), the low-temperature phase AuCu(I) (space group P4/mmm)

and the high-temperature phase AuCu(II) (space group Imma). The phase diagram of Ag-

Cu instead exhibits eutectic behaviour with a wide miscibility gap and the system tends to

segregate in phases of nearly pure Ag and pure Cu at room temperature [41].

We study the effect of composition on the reflectivity of the Ag-Au system and compare

experimental data of solid solutions with SQS simulations. Fig. 6 shows that the gradual

shift to lower wavelengths of the reflectivity edge of gold by increasing the Ag content is

reproduced by the simulations. However, as already discussed above for the case of ele-
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mental noble metals, the position of the reflectivity edge in IPA simulations based on PBE

band structures does not correspond to the experimental one, but it is instead systemati-

cally shifted to longer wavelengths for each atomic concentration x considered. Although

the simulations are not in quantitative agreement with experiments, the qualitative trends

in reflectivity, and thus in colour, with respect to the alloy composition of Ag-Au are re-

produced. Similarly, we simulate the optical properties of Ag1−xCux two-phase alloys by

employing the Bruggeman model described above and study also in this system the effect

of composition on the reflectivity. The α and β phases entering in the expression for the

alloy dielectric function εBr(ω) of Eq. 10 are assumed to be elemental Ag and elemental Cu,

respectively. And the dielectric functions of the two constituent elements are taken from the

simulations of elemental metals discussed above. As shown in Fig. 7, Ag additions in Cu

increase the reflectivity at wavelengths shorter than the reflectivity edge of elemental Cu but

do not shift, as it happens in Ag-Au solid solutions, the position of the edge. The Brugge-

man model provides the correct trend with composition but the effect on the drop in the

reflectivity is less evident because the reflectivity edge of elemental Cu in IPA simulations

is less steep than the experimental one. Note that the application of the Bruggeman model

to experimental data of the dielectric function of elemental Ag and elemental Cu gives very

good agreement with experimental data for the two-phase alloy and validates the use of the

model.

Summarizing, for Ag-Au solid solutions, where there is a gradual shift of the reflectivity

edge by varying alloying additions from elemental Au to elemental Ag, the colour of the

alloy changes from red-yellow to yellow, pale greenish-yellow and eventually white of pure

Ag. Au-Cu solid solutions show a similar behaviour [42] and the colour of the alloy changes

from red-yellow to reddish and eventually red of pure Cu. Instead, in Ag-Cu two-phase

alloys there is no shift of the reflectivity edge but, for all wavelengths in the visible range

below the reflectivity edge of elemental Cu, the reflectivity curve rises roughly uniformly so

that the colour of Ag-Cu changes from the red of pure Cu to reddish and then directly to

whitish and white of pure Ag [6].

After considering the effect of composition on the reflectivity of binary alloys, we now study

the effect of different types of compounds for a given fixed atomic concentration x directly on

the dielectric function of the Au-Cu and Ag-Cu systems. Indeed, for Au-Cu at the composi-

tion x = 0.81, experimental data are available in the literature for the optical absorption of
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both the solid solution and the intermetallic compound AuCu3 [42]. Analogously, for Ag-Cu

at the composition x = 0.30, experimental data are available for both a segregated two-phase

sample made of a pure Cu phase and a pure Ag phase, and for a metastable solid solution

obtained by vapor quenching [42]. We compare the optical absorption of the Au1−xCux

solid solution, at x = 0.81 in experiments and at x = 0.75 in simulations, with the opti-

cal absorption of the intermetallic compound appearing around the composition x = 0.75,

i.e. the cubic AuCu3 phase. The purpose of this comparison is to study the differences in

optical properties between ordered and disordered phases. As shown in Fig. 8, the optical

absorption of the intermetallic compound is very similar to the one of the random alloy

with the notable exception of the presence of an additional peak at around 3.6 eV, which is

missing in ε2(ω) for the solid solution. The comparison of the SQS results for the disordered

alloy with the simulated results of the intermetallic compound shows that the simulations

clearly capture this small difference. Nonetheless, we underline that there is no significant

change in the resulting colour between ordered and disordered alloy for this system because

the position of the onset of optical absorption is not modified by the presence of long-range

order, and thus neither is the colour.

Similarly, Fig. 9 reports the comparison between the optical absorption of the Ag1−xCux

two-phase alloy, at x = 0.70 in experiments and at x = 0.75 in simulations, with respect

to that of the metastable solid solution having the same composition. In the two-phase

alloy, where the alloy optical properties are well approximated by a combination of those of

pure Cu and pure Ag (Bruggeman model), we observe two onsets of absorption: the first

one at ∼ 2.1 eV corresponding to the absorption edge of pure Cu and the second one at

∼ 4.0 eV corresponding to the absorption edge of pure Ag. The optical absorption of the

solid solution instead is very similar to the one of pure Ag but, in addition, we observe the

presence of a supplementary broad peak at energies below the onset of absorption of pure

Ag due to Cu impurity states. The SQS results for the solid solution and the results of the

Bruggeman model applied on the IPA dielectric function of elemental Ag and Cu reproduce

the two different trends, although the SQS shows a small blueshift of the peak that follows

the absorption edge of pure Ag which is not observed experimentally.
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DISCUSSION

We have shown that the theoretical methods and approximations considered in this pa-

per, i.e. IPA optical spectra computed on top of the DFT-PBE electronic structure, can

be employed in systematic studies on the optical properties of metals in order to predict

trends in real metallic systems and to help the search for novel materials with specific op-

tical properties, and therefore also colours, by exploring the composition space through the

computational screening of materials [26]. Moreover, this work could help stimulate future

studies aiming to achieve the photorealistic simulation of different types of materials by

means of first-principles techniques. For example, the systematic validation of the approach

performed on elemental metals and binary alloys can be seen as a necessary preliminary

step for the photorealistic simulation of more complex metallic alloys having a larger num-

ber of constituent elements, such as ternaries, quaternaries, etc., which are more relevant

for technological applications (e.g. superalloys and high-entropy alloys).

METHODS

Workflow

All DFT calculations are performed with the Quantum ESPRESSO distribution [43], which

is based on the plane-wave pseudopotential method for the numerical solution of the KS

equations. We use Shirley’s interpolation method [44, 45] as implemented in the SIMPLE

code [46] to evaluate the IPA dielectric function of metals including both interband and in-

traband contributions. Photorealistic rendering is performed with the Mitsuba renderer [47].

Pseudopotentials and plane-wave cutoffs are chosen according to the results of the standard

solid-state pseudopotential (SSSP) protocol [48] in order to have reliable and converged

band structures as the starting ingredients for the evaluation of the IPA dielectric function.

Since the SIMPLE code supports only norm-conserving pseudopotentials, we use optimized

norm-conserving Vanderbilt (ONCV) [49] pseudopotentials from the SG15 [50] and Pseu-

doDojo [51] PBE pseudopotential libraries for all elements considered (see Supplementary

Discussion 2 for more details on the choice of the pseudopotentials from the SSSP database

of tests). For the purpose of automation, the sequence of calculations required by the compu-
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tational approach described in this work is implemented as a workflow within the framework

of the AiiDA [52] infrastructure for computational science. Thanks to this ColourWorkflow

(see Fig. 1), it is possible, giving as input a generic crystal structure, to obtain directly as

output the reflectivity and colour of a given material.

In all simulations, relativistic effects are accounted for at the scalar-relativistic level (see

Supplementary Discussion 3 for an analysis on the effect of spin-orbit coupling on the op-

tical properties of heavy elements) while the IPA dielectric function is always evaluated

by including the non-local contribution of the pseudopotentials in the computation of the

velocity matrix elements, as implemented in SIMPLE.

Elemental metals

All calculations on elemental metals are performed on the ground-state crystal structures at

zero temperature, as provided in Ref. [53]. The equilibrium volume of each structure cor-

responds to the reference PBE value obtained by extensively tested all-electron calculations

for the equation of state [54]. If needed, the crystal structures are reduced to the primitive

cell using the spglib library [55]. Spin-polarization is not included in our calculations. In

the self-consistent DFT calculations for the evaluation of the ground-state density we use a

Monkhorst-Pack grid [56] of 24 × 24 × 24 and a cold smearing [57] of 0.02 Ry. In the non

self-consistent band structure calculations needed for the construction of the Shirley’s basis

we use a uniform k-grid of 2 × 2 × 2 including the seven periodic images of the Γ-point of

the BZ and at least 30 empty conduction bands. From a convergence study on the dielectric

function we decide to employ an interpolation k-grid of 64 × 64 × 64 and η = γ = 0.1 eV

in SIMPLE for each elemental metal considered, with the exception of elemental aluminium

for which, because of a very slow convergence of εinter(ω) with respect to k-points sampling,

the interpolation k-grid used is 80 × 80 × 80 and η is set to 0.2 eV. The Shirley’s basis is

constructed setting the threshold for the Gram-Schmidt orthonormalization algorithm equal

to 0.0075 a.u. (input variable named sb in SIMPLE).
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Alloys

For the simulation of all binary compounds considered, we always use as plane-wave cutoff

the largest value between the plane-wave cutoffs of the two constituent elements, as taken

from Supplementary Table 1. The Shirley’s basis is constructed setting sb = 0.01 a.u. in

SIMPLE and considering a number of empty bands at least equal to the number of occupied

bands. We choose the interpolation k-grid to be used in the evaluation of the dielectric

function in terms of a k-point density, which is defined as the maximum distance between

adjacent k-points along the reciprocal axes (in Å−1). For all the seven cubic intermetallic

compounds considered we select as k-point density 0.04 Å−1. With this choice the number of

k-points included in the uniform k-grids is of the order O(105), which correspond to uniform

k-grids in the range from 46× 46× 46 up to 56× 56× 56.

All the SQSs used in this work to simulate solid solutions of the systems Ag1−xAux,

Au1−xCux and Ag1−xCux are generated with the ATAT package [58, 59]. Since we con-

sider only the simple stoichiometric ratios x = 0.25, 0.5, 0.75, we use small FCC SQSs with

16 atoms per cell. The interpolation k-grid is set according to a k-point density of 0.04 Å−1

(corresponding roughly to 11’000 points in the BZ).
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FIGURES

Figure 1: Schematic representation of the workflow, named ColourWorkflow, designed to
simulate the reflectivity and colour of a metallic material giving as input its crystal

structure.
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Figure 2: Simulated (solid lines) and experimental (dot-dashed lines) reflectivities for 18
elemental metals. Experimental data are taken from Ref. [60]. The two vertical dashed

lines show the limits of the visible range.
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Figure 3: Comparison between the simulated rendering of a metallic surface (left panel)
and real samples (right panel) of pure gold (top), osmium (center) and caesium (bottom).

Photos of the gold and osmium samples are reproduced with the courtesy of Heinrich
Pniok (www-pse-mendelejew.de) and are published under the Free Art License

(http://artlibre.org/licence/lal/en/). Photo of the caesium sample is from the Dennis
“S.K.” collection and is published under the GNU Free Documentation License

(https://www.gnu.org/licenses/fdl.html).
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Figure 4: Simulated (solid lines) and experimental (dashed lines) reflectivities of coloured
intermetallics. Experimental data are taken from Ref. [14] for AuAl2, AuGa2 and AuIn2,
from Ref. [12] for PtAl2, from Ref. [61] for NiSi2 and from Ref. [39] for CoSi2 and PdIn.

The two vertical dashed lines show the limits of the visible range.
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Figure 5: Comparison between the simulated rendering of a metallic surface (left panel)
and real samples (right panel) of the intermetallic compounds AuAl2 (top), AuGa2 (center)
and PtAl2 (bottom). Images of the AuAl2 and AuGa2 samples are adapted from Ref. [62]

while image of the PtAl2 sample is adapted from Ref. [15].
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Figure 6: Comparison of the trends in composition of the reflectivity inside the visible
spectrum for Ag-Au solid solutions between SQS simulations (left panel) and

experiments [63] (right panel). For reference, we also report the reflectivity curves of
elemental Au and elemental Ag (dashed lines). To note that the alloy compositions of

experiments and simulations are not exactly the same.

Figure 7: Comparison of the trends in composition of the reflectivity inside the visible
spectrum for Ag-Cu two-phase alloys between simulations (left panel) and experiments [64]
(right panel). The results of the simulations are obtained using the Bruggeman model in
which the two phases of the system are assumed to be elemental Ag and elemental Cu

(dashed lines).
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Figure 8: Comparison of ε2(ω) for Au1−xCux between simulations (left panel) and
experiments [42] (right panel) for both the solid solution and the intermetallic phase

AuCu3 (at x = 0.75 in the simulations and at x = 0.81 in the experiments). For reference,
we also report ε2(ω) of elemental Cu (dashed lines). Experimental and simulated curves

have been arbitrarily shifted along the vertical axis for clarity in the comparison.

Figure 9: Comparison of ε2(ω) for Ag1−xCux between simulations (left panel) and
experiments [42] (right panel) for both the solid solution and the two-phase alloy (at

x = 0.25 in the simulations and at x = 0.30 in the experiments).
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TABLES

Binary alloys Computational method

Intermetallic compounds Primitive cell

Solid solutions Supercell (SQS)

Heterogeneous alloys Bruggeman model

Table 1: Different types of compounds and corresponding simulation method used in this
work for the first-principles simulation of these systems.

Element This work J. Harl [25] Exp.

Cu 8.8 9.1 8.8, 8.9

Ag 8.9 9.2 8.9 ± 0.2 [65], 8.9

Au 8.6 9.0 8.45 [66], 8.7

Li 6.4 6.5 6.4

Na 6.0 5.9 5.7

Ca 4.1 4.3 5.7

Al 12.5 12.6 12.3 , 12.5

Rh 9.6 10.1

Pd 7.0 7.4

Pt 8.4 8.8

Table 2: Computed values of the IPA Drude plasma frequency ωD (in eV) compared to
previous simulations (J. Harl [25]) and experiments (Exp.). The experimental values with

no explicit reference are extracted from the data reported in Ref. [25]. For transition
metals there are no experimental data available because, due to the presence of interband
transitions even at vanishingly small frequencies, the Drude plasma frequency cannot be

extracted by fitting experimental optical data to the Drude model, even at very low
energies.
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Compound ∆Eexp ∆Esim

AuAl2 11 [14] 8 [12], 4 [11]

AuGa2 2 [14] 1 [11]

AuIn2 4 [14] 1 [11]

PtAl2 12 [12] 2 [12]

CoSi2 3 [39]

NiSi2 5 [61]

PdIn 10 [39]

Table 3: Colour differences in CIELAB space between simulated colours (present work)
and experimental colours [12, 14, 39, 61] derived from reflectivity data, ∆Eexp, and between

simulated colours (present work) and previously published simulations [11, 12], ∆Esim.
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