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Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This micro-
scopic design spans length scales in both synthetic and biological systems. Classic examples include interac-
tions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles,
functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective tran-
sition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or
receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium.
Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent
particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective,
with respect to variation in the number of ligands and receptors on the two objects. When the force is only
applied to particles bound to the surface by one or more ligands, then the transition can become infinitely
sharp and first-order—a new binding regime which we term “hyper-selective”. Force may be imposed by,
e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of
inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical
principle is a step towards “all or nothing” binding selectivity in the design of multivalent constructs.

ent kinds of multivalent particles can be designed to se-

Multivalent particles are microscopic objects that in-
teract with each other by many independent bonding
units, often called “ligands” and “receptors” '8 Multiva-
lent interactions are a potent binding motif due to their
super-selectivity®®, wherein the number of bound mul-
tivalent particles to a target increases sharply with the
density of receptors on the target. Living organisms have
evolved to depend on multivalent binding paradigms in
some of their most delicate and mission-critical pathways,
e.g. chemical communication at and between cell sur-
faces, interactions between biomolecular complexes and
cells, viral/bacterial adhesion, and (extra-)cellular ma-
chinery.

Instances of multivalent interactions span from small
to large length scales. Structures that exhibit multivalent
interaction at small length scales include functionalised
(bio-)polymers? 2 nanoparticles, biological toxins, and
viruses 1919 At larger length scales, cells in living organ-
isms have a multitude of different kinds of receptors on
their surfaces/membranes, which serve as points of com-
munication with the outside world. Interactions between
cells are often multivalent 11341620033 Oy the synthetic
side, classic multivalent constructs include ligand-coated
colloids and vesicles, often employing DNA in order to
finely tune their interactions©%34560 Nixtures of differ-
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quentially self-assemble, or to exhibit remarkably selec-
tive surface adsorption 262856162 However, the kinetics
of multivalent interactions play a strong role in whether
the system reaches equilibrium, or a non-trivial kinetic
steady-state (particularly for strong-binding ligands with
long lifetimes) 28H480209163766

Binding of multivalent particles is a continuous tran-
sition at equilibrium. There are both enthalpic and en-
tropic contributions to their adhesion strength. The en-
thalpic contribution, intuitively, arises from the bonding
between the ligands and receptors. More bonds mean
a larger, more negative, and more favourable enthalpic
contribution to the binding free energy.

The entropic contribution is less obvious. Firstly, lig-
ands and receptors must lose local configurational en-
tropy in order to make a bond. This leads the “effec-
tive” ligand/receptor bond strength to often be lower
than what is observed between the two structures in, for
example, free solution.®® Secondly, there is a favourable
entropic binding contribution to the number of possible
binding permutations that the ligands and receptors may
explore. If the ligands and receptors are short and spaced
far apart, then this entropy reflects the fact that each
bond can be independently bound or unbound. If the
ligands and receptors are long and flexible, then an addi-
tional source of entropy is the number of binding partners
that each entity may have, much like making connections
on a telephone switchboard 61

The permutation entropy becomes larger and more
favourable when there are more ligands and receptors on
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the two multivalent structures. Thus, the binding free
energy AG grows more negative, and the binding prob-
ability grows exponentially larger (since this depends on
exp (—AG/RT)). This rapid growth in the binding prob-
ability with the number of ligands and receptors on the
two objects is referred to as super-selectivity. It is fun-
damentally an entropic effect. For example, monovalent
binders can never exhibit super-selective binding, since
they lack the permutation contribution to their individ-
ual binding free energy. Their bonding strength may only
be modulated by the enthalpy of their (single) bond.

This study examines in detail how the microscopic
thermodynamics of multivalent binding change when me-
chanical force is applied to the particles. In the biological
arena, objects bound to cell surfaces are often exposed to
flow (e.g. in blood vessels) or other sources of force in the
extracellular matrix. Force, via magnetic fields or elec-
tric charges, is also a convenient tool for manipulating
synthetic multivalent systems. The response of a multi-
valent object to force, e.g. using atomic force microscopy
(AFM)'BZZ'{ml or single-molecule force spectroscopy??, can
also serve as a probe for the strength and type of inter-
actions it has with its target.

To motivate our work with a concrete example, con-
sider the Monte Carlo simulation results of multivalent
particle binding in Figure These simulations com-
prise explicit spherical particles (pink) coated with bead-
spring ligands (orange), interacting with a flat surface
with explicit receptors (also orange). Long inert poly-
mers (blue) can also be tethered to the surfaces of the
multivalent particles; the entropic and excluded-volume
repulsion between these polymers and the surface effec-
tively impose a normal force on bound particles when
close to the surface. Coating particles with inert poly-
mers is an example of an equilibrium system that exhibits
a tuneable effective normal force (albeit the coating also
provides a lateral repulsion between the particles). De-
tails of the Monte Carlo model can be found in Ref.

Figure [1] shows simulated adsorption profiles for mul-
tivalent particles with 20 ligands per particle. The black
curve shows the adsorption profile for the particles with
no inert polymers. Adding n = 20 inert polymers grafted
uniformly at random on the particle’s surface (red curve)
serves to increase the sharpness of the adsorption profiles
characterised by the slope or selectivity a. The recep-
tor concentration where the inflection point occurs also
increases. These trends are noted by Wang and Dormi-
dontova in simulations of multivalent particles with a bi-
modal distribution of ligand lengths ™!

This work now develops a quantitative theoretical han-
dle on how applied force affects the selectivity of multi-
valent binding. We also elucidate under which conditions
the binding actually becomes first-order and discontin-
uous. This is a new multivalent binding regime which
we refer to as the “hyper-selective” regime. The transi-
tion is characterised by a discontinuity in the equilibrium
free energy per particle as a function of the number of
receptors on the target surface.
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FIG. 1. Grand canonical Monte Carlo simulations of a lig-
and coated nanoparticle showing the addition of inert poly-
mers increases the binding selectivity. The snapshots corre-
spond to the points indicated by the arrows and demonstrate
the super—selective adsorption behaviour: changing the recep-
tor concentration by a factor 2.7 induces a 9—fold increase in
the adsorbed particle density. The receptors and ligands are
coloured orange, the particles are pink and the inert polymer
are blue/silver. a) the surface density of adsorbed particles
as function of the receptor concentration, the black curve in
corresponds to the reference system and the red curve corre-
sponds to the particles coated with n = 20 inert polymers.
b) the selectivity, i.e., the slope of the curves in a). The
model and algorithm are explained in Ref. Parameters:
ligand-receptor bond energy € = 3kp7, number of ligands
k = 20, inert polymer length length ni, = 5 blobs, the im-
posed chemical potential maintains the particle concentration
in bulk solution at p, = 0.001/0®, with o the particle hard—
core diameter. Lateral system size L, = L, = 100. 0 is
measured in units of .



To start, a model for the equilibrium response of a
bound multivalent particle to a pulling force is derived.
Attention is restricted to the simple scenario of multiva-
lent particles bound to a substrate with mobile receptors
at a fixed non-depleting concentration. We then con-
sider what happens when a constant force is applied to
the particles normal to the surface. A crucial distinc-
tion is made between two cases: first, when both the
unbound and bound particles are exposed to the force
field; and second, when the force field only affects the
bound particles. From our theory, we extract a clear
microphysical understanding of what leads multivalent
particles to exhibit hyper-selective binding, and how the
transition depends on the design and concentration of the
particles. In the conclusions we outline equilibrium and
non-equilbrium strategies for realising enhanced super-
selective and hyper-selective binding.

1. MODEL FOR MULTIVALENT FORCE-EXTENSION
RESPONSE

Consider a multivalent particle with ligands that in-
teract with mobile receptors on an adjacent flat surface.
Components of the model are illustrated in Figure[2] Let
the quantity N, define the number of ligands on a par-
ticle that are within reach of the receptor surface. The
density of receptors on the surface is cg in units of moles
of receptors per b?, where “b” is the distance unit of the
model. We will assume that the receptors cannot be de-
pleted, i.e. they come from a reservoir at fixed surface
concentration cg. Energy units are in terms of RT', where
R is the ideal gas constant and 7" is absolute temperature.

The ligands are treated as Hookian springs with a
spring constant k (in units of energy per squared dis-
tance) and rest length [°. The receptors are considered
to be points on the substrate. The ligand/receptor asso-
clation constant in free solution is denoted Keq (in units
of b3 /mol).

The theory developed in Appendix [A] uses equilibrium
statistical mechanics to predict the quasi-equilibrium
“force versus extension” curve for a multivalent parti-
cle: that is, how the restoring force F(h) depends on the
particle height h. The quasi—equilibrium regime is ob-
tained when the rate at which force is being applied on
the multivalent particles is vanishingly small. As a re-
sult, the system is quasi-static and attention is restricted
only to the quasi-equilibrium thermodynamics.

The starting point for the model is the binding free en-
ergy per ligand. This expression, derived in detail in Ref.
29, takes an equilibrium ensemble average over: a Pois-
son distribution of mobile receptors within the surface
contact area of a multivalent particle; and over all possi-
ble ligand/receptor binding permutations. The resulting

expression has three contributions:

AGﬁg(h’) _ k(h - ZO)2 “In cR[{eq + ACTVijig,cnf(h‘)
h RT ’
(1)

RT 2RT

The first term accounts for the “stretch energy” of the
ligands from their ideal lengths {°. The second term ac-
counts for the strength of the ligand /receptor bond (via
K.q), and the effective molarity cg/h of receptor bind-
ing partners. The third term is the configurational free
energy of the ligand when it is in the bound state, and
confined within the region h between the multivalent par-
ticle and the substrate.

When a ligand is unbound, then the only contribution
to its free energy is its configurational entropy within the

gap h:

RT RT

The precise forms of the configurational free energies
AGH ¢(h) and AGY, ¢(h) are derived and presented
in Appendix [A]

Given the bound- and unbound-state ligand free en-
ergies, the full binding free energy for the multivalent

particle is

AGpina(h) _ N;In (efAGﬁf;(h)/RT I efAGﬁgw)/RT)
RT ’
(3)
representing the fact that each of the Ny ligands on the
particle can be independently bound or unbound. The
height coordinate h corresponding to the minimum of
AGyping(h) is defined to be hmin.

Figure [3| presents plots of the multivalent binding free
energy, AGpinda(h), as a function of the relative separa-
tion distance Az = h — hpin between the receptor sur-
face and the particle exterior. At values of h < Ay,
the free energy grows more unfavourable due to the en-
tropy loss associated with ligand confinement, contained
in AGﬁgcnf(h) and AG{’ig’cnf(h). For values of h > hAmpin
the free energy again grows more unfavourable due to:
a decrease in the average number of bound ligands, and
the stretch free energy associated with the ligands that
are bound (i.e. the first term in Eq. .

In Appendix [Bl we derive a simple approximation for
the multivalent binding free energy profiles when the lig-
ands are strong-binding (i.e. large cpKeq):

AGrina(h) _ - [k(h— 1°)2 o (R "
RT L ToRT B ’

Calculations using this equation are shown in Figure
as dashed lines, defining the relative displacement Az =
h —1° (noting that Ay, = (° in Eq. . We see that
this form well captures the parabolic curvature of the
exact free energy profiles, as well as the scaling of their
minimum values with cpKeq/b.

The restoring force is calculated by taking the gradient
of the binding free energy, dAGpina(h)/dh (ignoring the
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FIG. 2. Illustration of ingredients in the multivalent binding model. Quantities are defined in text.
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FIG. 3. Plots of the multivalent binding free energy, Eq. [3]
as a function of relative separation distance Az between the
receptor surface and multivalent particle exterior. Results are
shown for four choices of overall binding strength, crKeq/b,
given that the multivalent particle has N; = 5 ligands each
with an equilibrium length 1° /b = 3 and stiffness kb?/RT = 1.
Solid lines are numerical calculations using Eq. |3} and dashed
lines are the approximation given by Eq. @

typical negative sign so that our force values are positive).

This is
h)

] (5)
h

The quantity P, 1(h) is the probability that a single lig-
and is bound to a receptor when the multivalent particle
is at height h:

RT dAGbi eni(h
val(h) <k(h - lo) + W + M

F(h) =N, s

dAGHE (k)

g,cnf

+(1 = Pya(h)) dh

o~ DG (h)/RT

Py1(h) = 4 e~ AGh(W)/RT” (6)

o—AGEL(h)/RT

In Appendix [C] we demonstrate that this model repro-

duces the force-dependent bond failure rate anticipated
by the Bell model”

Figure [4] presents a series of force-extension curves for
multivalent binding, predicted by Eq. using various
choices of ligand spring constant k, rest length [°, and
effective binding strength cpKq. All curves present qual-
itatively similar behaviour: the restoring force increases
roughly linearly with displacement Az from the equilib-
rium binding height hni,. At a critical displacement
Az* = h* — hpin, the force-extension curve reaches a
maximum value F'(h*) = F*.

To understand the physical meaning of F* we imagine
carrying out a force experiment on a single multivalent
particle, in which we gradually ramp up the applied force
FLun on the particle. Eventually, the applied force Fyun
will exceed the maximum restoring force F* in the force
response function F(h).

At this force, the particle will spontaneously dissociate
from the receptor surface. This is analogous to the value
of the applied force (stress) at which an elastic mate-
rial fails in a loading experiment. The quantity F™* shall
therefore be referred to as the “rupture force” for the
multivalent particle, and the displacement height Az*
at which this occurs will be referred to as the “rupture
height”.

The rupture force depends on the design of the mul-
tivalent particle. Equation [5[ can be solved numerically
to determine this quantity for any choice of the multiva-
lent design parameters, given a receptor surface density
cr. However, in Appendix [B] we derive the scaling be-
haviour of the rupture height and force for ligands that
are strong-binding;:

K
F* & Ny \/ 2kRT In <ch0 eq) (7)

9RT K.
h*—lozAz*cx\/R];ln (choq> (8)

These expressions provide physical insight into how the
design of a multivalent particle influences its rupture
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FIG. 4. Plots of the restoring force (Eq. [5) as a function of relative separation distance Az between the receptor surface
and multivalent particle exterior. Each panel shows results for four choices of the ligand-receptor binding strength, crKeq/b,
assuming the multivalent particle has Ny = 5 ligands. The ligand rest lengths [° and stiffness kb? /RT are indicated within the

panels.

force.

The numerical calculations in Figure reveal the
trends predicted by Eqs. [7] and [§] Stronger-binding lig-
ands or a larger density of surface receptors (i.e. increas-
ing cpKeq) leads to a larger required pushing force F™
to rupture the particle from the surface. The displace-
ment distance Az* at which rupture occurs also becomes
larger. The left-hand panels of Figure [f] reveal that lig-
ands with a shorter rest length [° serve to increase the
overall rupture force of the multivalent particle, though
this effect is rather small. On the other hand, chang-
ing the stiffness k of the ligands has a substantial effect
on the rupture force and position, as indicated by the
right-hand panels in Figure Less extensible ligands,

i.e. those with a larger k, lead to a much sharper force-
extension curve, a larger required rupture force F*, but
a shorter displacement Az* at which rupture occurs.

I1l. USING FORCE TO OBTAIN ENHANCED
SUPER-SELECTIVE AND HYPER-SELECTIVE BINDING

Applying a constant force to bound multivalent
particles fundamentally alters their surface adsorp-
tion/desorption behaviour. Depending on the magnitude
of the applied force, the binding transition can be tuned
from the standard continuous super-selective profile, to
one that is first-order and discontinuous—a new regime
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FIG. 5. Illustration of the three regimes of multivalent binding discussed in this work, depending on the applied force Fpui.

Details are discussed in text.

which we term “hyper-selective”. This is illustrated in
Figure

The microscopic physics leading to enhanced super-
selective, and hyper-selective, binding are now detailed.
Example calculations are all performed at the nano-meter
length scale, so that the model length scale b =1 nm.

For mathematical simplicity, thermal fluctuations in
particle position normal to the substrate are ignored.
For example, when the particle is at a height h above
the receptor surface, thermal fluctuations will cause the
particle to explore an interval of normal positions dh
around that height coordinate h. We neglect these fluctu-
ations, though noting that the fluctuations grow smaller

for larger multivalent particles with many simultaneous
ligand-receptor bonds. The qualitative influence of these
fluctuations on the multivalent adsorption profile are dis-
cussed in a subsequent section.

A. Equilibrium super-selective binding transition under no
force

Consider a solution of multivalent particles, with a
given concentration [M] (in mol/b?), in contact with a
substrate with receptors at a surface molar density of cg
(in mol/b?). The multivalent particles have a diameter of
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FIG. 6. Multivalent binding free energy per particle (Eq. as a function of relative distance Az = h — hmin of the particle
from the receptor surface, where hmin is the minimum of the curve. Curves are shown for various choices of surface receptor
density cr with zero applied force. Curves coloured blue and red are for choices of receptor density cr that are respectively
before and after the multivalent adsorption transition. The green curve is for the intrinsic transition receptor density c% og-
Black dots indicate the equilibrium binding free energy for each cg. Fixed parameters for these calculations are: [° = 3 nm,
k =1 RT/nm? Nr = 5 ligands, K4 = 1/K.q; = 100 M, and a molar concentration of 10 uM (from which the chemical
potential is calculated via Eq. @
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FIG. 7. Multivalent binding free energy per particle (Eq. without (a) and with (b) the force field contribution given by
Eq. @ as a function of relative distance Az = h — hmin of the particle from the receptor surface. Curves are shown for various
choices of surface receptor density cr, with a low applied force of Fpun = 3 RT/nm. Curves coloured blue, red, and green are
defined in the caption to Figure @ The yellow curve is for the mechanical transition receptor density cx. Black dots indicate
the equilibrium binding free energy for each cr. Curves without a black dot correspond to choices of cr < ck. See Figure |§|
caption for fixed parameters in these calculations.

a, such that their excluded volume is V., = a® (in units
of b%), and the amount of area they occupy when bound
to the substrate is A., = a?. For all examples here we
choose the particle diameter to be a = 5 nm.

Let the chemical potential for the particles in solution,
corresponding to the molarity [M], be u. If the molar
concentration [M] is dilute, then the chemical potential
for the particles in solution is approximately

I
— 9
RT )
where N is Avogadro’s number. Here we chose the
“natural” reference concentration for this system ¢y =

~ In ([M]NAVey),

1/NaV,,, while usually the standard reference is taken:
costd = 1 M. A simple rescaling operation: p = psea +
In(co staVew Na) connects the two definitions.

For purposes of clarity, we also introduce the “surface
receptor count”

NR = CRAea:NA (10)
as the average number of receptors that a bound mul-
tivalent particle can simultaneously reach. This is the
measure of receptor density we employ for the figures in
this section.

The chemical potential p shifts the binding free en-



1
- -
o o o
T
1

1
N
o

Free Energy Change
(in units of RT)

1
w
o

1
N
o

Displacement Az
(in nm)

(a)

50
‘é’, 40
5E
C; w5 30
2 2
:cj § 20
8 £=2
= 10
[ S ———
-2 0 2 4 6
Displacement Az
(in nm)

(b)

FIG. 8. Multivalent binding free energy per particle (Eq. without (a) and with (b) the force field contribution given by
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defined in the caption to Figure @ The yellow curve is for the mechanical transition receptor density cx. Black dots indicate
the equilibrium binding free energy for each cg. Curves without a black dot correspond to choices of cp < cf. See Figure [f]

caption for fixed parameters in these calculations.

ergy of the multivalent particles, Eq. by an additive
constant, leading to the net binding free energy

AG(h) = AGyina(h) — p. (11)
Figure [3] presented examples of these curves, revealing
that they have a distinct minimum AG (hmin) at the equi-
librium binding position Anyi,. This value will be referred
to as AG™",  Changing the chemical potential u, all
other parameters being fixed, adjusts the depth and sign
of the minimum AG™?". For large negative AG™™", the
multivalent particles bind strongly and spontaneously,
while for positive AG™" binding vanishes. Indeed, the
fraction 6 of the receptor surface occupied by bound par-
ticles is determined by the standard Langmuir isotherm:

e—AG™M/RT

= {5 o Ao /AT (12)

For large positive AG™", §# — 0, while in the opposite
limit # — 1. Since the equilibrium binding free energy
AG™?" changes continuously with s, then the adsorp-
tion transition is continuous. The binding curve 6 as a
function of p has the characteristic continuous sigmoidal
shape, and its inflection point occurs near the choice of
1t where AG™in = 0.

In the complementary sense, p can be fixed and the
surface receptor density cp can be varied. Given some
choice of design for the multivalent particles, the chemical
potential 1 defines the critical receptor density cf where
the inflection point of 8(cg) occurs.

For example, Figure [6] displays a series of binding
free energy curves AG(h;cgr) for different cg, all for the
same multivalent particle design and chemical potential
. In each curve, the minimum is indicated by a black

dot. Curves where the minimum is greater than zero are
shown in blue, while those that are less than zero are
red. The green curve is for the choice cg = c§, where
the minimum binding free energy is exactly equal to zero,
corresponding to (c%) = 1/2. The binding profile 6(cg)
is shown in full as the left-most blue curve in Figure [0}
Since the minimum binding free energy passes continu-
ously through zero as a function of cg, then the adsorp-
tion transition shown in Figure [J]is continuous.

B. Shifted super-selective binding transition under weak
force

Applying a constant force Fyun to multivalent particles
at equilibrium leads to two new kinds of control over the
adsorbed amount 6:

1. Foun shifts the equilibrium binding free energy of
the multivalent particles to higher (less negative)
values, so that 6 is lower for a given receptor density

CR;

2. Multivalent particles are only able to bind when the
surface receptor density is sufficiently large, such
that the applied force Fpuy is smaller than the rup-
ture force F*(cg).

Let us initially ignore the latter condition, which can be
safely done when Fj,y is small.

As noted in the Introduction, the force field can be ap-
plied: only to multivalent particles when they are bound;
or to all particles regardless of whether they are bound
or unbound. These are two distinct regimes which lead
to markedly different adsorption/desorption behaviour.
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to 15 RT/nm (red curves). Vertical dashed lines indicate the threshold values of cg for multivalent adsorption at each given
applied force. For choices of Fun > 0 where ¢ < cg .4, the adsorption profile displays two points of interest. The solid
point indicates the intrinsic threshold receptor density c% o, corresponding to where § = 1/2. The open point indicates the
mechanical threshold receptor density ci—below which no particles bind to the surface—and the value of 6 at that receptor
density. For larger pulling forces, the intrinsic threshold receptor density c .q (solid point) vanishes, and the multivalent
binding transition happens at ¢k (open point) in a discontinuous first-order fashion. Fixed parameters for these calculations
are: I° =3 nm, k = 1 RT/nm?, N = 5 ligands, Kq = 1/K., = 100 uM, and a molar concentration of [M] = 10 uM.

To begin, the case where only bound multivalent par-
ticles are exposed to the force field is examined. Ap-
plied force causes bound multivalent particles to move
upward in their free energy landscape, to a new equi-
librium coordinate hey < h* where the gradient of the
binding free energy dAG(h; cg)/dh is equal to Fpyy. The

value of the free energy at he,, given as AG(heq;cr) =
AGeH(cR,Fpun) is now the equilibrium binding free en-
ergy of the multivalent particles within the force field.
Figure [7h presents free energy curves for the same de-

sign parameters as in Figure [6] illustrating how an ap-
plied force pushes the equilibrium binding free energy
away from AG™"(cg), to the new value AG*f(cp, Foun)-
These equilibria are indicated by the black dots in the
figure for each receptor density cg. The multivalent ad-
sorption transition now occurs at the choice of cgp where
the effective binding free energy AG*¥(cg, Foun) = 0,
plotted as the green curve in Figure [7h. This new critical
receptor density is denoted “cy 4", and it is larger than
c%.

RThe fractional coverage of particles on the surface is
calculated by

e—AGe“(Cmeuu)/RT

"1 4 e~ AG*(cr, Fpun)/RT’ (13)

The adsorption profile §(cg) for the parameters employed
in Figure [7h is shown as the third blue curve from the

left in Figure[] The applied force has shifted the adsorp-
tion inflection point to the larger receptor density c% g,
though it largely resembles the adsorption transition at
zero force. The only notable difference is the appearance
of a second point of interest indicated by the open circle,
the subject of the next section.

Since only bound multivalent particles are exposed to
the force field in this regime, then the unbound particles
in the reservoir need not do any work against the force
field in order to approach and bind to the surface. The
applied force therefore does not influence the shape of the
free energy profiles AG(heq; cr) in Figure . The force
only serves to change the equilibrium binding height, and
the equilibrium binding free energy from AG™"(cg) to
AGGH(CRa Fpull)~

Let us now examine the scenario where both bound
and unbound multivalent particles are exposed to the
force field. The simulations presented in the Introduction
in Figure [I] provide a practical example of this. Repul-
sive polymers were tethered onto the multivalent particle
cores, leading to a repulsive normal force when the par-
ticles approach or are bound to the receptor surface.

In this case, the binding free energy for a multivalent
particle at distance h from the surface is shifted by a
contribution from the constant force field of the form

AG field

T —Fpun(h — hpwr)-

(14)



Here, hpy is a reference height which defines the bulk
chemical potential. For example, we can imagine hpyx
to be the height above the surface where the force field
begins. For all h < hpyr, both bound and unbound
particles feel Fpuy, while for h > hp,, the force field is
zero and we recover the bulk chemical potential .

Including this field contribution into the overall mul-
tivalent binding free energy yields the curves shown in
Figure [7p. In those results we have defined “bulk” to be
at hpuik — Pmin = 6, the right-most horizontal coordi-
nate in the figure. We clearly see that the bound-state
free energy equilibria AG*¥(cg, Fpun) for the multivalent
particles within the force field correspond to the local
minima in the curves in Figure [7p.

According to Figure [7p, exposing the unbound parti-
cles to the force field effectively makes their bound-state
free energies more positive (i.e. less favourable) relative
to the chemical potential of the particles in bulk. This is
because an unbound particle must first “pay” the ther-
modynamic free energy cost for approaching the surface
within the force field before it is able to form ligand-
receptor bonds. (On the other hand, if the force field only
applies to particles that are bound by one or more lig-
ands at the surface, then the bound particles retain their
intrinsic free energy landscapes shown in Figure )

The result of including the force field on the unbound
particles, according to the free energy calculations in Fig-
ure[7p, is that the adsorption profile shifts to even larger
values of cr. In fact including the force field for the
unbound particles actually delays the adsorption transi-
tion to values of cy well greater than those included in
the figure. None of the values of cg in Figure [7b yield
an equilibrium binding free energy at the local minimum
that is less than zero. We also saw the shift in the ad-
sorption transition to larger cr in the simulation results
in Figure [} consistent with the theoretical analysis here.

C. Force-induced mechanical transition point &
hyper-selective binding

An external force imposes the strict condition that par-
ticles only bind (or remain bound) to the receptor surface
if the rupture force F*(cg) for the given receptor density
cr is greater than the external force Fyy;. This condition
results in an additional critical value of receptor concen-
tration, which we will call the “mechanical” transition
point cj;. Below c¢§, F*(cr) < Fpun so that no multiva-
lent binding is allowed regardless of the magnitude of the
binding free energy AG®I(cr, Fyuy). Above ck, we have
F*(cr) > Fpun so that multivalent binding is permitted.

Figure presents this idea graphically. The plot
shows, for a given choice of multivalent design param-
eters (I°, Keq, k, Nr), how the rupture force F*(cgr) for
a bound multivalent particle varies with the density cgr
of receptors on the surface. This generally follows Eq. [7]
as derived in Appendix i.e. the rupture force varies
with the square-root of the logarithm of cg. The plot
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FIG. 10. Rupture force F* as a function of surface receptor
count Ng (solid black curve). Three arbitrary examples of
applied forces Fpun are shown by the coloured dashed lines.
The coordinate cg where a horizontal line intersects with the
F*(cr) curve defines the mechanical transition receptor den-
sity ¢k for that given applied force Fpun. Rupture force curve
is computed for multivalent particles with: [° =3 nm, k =6
RT/nm?, Nz =5 ligands, and K4 = 1/K.q = 100 M.

also contains three examples of possible applied forces
FLun, given as horizontal dashed lines. The intersection
coordinate between these lines and the F*(cr) define the
mechanical transition receptor density cy for the given
Fpull-

Thus, for a given choice of nonzero Fyyy, there is the
critical receptor density cj below which no multivalent
binding can occur.

Let us examine this mechanical stability threshold for
systems where the applied force field only affects bound
particles. For the force field magnitude examined in the
previous section, the free energy curve for cp = cj is
plotted in yellow in Figure [Th. The free energy curves
for smaller values of cg lack an equilibrium point marker
(black dot), i.e. nowhere along those curves is the deriva-
tive dAG(h; cg)/dh = 0, and so multivalent binding does
not occur.

The effect of this is to “truncate” the multivalent ad-
sorption profiles in Figure [0] when force is applied. The
open circles indicate the coordinate ¢}, (and correspond-
ing value of 6) below which binding is prohibited. For
low applied force (blue curves), this has only a minor in-
fluence on the adsorption profile; truncation only occurs
well below the intrinsic inflection point c% .g-

On the other hand, applying an increasingly larger
FLun causes the truncation point c}, to creep up the ad-
sorption profile in Figure @ In doing so, cf defines a
discontinuous jump in the adsorbed amount €, from 0 to
a non-zero value.

For sufficiently large force, this truncation point pro-
gresses further along and entirely overtakes the intrinsic
transition c%, 4. This we refer to as the “crossover” point,
where the intrinsic binding threshold c% .4 ceases to exist,
in lieu of the mechanical binding transition point cj. Let



Fgfﬂl be the unique value of the pulling force where this

crossover occurs, and cg = cj = Cg o De the value of the
adsorption threshold receptor densfty at this crossover.

Here, the adsorption of the multivalent particles be-
comes very much like a step-function in receptor density
space, with a critical point at cf. This is clear in the
yellow and red adsorption profiles in Figure [9] For val-
ues of cgr only infinitesimally below c};, the free energy
per multivalent particle is the bulk value, p, and thus
the adsorbed amount 8 = 0. Subsequently, right at cg*,
there is a sudden jump in the free energy per particle to
AG®%(ck, Foun), corresponding to the fact that F*(cg)
is now greater than Fp,1. This causes an instantaneous
jump in the adsorbed amount 6 to the value

efAGeff(c}‘%,Fpun)/RT

*
G(CR) = 1+ e—AGCff(c}‘?,Fpuu)/RT . (15)
We refer to this discontinuous transition as “hyper-
selective” multivalent binding, in order to distinguish it
from the standard continuous super-selective transitions
under weak or no applied force.

To better understand this feature, Figure presents
free energy profiles for a choice of Fj,,;; where binding is in
the hyper-selective regime, keeping all other parameters
the same as in Figures [6|and [7h. The green (¢ 4) tran-
sition point has vanished, and now only the yellow Ch
transition remains. This transition point occurs rather
deep in the free energy landscape. Upon reaching cj,
the position of the binding equilibrium ﬁ:q is such that

the free energy AGH(c%, F,up) is already substantially
non-zero and negative. As a result, for this choice of Fyun
the mechanical transition cj defines the binding transi-
tion of the multivalent particles.

As noted earlier, thermal fluctuations in the multiva-
lent particles’ vertical coordinates h are not incorporated
mathematically in this discussion. However, we can make
a semi-quantitative assessment of how they will influence
the first-order binding regime. When the multivalent par-
ticles are small, and the total binding free energy is on
the order of RT, then thermal fluctuations will tend to
blur the transition back into a second-order process. On
the other hand, for larger particles with larger binding
free energies, the influence of these thermal fluctuations
will diminish.

When the force field is applied to both bound and
unbound particles, the hyper-selective transition is lost.
This can be seen by examining the free energy profiles
shown in Figure Bp, now including the force field contri-
bution. Like in Figure[7p, including the force field on the
unbound particles shifts their bound-state free energies
to more positive values, leading to a shift in the adsorp-
tion transition to larger cg. The hyper-selective binding
transition is lost, since now the equilibrium binding free
energy for c¥ is well above zero.

This underscores a more general point: the hyper-
selective binding regime is only obtained under condi-
tions where the equilibrium binding free energy (rela-
tive to the bulk chemical potential) at ¢} is less than
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zero. This is the case in Figure [8p, when the force field
is only applied to bound particles. However, when the
force field is applied to both bound and unbound par-
ticles as in Figure [Bp, the initial thermodynamic work
that unbound particles must do against the force field in
order to bind to the surface undermines their subsequent
adhesion strength to the surface.

In general, when the force field applies to both bound
and unbound particles, there is no choice of parameters
where the equilibrium binding free energy is less than
zero at cp. Therefore, we believe that a hyper-selective
transition can only be obtained under non-equilibrium
conditions when the force field applies to bound particles
only.

IV. TUNING THE BINDING TRANSITIONS WITH
PARTICLE DESIGN

The previous section revealed three key transition
points for multivalent binding in cg-space, when just the
bound particles are placed in a constant force field Fyy:

1. Intrinsic transition point c%: the critical surface
receptor density where § = 1/2 (i.e. where
AG™n(cg) = 0) for particles under no external
force.

2. Shifted intrinsic transition point ¢ .4t the receptor
density where 6 = 1/2 (i.e. where AG*(cg) = 0)
for particles under force. This transition point only
exists when Fj,, < F;fln.

3. Mechanical transition point c}: the surface recep-
tor density where F*(cr) = Fpun for particles un-
der nonzero force. This transition point exists for
all Fpuu > 0.

This section examines how the transition points vary with
the design of the multivalent particles, as well as their
concentration [M] in solution.

An estimate for how the intrinsic transition point c%
scales with the chemical potential and multivalent de-
sign parameters can be made in the strong-binding ligand
limit using Eq. [d} At zero force, the equilibrium binding
height will be near Ay, = [°. Including the chemical po-
tential term introduced in Eq. and then invoking the
scaling of the chemical potential with the concentration
[M] given by Eq. [0} leads to

AG™™(cg) crKeq 1
— gy~ —NyIn 0 + In 7[M]NA‘/595

(16)
Solving for the value of cg where AG™(cg) = 0 yields

o

) ()0

Next, Eq. [4 can be invoked to determine how the binding
free energy equilibria scale with the applied force Fpy.

Incy ln<
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FIG. 11. Plots of the logarithm of the intrinsic transition point cg .g (expressed as N3 .4 via Eq. as a function of
(Fpun/Ny)?, for various choices of: ligand/receptor dissociation constant Ky = 1/K.q, ligand spring constant k, equilibrium
ligand length [°, number of ligands N, and multivalent particle molar concentration [M] (related to the chemical potential

via Eq. E[)

. Solid lines are numerical calculations, and dashed lines are the predicted scaling according to Eq. Black points

correspond to the choice of (Fypui/Nr)? where c}; is first equal to ¢ ¢ for larger (Fpun/Nz)?, the transition point ¢% ¢ no

longer exists.

The equilibrium binding height of the multivalent parti-
cles shifts to

Foun | o
eq X Af;k +1°,
obtained by combining Eqs. [(and[8] Putting this expres-
sion in for h in Eq. [4 and again including the chemical
potential term yields

AGEH(CRv Fpull)
RT

h

(18)

F? K
pull CRI\eq
~ — Npl
SRTNpk ¢ n( ° >

“(W)

As before, the binding inflection point in cg-space is the
choice of cg where AG*®(cg, Foun) = 0. Thus, we see

(19)

that Fiun effectively shifts the transition point to a larger
value ¢ g > Cp:

o o L (Fpun)’
Incg oq o Incp + BT \ I, (20)

In the absence of any force, the second term goes to zero,
and we recover the standard scaling of c%.

Figure [11| presents a series of plots showing how CRoff
varies with the squared force per ligand, (Fpun/N. 1)?, for
different choices of multivalent particle concentration and
design parameters. The choices of (Fpu/Nz)?> where
Chen Vanishes (i.e. due to being eclipsed by cg) are
shown as black dots. These are the “crossover” points
between the super-selective and hyper-selective binding
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FIG. 12 Plots of the logarithm of cR (expressed as Np via
Eq. as a function of (Fpun/Nz)?, for various choices of
equlhbrlum ligand length [°, ligand spring constant k, and
ligand /receptor dissociation constant K4 =1/Kcq. Solid lines
are numerical calculations, and dashed lines are the predicted
scaling according to Eq. 21} See the caption of Figure [I1] for
additional details.

regimes introduced in the previous section, occurring at

the choice of force F L and located at receptor density

Ch-

Changing K, or [° shifts Incp 4 by a constant, as
predicted by Eq. 20} It also leads only to a change in
cX, with very little change in the crossover force Fpull
In contrast, the ligand elasticity k affects the slope of

Inch ¢ with ( pull/NL)2~ As a result, there is a sig-

nificant variation in the crossover force FX puns With only
marginal change in the corresponding crossover receptor
density c . Finally, changing the number of ligands Ny,
on the partlcles or the partlcle concentration, leads to
variation in both FX Sun and cx, but little change in how
Inch .4 scales with ( Foun/Nyp)2.

We now turn to an examination of the mechanical tran-
sition point cf. In contrast to the intrinsic transition
point, ¢ does not depend on the concentration [M] of
the particles in bulk. This is because c}, is related only to
the gradient of the free energy profile AG(h; cg), whereas
the chemical potential p only shifts all AG(h;cg) values
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by a constant.
Using Eq. [7} we can estimate the scaling of the critical
receptor density c given Fpun:

. 1° 1 (Fou\
lncRo<1n<K )+2kRT< ) . (21)

Thus, cj actually has the same scaling dependence as
Chog O0 Foun and the other multivalent design parame-
tefs, except for the concentration dependence. Figure
presents results for how c}, varies with Fp,y, for various
choices of multivalent design parameters. As expected by
the scaling relation above, changes in [° or K., lead to
vertical shifts in In ¢}, as a function of (F,un/Nr)?, while
changes in the ligand stiffness k cause the slope of the
curve to change.

V. TUNING THE CROSSOVER POINT BY
MULTIVALENT CONCENTRATION

The fact that the intrinsic transition point, but not
the mechanical transition point, depends on the particle
concentration [M] can be used advantageously in exper-
imental design. To understand this, we take a deeper
look at what controls the crossover between the super-
selective and hyper-selective binding regimes.

Consider a fixed multivalent particle design and a given
concentration [M]. At what choice of F,u1 does the me-
chanical transition point ¢}, exactly meet with the intrin-
sic transition point ¢ .47

When the applied force Foun is small, the equilib-
rium binding free energy of the particles to a surface
with receptor density cg is AGeH(cmeuu). The bind-
ing transition inflection point occurs at coRycﬁ, where
AG*(cg, Fpun) = 0. The receptor density c} is the
smallest choice of cg where multivalent binding still oc-
curs given the applied force; for smaller cg, the applied
force is stronger than the rupture force F*(cg), and mul-
tivalent binding is prohibited.

Thus, c}, is the smallest choice of cg in which there is
a coordinate ﬁeq along the free energy curve AG(h;c})
where dAG(h;c};)/dh = 0. This equilibrium free en-
ergy AG(ck, Foun) is large (positive) when the ap-
plied force is small. Increasing the applied force causes
AG*E(ck,, Foun) to decrease towards zero, and ¢, to grow
larger.

Eventually, we reach a particular choice of applied
force—the crossover value Fgfm—where AGE (e, Foun)
“catches up” to AG*®(cg, Fyun), i.e. AG(ck, Foun) =
0. This is precisely the choice of applied force that
yields ¢ = ¢ ¢ For an applied force larger than this
choice, the intrinsic threshold receptor density 3 R dis-
appears since there is no longer a choice of cyp where
AGe (CR, pull) =0.

This concept is illustrated in Figure[I3] The plot shows
examples of ¢ and cj ¢ curves, as a function of the

squared force per ligand (Fpun/N. L)2, for three choices
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FIG. 13. Plots of the logarithm of c% . (expressed as Np ¢
via Eq. as a function of (Fpun/Nz)? for three choices
of multivalent particle concentration [M], given fixed particle
design parameters k, Keq, °, Nr. The logarithm of ck vs.
(Fyu/N1)? is also displayed for this particle design, recalling
that it does not depend on the concentration [M]. The choice
of (Fpuu/NL)2 where ¢}, o = cp for each concentration is in-
dicated by a coloured dot. Receptor densities are expressed as
the average number of receptors within the surface footprint
of a particle.

of the multivalent particle concentration (all else being
fixed). The coloured points indicate the value of applied
force F}fm where cj; becomes equal to and then grows
larger than c% ¢. Clearly, for a fixed multivalent parti-
cle design (i.e. k, K¢q, I°, N1), the multivalent particle
concentration determines this crossover force delineating
the two binding regimes. This is a useful and simple
control in experiment.

Invoking the scaling relations for ¢f ¢ (Eq. and cg
(Eq. to find where Ch.eff = Cg yields no dependence
on Fpu, since that term has the same prefactor in both
cases. If we instead suppose that the two prefactors on
(Fpun/N. 1)? differ by some amount, then we derive

In COR,eff _ C Fpull 2 + i In 1
CE 2kRT NL NL [M]NAV;L ’

(22)

where C is an unknown constant.

For diminishing choices of Fpu1 < Flffﬂl, the left-hand
side of this expression is positive and grows larger. In-
deed, from Figures and [13] we know that the ratio
c°R7eff/ ¢ always gets larger with decreasing force Fpun.
Thus, the constant C must be negative. Pulling out the
negative sign from C to give the positive (still unknown)
constant CT leads to

In 70?2’63 =— C™_ (Fou : + L In 1
ch 2kRT \ Ny, N \[M]NaAVes )
(23)

At the crossover force Fgfm, Chet = Ck» and so the
left-hand side of this equation is zero. Solving for the
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value of (Fgfm /N L) where this occurs yields
o\ 2
Foun ~ 2kRT In < 1 )
Ng Np [M]NAVe;c ’
Notably, the crossover force does not have a dependence

on the ligand/receptor binding constant K., or ligand rest
lenlo. This can be seen in the numerical results in Fig-

(24)

ure|l1} i.e. the values of (Fggl“/NL)2 where cg ¢ vanishes
in the upper-left and bottom panels, respectively.

To understand this feature, we look back to the force-
vs-extension curves in Figure El Notice that K., and [°
have very little influence on the slope of the restoring
force F(h) as a function of displacement Az from the
particle’s equilibrium position. The only change incurred
is a different value of rupture force F**. Because K4 and
[° do not affect the shape of the force-extension curve,
then they do not have an influence on the crossover force
F}ffm. On the other hand, Fgfm does depend on k, since k£
affects the shape of the force-extension curves in Figure
The dependence of the crossover force on k is seen in
the middle left panel of Figure

Inserting Eq. [24] back into the scaling expression for
Chr, in order to estimate the crossover receptor density
ciﬂ yields

[° 1 1
lnchcln< )—i—ln(). 25
R Keq N [M]NAVex ( )

Here, we now see the very clear dependence of ¢35 on the
ligand /receptor binding strength K., and ligand length
[°, as seen in Figure Finally, both [M] and N, ap-
pear in the scaling expressions for both FX, and cX,
and indeed this is observed in the two right-hand panels

in Figure [T1]

VI. DESIGN RULES, EXPERIMENTAL
CONSIDERATIONS, CHALLENGES

This work has theoretically examined the adsorption
thermodynamics of multivalent particles in a force field.
The model consists of a solution of ligand-coated multiva-
lent particles in contact with a flat substrate coated with
point-like mobile receptors at a fixed concentration. A
given receptor may only be bound to at most one ligand
at a given time, and vice-versa. The ligands themselves
are modeled as harmonic springs with a given spring con-
stant and equilibrium rest length.

The force field applies a constant force to the particles
along the normal axis of the receptor-coated substrate.
Focus was placed on distinguishing between the micro-
scopic physics that result when: the force field is applied
only to bound particles; and when the force field is ap-
plied to both bound and unbound particles.

For weak or no applied force, multivalent binding is
super-selective and continuous with respect to the con-
centration of receptors on the surface. A weak applied



force simply shifts the inflection point of the adsorption
curve to larger values of receptor concentration.

At large applied force, multivalent particles may only
bind when the surface receptor density is larger than
a critical value necessary to keep the particles an-
chored within the force field. When the force field is
only applied to bound particles, the multivalent adsorp-
tion/desorption profile exhibits first-order discontinuous
behaviour as a function of receptor density. We refer to
this adsorption behaviour as a hyper-selective binding.
However, under equilibrium conditions, the force field is
placed on all particles in the system, and the adsorption
profile remains a shifted continuous (second-order) tran-
sition albeit sharper.

In experiment, the multivalent particle design is often
fixed by chemistry. Therefore, the most convenient vari-
ables to vary are the molar concentration [M] of the mul-
tivalent particles in solution, and the applied force Fyy.
For the case where only the bound multivalent particles
are susceptible to the force field, these two parameters
drive the binding behaviour into one of three regimes as
follows, summarised in Figure [5}

1. At zero force Fpun, [M] determines the surface re-
ceptor density ¢ where multivalent adsorption oc-
curs. This is standard multivalent binding, hav-
ing a continuous and super-selective binding pro-
file 8(cr) with an inflection point centered near c%,.
The transition point c% is pushed to larger values
by decreasing the bulk multivalent particle concen-
tration.

2. Applying a non-zero force Fyy shifts the binding
transition to a new receptor demsity cg .5 > Cg-
This intrinsic transition point cg .4 grows larger
by increasing the applied force, and smaller by in-
creasing the particle concentration [M]. The force
also defines a mechanical transition point cj; the
receptor density cr on the surface must be larger
than c} for any binding to occur. The mechani-
cal transition point cf, grows larger with increasing
FLun, while it has no dependence on the particle
concentration. From Eq. if [M] and Fpy are
chosen such that

Fpull

\/QkNLRTln (W)

then the force is sufficiently weak and the adsorp-
tion transition is continuous and superselective.

F =

<1, (26)

3. On the other hand, if [M] and Fj,,; are chosen such
that

F>1, (27)

then the force is strong to pull the particle away
from the surface; the binding transition is likely to
be hyper-selective.
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The ligand-receptor binding constant K., (among the
other multivalent design parameters) influences the or-
der of magnitude of surface receptor density where the
crossover from super-selective to hyper-selective binding
occurs. This was noted in the results in Figure|ll]and in
the relation given by Eq.

If K4 is large, i.e. the ligands are strong-binding, then
the crossover to the hyper-selective regime may occur at
vanishingly small surface receptor densities. Conversely,
if K¢q is very small, then the crossover receptor density
may be inaccessibly large.

From Eq. we can derive an estimating factor to
help in diagnosing this limitation:

1° 1 /N
R= ([M]NAVW) . (28)

Here, ¢g is a general magnitude of the surface receptor
density that is accessible in the experiment. When we
choose the value of ¢g to be exactly the crossover receptor
density R is unity. If R > 1, then the input receptor
concentration is well under the crossover value, while the
opposite is true for R < 1.

In practise, the estimating factor R is best be used
by two calculations: once for the lowest accessible cg,
and another time for the largest accessible value. If the
two resulting values of R are sufficiently greater than
and less than unity, respectively, then this means that
the range of receptor densities accessible in experiment
are likely sufficient for catching the crossover from super-
selective to hyper-selective binding when different forces
are applied.

If this is not the case, then the multivalent concentra-
tion [M] is a convenient control parameter for adjusting
the range of receptor densities where the crossover is ex-
pected. Indeed, Eq. indicates how the crossover re-
ceptor density can be made larger (smaller) by decreasing
(increasing) the particle concentration [M] in solution.

A key finding of this study is that hyper-selective bind-
ing is obtained when a force field is applied only to bound
particles. This is analogous to stating that unbound mul-
tivalent particles must be allowed to reach and bind to
the surface without needing to perform thermodynamic
work against the field. This poses a challenge in prac-
tise. We now outline a few experimental scenarios where
hyper-selective binding might be realised.

One possibility is to employ a continuous (slow) flow of
the solution of multivalent particles parallel to the sur-
face, so that particles pulled away by an applied force
are continuously replenished by the flow. Another sce-
nario is to use the surface-parallel flow as the source of
the applied force itself. However, the statistical mechan-
ics of multivalent binding when the applied force vector
is parallel to the surface are substantially more complex
than the present theory considers. For example, ligands
that are highly stretched in a given state may detatch
and rebind to a closer receptor. The particles will thus
“walk” along the surface through successive ligand un-
binding/rebinding events. On the other hand, when the




force is normal to the adsorbing surface, stretched ligands
can only relax by unbinding.

On the side of structural possibilities, we began in the
Introduction at multivalent particles with inert polymers
grafted to their surface. The polymers act as springs,
which effectively impose a constant force on the host mul-
tivalent particle when bound. The magnitude of the force
grows larger with the length of the polymers. The result
is that the binding transition becomes sharper and shifts
to larger values of surface receptor density, as expected
by the present theory.

This recipe as it stands cannot achieve first-order bind-
ing, as a multivalent particle must initially do work
against the “force field”—in this case, the free energy
cost for compressing the inert polymers—in order to form
bonds with the surface receptors. However, we can effec-
tively turn off the force field for unbound particles in this
system by designing the particles to have a “triggered”
release of their inert polymers only when bound to the
surface.

The trigger could be: an external stimulus like a
change in pH or solvent composition, proximity to the
surface receptors (or other surface-bound species), or
binding of the sticky ligands themselves. Once triggered,
the inert polymers would uncoil and expand around their
host particles, effectively “switching on” the imposed
force field for the bound particles. On the other hand,
the particles would be designed so that they retract their
inert polymers into a tightly-coiled configuration around
the particle core when not bound to the surface. In this
way, the force field is only imposed by the inert polymers
once their host particle is surface-bound, and not while
the particle is approaching the surface.

A more detailed treatment of multivalent force re-
sponse would also take into account thermal fluctuations
of the multivalent particles along their free energy land-
scapes (e.g. in Figure|3). For large particles with many
ligand /receptor bonds, the free energy landscapes will be
quite deep, and thermal fluctuations will play a minimal
role. However for small multivalent binders with shallow
binding free energy profiles, fluctuations will tend to blur
the sharpness of the hyper-selective regime.

The majority of the discussion has focused on multi-
valent adsorption. However, the binding can be equiv-
alently examined from the perspective of force-induced
desorption. The present theory may be useful as a start-
ing point for predicting which multivalent particles will
remain bound, under an applied force, on a surface with
a heterogeneous distribution of fixed receptors. For ex-
ample, if the particles have a magnetic dipole, then ac-
tivating a magnetic field gradient will impart a pulling
force on the dipoles. Particles will only remain bound
where the local receptor density is high enough, i.e. the
local rupture force is larger than the applied force. This
theory can be used to predict the necessary threshold
receptor density required for survival.
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Appendix A: Derivation of the multivalent force-responsive
model

Consider a multivalent particle with N ligands that
interact with mobile receptors on an adjacent flat sur-
face. The density of receptors on the surface is cg (in
units of moles of receptors per squared length b), and we
assume that the receptors cannot be depleted. Let z be
the coordinate axis extending orthogonal to the receptor
substrate. Along this axis, we define h to be the distance
between the receptor surface, and the surface of the mul-
tivalent particle to which the ligands are tethered.

The ligands are treated as Hookian springs with a
spring contant of k and rest length of [°, while the re-
ceptors are defined to be mobile points on the substrate.

The ligands have an individual force-extension equation
of

Fligspring(2) = =k (2 = 1°)

where z is their extension length, R is the ideal gas con-
stant, and T is temperature. Thus, the contribution from
this term to the free energy of a ligand when the substrate
and multivalent particle surface are separated by a gap
of size h is

(A1)

Leth— ey,

AG{)ig,spring (h) = 2

(A2)
Ligand /receptor bonding is the second contribution to
the free energy of a ligand. From equilibrium multiva-
lency theory?, this takes the form

AGY - (h
hg,bondlng( ) — _1n (Keq[c]eff(h))-

RT (A3)

where K.q is the ligand/receptor equilibrium constant in
free solution (in units of inverse molarity), and [Cleg(h)
is the effective molarity of the receptors. The effective
molarity is calculated by

c
[Cles(h) = 2. (A4)
Thus, the free energy of each bound ligand is given by
AGﬁg(h) o AG{)ig,spring(h’) ACTV{)ig,bonding(h‘)
RT RT RT
_ k(h —1°)? crKeq
= “orr Db (h : (45)



The full equilibrium partition function for the multivalent
particle when bound to the receptor surface is thus

Nr
Qu(h) = (1 + e~ AGhM/RT) T (A6)

This partition function represents the fact that each of
the Np ligands on the surface can be independently
bound or unbound to a receptor. The binding free energy
of the whole multivalent particle is therefore

A
AGh) _ _ InQy(h) = —NpIn (1 + e_AGIb‘g(h)/RT)
RT
(A7)
The external force required to push the particle to some
displacement h is the gradient of this free energy of bind-

ing as a function of displacement height h:

F(h) _ d(AGy(h)/RT)
RT dh
e—AG{’ig(h)/RT k(h —1°) 1
= NL “AGY (h)/RT 7
1 +e lig RT h

e

A point of concern here is that as h approaches 0—i.e. as
we push the particle towards the adsorbing surface—the
effective molarity contribution to the ligand binding free
energy in Eq. [AF diverges to infinity. This will never be
out-competed by the ligand stretch free energy, Eq.
The result is that AGp(h) grows infinitely deep at h = 0,
which is not physical.

The origin of this problem is that Eq. [A7]is missing
a repulsive free energy contribution for the loss of ligand
configurational entropy, which grows substantial when h
becomes small compared to [°. To combat this, we must
implement an additional potential.

We define this potential to be the entropic penalty for
the ligands to be confined within the space h between
the substrate and multivalent particle exterior!t’ There
are three scenarios to be considered. The first is what
we define as the reference state of a ligand: when it is
unbound given that the multivalent particle is at infinite
distance from the surface (i.e. h = 00). The next case is
when the ligand is unbound and the multivalent particle
is positioned at h, and the last case is when the ligand is
bound to a receptor and the host particle is at distance
h. We now consider these three scenarios in turn.

A ligand is treated as two equally-sized pieces, each
with rest length [°/2 and a spring constant of ks, = 2k
(the latter following from Hookian springs in series). One
subsection is attached to the multivalent particle, and
the other is imagined to be attached to a receptor on the
substrate. (This is equivalent to taking the perspective
where the receptors are now flexible entities with rest
length 1°/2 and spring constant kg,p.) The two remain-
ing ends of the subsections are dangling, referred to as
“binding tips”.

The probability distribution for the binding tip of one
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ligand subsection is

(A9)

For mathematical simplicity, we restrict the configura-
tional freedom of the binding tips to only lie in the z
axis. When the multivalent particle is infinitely far from
the receptor surface, then the configurational integral for
the two subsections of a ligand is

o0 2
w={ [ Pt as)
0
1 ° |k ’
The integral is squared because both of the ligand sub-
sections are configurationally independent of each other.
Obviously Z:, is just the reference state, and so it has

no dependence on the particle-surface separation h. Note
that the error function erf (x) is defined in the standard

way to be
4 x
erf (z) = \/7/ et dt.
T Jo

Next, when the multivalent particle is at h, then the bind-
ing tips of the ligand subsections must reside between
between z =0 and z = h:

) )
Zy(h) = < /0 P (2) dz)
o (5r) o (- 5) Vi)

This leads us to the definition of the configurational free
energy for an unbound ligand, relative to when the mul-
tivalent particle is at infinite distance from the surface:

AGﬁg,cnf<h) =_1n Zub(h)
RT  ~ ze, )

(A10)

(A11)

}2.

(A12)

(A13)

When a ligand is bound to a receptor, then this is equiv-
alent to when the binding tips of the two ligand subsec-
tions are constrained to lie at the same coordinate z:

h
Zy(h) = / Aw x Pyp(2) Piip(h — 2) dz
0

. k(h—1°)? X\/mw’z ot \/kh2
P 9RT 27 RT 9RT

(Al4)
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FIG. 14. Plots of the restoring force with (Eq. solid lines) and without (Eq. dashed lines) ligand repulsion, as a
function of relative separation distance Az between the multivalent particle and the receptor surface. Each panel shows results
for four choices of the effective ligand-receptor binding strength, crKeq/b. Results for different choices of initial equilibrium
binding height hpina/b, and ligand length N, are also given. All plots consider multivalent particles with Nz = 5 ligands.

where Aw is the necessary distance (in units of b) be-
tween the two binding tips for them to be considered
“bound”, taking the role of a “localisation length”. We
will assume that this is unity throughout.

We see that this approach of dividing the ligands into
two subsections naturally yields our original spring term
for the full ligand, exp[—k(h —1°)?/2RT], which was
placed into the bound ligand partition function in Eq.
[A2] The error function then properly accounts for the
configurational space of the ligand within the gap h be-
tween the receptor substrate and multivalent particle sur-

face. Maintaining our definition for AGY, (. (h) as

above, then the configurational entropy of a bound lig-
and is defined to be just the residual part in Z,(h) not
contained in AG?, (h):

lig,spring

AGhgenh) _ (Zb(h)) N

RT z, RT

The repulsive ligand potentials AG{)ig,cnf and AGﬁg}cnf
can now be incorporated into the total ligand free ener-

gies, so that they read
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AGﬁg(h‘) o AC;({)ig,spring(h) + AC”Ylig,bonding(h) + AG{)ig,cnf(h)
RT RT RT RT
k(b —1°)? crKeq [kAw? kh? .
=37~ In ( W —In 5 RT erf SRT +InZ,, (A16)
AGﬁg(h’) AGﬁg cnf(h’) 1 [° / k ° \/T o

This leads to the multivalent particle binding free energy
analogous to Eq. [AT}

AGy(h) _
o = —nQu(h)

Nyl (¢ SCHIRT 4 -8GH0)/RT) (a1

The equation for the restoring force of the multivalent
particle is obtained by

(20

= NL X [Pb’l(h)Fb(h) — (1 — Pb,l(h))Fub(h)] .

(A19)

Here, the single-ligand binding probability P, q(h) is
given by

e—AG{;g(h)/RT

P, = A2
b1(h) e~ AGHE(W)/RT + e~ AGH(W)/RT’ (A20)
and the two contributions to the force are
kh? 2kAw?
k(h—1°) 1 P (_QRT) mRT
Ey(h) = g + - — (A21)
RT h ¢ Lh2
er 2RT

Ak
Fuh) =\ 777
°© ub o
s exp [_ (k;(h — Ly AGE(h) - RTIn zub>

RT 2RT

(A22)

Figure [14] shows examples of multivalent force-extension
curves with and without the repulsive ligand potentials.
For ease of comparison, we plot results as a function of
the relative displacement variable Az. For the calcula-
tions without the ligand repulsion terms, Az = h—1[°; for
those with the repulsion terms, we define Az = h — hpyin,
where hpi, is the height coordinate that minimizes the
binding free energy AG,/RT (i.e. Eq. .

The ligand repulsion free energy terms adjust the be-
haviour of the force-extension curves at low displace-
ments Az, so that they don’t unphysically diverge as the
multivalent particle draws next to the receptor surface.
(This is particularly notable in the upper-left panel of

(

Figure ) However, the ligand repulsion terms have lit-
tle influence on the relevant portion of the force-extension
curve, near the rupture point. Comparing the dashed
and solid curves in Figure [14] reveals that both the mag-
nitudes F* and coordinates h* for rupture change little,
except when particle binding is very weak.

Appendix B: Approximate equation for the rupture force F*

In this section we examine the scaling behaviour of
F* for large overall ligand binding strength cgrK.q. The
condition for the binding height h* where rupture oc-
curs, i.e. dF'(h)/dh =0, cannot be obtained analytically
in general. To make progress, we make the following as-
sumptions and approximations:

1. Dissociation of the multivalent particle occurs when
the probability that a single ligand is bound,
Py p(h), decreases to a critical value Py (h)* that
is independent of the input parameters for the sys-
tem.

2. The dissociation distance h* is sufficiently large
that the ligand repulsion terms, AG{)ig,cnf and

AGHb

lig,cnfs are nearly zero

Under these approximations, then

a(h)
Pyy(h) ~ T+ ah) (B1)
where
_ k(h=1°)2
w(n) = Bt T (B2)

Thus, choosing a critical value of P; ;(h) implies choosing
a critical value of the quantity ¢,(h). Let this be called
¢; (h), and the corresponding value of h where this is
reached h*. The expression for ¢,(h) can be rewritten to
* 042
g h*  crKeqe™ s

le l°

(B3)

The left-hand side can now be considered a scaled thresh-
old value of ¢; = ¢;h*/l°. This equation can be solve



explicitly for h* appearing on the RHS to yield

2RT K
W =1°+ 2RT In ( SEZea -
k l°-q

To calculate the rupture force F* that this h* corre-
sponds to, we note that for values of h before h*, Eq.
is well-described for increasingly large crKeq by

F(h) k(h—1°)\ kAz

}HNM<}H =N\ &r )
This is demonstrated in Figure[I5] Inserting the approx-
imation for h* (Eq. into this expression yields

F* 2k crKe

~ Npy| =1 1
RT LVRTH<P-ﬁ)
This result is compared to the true rupture forces in Fig-

ure We see that the approximate form properly cap-
tures the scaling of F* with k (panel b)

In br” x 1ln k—bZ
RT 2 RT )’
over all ranges of those variables, for both large and small
values of the effective ligand/receptor binding strength

crKeq/1°. Proper scaling of the approximate equation
with cgKeq/l° in panel (a),

bF* cpKeq
In (RT) x In [ln <l°)]

is only reached when cpKcq/l° grows large.

(B4)

(B5)

(B6)

(B7)

(B8)

Appendix C: Verifying Bell force response

The Bell modelt describes the failure rate of individual
ligand-receptor bonds in multivalent interactions, as a
function of the force F' pulling the two host objects apart.
When the two multivalent objects are connected by N
bonds, then the failure rate scales as

failure rate oc e?VF/NekT

(C1)
where «y is a force-response parameter. The failure rate
grows exponentially with the applied force F/N, per
bond.

In our present model, the characteristic failure time
of an individual bond is the average time that it takes
for the ligand to become unbound, counting from the
time when it first formed the bond. As our model does
not explicitly consider dynamics, the failure time may
approximated as the reciprocal of the probability that
a ligand is unbound. This is equivalent to saying that
the ensemble-averaged failure rate is measured by the
probability that a ligand is unbound at any given time,
given that it was bound beforehand.
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FIG. 15. Plots of the true (Eq. and approximate (Eq.
restoring force as a function of relative separation dis-
tance Az between a multivalent particle and the receptor
surface. For the “true” data, this distance quantity is de-
fined as Az = h — hmin, where hmin is the height coordinate
that minimizes the binding free energy AGy(h)/RT (i.e. Eq.
IA18). For the “approximate” results, Az = h —[°. From
top to bottom, effective ligand-receptor binding strengths are
crKeq/b = 10, 10, and 10°. All plots consider multivalent
particles with N, = 10 ligands each with a spring constant of
kb?*/RT = 1.

Mathematically, this is defined as

failure rate =~ 1 — P, 1(f). (C2)
Here, P, 1(f) is the probability that a given ligand is
bound, and f = F/Ny is the pulling force per ligand.
Equation |§| expresses P, 1 as a function of the displace-
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FIG. 16. Logarithm of the true (solid points) and approxi-
mate (dashed lines) rupture force bF*/RT, as a function of:
(a) the double logarithm of crKeq/1°; (b) the log of the ligand
stiffness constant kb?/RT (b). The true results are obtained
from the full theory, by numerically maximising Eq.
while the approximations are computed analytically by Eq.
(in a) and (in b). Parameters for each set of calcula-
tions are given within the plots.

ment height h of the multivalent particle, though via Eq.
this quantity may be calculated as a function of the
applied total force F' on the particle.

If our model is to exhibit Bell behaviour, then we
should expect

In[1 —Pyy ()] o< f (C3)

according to Eq. [CI] Figure [I7] presents plots of the
left- and right-hand side quantities in this expression, for
weak to strong binding ligands. The figure makes ap-
parent, particularly for strong-binding ligands, the linear
dependence between In (1 — Py (f)) and the force per
ligand f. Our model therefore behaves in accord with
the Bell theory.
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FIG. 17. Logarithm of the probability that a ligand is un-
bound, as a function of the pulling force per ligand. Results
are shown for four choices of the effective ligand-receptor bind-
ing constant crKeq/1°; additional parameters are given in the
figure.
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