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We investigate the short-time evolution of the half filled one-dimensional extended Hubbard model
in the strong-coupling regime, driven by a transient laser pump. Combining twisted boundary
conditions with the time-dependent Lanczos technique, we obtain snapshots of the single-particle
spectral function with high momentum resolution. The analysis of the oscillations of the spectral
function shows that its characteristic frequencies are consistent with the magnitudes of the optical
gap. Furthermore, we examine the time-evolving spectral structure in the charge-density-wave
phase in detail, and find that one of the bands in the single-particle spectrum originates from the
photoinduced bond-order background.

I. INTRODUCTION

Investigations on nonequilibrium processes can pro-
vide new enlightening information on dynamical prop-
erties of strongly correlated systems. Well-known exam-
ples are the pump-probe optical measurements that can
unravel to some extent the complex entanglement of var-
ious degrees of freedom on ultrafast time-scales. This
is largely attributed to the development of time-resolved
spectroscopy techniques, such as time- and angle-resolved
photoemission spectroscopy (trARPES), and transient
transmissivity and reflectivity measurements.

In addition, photo-irradiation techniques, including
the application of either strong electric fields or tran-
sient laser pulses, can lead to the observation of rich dy-
namics, such as insulator-to-metal and even insulator-
to-superconductor transitions [1–7]. In underdoped
cuprates, light-induced and light-enhanced supercon-
ductivity has attracted much attention as well [8–10].
More recently, the optical enhancement of bond-order
wave has been investigated on the extended Hubbard
model [11, 12]. We note that by tuning the parame-
ters of the pumping pulse, the emergent dimerization
can be of purely electronic origin, i.e., it is not associ-
ated with electron-lattice couplings as observed in alkali-
TCNQ compounds [13, 14].

The trARPES is becoming a powerful tool for examin-
ing ultrafast phenomena in strongly correlated systems,
such as gap collapse and reformation after photoexci-
tation [15–18]. However, theoretical and numerical in-
vestigations of trARPES are quite demanding and chal-
lenging due to the dual difficulty presented by quan-
tum correlation and nonequilibrium effects. At present,
there are mainly two ways to obtain time-resolved single-
particle spectra that can be compared with trARPES
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data. One is to use nonequilibrium Green’s functions,
i.e., the Keldysh formalism, to address the nonequilib-
rium issue. The correlation effects are tackled by com-
bining other methods, e.g., the equations of motion or
the dynamical mean-field theory [19–24]. An alternative
and perhaps more straightforward way relies on unbiased
numerical methods, for instance, the time-dependent ex-
act diagonalization (ED). However due to the severe con-
straint on system size in ED, the (time-dependent) cor-
relation functions in the momentum space can only be
defined at discrete points if the periodic boundary con-
dition (BC) is imposed [25]. One way to overcome this
discreteness is to introduce twisted BCs, which have al-
ready been widely used in equilibrium ED calculations,
e.g., see Refs. 26–28.

In this paper, we propose an ED method that en-
ables us to obtain the time-dependent single-particle
spectral function with high momentum resolution. We
then employ it to investigate the nonequilibrium pump-
probe properties of the one-dimensional extended Hub-
bard model (1D EHM) at half filling, where the ground-
state phase diagram in the strong-coupling regime is com-
posed of two phases: a spin-density wave (SDW) phase
and a charge-density wave (CDW) phase. We find that
in both phases, the oscillation frequency of the spec-
tral weight in the time-dependent single-particle spectral
function is consistent with the magnitude of the opti-
cal gap. Further in the CDW phase, a photoinduced
enhancement is observed in one of two electron-removal
bands, accompanied with the appearance of the elusive
bond-order-wave (BOW) order [29–34] in the photoex-
cited state [11]. This phenomenon may serve as a char-
acteristic indication of the existence of the hidden BOW
order in the excited states of the system.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and numerical methods employed
to calculate the time-dependent single-particle spectral
function and the optical conductivity. After discussions
on equilibrium features, including those near a SDW-
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CDW boundary, analyses on nonequilibrium dynamics
driven by a pumping pulse is carried through in Sec. III.
The conclusion is given in Sec. IV.

II. MODEL AND METHOD

The 1D EHM at half filling reads

H = −th
∑
i,σ

(
c†i,σci+1,σ + H.c.

)
+ U

∑
i

(
ni,↑ −

1

2

)

×
(
ni,↓ −

1

2

)
+ V

∑
i

(ni − 1) (ni+1 − 1) , (1)

where c†i,σ (ci,σ) is the creation (annihilation) operator of
an electron at site i with spin σ =↑, ↓, and the number op-
erator of electrons ni = ni,↑+ni,↓, th is the hopping con-
stant, and U and V are the on-site and nearest-neighbor
Coulomb repulsion strengths, respectively. In the rest of
the paper, we use units with e = ~ = c = 1, and the
lattice spacing a0 = 1. In these units, th and th

−1 are
set to be the unit of energy and time, respectively.

Throughout the paper, we restrict ourselves to zero
temperature. We are especially interested in the single-
particle spectral function I(k, ω) and its time-dependent
version I(k, ω, t). Note that, for a 1D chain of length L,
if the standard periodic boundary condition is used, the
set of allowed momenta in the first Brillouin zone reads
K = {kl = 2πl/L, l = 0, 1, . . . , L − 1}. To estimate the
spectral value at other momenta, e.g., kl + κ with κ dif-
fering from the given set, a twisted BC can be employed,
which equivalently results in the following transformation
on the Hamiltonian (1) [26–28]:

c†i,σci+1,σ + H.c.→ eiκc†i,σci+1,σ + H.c.. (2)

Note that the electronic operators still satisfy the peri-
odic BC, i.e., ci+L,σ = ci,σ for instance.

We now move to the detailed expressions of the single-
particle spectral function I(k, ω). First we separate
I(k, ω) into two parts:

I(k, ω) = I+(k, ω) + I−(k, ω), (3)

with

I+(k, ω) =
∑
m,σ

∣∣∣〈Ψκ
m|c†k∗,σ|Ψκ

0 〉
∣∣∣2 δ(ω − (Eκm − Eκ0 )− µκ)

= − 1
π Im

(∑
σ
〈Ψκ

0 |ck∗,σ 1
ω−(Hκ−Eκ0 )−µκ−iη c

†
k∗,σ
|Ψκ

0 〉
)

(4)

and

I−(k, ω) =
∑
m,σ
|〈Ψκ

m|ck∗,σ|Ψκ
0 〉|2 δ(ω + (Eκm − Eκ0 )− µκ)

= − 1
π Im

(∑
σ
〈Ψκ

0 |c†k∗,σ
1

ω+(Hκ−Eκ0 )−µκ−iη ck∗,σ|Ψ
κ
0 〉
)
.(5)

I+ (I−) is the so-called electron-addition (electron-

removal) spectral function, where c†k∗,σ (ck∗,σ) is the

Fourier transformation of c†i,σ (ci,σ) at k∗ ∈ K. The re-
sulting momentum k is given by k∗ with a displacement
of κ /∈ K, i.e., k = k∗ + κ. Regarding a given κ and the
corresponding Hamiltonian Hκ whose hopping terms are
modified in Eq. (2), Ψκ

0 and Ψκ
m represent the ground

state and an intermediate m-state, with energy Eκ0 and
Eκm, respectively. Note that we always have the chemical
potential µκ = 0 since only the half filling case is consid-
ered throughout the paper. η is the spectral broadening
factor and set to be 0.2 in the calculations.

The external electric field during photoirradiation can
be included into the Hamiltonian via the Peierls substi-
tution in the hopping terms:

c†i,σci+1,σ + H.c.→ eiA(t)c†i,σci+1,σ + H.c., (6)

where A(t) is the vector potential of the applied (spatially
uniform) ultrafast pulse. In this paper we use the form

A(t) = A0e
−(t−t0)2/2t2d cos [ω0 (t− t0)] (7)

to imitate the ultrafast pulses, where the temporal enve-
lope of A(t) centered at t0 is taken to be Gaussian. The
parameter td controls its width, and ω0 is the central
frequency of the electromagnetic wave.

The Peierls substitution in Eq. (6) can be generalized
to incorporate the twisted BC imposed in Eq. (2):

c†i,σci+1,σ + H.c.→ eiA(t)eiκc†i,σci+1,σ + H.c.. (8)

The generalization enables us to simulate the evolution
starting from the κ-dependent initial state |Ψκ(0)〉 under
the influence of A(t) [the resulting state is simply denoted
as |Ψκ(t)〉], by employing the standard time-dependent
Lanczos method [35]. Then, by the substitution of |Ψκ

0 〉
in Eqs. (4) and (5) with |Ψκ(t)〉, and Hκ with Hκ(t), the
quantity I(k, ω, t), which measures the single-particle ex-
citation with respect to nonequilibrium states, can be cal-
culated. Note that Eκ0 in Eqs. (4) and (5) should also be
replaced by Eκ(t) = 〈Ψκ(t)|H|Ψκ(t)〉 in time-dependent
calculations.

In this paper, in addition to the single-particle spec-
trum I(k, ω, t), the time-resolved optical conductivity
σ(ω, t) is also investigated. To obtain σ(ω, t), we adopt
the method derived rigorously from linear-response the-
ory, which is in fact equivalent to the pump-probe
method with δ-like probing pulse [36, 37]. Here the time-
resolved optical conductivity is defined as

σ(ω, t) =

∫ +∞

0

σ(t+ s, t)ei(ω+iδ)s ds. (9)

In our numerical simulations, the integration cutoff for
s is taken to be several hundred time units. The broad-
ening factor δ is set to be 1/L. The response function
σ(t′, t) (with restriction t′ ≥ t) reads

σ(t′, t) =
1

L

[
〈ψ(t′)|τ |ψ(t′)〉+

∫ t′

t

χ(t′, t′′) dt′′

]
. (10)
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The first term in the above equation is the so-called
diamagnetic term, which is proportional to the expec-
tation value of the 1D stress tensor operator τ =

th
∑
i,σ

(c†i,σci+1,σ + H.c.). The second term is the two-time

susceptibility

χ(t′, t′′) = −iθ(t′ − t′′)〈ψ(t)|[jI(t′), jI(t′′)]|ψ(t)〉, (11)

where the interaction representation of the current op-
erator reads jI(t′) = U†(t′, t) j U(t′, t), with U(t′, t) to
be the time-evolution operator in the absence of probing
perturbations. Note that, due to the absence of time-
translation invariance, the formalism is always marked
by two time arguments. More details can be found in
Ref. [36].

Before closing this section, we have a few words for the
time-dependent Lanczos method, which is employed to
trace the evolution of a wave function under the influence
of a Hamiltonian H(t). The key formula is [35]

|ψ(t+ δt)〉 = e−iH(t)δt|ψ(t)〉 '
M∑
l=1

e−iεlδt|φl〉〈φl|ψ(t)〉,

(12)
where εl and |φl〉 are the eigenvalues and eigenvectors
of the M -dimensional Krylov subspace generated in the
Lanczos process, respectively. Note that in the Taylor-
series expansion of e−iH(t)δt, the powers of H(t) that de-
termine the orders of the Lanczos iteration, match those
of δt. It means that with smaller δt, the required size of
the Krylov space M can be reduced. For the time step
δt = 0.02, we choose M = 30 to ensure the convergence
of numerical results.

We set the on-site repulsion U = 10.0 in order to
restrict our system in the strong-coupling regime. The
central frequency of the pumping pulse ω0 in Eq. (7) is
always tuned to match the leading absorption peak in
the equilibrium optical conductivity. The results are pre-
sented mainly on lattice size L = 10 (except for finite-size
scaling analysis). In the following discussions, the vari-
able t in both I(k, ω, t) and σ(ω, t) are usually denoted
as ∆t, specifying the difference between the measuring
and pumping times.

III. RESULTS AND DISCUSSIONS

A. I(k, ω) in equilibrium

Before going to the issue of pump-probe dynamics, let
us first examine I(k, ω), the single-particle spectral func-
tion in equilibrium (zero temperature) for the half filled
EHM. The results with L = 10, U = 10.0 and several
V ’s are shown in Fig. 1, which cover the SDW phase
and the CDW phase in the strong-coupling regime. We
note that the spectra below (above) the Fermi energy
EF , i.e., ω = 0, are exclusively composed of I−(k, ω)
[I+(k, ω)], in which a Lorentzian broadening of 0.2 is in-
troduced in the ω space. With increasing V from 0.0 to
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FIG. 1. (Color online) The equilibrium single-particle spectral
function I(k, ω) for the half filled EHM with U = 10.0, and
(a) V = 0.0, (b) V = 3.0, (c) V = 5.1, (d) V = 5.2, (e)
V = 6.0, and (f) V = 7.0, respectively.

5.1 in Figs. 1(a)-1(c), the single-particle gap decreases.
With further increasing V in Figs. 1(d)-1(f), the gap in-
creases. The minimum gap size is observed at V = 5.1,
which indicates a first-order phase transition from SDW
to CDW. More details can be found in the later discus-
sions on Fig. 2.

From Fig. 1, we can also observe that the single-
particle spectra show distinct features in the SDW and
CDW phases. In SDW with small nearest-neighbor re-
pulsion V as shown in Figs. 1(a) and 1(b), the upper and
lower Hubbard bands are composed of some interlaced
“stripes”. The “striped” structure is due to finite-size ef-
fects and has been addressed in Refs. 38–40. What hap-
pens in the thermodynamic limit is that the “stripes”
will develop into two spinon and holon branches, as the
consequence of spin-charge separation in 1D electronic
systems [40–43]. The fundamental structure in the SDW
side is preserved even close to the phase boundary, as
indicated in Fig. 1(c).

The spectral features in CDW are different from those
in SDW. For V = 5.2, the upper (lower) Hubbard band is
substantially split into two separated bands as the system
moves into the CDW phase [Fig. 1(d)]. For convenience,
we focus on the two bands below the Fermi energy EF
and refer to the one closer to the Fermi surface as band I
and the other as band II (similar discussions can be ap-
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FIG. 2. (Color online) (a) The real part of the zero-
temperature optical conductivity Reσ(ω) of the half filled
EHM with U = 10.0 and V ranging from 4.2 to 6.0. (b) The
estimation of the Drude weight obtained by the optical sum
rule. The inset shows the finite-size scaling for V = 5.0, 5.1
and 5.2 with L = 6, 10, 14 and 18. (c) Five lowest-lying en-
ergy levels with respect to the change of V from 4.0 to 6.0
for L = 10. (d) The comparison of the V dependence of the
optical gap obtained from Reσ(ω) and the single-particle gap
estimated by I(k, ω). To pin down the critical point, the V
spacing is set to be 0.1 for V ∈ [4.0, 6.0].

plied to the bands above the Fermi energy). With further
increase of V , the two bands become flatter, accompanied
by a redistribution of the spectral weight. More specifi-
cally, from Figs. 1(e) and 1(f), we can see that the band I
gains more weight and becomes brighter, while the band
II loses weight and becomes darker. At V = 7.0 deep into
the CDW phase, the band II is almost invisible with only
a small amount of spectral weight remaining. We have
checked larger systems with size L = 14 and got consis-
tent results. We will return to the issue of the origin of
the two-band structure in a later discussion.

To examine the critical-like features near the SDW-
CDW phase boundary, we provide in Fig. 2 some detailed
analysis. First, in Fig. 2(a), the real parts of the opti-
cal conductivity Reσ(ω) are presented for V ∈ [4.2, 6.0].
The conductivity is calculated by a pump-probe method
described in Ref. 37, which is capable of capturing a crit-
ical behavior at ω = 0 (i.e., the Drude component). Here
we would like to note that even for an insulator, the
Drude weight D can be finite if the size of the system
with periodic BC is small [44]. For our system of L = 10,
the nonzero Drude component near the phase boundary
(V ∈ [4.2, 6.0]) can be read in Fig. 2(a).

The Drude weight can be either estimated from the in-
tegration of Reσ(ω) over the zero-frequency peak shown
in Fig. 2(a), or evaluated, more accurately, by the opti-
cal sum rule (e.g., see the relevant discussions in Refs. 44

and 45). Here we apply the sum-rule method for the
Drude weight calculation and the results are summa-
rized in Fig. 2(b). The main figure displays the V
dependence of the Drude weight D for the system of
L = 10 and U = 10.0, with the maximum located at
V = 5.1. While in the thermodynamic limit, as we know
the Drude weight should go to zero everywhere, including
even the first-order phase-transition point [33]. The inset
in Fig. 2(b) shows the finite-size scaling of D for three
values of V (i.e., V = 5.0, 5.1 and 5.2) in the vicinity of
the phase boundary with L = 6, 10, 14 and 18. It is easy
to find that as L increases all the resulting D’s approach
zero.

The transition from SDW to CDW phase can also
be unveiled by the change in the low-lying spectra. In
Fig. 2(c), five lowest-lying energy levels as a function of
V ∈ [4.0, 6.0] are plotted. We can see that the inflec-
tion points on the curves of the ground-state energy E0

and the first-excited energy E1, are both located in the
vicinity of V = 5.1. After V = 5.3, the two energy
levels merge together, indicating a twofold degenerate
ground state with the CDW order. Figure 2(d) shows
the V dependence of the single-particle gap [obtained
from I(k, ω)] and the optical gap [determined by the po-
sition of the first optical absorption peak in Reσ(ω)].
The minimums of the two gaps are situated at V = 5.1.
We note that the difference between the two gaps can be
attributed naturally to the presence of excitonic effect in
the optical conductivity, which is absent in the single-
particle spectrum I(k, ω). From the results in Fig. 2,
we conclude that for the 10-site system with U = 10.0,
it is most “critical” when V = 5.1. This conclusion is
consistent with the phase diagram of this model at half
filling [33, 34].

B. I(k, ω, t) after pump

We are now ready to move to the nonequilibrium case
where the system is driven by a transient laser pulse de-
scribed by Eq. (7). Figure 3 shows the time-dependent
single-particle spectral function at two different ∆t’s for
each V , where ∆t is the difference between the prob-
ing time and the pumping time. The pump amplitude
A0 = 0.3, and the pulse width td = 0.5. For the sake
of clarity, only the electron-removal part I−(k, ω,∆t) is
displayed since the electron-addition part I+ is simply a
reflection of I− with respect to ω = 0 and k ↔ π − k.
There are several features we would like to bring to the
reader’s attention.

First of all, we see that, after applying the pumping
pulse, the electron-removal (lower Hubbard) bands move
upwards as a whole due to the injected energy, since Eκ0
in Eqs. (4) and (5) for I+ and I− has to be replaced
by Eκ(t) in a nonequilibrium situation. For example, in
Figs. 3(a) and 3(b) with V = 3.0 after pump, the bands
have already touched the Fermi level with a distorted
“stripe” feature. These are characteristics of the pho-
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FIG. 3. (Color online) I−(k, ω,∆t) of the half filled EHM
for U = 10.0, and (a) & (b) V = 3.0, (c) & (d) V = 5.1,
(e) & (f) V = 7.0. ∆t is the time difference between the
probing time t and the central time of pumping pulse t0. For
each V , we select two typical ∆t’s in order to unveil possible
spectral weight oscillations. Parameters of the pumping pulse:
A0 = 0.3, td = 0.5.

toinduced insulator-to-metal transition [16, 17]. Second,
for both V = 3.0 and 7.0, there appear some amount of
spectral weights separating from the principal structure
and moving downwards along the ω direction. That is
to say, the weight distributions are getting more diverse.
In the case of V = 7.0, the weight transfer mainly takes
place between band I and band II. Third, by investigating
the temporal profile of I−(k, ω,∆t), we notice that there
are regular spectral weight oscillations for V = 3.0 and
7.0 with specific periods. They can be readily recognized
from the corresponding figures in Fig. 3 [46]. However,
there is no similar oscillation that can be identified for
V = 5.1 [Figs. 3(c) and 3(d)]. The reason will be dis-
cussed later.

1. Leading oscillation and optical gap

To study the oscillations shown in Fig. 3, we need
to fix some typical points on the bands and perform
the Fourier transformation of their spectral intensities.
We first focus on the two points on the lower Hub-
bard band that are closest to the Fermi level. They
are located at k = ±π/2 (with corresponding ω val-
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FIG. 4. (Color online) Comparison between the equilibrium
optical conductivity Reσ(ω) and the Fourier transformation
of the magnitude of I−(k, ω,∆t) at point I for the half filled
EHM for U = 10.0, and (a) V = 3.0 and (b) V = 7.0 (see text
for detail). Parameters of the pumping pulse are A0 = 0.3,
td = 0.5.

ues) and turn out to be the most weighted points. We
can call either of them point I (note that for the case of
V = 7.0, point I is located on band I). More specifically,
we chose I−(k = π/2, ω = 0.16, ∆t) for V = 3.0 and
I−(k = π/2, ω = −3.12, ∆t) for V = 7.0 to perform the
Fourier transformations with ∆t ∈ [5, 105]. The results
are presented in Fig. 4 in red lines, with the equilibrium
optical conductivity displayed in blue lines. We find that
the peak of the Fourier amplitude matches the position
of the main optical absorption peak ωc quite well.

Since the optical conductivity measures the charge
transport ability under the stimulus of an AC electric
field, it is quite natural to expect that the leading os-
cillation frequency of the single-particle spectrum should
match the intrinsic charge gap ωc. The argument can be
reinforced by the observation that, even if the pumping
frequency ω0 [in Eq. (7)] deviates from ωc, the frequency
of the induced oscillation of the single-particle spectrum
does not move away from ωc (not shown here).

Now we are in a position to explain the absence of the
spectral oscillation in V = 5.1. This is due to the pres-
ence of the significant zero-frequency peak (the Drude
weight) in the equilibrium optical conductivity Reσ(ω)
as shown in Figs. 2(a) and 2(b). The correspondence be-
tween the leading oscillation in the single-particle spec-
trum and the position of the leading absorption peak in
the optical conductivity suggests that, in this case, the
possible temporal oscillations in I(k, ω, t) can be largely
wiped off.

2. Band-II oscillation and the photoinduced state

In this section we focus on the two-band structure of
the single-particle spectral function for V = 7.0 in the
CDW phase. Recall that the signal of band II is en-
hanced by the optical pump, and the oscillation of its
spectral weight can be perceived [see Figs. 3(e) and 3(f)].
To quantify it, we choose the point on the band II curve
with k = 0 and the corresponding energy ω = −8.16 (de-
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FIG. 5. (Color online) (a) The comparison between
Reσ(ω,∆t) and the Fourier transformation of I−(k, ω,∆t)
with respect to ∆t ∈ [5, 105] at point II. (b) Overlap be-
tween |Ψ(∆t = 10)〉 and the eigenstates |α〉 as the function
of Eα − E0 ∈ [0, 30]. (c) Reσ(ω) calculated with respect to
the ground state |0〉 (black line) and the first-excited state
|1〉 (blue line), respectively. (d) I−(k, ω) calculated with re-
spect to the first-excited state |1〉. Parameters of the EHM:
U = 10.0, V = 7.0. Parameters of the pumping pulse:
A0 = 0.3, td = 0.5.

noted point II) for detailed investigations. The intensity
of point II is found to be enhanced from 0.05 to 0.19 (av-
erage) by the given pump. The Fourier transform of its
oscillation is shown in Fig. 5(a) with dashed red curve,
where the main peak at ω = 4 is identified. Interestingly,
very close to the frequency of ω = 4, a pump-induced
peak in Reσ(ω,∆t = 10) can be found as shown by the
dashed blue curve in Fig. 5(a). This peak appears in-
side the optical gap [as read from Re σ(ω) from |0〉 in
Fig. 5(c)] and indicates a photoinduced in-gap excita-
tion [47]. What is the relation between the enhancement
of band II and the emerging photoinduced excitation in
Reσ(ω,∆t)? We will address this issue in the remaining
discussion of this section.

First, the nature of the in-gap excitation can be easily
understood from Fig. 5(b), where the overlaps between
the evolved wave function at the given time ∆t = 10, and
all the eigenstates |α〉’s with Eα − E0 ∈ [0, 30] are plot-
ted. (Note that, after turning off the pumping pulse, the
magnitudes of these overlaps remain unchanged.) We
find that |Ψ(∆t = 10)〉 has very large overlap with the
ground state |0〉 and the first-excited state |1〉. In other
words, |Ψ(∆t = 10)〉 is essentially described by a super-
position of |0〉 and |1〉. Based on this fact, we calculate
the optical conductivity directly form |1〉 as shown by
blue curve in Fig. 5(c), which has a peak at ω ≈ 4.4, be-
ing the same energy for the photoinduced in-gap peak in

Fig. 5(a). This means that the latter can be attributed
to an optical excitation from |1〉. As a consequence, the
positive peak with ω ≈ 4.4 corresponds to the optical ab-
sorption from |1〉 to another optically allowed state with
higher energy, as indicated by the symbol “ωin−gap” in
Fig. 5(b).

In Fig. 5(c), a peak with negative weight is located at
ω ≈ 10.1, which comes from an optical emission process
from |1〉 back to |0〉 via dipole transition. Since the en-
ergy of this peak is the same as that of the absorption
peak from |0〉 at ω = 10.12, the suppression of spec-
tral weight at ω ≈ 10.1 in Reσ(ω,∆t = 10) is naturally
understood as a consequence of the two opposite contri-
butions, as shown in Fig. 5(a).

With the experience in the time-resolved optical con-
ductivity, we imagine that in the time-resolved single-
particle spectrum I(k, ω, t), there should also be the con-
tribution from |1〉. This point is supported by the calcu-
lation of the electron-removal part I−(k, ω) directly from
|1〉, as shown in Fig. 5(d). By comparing with Figs. 3(e)
and 3(f), we deduce that the enhanced band II there
(around ω ∼ −8.0) mainly comes from the bright and
narrow band in Fig. 5(d) (in the vicinity of ω ∼ −3.0).
We note that the mismatch of the ω values here is due to
different energy displacements in calculating I−(k, ω,∆t)
and I−(k, ω) from |1〉: the difference between the energy
of |1〉 and the energy of an injected pump photon is just
5. Further discussion on the relation between band II and
the photoinduced in-gap excitation from the perspective
of the pump strength A0 dependence can be found in the
appendix.

Let us make a brief summary of results regarding band
II up to now. First recall that, when the phase boundary
is crossed from the SDW to the CDW side, the single-
particle spectrum evolves from the stripe structure into
a well-identified two-band structure in the vicinity of the
phase boundary [Figs. 1(c) and 1(d)]. With V increas-
ing further, band II gradually diminishes. It is already
quite weak when V = 7.0 [Figs. 1(e) and 1(f)]. How-
ever, accompanied by the photoinduced excitation of the
first-excited state, the signal of band II is reinvigorated
[Figs. 3(e) and 3(f)], and its spectral oscillation coincides
with the optical signal of the excited state (Fig. 5(a)).
The properties of the first-excited state have been ad-
dressed with a long-range BOW order identified [11].
Based on the above evidence, we propose that band II
can be understood as the single-particle spectrum in the
bond-order background. More interestingly, it can be en-
hanced with its own characteristic oscillation by a proper
pumping pulse.

As a result, we propose that, instead of measuring the
time-resolved optical conductivity (or reflectivity) in the
low-frequency regime, which can be out of reach in the
present techniques, the trARPES experiment on relevant
materials can be employed to detect the existence of the
hidden BOW order in the excited states via the time-
resolved single-particle spectrum.
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FIG. 6. (Color online) Contour plot of time-dependent mo-
mentum distribution functions n−(k,∆t) [n+(k,∆t)] for V =
3.0 (a) [(c)] and V = 7.0 (b) [(d)] with U = 10.0, respectively.
Parameters of the pumping pulse are A0 = 0.3, td = 0.5.

C. Time-dependent momentum distribution
function

Before closing the section, we present the results on the
time-dependent momentum distribution functions (TD-
MDs) of holes and electrons. The TDMD has its ex-
perimental significance, since it can be measured via the
trARPES data [48] or time-resolved Compton scatter-
ing [49] in condensed-matter experiments, as well as time-
of-flight absorption images in cold atom systems. In the-
ory, they are defined as

n+(k,∆t) =

∫ +∞

−∞
I+(k, ω,∆t) dω (13)

and

n−(k,∆t) =

∫ +∞

−∞
I−(k, ω,∆t) dω. (14)

Note that, due to the sum rule of the spectral function,
n(k,∆t) := n+(k,∆t) + n−(k,∆t) should be equal to 1
for any values of k and ∆t. The results of n+(k,∆t) and
n−(k,∆t) for V = 3.0 and V = 7.0 are given in Fig. 6.

We find that the oscillation of the momentum dis-
tribution in SDW is mainly confined in the vicinity of
k = ±π/2, while it is more dispersive in the CDW
phase. These features are consistent with the behavior of
I−(k, ω,∆t) shown in Fig. 3, where one can notice that
the oscillation on band I in CDW [Figs. 3(e) and 3(f)] has
a wider momentum distribution than the case of SDW.
Additionally, in Figs. 6(b) and 6(d), there are oscillations
taking place in the vicinity of k = 0, which come from
the contribution of band II and have different frequencies
compared with oscillations around k = ±π/2. We have
checked that the Fourier component of n−(k = 0,∆t) in

CDW has a main peak around ω = 4 which is consis-
tent with the direct Fourier transform of the oscillation
on band II [Fig. 5(a)]. It means that the characteristic
oscillations in the single-particle spectrum addressed in
the above sections can also be resolved even without en-
ergy resolution. We then conclude that the TDMD can
provide an alternative way to identify the photoinduced
BOW state.

IV. CONCLUSION

In this paper, by combining twisted BCs with the time-
evolution Lanczos technique in ED calculations, we have
presented a study of the time-resolved single-particle
spectral function of the 1D extended Hubbard model at
half filling when it is driven by a transient laser pulse.
We found that the frequencies of the characteristic oscil-
lations of the spectral weight coincide with the resonant
positions of the optical conductivity, which is expressed
by the two-particle correlations and reflects the charge
transport ability. We have further investigated the evo-
lution of the two-band structure in the CDW phase un-
der photo-irradiation, and argued that band II can be
regarded as the spectrum of the single-particle excita-
tion arising from the bond-order background. This can
deepen our current understanding from the dynamic per-
spective of the intermediate BOW state caused by the
competition of many-body effects.

The issue remains open about whether this character-
istic oscillation in the time-resolved single-particle spec-
trum can be accessed in trARPES experiments for some
materials. In our calculations, the units of energy and
time are set by the hopping constant th. Suppose th =
0.1 eV, the time unit turns out to be 6.58 fs. The period
for the band II oscillation in our parameter settings is
around 10 fs. In view of the current trARPES resolu-
tions (for example, the energy and time resolutions are
sub 150 meV and 30 fs in Ref. 50; in Ref. 51 they are
170 meV and 13 fs), this task is difficult but not impossi-
ble with proper materials available. Furthermore, if one
sacrifices the energy information while maintaining high
momentum resolution, as discussed in Sec. III C, the time
resolution can be further enhanced and we may have a
better chance to resolve the oscillations. Another pos-
sibility is to simulate the system directly in cold-atom
optical lattices, where one can measure the TDMD with
much longer time-scales.

ACKNOWLEDGMENTS

C.S. and H.L. acknowledge discussions with R.
Mondaini, S. Tarat, and T. Cadez. We would like to
thank the anonymous referees for suggesting the cal-
culation that led to Fig. 2 and the discussion of the
A0 dependence in the appendix. C.S. acknowledges
support from the China Postdoctoral Science Founda-



8

-1.0 0.0 1.0
k/π

16

8

0

-8

-16

ω
(a) A0 = 0.1, ∆t = 20

0.0

0.2

0.4

0.6

0.8

-1.0 0.0 1.0
k/π

16

8

0

-8

-16

ω

(b) A0 = 0.2, ∆t = 20

0.0

0.2

0.4

0.6

0.8

-1.0 0.0 1.0
k/π

16

8

0

-8

-16

ω

(c) A0 = 0.3, ∆t = 20

0.0

0.2

0.4

0.6

-1.0 0.0 1.0
k/π

16

8

0

-8

-16

ω

(d) A0 = 0.4, ∆t = 20

0.0

0.2

0.4

0.6

-1.0 0.0 1.0
k/π

16

8

0

-8

-16

ω

(e) A0 = 0.5, ∆t = 20

0.0

0.2

0.4

0 2 4 6 8 10 12
ω

0

1

2

R
e
σ

(ω
,∆
t

=
20

) (f) before pump
A0 = 0.1

A0 = 0.2

A0 = 0.3

A0 = 0.4

A0 = 0.5

FIG. 7. (Color online) I−(k, ω,∆t = 20.0) of the half filled
EHM for U = 10.0, V = 7.0 with A0 = 0.1 − 0.5 in panels
(a)-(e), respectively. (f) Reσ(ω) before and after pump at
∆t = 20 with different A0. Parameters of the pumping pulse:
ω0 = 10.12, td = 0.5.

tion (Grant No. 2019M650464) and the NSAF (Grant
No. U1530401). H.L. and H.-G.L. acknowledge support
from the National Natural Science Foundation of China
(NSFC; Grants No. 11474136, No. 11674139, and No.
11834005) and the Fundamental Research Funds for the
Central Universities. T.T. is partly supported by MEXT,
Japan, as a social and scientific priority issue (creation
of new functional devices and high-performance materi-
als to support next-generation industries; CDMSI) and
exploratory challenge (challenge of basic science - explor-
ing extremes through multiphysics and multiscale simu-
lations) on a post-K computer and by CREST (Grant
No. JPMJCR1661).

Appendix: Dependence on Pump Parameter A0

In the main text, we have chosen the strength of pump-
ing pulse A0 = 0.3 for the demonstration. In this ap-
pendix, we present the influence of A0 for the half filled
EHM with U = 10.0 and V = 7.0 in detail, and the
results are summarized in Figs. 7 and 8.

In Figs. 7(a)-7(e), the time-resolved electron-removal
spectral function I−(k, ω,∆t = 20.0) under various A0 is
shown. We can see that, upon increasing A0 from 0.1 to
0.5, the signature of band II is enhanced. We note that
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FIG. 8. (Color online) The square of the overlap between the
ground-state (the first-excited state) and the time-evolving
wave function at ∆t = 20 as a function of the strength of
pumping pulse A0, shown in blue curve (red curve).

the upward shift of the whole electron-removal bands is
due to the optically injected energy: in the calculation of
I±(k, ω, t), Eκ0 in Eqs. (4) and (5) is replaced by Eκ(t) =
〈Ψκ(t)|H|Ψκ(t)〉, as we mentioned in Sec. II.

Accompanied by the enhancement of band II in
I−(k, ω,∆t) is the growing contribution of the first-
excited state to the time-evolving wave function |ψ(t)〉,
which can be easily recognized both in the time-resolved
optical conductivity and in the overlap calculation, as
shown in Figs. 7(f) and 8, respectively. The connection
between band II, the in-gap excitation in Reσ(ω,∆t),
and the photoinduced first-excited state can thus be iden-
tified.
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[47] H. Lu, C. Shao, J. Bonča, D. Manske, and T. Tohyama,

Phys. Rev. B 91, 245117 (2015).
[48] M. Randeria, H. Ding, J.-C. Campuzano, A. Bellman,

G. Jennings, T. Yokoya, T. Takahashi, H. Katayama-
Yoshida, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett.
74, 4951 (1995).

[49] A. F. Kemper, M. Sentef, B. Moritz, C. C. Kao, Z. X.
Shen, J. K. Freericks, and T. P. Devereaux, Phys. Rev.
B 87, 235139 (2013).

[50] S. Eich, A. Stange, A. Carr, J. Urbancic, T. Pop-
mintchev, M. Wiesenmayer, K. Jansen, A. Ruffing,
S. Jakobs, T. Rohwer, S. Hellmann, C. Chen, P. Matyba,
L. Kipp, K. Rossnagel, M. Bauer, M. Murnane,
H. Kapteyn, S. Mathias, and M. Aeschlimann, J. Elec-
tron. Spectrosc. 195, 231 (2014).

[51] G. Rohde, A. Hendel, A. Stange, K. Hanff, L.-P. Oloff,
L. X. Yang, K. Rossnagel, and M. Bauer, Rev. Sci. In-
strum. 87, 103102 (2016).

http://dx.doi.org/10.1103/PhysRevLett.122.077002
http://dx.doi.org/ 10.1126/science.1197294
http://dx.doi.org/10.1103/PhysRevB.90.100503
http://dx.doi.org/10.1038/nmat3963
http://dx.doi.org/ 10.1103/PhysRevB.100.041114
http://dx.doi.org/ 10.1103/PhysRevB.100.041114
http://arxiv.org/abs/1901.07900
http://arxiv.org/abs/1901.07900
http://dx.doi.org/ 10.1016/j.cplett.2009.04.085
http://dx.doi.org/10.1103/PhysRevB.85.125112
https://doi.org/10.1038/nature09829 http://10.0.4.14/nature09829 https://www.nature.com/articles/nature09829{#}supplementary-information
http://dx.doi.org/ 10.1103/PhysRevLett.107.177402
http://dx.doi.org/ 10.1103/PhysRevLett.107.177402
http://dx.doi.org/ 10.1103/PhysRevLett.97.067402
http://dx.doi.org/ 10.1088/1367-2630/10/5/053019
http://dx.doi.org/ 10.1088/1367-2630/10/5/053019
http://dx.doi.org/10.1103/PhysRevLett.97.266408
http://dx.doi.org/10.1103/PhysRevLett.97.266408
http://dx.doi.org/10.1103/PhysRevLett.102.136401
http://dx.doi.org/ 10.1103/RevModPhys.86.779
http://dx.doi.org/ 10.1103/PhysRevB.92.224517
http://dx.doi.org/ 10.1103/PhysRevB.96.184518
http://dx.doi.org/ 10.1002/andp.201600235
http://dx.doi.org/10.1103/PhysRevLett.103.267401
http://dx.doi.org/10.1103/PhysRevLett.103.267401
http://dx.doi.org/10.1103/PhysRevB.44.9562
http://dx.doi.org/10.1103/PhysRevLett.76.279
http://dx.doi.org/10.1103/PhysRevB.70.174517
http://dx.doi.org/10.1103/PhysRevB.61.16377
http://dx.doi.org/10.1103/PhysRevLett.88.056402
http://dx.doi.org/10.1103/PhysRevLett.88.056402
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevB.65.155113
http://dx.doi.org/10.1103/PhysRevLett.89.236401
http://dx.doi.org/10.1103/PhysRevLett.92.236401
http://dx.doi.org/10.1103/PhysRevLett.92.236401
http://dx.doi.org/10.1103/PhysRevLett.99.216403
http://dx.doi.org/10.1103/PhysRevLett.99.216403
http://dx.doi.org/10.1103/PhysRevB.89.125123
http://dx.doi.org/10.1103/PhysRevB.89.125123
http://dx.doi.org/ 10.1103/PhysRevB.93.195144
http://dx.doi.org/ 10.1103/PhysRevB.93.195144
http://dx.doi.org/10.1103/PhysRevLett.77.4054
http://dx.doi.org/10.1103/PhysRevB.70.235107
http://dx.doi.org/10.1038/nphys316
http://dx.doi.org/ 10.1103/PhysRevLett.88.096402
http://dx.doi.org/ 10.1103/PhysRevLett.88.096402
http://dx.doi.org/ 10.1103/PhysRevB.68.125111
http://dx.doi.org/ 10.1103/PhysRevB.68.125111
http://dx.doi.org/10.1103/PhysRevLett.80.4245
http://dx.doi.org/10.1103/PhysRevLett.80.4245
http://dx.doi.org/ 10.1103/PhysRevB.44.6909
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/PhysRevB.91.245117
http://dx.doi.org/10.1103/PhysRevLett.74.4951
http://dx.doi.org/10.1103/PhysRevLett.74.4951
http://dx.doi.org/ 10.1103/PhysRevB.87.235139
http://dx.doi.org/ 10.1103/PhysRevB.87.235139
http://dx.doi.org/ https://doi.org/10.1016/j.elspec.2014.04.013
http://dx.doi.org/ https://doi.org/10.1016/j.elspec.2014.04.013
http://dx.doi.org/ 10.1063/1.4963668
http://dx.doi.org/ 10.1063/1.4963668

	Analysis of time-resolved single-particle spectrum on the one-dimensional extended Hubbard model
	Abstract
	I Introduction
	II Model and Method
	III Results and discussions
	A I(k,) in equilibrium
	B I(k,,t) after pump
	1 Leading oscillation and optical gap
	2 Band-II oscillation and the photoinduced state

	C Time-dependent momentum distribution function

	IV Conclusion
	 Acknowledgments
	 Dependence on Pump Parameter A0
	 References


