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Abstract

Electroplasticity is defined as the reduction in flow stress of a material undergoing deformation on passing an electrical

pulse through it. The lowering of flow stress during electrical pulsing has been attributed to a combination of three

mechanisms: softening due to Joule-heating of the material, de-pinning of dislocations from paramagnetic obstacles,

and the electron-wind force acting on dislocations. However, there is no consensus in literature regarding the relative

magnitudes of the reductions in flow stress resulting from each of these mechanisms. In this paper, we extend a dislocation

density based crystal plasticity model to incorporate the mechanisms of electroplasticity and perform simulations where

a single electrical pulse is applied during compressive deformation of a polycrystalline FCC material with random

texture. We analyze the reductions in flow stress to understand the relative importance of the different mechanisms of

electroplasticity and delineate their dependencies on the various parameters related to electrical pulsing and dislocation

motion. Our study establishes that the reductions in flow stress are largely due to the mechanisms of de-pinning of

dislocations from paramagnetic obstacles and Joule-heating, with their relative dominance determined by the specific

choice of crystal plasticity parameters corresponding to the particular material of interest.
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1. Introduction

Electroplasticity (henceforth called as “EP”) is the phe-

nomenon where a material undergoing deformation dis-

plays a drop in flow stress whenever subjected to an elec-

trical pulse. The discovery of this phenomenon can be

credited to Troitskii and Likhtman [1] who first observed

the reductions in flow stress while passing current pulses

through Zn single crystals. Since then it has been recog-

nized that repeated application of the electrical pulses in

quick succession during deformation lower the flow stress
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not only during the pulses but also between the pulses [2–

4]. Thus, repeated electropulsing during deformation mim-

ics the attributes of hot working, albeit at a much lower

energy cost. This has prompted development of industrial

manufacturing paradigms like Electrically-assisted manu-

facturing (EAM) and Electroplastic manufacturing pro-

cessing (EPMP) which leverage the phenomenon of EP on

an industrial scale. There are several reviews of EAM,

EPMP, and the phenomenon of EP which can serve as

useful references in this regard [5–8].

Even as there are increased efforts to harness the ben-

efits of EP in the manufacturing industry, the mechanisms

contributing to EP continue to be poorly understood. Re-

searchers over the years have proposed several different

theories to explain the reductions in flow stress during
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electropulsing but without achieving any consensus about

the mechanism which dominates the phenomenon of EP.

The earliest theory to explain the electroplastic softening

is that of Joule-heating; the electrical energy passed to the

material is converted to heat, leading to thermal softening

of the material. This is the simplest explanation of EP but

it is far from being unanimously accepted. Several experi-

ments report the temperature rise due to a single electrical

pulse to be too small to be commensurate with the reduc-

tions in flow stress [5, 9, 10], while some later studies at-

tribute the observed softening during electropulsing solely

to Joule-heating [11, 12]. The ambiguity surrounding Joule

heating as the dominant mechanism for EP prompted de-

velopment of theories which could explain the reductions

in flow stress without invoking a rise in temperature of

the material. Conrad and co-workers [5, 9], present the

first among the athermal theories, which is based on the

transfer of momentum from the flowing electrons to the

dislocations. It is also known as the “electron-wind force”

theory and was conjectured to be the principal contrib-

utor to EP till Molotskii et al., [13] presented an analy-

sis which demonstrated its effect to be small compared to

the reductions in flow stress observed during experiments.

Molotskii and co-workers [13, 14] also present a different

explanation for the reductions in flow stress. They claim

that the induced magnetic field due to the applied current

alter the electronic states of the bonds between the obsta-

cles and the dislocation cores which promote de-pinning

of dislocations from such obstacles. Their theory requires

the obstacles to be paramagnetic in character. The most

prominent example of such obstacles are forest disloca-

tions [15], which constitute one of the biggest contributors

to flow hardening. Molotskii et al., [13, 14] also present

an analysis of the reductions in flow stress due to such an

effect and find the softening to be quite substantial com-

pared to the two earlier mechanisms.

To date, the theories of Joule-heating, electron-wind

force, and de-pinning from paramagnetic obstacles are the

most commonly invoked explanations for instances of EP

observed in different materials. The lack of agreement

within the scientific community as to which mechanism

dominates the electroplastic behaviour is partly because

of the difficulty involved in experimentally validating the

de-pinning of dislocations and the electron-wind force on

dislocations due to electropulsing. There are in-situ TEM

studies where dislocation motion is observed during elec-

tropulsing of thin-films [16, 17]. But more recent stud-

ies [18, 19] claim that no difference in dislocation activity

is observed under current pulsing. It has to be noted that

in all these observations there is no concurrent applied

strain while electropulsing. Thus, in these studies, the im-

aged dislocations are static while the current pulses are

applied and hence the tests may fail to recognize whether

larger segments of dislocations have been freed due to de-

pinning. Similarly, the validity of the electron-wind force

theory also cannot be ascertained with certainty through

such experiments as the transfer of momentum from the

electrons to the dislocations may not constitute a high

enough force by itself to cause dislocation motion.

With there being no clear understanding of the relative

magnitudes of softening induced by different mechanisms

of EP through experiments, modeling could play a key

role in resolving this issue. There exists several crystal

plasticity studies in literature which have tried to model

electrically assisted forming [20–24]. In a couple of such

studies [21, 24] constitutive models are presented which ex-

plain the envelope of the global stress-strain curve during

frequent electropulsing without modeling the reductions

in flow stress during electropulsing. The global softening

of the material is captured phenomenologically without

the consideration of any physical mechanisms other than

Joule-heating. On the other hand, in [22, 23], the reduc-

tions in flow stress during pulsing are also modeled along

with the global softening of the material due to repeated

electropulsing. These phenomenological crystal plasticity

models only allow an empirical consideration of the soften-
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ing due to Joule-heating and electron-dislocation interac-

tions and do not consider any particular athermal mech-

anism of softening. As these models do not implement

the possible mechanisms of EP explicitly, the questions

regarding the relative importance of the proposed mecha-

nisms continue to remain unresolved.

In this paper, our objective is to understand the rela-

tive importance of the three theories of EP, namely, ther-

mal softening, electron-wind force, and paramagnetic de-

pinning of dislocations, in producing the reductions in flow

stress during electropulsing. In order to achieve this, we

employ a dislocation density based crystal plasticity model

and extend it to include the different mechanisms proposed

for EP. We then perform simulations of uniaxial compres-

sion of a representative polycrystalline sample where we

pass a single electrical pulse during the loading process and

analyze the reduction in flow stress achieved when each of

these mechanisms is active. This allows us to develop an

understanding of the reductions in flow stress caused by

each of these mechanisms and we probe their dependencies

on relevant parameters of the crystal plasticity model. A

major novelty of our approach from the previous attempts

at modeling EP is the fact that we use a dislocation den-

sity based crystal plasticity model which provides a phys-

ical framework for the introduction of the mechanisms of

EP, in contrast to the phenomenological and empirical ap-

proaches of earlier studies. This also means that the crys-

tal plasticity parameters employed in our study have a

physical significance and can be determined from litera-

ture. We utilize this flexibility to select a parameter set for

our simulations which is representative of a generic FCC

material and hence our conclusions are not limited to any

one particular material displaying EP. Our paper is orga-

nized in the following manner. First, we present the crys-

tal plasticity model, which is followed by sections which

extend the model to include athermal and thermal (Joule-

heating) mechanisms of EP. We then present our results,

following which we discuss the implications of our study

and lay out the possibilities for generalizing the model fur-

ther to materials belonging to other crystal structures.

2. Crystal plasticity model

We will be using a dislocation density based crystal

plasticity model which is described in detail by Wong et

al., [25]. As discussed in the previous section, all the

mechanisms of EP are mediated exclusively by disloca-

tion motion. So, in our discussion, we are not going to

invoke the other mechanisms which contribute to plastic-

ity, e.g., twinning and transformation induced plasticity

(TWIP, TRIP). Our discussion will begin with a review of

the kinematic and constitutive relationships of the model.

2.1. Kinematic and constitutive relationships

The imposed deformation gradient F is decomposed

into elastic (Fe) and plastic (Fp) contributions following

[26],

F = FeFp. (1)

The stress is computed from the elastic strain by assuming

a linear elastic material,

S = C
(
F Te Fe − I

)
/2, (2)

where, S is the second Piola-Kirchhoff stress tensor and C

is the elastic tensor. The plastic velocity gradient (Lp) for

a single grain is determined by the stress tensor (S) and

the variables which define the microstructure (ξ) as,

Lp =

Ns∑
α=1

γ̇α (S, ξ)mα ⊗ nα, (3)

where mα denotes the slip direction and nα denotes the

slip plane normal of the slip system α. γ̇α denote the shear

rates on the individual slip systems denoted by α. Ns de-

notes the total number of slip systems. The exact form

of the dependence of γ̇α on S and ξ will be delineated in

the next subsection. As discussed earlier, Eq. 3 considers

dislocation motion to be the sole mechanism responsible

3



for plasticity. Lp governs the evolution of the plastic de-

formation gradient through,

Ḟp = LpFp, (4)

where, Ḟp denotes the rate of change of the plastic de-

formation gradient with time. The eqs. (1)–(4), can be

combined to write,

P (x) = FS = f (x,F, ξ) , (5)

where, P is the first Piola-Kirchhoff stress tensor deter-

mined from S. Eq. 5 is the crux of the crystal plasticity

model and is coupled to the balance of linear momentum

through,

∇ ·P = 0, (6)

to simulate a Representative Volume Element (RVE) un-

der static equilibrium. The numerical schemes employed

to solve these equations are described in detail elsewhere [27].

2.2. Microstructure (ξ) and shear rates γ̇α

The microstructure (ξ) of the material is described by

the mobile edge dislocation density denoted by ρm and the

immobile dipole dislocation density ρd. The motion of the

mobile dislocations determines the shear rate γ̇α on the

slip system α, as given by the Orowan equation,

γ̇α = ραmbsv0 exp

[
− Qs
kBT

{
1−

(
ταeff
τsol

)p}q]
sign(τα),

(7)

which assumes dislocation glide to be controlled by ther-

mal activation. In Eq. 7, ραm denotes the mobile dislocation

density in the slip system α, Qs is the activation energy

for slip, bs is the magnitude of the Burgers vector, kB

represents the Boltzmann constant and T is the temper-

ature, τsol is the stress required to overcome short range

obstacles at 0K, v0 is the dislocation glide velocity prefac-

tor. ταeff is the effective resolved shear stress written as,

ταeff = |τα| − ταpass, when |τα| > ταpass, and ταeff = 0, oth-

erwise. τα is the resolved applied shear stress on the slip

system α given by τα = Fe
TFeS (mα ⊗ nα) and ταpass is

the passing stress experienced by the mobile dislocations

in the slip system α, due to the long range elastic strain

fields of the dislocations, defined as,

ταpass = Gbs

[
Ns∑
α′=1

ξαα′

(
ρα

′

e + ρα
′

d

)]1/2
, (8)

where, G is the shear modulus, and ξαα′ is the interaction

matrix of the slip systems. It is important to note that

the first instance when |τα| is greater than ταpass defines

yielding on the slip system α, where the corresponding

value of ταpass is the slip system level yield stress. ρα
′

m and

ρα
′

d are the mobile edge and immobile dipole dislocation

densities, respectively, whose evolutions are governed by,

ρ̇αm =
|γ̇α|
bsΛαs

− 2d̂α

bs
ραm|γ̇α| −

2ďα

bs
ραm|γ̇α|, (9)

and,

ρ̇αd =
2d̂α

bs
ραm|γ̇α| −

2ďα

bs
ραd |γ̇α| − ραd

4vclimb

d̂α − ďα
, (10)

respectively. Λαs is the mean free path of dislocations. The

maximum separation of the glide planes that allow dislo-

cations gliding on them to form dipoles is d̂α while two

edge dislocations would get annihilated whenever they are

any closer to each other than ďα. These distances are cal-

culated to be,

d̂α =
3Gbs

16π|τα|
, (11)

and,

ďα = Cannibs, (12)

where, Canni is a fitting parameter. The dislocation climb

velocity vclimb is given by,

vclimb =
3GD0Ω

2πkBT

1(
d̂α + ďα

) exp

(
− Qc
kBT

)
, (13)

where D0 is the self diffusion coefficient of the material in

question, Ω and Qc are the activation volume and activa-

tion energy for climb, respectively. The mean free path Λαs

is defined as,

1

Λαs
=

1

d
+

1

λαslip
, (14)

4



where d is the grain size and λαslip is the average distance

traveled by a dislocation before it is stopped by forest dis-

locations, written as,

1

λαslip
=

1

islip

[
Ns∑
α′=1

ξαα′

(
ρα

′

m + ρα
′

d

)]1/2
, (15)

where islip is a fitting parameter.

3. Athermal mechanisms of EP

In this section we discuss the major theories explaining

EP which do not rely on thermal softening of the mate-

rial due to Joule heating. We begin with a discussion of

the theories by Molotskii and co-workers which involve de-

pinning of dislocations from obstacles during electropuls-

ing. We follow that up with a review of the theory of

electron-wind force assisted dislocation glide as put forth

by Conrad and co-workers. While considering each of these

mechanisms we will also lay out the extensions to the crys-

tal plasticity model required to implement them and at-

tempt a theoretical analysis of the reductions in flow stress

caused by each of them wherever possible.

3.1. Paramagnetic de-pinning of dislocations

Molotskii and Fleurov [13] in their seminal paper sug-

gested that de-pinning of dislocations from paramagnetic

obstacles is the dominant softening mechanism during elec-

trical pulsing. They demonstrate that the induced mag-

netic field due to electrical pulsing alters the electronic

states in the obstacles and the dislocation cores. These

modified electronic states result in a much lower probabil-

ity of the dislocations being pinned by such obstacles. For-

est dislocations qualify as paramagnetic obstacles [15] and

they constitute the largest fraction of short range obstacles

encountered by dislocations in FCC materials. Thus, any

gain in plasticity due to a change in the pinning behaviour

of such obstacles is likely to be very significant.

It must be noted that the mechanism of de-pinning of

dislocations is not dependent on the sense of the current

density vector j, but only on its magnitude j = |j|. So, in

this section, whenever we use “current density” we mean

its magnitude represented by j.

In view of the crystal plasticity model we have de-

scribed in Section 2, reductions in flow stress due to de-

pinning of dislocations can manifest through several terms

in Eq. 7. We will refer to them as “sources” of soft-

ening within the purview of the primary mechanism of

de-pinning of dislocations from paramagnetic obstacles.

We investigate each of the sources in the following sub-

sections.

3.1.1. Effect of a change in τsol

As proposed by Molotskii and co-workers [13, 14], dur-

ing the application of an electrical pulse, the pinning of

dislocations by short range obstacles are weakened. This

implies that the inter-obstacle spacing lc(0) while no cur-

rent is passed increases to a new value lc(j) under pulsing.

The inter-obstacle distance (lc) changes as a function of

the imposed current density (j) as [13],

lc(j) = lc(0)

(
1 +

j2

j20

)
, (16)

where, j0 is a characteristic current density magnitude

which corresponds to the magnitude of current density

j at which the EP is typically observed for a particular

material.

The change in lc will affect the parameter τsol in Eq. 7.

τsol represents the short range resistance experienced by

an average dislocation segment. Following the analysis in

[28], τsol scales inversely as the separation between the

short range obstacles. In other words,

τsol ∝
1

lc
. (17)

Combining Eqs. 16 and 17 we can write τsol as a function

of j as,

τsol(j) =
τsol(0)(
1 +

j2

j20

) . (18)
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Under electropulsing the shear rate on any particular slip

system α can be written as,

γ̇α(j) = ραmbsv0 exp

[
− Qs
kBT

{
1−

(
ταeff (j)

τsol(j)

)p}q]
sign(τα).

(19)

The lowering of τsol represents lowering of the short range

obstacle strength. Thus, under pulsing, similar shear rates

(γ̇α) can be maintained by smaller effective resolved shear

stresses ταeff and consequently by τα which explain the

reductions in flow stress on the level of individual slip sys-

tems. Thus, the dependence of τsol on j (Eq. 18), leads to

ταeff being a function of j in Eq. 19.

Molotskii and Fleurov[13] also perform an analysis of

the estimated stress drop due to such a softening mech-

anism. While our formulation of the electroplastic phe-

nomena is on the slip system level, the analysis performed

in [13] is for the bulk polycrystalline sample. In order to

replicate a similar analysis employing our formulation, we

relate the plastic behaviour of the bulk sample to that of

a single grain employing the concept of Taylor factor (M),

ε̇(0) =
1

M

Ns∑
α=1

γ̇α(0)

=
1

M

Ns∑
α=1

(
ραmbsv0 ·

exp

[
− Qs
kBT

{
1−

(
(σeff (0)/M)

τsol(0)

)p}q])
sign(τα), (20)

where, α runs over all the slip systems in single grain. In

Eq. 20 ε̇ is the imposed bulk strain rate and remains con-

stant regardless of whether the system is pulsed or not and

σeff is the effective normal stress along the loading direc-

tion and can be thought of as the difference between the

applied stress (σappl) and the long-range resistance (σpass)

which are related to the corresponding quantities τα and

ταpass, respectively, for a single slip system. Eq. 20, can

be modified for an electropulsed sample in the following

manner as,

ε̇(j) =
1

M

∑
α

γ̇α(j)

=
1

M

∑
α

(
ραmbsv0 ·

exp

[
− Qs
kBT

{
1−

(
(σeff (j)/M)

τsol(j)

)p}q])
sign(τα). (21)

We divide Eq. 21 by Eq. 20 and impose ε̇(j) = ε̇(0), to

write,∑
α

ραm exp

[
− Qs
kBT

{
1−

(
(σeff (0)/M)

τsol(0)

)p}q]
sign(τα)

=
∑
α

ραm exp

[
− Qs
kBT

{
1−

(
(σeff (j)/M)

τsol(j)

)p}q]
sign(τα).

(22)

Noting that the arguments to the exponentials are not

functions of α, we can simplify Eq. 22 to get,

σeff (0)

τsol(0)
=
σeff (j)

τsol(j)
, (23)

and using Eq. 18 this can be written as,

∆σeff = σeff (0)− σeff (j) = σeff (0)
j2

j20 + j2
. (24)

∆σeff is the difference in effective stresses recorded be-

fore and after electropulsing and we can relate it to the

applied stress (σappl) by assuming the averaged long range

elastic stress fields to remain constant (σpass) when τsol is

modified due to electropulsing. So, in terms of the applied

stresses,

∆σappl = ∆σeff = σeff (0)
j2

j20 + j2
. (25)

The above equation reveals interesting trends for very low

and high values of j. For j << j0,

∆σappl ≈ σeff (0)
j2

j20
, (26)

which reveals a parabolic dependence on j. When j >> j0,

we get,

∆σappl ≈ σeff (0), (27)

and so the stress drop saturates. The variation of ∆σappl

as a function of (j/j0) as predicted by Eq. 25 has a point
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of inflection where the curvature (∂2∆σappl/∂j
2) changes

from positive to negative and it happens at (j/j0) = 1/
√

3 =

0.577, which marks a transition between the regimes de-

noted by Eqs. 26 and 27.

It is also important to take note of the assumptions

made to arrive at Eq. 25. The one central assumption of

the analysis is that the effective resolved shear stresses ταeff

are the same for all the slip systems (α). This assumption

allows us to introduce the Taylor factor(M) in Eq. 20. For

crystal plasticity simulations of bulk polycrystalline ma-

terials an equality of ταeff for all the slip systems for any

particular grain is uncommon and there are considerable

differences across the slip systems over all the grains. Also,

it has even been observed that the number of active slip

systems (|τα| > ταpass) may vary from 3 to 9 per grain in

a polycrystalline sample and all the grains do not deform

similarly as conjectured by Taylor’s theory [29]. So, in

view of these differences with crystal plasticity implemen-

tations, it is reasonable to expect differences between the

predictions from simulations and the simplified analysis.

While considering a lowered short-range obstacle strength,

Molotskii and co-workers ignored other potential ramifi-

cations of the de-pinning of dislocations from paramag-

netic obstacles. In the next few subsections, we will ex-

plore other possible consequences of dislocation de-pinning

within the crystal plasticity framework we have introduced.

3.1.2. Effect of a change in λαslip

Another possible effect of the de-pinning of dislocations

is an increase of the distance traveled by the dislocation be-

fore being trapped by the forest dislocations (λαslip). λ
α
slip

should be scaled by the same factor (1 + j2/j20) which

depicts the scaling of the distance between the trapping

points due to the forest dislocations. Hence, we can write

from Eq. 15,

λαslip(j) = λαslip(0)

(
1 +

j2

j20

)
(28)

The effect of change in this length scale on the applied

stress is complicated. It alters the evolution of the dis-

location densities through Eq. 9 which in turn can affect

the passing stress ταpass as given in Eq. 8. As λαslip does

not explicitly appear in the Orowan equation an analyti-

cal expression relating it to the reductions in flow stress is

intractable. However, it is worthwhile to develop an intu-

itive understanding of the kind of changes prompted in ραm

and ταpass due to a change in λαslip. From Eqs. 9 and 14 it

is clear that ραm would increase at a slower rate when λαslip

is larger. Under the assumption that ˙ε(0) = ˙ε(j), implies

γ̇α(0) = γ̇α(j), a smaller ραm necessitates a larger ταeff to

maintain a constant γ̇α. A higher ταeff can be achieved

either by lowering of ταpass or by a higher resolved shear

stress (τα). The former can lead to flow softening while

the latter can lead to a stress rise during electropulsing

and the net change is a combined effect of the two. Thus,

there is a possibility of a rise in flow stress instead of a

drop due to an increase of λαslip.

3.1.3. Effect of a change in v0

From the expression of the Orowan equation presented

in Eq. 7, the velocity of dislocations can be expressed as

a product of the velocity prefactor v0 and an Arrhenius

term, given as,

v = v0 exp

[
− Qs
kBT

{
1−

(
ταeff
τsol

)p}q]
, (29)

where,

v0 = νG ds, (30)

where νG is the jump frequency of the dislocations and

ds is the distance moved forward per successful thermal

activation event. Granato et al., [30] suggest that νG is

independent of the free length of the dislocations between

two obstacles and so should remain constant as the odds

of pinning by obstacles lower while electropulsing. As an

obstacle is overcome by thermal activation, the freed dislo-

cation segment glides until it encounters another obstacle,

after which the entire process of thermal activation is re-

peated. From that argument, we have ds = lc. Thus,

7



under electropulsing, it is reasonable to expect that dis-

locations would glide larger distances as pinning is less

probable. Using the variation of lc(j) as given by Eq. 16

we can write the corresponding scaling relationship for ds

as,

ds(j) = ds(0)

(
1 +

j2

j20

)
. (31)

Combining Eqs. 30 and 31 we get a scaling relationship for

v0 as given by,

v0(j) = v0(0)

(
1 +

j2

j20

)
. (32)

An analysis similar to that done for the reductions in

flow stress due to τsol when carried out for this case results

in an expression which reads,

∆σappl = ∆σeff = Mτsol

(
kBT

Qs

)
log

(
1 +

j2

j20

)
, (33)

where, we have assumed σpass to be unaffected by a change

in v0 during pulsing. For situations where j/j0 << 1,

Eq. 33 can be approximated as,

∆σappl = ∆σeff = Mτsol

(
kBT

Qs

)
j2

j20
. (34)

3.1.4. Effect of a change in passing stress ταpass

Molotskii and Fleurov [31] argue that as the disloca-

tions are de-pinned from short range obstacles, they have a

larger free length and hence have a larger geometrical free-

dom to rotate and re-orient to the long range elastic stress

fields of other dislocations. Thus, under electropulsing,

dislocations can achieve configurations which minimize the

strain energy more effectively compared to the situation

where no electrical pulses are applied. This implies that

larger stresses are needed to force dislocation motion while

being pulsed and is an anomaly considering that all other

mechanisms induce softening of the material. In the con-

text of the crystal plasticity model described in the paper,

ταpass represents the resistance to dislocation motion from

the long range strain fields and it should be modified to de-

scribe this particular phenomenon. Following the analysis

of Molotskii and Fleurov [31] we can modify Eq. 8 as,

ταpass = δGbs

[
Ns∑
α′=1

ξαα′

(
ρα

′

m + ρα
′

d

)]1/2
, (35)

where, a factor δ is introduced to account for the enhanced

elastic interaction. δ is conjectured to have a form given

by the following expansion [31],

δ = 1 + β

(
lc(j)− lc(0)

lc(0)

)
+ · · · ,

= 1 + β
j2

j20
, (36)

restricting consideration to the first order terms only. In

Eq. 36 β is a constant determined by fitting and we have

made use of Eq. 16 to arrive to the final form.

We can derive an expression for reductions in flow stress

(or increases in flow stress in this case) ∆σappl correspond-

ing to the enhanced work hardening due to electropulsing.

Following the approach undertaken to derive Eq. 23, a cor-

responding relationship for this case is written as,

σeff (j) = σeff (0), (37)

which leads to,

∆σappl = ∆σpass = −σpass(0)β
j2

j20
, (38)

where we have assumed Mταpass = σpass, M being the Tay-

lor factor. The negative sign in the RHS of Eq. 38 confirms

that the applied stresses would need to be increased when

such an effect is operative.

It is important that to note β can be determined by

fitting Eq. 35 to the variation of yield stresses in the ma-

terial as a function of the imposed current density j [31].

The yield stress of the material corresponds to the value of

σpass when σapplied overcomes σpass for the first time. Such

a quantity is not modified by any other softening mecha-

nism operative due to de-pinning of dislocations and hence

is suitable for determining β.

We have considered all possible manifestations of the

phenomenon of de-pinning of dislocations during electropuls-

ing. Also, we have presented extensions to the crystal plas-

ticity model which will allow us to simulate the effects of

8



these mechanisms in the later sections. We will discuss

the theory of electron-wind force assisted dislocation mo-

tion next.

3.2. Electron-wind force: Conrad and co-workers

Conrad et al., [9] proposed a theory where the electrons

drifting under the application of an electric field exert a

force on the dislocations. This is known as “electron-wind”

force and its expression derived by considering the scatter

of electrons by dislocations can be stated as,

Few =
ρD
ND

enej, (39)

where, e is the electronic charge, ne is the density of free

electrons, j is the current density and Few is the force

per unit length of dislocations. In the crystal plasticity

model described, plasticity is governed by the motion of

the pure edge dislocations which move parallel to them-

selves along the slip direction mα in the particular slip

systems (α). In that case the component of the electron-

wind force along the direction of the dislocation motion is

given by Few ·mα. Assuming an equal fraction of posi-

tive and negatively signed dislocations in the material, it

is apparent that if the electron-wind force aids the gliding

dislocations of one particular sign then it should impede

the motion of those belonging to the other sign. This is

also pointed out by Molotskii and Fleurov[13] and it im-

plies that the electron-wind force on dislocations is at best

a second order effect.

Modeling the effects of the electron-wind force requires

an alternate form of the Orowan equation (Eq. 7) written

as,

γ̇α = ραmbsv0 exp

[
−
(
Qs − ταeffV

kBT

)]
sign(τα), (40)

where, the argument of the exponential has been written

in an equivalent form assuming the following relationship,

∆G = Qs − ταeffV α = Qs

{
1−

(
ταeff
τsol

)p}q
, (41)

with the Gibbs free-energy of activation denoted by ∆G.

The new parameter which appears in the modified Orowan

equation (Eq. 40) is the activation volume of slip denoted

by V α. The new form of the Orowan equation is neces-

sitated to simplify the introduction of the electron-wind

force. Following Conrad[9], the effect of the electron-wind

force can be modeled as,

γ̇α =
1

2
ραmbsv0

{
exp

[
−
(
Qs − ταeffV α − (Few ·mα)Aα

kBT

)]
+

exp

[
−
(
Qs − ταeffV α + (Few ·mα)Aα

kBT

)]}
sign(τα),

(42)

where Aα denotes the activation area which is related to

the activation volume (V ) as, V α = Aαbs. Eq. 42 treats

the electron-wind as an additional force on the disloca-

tions similar to that exerted by ταeff . The differential ef-

fect of the electron-wind force on dislocations of either sign

manifests in Eq. 42 through opposite signs of the electron-

wind force (Few ·mα) for the dislocation densities of ei-

ther signs (ραm/2). The usefulness of the form of Eq. 40

is evident here as it allows the electron-wind force to be

treated in a manner akin to the effective stress ταeff . Eq. 42

can be simplified to obtain,

γ̇α = ραmbsv0 exp

[
−
(
Qs − ταeff (j)V α

kBT

)]
cosh

(
(Few ·mα)A

kBT

)
sign(τα). (43)

We are now in a position to revert back to the form of the

Orowan equation as given by Eq. 7 to finally write,

γ̇α =

ραmbsv0 exp

[
− Qs
kBT

{
1−

(
ταeff (j)

τsol

)p}q]

cosh

(
(Few ·mα)A

kBT

)
sign(τα), (44)

which indicates that the electron-wind force introduces the

factor, cosh (((Few ·mα)A)/(kBT )), to the Orowan equa-

tion. For a situation where, ((Few ·mα)A/(kBT )) << 1,

a Taylor-Series expansion writes as,

cosh

(
(Few ·mα)A

kBT

)
= 1 +

1

2!

(
(Few ·mα)A

kBT

)2

+ · · · .

(45)

9



So, this indicates that in the event the electron-wind force

is small, the factor introduced by it in the Orowan equation

is of the second order.

An analytical approach to determine the dependence of

reductions in flow stress on the current density (j) is not

feasible due to the dependence of the electron-wind force

on the direction of dislocation motion on individual slip

planes. Such a dependence complicates deriving an ana-

lytical expression of the average electron-wind force over

the entire bulk sample.

Conrad and co-workers [9] also claimed that the activa-

tion area Aα changes due to electropulsing. The activation

area (Aα) can be defined as [13],

Aα = − 1

bs

∂∆G

∂ταeff
, (46)

and using the last equality of Eq. 41 in Eq. 46, we get,

Aα =
Qs
τsolbs

pq

{
1−

(
ταeff
τsol

)p}(q−1)(ταeff
τsol

)(p−1)

. (47)

From Eq. 47, it is clear that Aα increases under elec-

tropulsing as τsol is scaled down by a factor of

(
1 +

j2

j20

)
following our implementation of Molotskii’s theory [13].

So, henceforth in our discussion we do not consider a change

in Aα explicitly as such an effect is already included in the

mechanism of a change in τsol causing softening.

4. Thermal softening due to Joule-heating

Another source of the reductions in flow stress during

electropulsing is conjectured to be the thermal softening of

the material due to Joule heating. In order to examine this

particular source, we first solve the thermal conduction

equation to determine the temperature (T ),

ρCpṪ = ∇ · (K∇T ) + Q̇, (48)

where, K is the thermal conductivity, ρ is the density of

the material, Cp is the specific heat capacity, and Q̇ is

the source term per unit volume. The heat source term is

computed as,

Q̇ = j ·E,

= j ·
[
σel

−1j
]
, (49)

where, we have used j = σelE; E is the electric field

vector and σel is the electrical conductivity tensor. The

evolution of T impacts the shear rates (γ̇α) as given by,

γ̇α = ραmbsv0 exp

[
− Qs
kBT (j)

{
1−

(
ταeff (j)

τsol

)p}q]
sign(τα),

(50)

where T is now a function of the imposed current density

j. An analysis to determine the reductions in flow stress

from thermal softening can be carried out in a manner

similar to that done for the situation where τsol changes.

In order to do that, we first relate the change in tempera-

ture to the imposed current density (j). For a single phase

material which is isotropic and homogeneous in all prop-

erties, tensors K, σel can be reduced to scalars K and

σel. The homogeneity of σel implies that the source term

Q̇ is also homogeneous, i.e., every point in the domain

experience the same heat source. Under such approxima-

tions ∇T = 0 as there is no reason for the T field to be

inhomogeneous. This simplifies Eq. 48 into,

ρCpṪ = Q̇. (51)

Solving the above equation yields,

T (j) = T (0) + Pj2, (52)

where, P = ∆t/σelρCp with ∆t being the pulse duration.

Temperatures at the beginning and at the end of the pulse

are denoted by T (0) and T (j). We have ignored cooling of

the sample to maintain simplicity of the formulation.

We resume our analysis to determine the dependence

of reductions in flow stress on the current density j, and

re-tracing the steps employed to derive Eq. 23 we obtain,[
1

T (0)
− 1

T (j)

]
=

1

Mτsol

(
σeff (0)

T (0)
− σeff (j)

T (j)

)
. (53)
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Now, employing Eq. 52 in the above equation we get,

∆σappl = ∆σeff =
P

T (0)
j2 [Mτsol − σeff (0)] , (54)

which again assumes constancy of σpass before and af-

ter pulsing. Thus, the reductions in flow stress have a

quadratic dependence on the current density j when ther-

mal softening is the operative mechanism. It must be

noted that in the presented analysis we have assumed that

dislocation climb has not played a role. We will comment

on the validity of this assumption based on the tempera-

ture rises seen during our simulations of electropulsing.

In the previous sections, we have discussed in detail the

crystal plasticity model for simulating EP. We have also

provided some analytical expressions relating the stress

drop to the current density. At this point we can present

the form of the Orowan equation at the slip system level

which displays contributions from all the mechanisms of

EP,

γ̇α(j) = ραmbsv0(j) exp

[
− Qs
kBT (j)

{
1−

(
ταeff (j)

τsol(j)

)p}q]

cosh

(
(Few ·mα)A

kBT

)
sign(τα),

(55)

where, ταeff (j) = |τα(j)| − ταpass, when |τα(j)| > ταpass and

ταeff (j) = 0, otherwise.

It should be mentioned at this point that we have not

considered the skin, pinch, and magnetostriction effects

as possible contributors to the phenomenon of EP as their

contributions have been established to be small [5, 32] com-

pared to the mechanisms under discussion in this paper.

However, thermal expansion due to Joule-heating is rec-

ognized to have a bigger contribution compared to skin,

pinch and magnetostriction effects [5]. But understand-

ably such an effect is restricted only to tensile tests, and

for the compression tests simulated in our paper, thermal

expansion can lead to an increase of the flow stress. Thus,

due to the lack of generality of the impact of thermal ex-

pansion on the flow stress, we have excluded it from our

consideration.

In the following section we report simulations of EP

through which we attempt to understand the contribution

of individual mechanisms to the electroplastic effect.

5. Results

Before presenting the results of our simulations on the

electroplastic effect, we would like to discuss a few details

about the numerical implementation and the solution tech-

nique. We implement the dislocation density based crys-

tal plasticity model in the open-source crystal plasticity

software DAMASK [33] and perform representative vol-

ume element (RVE) simulations of uniaxial compression of

polycrystalline samples using the spectral solver [34, 35].

Regarding the choice of the crystal plasticity param-

eters, we must reiterate that our objective is not to sim-

ulate the electroplastic effect observed for any particular

material, but to explore the characteristics of each of the

softening mechanisms of EP. In that regard, we work with

typical values of different parameters which are represen-

tative of a generic FCC material. We present the values

of the parameters related to dislocation glide and climb

in Table 1, while parameters related to the various mech-

anisms of EP are mentioned in Table 2. The electrical

and thermal properties of the material are mentioned in

Table 3. In experiments of EP, the pulses are usually ap-

plied for ≈ 100µs while their magnitudes range between

1e07−1e11 A/m
2
. We resort to electrical pulses of similar

character in our simulations as well (see caption to Fig. 1).

Another important point to note is that every param-

eter in the crystal plasticity model does not equally influ-

ence the reductions in flow stress. We will highlight those

which have the largest influence, as we discuss each mech-

anism.

The results presented in this section are in terms of

that component of the applied stress tensor which denotes

a normal stress along the axis of compression (σappl). Sim-

ilarly, the normal component of the imposed strain tensor

11



Parameter Value

τsol 7 MPa

d 50µm

bs 2.86e− 10 m

Qs 1.6e− 019 J

p, q 1.0

v0 1.0e04 m/s

islip 30.0

Canni 19.0

D0 1.76e− 05 m2/s

Qc 1.55e− 019 J

Table 1: Values of parameters related to dislocation glide and climb

Parameter Value

j0 3.0e09 A/m2

β 1e− 03

(ρD/ND) 3.3e− 025 Ωm3

e 1.6e− 019 C

ne 1.8e29 m−3

Table 2: Values of parameters related to EP

Parameter Value

ρ 2700 kg/m3

Cp 900 J/(kg K)

K 204 Wm−1K−1

σel 3.5e7 S/m

Table 3: Values of electrical and mechanical properties

along the axis of the compression test is referred to as

strain (ε) in this section.

In the discussions that follow, we consider each of the

softening mechanisms in isolation. Such an approach should

help to delineate the relative contributions of each of the

mechanisms towards the electroplastic effect. As there are

several possible sources of softening to be considered when

de-pinning of dislocations is the operative mechanism, we

follow an order which is identical to that used in Section 3.1

while discussing them.

We begin with the case where a change in τsol due

to de-pinning of dislocations is the operative mechanism

causing flow softening. Referring to the theoretical dis-

cussion in Section 3.1, we can see that j0 is a parameter

which acts as a normalizing factor to the current density

j and hence exerts an influence on the reductions in flow

stress obtainable due to dislocation de-pinning. In the ab-

sence of a suitable experimental dataset to determine j0

by fitting, we will choose for its value a quantity which is

very similar to that reported for Aluminium [13, 14]. The

flow curve presented in Fig. 1(a) displays a stress drop

of around 3 MPa observed coincident with the electrical

pulse. The drop is about 12% of the computed flow stress

just prior to the point of application of the pulse. The de-

tails of the loading and the pulse character are mentioned

in the caption to Fig. 1.

The crystal plasticity extensions to model the softening

mechanisms which stem from de-pinning of dislocations in-

volve the ratio (j/j0) as a crucial parameter. In order to

explore the behaviour of the reductions in flow stress as

a function of the ratio (j/j0), we record the reductions

in flow stress from simulations conducted over a range of

values of (j/j0) and present them in Fig. 1(b). The curve

from simulations display several features of Eq. 25. These

include the parabolic nature of the curve and saturation

of the reductions in flow stress at small and high values of

(j/j0), respectively. Thus, it can be claimed that the range

of (j/j0) chosen for our analysis is large enough to capture

all the key features of the reductions in flow stress. But

even as the softening behaviour from simulations quali-

tatively agrees with the analytical prediction of Eq. 25,

quantitatively there are differences. The deviation of the

simulation curve from that due to Eq. 25 becomes evi-

dent when we attempt to fit the simulation data to an

expression of the form f(j/j0) = A(j/j0)2/(1 + (j/j0)2),

with A as the fitting parameter, following Eq. 25. An

important difference between the simulation and the fit-

ted curves is that the point of inflection in the simulation

curve no longer manifests at j/j0 = 0.577, but is rather

observed at around 0.8. This discrepancy between theory
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and simulations is not surprising because of two reasons.

The first being that of the validity of the scheme which

is invoked to derive Eq. 25 where the behaviour of a sin-

gle grain normalized by a Taylor factor is considered to

be representative of the bulk polycrystalline sample. We

have already discussed this point in the paragraph follow-

ing Eq. 25. The second reason for a possible discrepancy

between theory and simulations is due to the assumed con-

stancy of the average long range elastic stress field (σpass)

before and during pulsing, which is used to derive Eq. 25

from Eq. 24. There is no way to verify this assumption

as the average long range stress field (σpass) cannot be ex-

plicitly written as functions of ταpass which prevents it from

being determined computationally and can only be related

approximately to ταpass using the Taylor factor (M).

From Eq. 25, a given value of τsol is expected to have a

large bearing on the % drop in stress. In order to explore

the effect of τsol further, we focus our attention on the

Orowan equation in Eq. 20 and notice that a particular

value of externally imposed ε̇ is satisfied by a certain ratio

of (σeff/τsol). Thus, when τsol changes σeff should also

change to maintain the ratio (σeff/τsol) constant, imply-

ing a direct proportionality between σeff and τsol. Us-

ing this fact along with a direct proportionality between

∆σappl and σeff from Eq. 25 translates into a similar scal-

ing between ∆σappl and τsol. Thus, the reductions in flow

stress ∆σappl should scale linearly with τsol and this could

indeed be confirmed from Fig. 1(c) which shows a straight

line relationship to exist between ∆σappl computed from

simulations for different values of τsol but at a particular

value of j. We have also fitted the simulation data with

a straight line and found the slope to be 0.44. In view

of the importance of τsol in determining the reductions in

flow stress, we present a short discussion in the Appendix

describing the rational behind the selection of a suitable

value for our simulations.

Moving on to the second possible source of reductions

in flow stress which is an increase in λαslip, the correspond-
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Figure 1: Figures demonstrating different aspects of the reductions in

flow stress due to a change in τsol. (a) Flow curves with and without

electropulsing during a compression test. The imposed strain rate

is ε̇ = 1e − 03s−1 and the pulse is applied at a strain of 0.01. The

imposed pulse corresponds to j/j0 ≈ 1 and is applied for a total

time of 60µs. (b) Reductions in flow stress as a function of (j/j0).

(c) reductions in flow stress as a function of τsol at j = j0. The

constants A and B in the figure legends are determined by fitting to

the simulation data. For (b) and (c) the loading and pulsing details

are the same as in (a).
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ing flow curve in Fig. 2(a) hardly shows a difference from

the un-pulsed one. A slight rise in the flow stress of ≈

1e − 06 MPa can be discerned when we magnify the flow

curves around the strain at which the pulse has been ap-

plied as seen in Fig. 2(b). A rise in flow stress during

electropulsing is consistently observed for this particular

mechanism across the entire range of (j/j0) considered in

Fig. 1(b). But as the increase in stresses are in the same

range as the errors due to numerical discretization and

precision, a clear trend does not emerge in the variation of

∆σappl versus (j/j0), like observed in Fig. 1(b). The pos-

sibility of an increase of the flow stress instead of a drop

when λαslip increases has been discussed in Section 3.1.2.
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Figure 2: Figures demonstrating reductions in flow stress due to a

change in λαslip. (a) Flow curves with and without electropulsing

during a compression test. (b) The magnified version of (a) around

a true strain of 0.01. The loading and pulsing details are mentioned

in the caption to Fig. 1.

We now consider the effects of a change in v0 on the flow

curve. A flow curve for this situation is no longer presented

as it resembles Fig. 2(a) and instead we just present a

variation of the reductions in flow stress as a function of

(j/j0) in Fig. 3. It is clear that the reductions in flow stress

due to a change in v0 are about two orders of magnitude

lower than those observed for the case where a change

in τsol is the source of softening. Also, the reductions in

flow stress appear to be a parabolic function of (j/j0) and

do not display a good fit with an expression of the form

predicted by Eq. 33. The reasons for this deviation are the

same as the ones mentioned during the discussion of the

reductions in flow stress due to a change in τsol.
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Figure 3: Figure demonstrating reductions in flow stress due to a

change in v0 as a function of (j/j0). The loading and pulsing details

are mentioned in the caption to Fig. 1. The constant C is determined

by fitting to the simulation data.

This brings us to the final source of change when dislo-

cations are de-pinned from obstacles, reflected by a change

in ταpass. The value of the parameter β in Eq. 38 is cho-

sen to be of the same order of magnitude as that reported

in [31](see Table. 2). As discussed earlier, when de-pinned,

larger free length of dislocations respond strongly to the

elastic stress fields due to other dislocations which lead to

larger strain hardening. Thus, this is a mechanism which

always leads to an increase in flow stress during pulsing as

confirmed from Fig. 4 where the reductions in flow stress

are presented as functions of (j/j0). The nature of the

curve is parabolic and hence allows a close fit by a func-
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tion f(j/j0) = A(j/j0)2 following Eq. 38 where A is a

fitting constant. The close fit between the form of Eq. 38

and those observed in Fig. 4 is rather fortuitous given the

assumptions of the analytical predictions. The maximum

value of the rise in ∆σappl over the range of current densi-

ties considered is insignificant compared to a drop caused

by a change in τsol.
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Figure 4: Figure demonstrating stress rises due to a change in ταpass

as a function of (j/j0). The loading and pulsing details are mentioned

in the caption to Fig. 1.

After dealing with the softening sources which are due

to the de-pinning of dislocations from obstacles during

electropulsing, we now focus on the effects of electron-wind

force on dislocations. The variation of the reductions in

flow stress due to electron-wind force ∆σappl as a func-

tion of j has a parabolic character initially but displays a

sharper change at higher values of j as evident from the

last three points of the curve presented in Fig. 5. Such a

behaviour correlates well with the nature of the ’cosh’ func-

tion which is introduced as a factor in Eq. 44. As claimed

by Molotskii et al., [13], we see a very small stress drop of

the order of 1e−03 MPa due to this mechanism. The selec-

tion of the relevant parameters like ρD/ND and ne which

control the softening through this particular mechanism is

described in the Appendix and their values are presented

in Table 2.

Through the results presented so far, we have devel-

oped an understanding of the nature and magnitude of
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Figure 5: Figure demonstrating the reductions in flow stress due

to electron-wind force as a function of j. The loading and pulsing

details are mentioned in the caption to Fig. 1.

the reductions in flow stress due to the de-pinning of dis-

locations and the electron-wind force. These mechanisms

induce some changes either in the interaction between dis-

locations and obstacles or modify the forces acting on dis-

locations. In other words, these mechanisms do not in-

voke a change in temperature of the material and hence

are athermal in character. It is important to determine

the quantum of the reduction in flow stress achievable due

to Joule heating of the material and compare it against

the softening observed from athermal means. The first re-

sult in this regard is a variation of temperature rise (∆T )

with j as presented in Fig. 6(a). The corresponding re-

ductions in flow stress are presented in Fig. 6(b). The

variation of temperature rise with j follows a parabolic

curve which is in accordance with our analysis expressed by

Eq. 52. The nature of the curve in Fig. 6(b) is parabolic for

j > 2e09 A/m
2

and is in accordance with that predicted by

Eq. 6(b). For j < 2e09 A/m
2
, the softening response seen

in simulations is lower than that predicted by our analy-

sis. Such values of j correspond to low temperature rises of

∆T < 5K, which can be conjectured to be not large enough

to cause significant lowering of flow stress due to enhanced

thermal activation. In other words, it appears, that unless

the temperature exceeds a certain threshold value, there is

no significant softening due to Joule-heating. This brings
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the limitation of analytical expressions like Eq. 6(b) again

to the forefront as the assumptions involved in deriving

such expressions are too simplistic compared to actual

crystal plasticity simulations. The reductions in flow stress

∆σappl observed due to Joule-heating are higher than all

the other softening sources discussed above except for the

case where a change in τsol causes softening. It can be

noted that the activation energies for slip (Qs) and climb

(Qc) are the key parameters which control the reductions

in flow stress due to Joule-heating. We have described the

process of selection of Qs in the Appendix, and from Fig. 6

it is reasonable to argue that the rise in temperature is not

enough to cause significant climb of edge dislocations.
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Figure 6: Figures demonstrating the reductions in flow stress due to

Joule-heating. (a) Temperature rise as a function of j. (b) Reduc-

tions in flow stress as a function of j. The parameter A in the figure

legends denote constants which have to be determined by fitting to

simulation data. The loading and pulsing details are mentioned in

the caption to Fig. 1.

We have presented and discussed all the mechanisms

and their corresponding sources which result in the electro-

plastic effect. A graphical summary of our observations is

presented in Fig. 7 where the % drops in stress are plotted

as function of the current density j. These figures unam-

biguously point to modifications in τsol being the strongest

contributor to the reductions in flow stress. Thermal soft-

ening due to joule heating is a distant second, while all the

other mechanisms produce reductions in flow stress which

are at least smaller by an order of magnitude compared to

Joule-heating. A curve obtained from a simulation where

all the effects are simultaneously active (denoted by a leg-

end “All” in the figure) lies in close proximity to the τsol

curve and mimics its shape confirming changes in τsol to

be the largest contributor to the reductions in flow stress.
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Figure 7: Figure comparing the % reductions in flow stress due to

all the mechanisms, plotted as a function of j. In the figure legends,

JH denotes Joule-heating, Few denotes electron-wind force, and ’All’

refers to all mechanisms of EP being active. τsol and v0 represent

reductions in flow stress due to changes in those terms.

There is a considerable experimental evidence that the

magnitudes of the reductions in flow stress are reduced as

the the pulses are applied at higher values of strains [5, 10,

14]. In Figs. 8(a) and 8(b), we present a variation of the

reductions in flow stress due to a change in τsol and Joule-

heating respectively, as functions of the strains at which

the sample is pulsed. It can be seen from Fig. 8(a) that

∆σappl falls as pulses are applied at higher strains. This

could be explained in the following manner. In our crystal
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plasticity framework, higher strains are microstructurally

characterized by a larger value of ραm (and also ραd ). In-

voking the assumption that an imposed ε̇ leads to constant

values of γ̇α on the different slip planes α, from Eq. 7 it is

clear that for larger values of ραm at higher strains, smaller

values of ταeff satisfy Eq. 7. As σeff is related to ταeff by a

Taylor factor, the value of σeff will also be lowered as the

strains increase. The direct proportionality between the

reductions in flow stress (∆σappl) due to a change in τsol

and σeff due to Eq. 25 explains the lowered reductions in

flow stress (∆σappl) at higher values of strains. In other

words, at higher levels of strains, plasticity is achieved

by generating more mobile dislocations to compensate for

the smaller dislocation free paths. Thus, at higher strains,

the mechanisms of EP which aid thermal activation of the

dislocation segments over short range obstacles can only

enhance the much lower dislocation velocity by a smaller

factor, compared to that possible at smaller strains.

In contrary to our observations in Fig. 8(a), the reduc-

tions in flow stress due to thermal softening increase with

applied strains as shown in Fig. 8(b). Using the concept of

the reduction in σeff with strain as described in the pre-

vious paragraph, the increase in reductions in flow stress

observed in Fig. 8(b) could be immediately explained from

Eq. 54. But as these changes are an order of magnitude

smaller than those observed in Fig. 8(a), the curve corre-

sponding to the case where all the softening mechanisms

are operative, mimics the one representing reductions in

flow stress due to a change in τsol (see Fig. 8(a)). The in-

fluence of the other mechanisms of EP are not considered

to be important because they have been seen to produce

a negligibly small impact on the reductions in flow stress.

Finally, we probe the effect of pulse duration on the

reductions in flow stress as presented in Fig. 9, where the

pulse duration is increased keeping the current density con-

stant. The reductions in flow stress due to a change in τsol

increase gradually as the pulse durations are increased and

show signs of saturation at higher pulse durations. This
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Figure 8: Figures demonstrating the reductions in flow stress

(∆σappl) due to, (a) a change in τsol and when all the mechanisms

are active, and (b) Joule-heating, with strains (ε) at which electrical

pulses are applied. The figure legends are explained in the caption to

Fig. 7. Pulses of magnitude 3e09 A/m2 are applied for a total time

of 60µs.
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can be explained by discretizing the entire pulse duration

into a series of infinitesimal pulses, each lowering the σeff

to a value which becomes the initial σeff for the subse-

quent pulse (see Eq. 24). Noting that σeff << σappl and

(σeff/M) < τsol, the proportionality of ∆σappl with σeff

(see Eq. 25) means that the reductions in flow stress in-

crease with the pulse size, but ultimately saturates. Ther-

mal softening due to Joule heating is strongly affected

as more electrical energy is introduced into the material

as the pulse duration increases. Joule heating being the

mechanism which is most sensitive to an increase in pulse

duration dominates the overall sensitivity of the electro-

plastic effect even when all the mechanisms are active as

seen in Fig. 9.
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Figure 9: Figure demonstrating the variation of the reductions in

flow stress as a function of the pulse width. The current density is

maintained at j = 3e09 A/m2. The figure legends are explained in

the caption to Fig. 7.

Having reached the end of this section, we will summa-

rize our key observations:

• De-pinning of dislocations produces the largest re-

ductions in flow stress through a change in τsol.

• Joule-heating is the second largest contributor to the

reductions in flow stress but its contribution is still

an order of magnitude smaller than that produced

by dislocation de-pinning.

• Electron-wind force has negligible contribution to

the reductions in flow stress.

• The reductions in flow stress due to de-pinning of

dislocations fall as the electrical pulses are applied

at higher strains.

• Increasing duration of the electrical pulses increases

the reductions in flow stress due to both Joule-heating

and dislocation de-pinning.

• As the reductions in flow stress due to de-pinning of

dislocations are a strong function of τsol, it can be

expected that for certain combinations of parame-

ters, Joule-heating produces larger reductions in flow

stress than that due to de-pinning of dislocations.

In the next section, we discuss a few implications of

our results and lay out the possibilities for future work in

this direction.

6. Discussion

As already discussed, for the parameter set consid-

ered, dislocation de-pinning produces a reduction in flow

stress which is an order of magnitude larger than that pro-

duced by Joule-heating. But our simulations also demon-

strate that it is possible for Joule-heating to supersede

the de-pinning of dislocations as the dominant mecha-

nism of EP. This happens when the temperature rise pro-

duced in the material is large enough to cause a softening

higher than the softening produced by de-pinning of dis-

locations. In context of this understanding, a few exper-

imental evidences which claim EP to be predominantly a

Joule-heating phenomenon can now for the first time be

explained consistently within the framework of our model.

Examples of such studies are due to Magargee et al., [12]

and Zheng et al., [36]. It must be noted that the mate-

rial under consideration in these studies is Ti, which has

a hexagonal close packed structure. The fact that there

are not enough slip systems in a hexagonal structure to

produce a predominantly dislocation mediated plasticity

also implies that dislocations interact with forest disloca-

tions much rarely in such materials resulting in smaller
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values of τsol, compared to those observed for FCC ma-

terials. Hence, it is possible that for such materials, de-

pinning of dislocations during electropulsing may not be

the dominant softening mechanism. This point has also

been raised by Sprecher et al., [5] where they claim that

the interstitial impurities in Ti present the largest barriers

to dislocation motion for hexagonal metals. So, for such a

material it is quite reasonable that thermal softening due

to Joule-heating is the dominant mechanism for EP, espe-

cially when the interstitial solutes are not paramagnetic in

character. Another work by Goldman et al., [11] reports no

softening in Pb at superconducting temperatures (around

4K). This could be explained by considering that a change

in electronic behaviour which induces superconductivity at

low temperatures could also potentially inhibit the mech-

anism of de-pinning of dislocations, which is dependent on

electronic states.

With reference to the discussion in the previous para-

graph, it can be noted that while the mechanism of de-

pinning of dislocations is of central importance to the phe-

nomenon of EP in FCC materials and may be of signifi-

cance for Hexagonal materials as well, this is not valid for

BCC materials, as has already been pointed out by Molot-

skii [14]. For BCC materials, slip is largely determined by

the well known kink-pair mechanism, and the way that

mechanism is affected by electropulsing continues to re-

main unclear. Hence some experimental suggestions are

crucial to formulate an athermal theory of EP for BCC

materials.
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8. Appendix

Here, we present a short description of the process of

selection of different parameters which influence the reduc-

tions in flow stress during electropulsing. We first describe

selection of τsol which is central to the reductions in flow

stress observed due to dislocation de-pinning. The pa-

rameters critical to electron-wind force ρD/nd and ne are

discussed next.

8.1. Selection of Qs and τsol

The activation energy for slip Qs is related to the en-

ergy of forming a jog as a dislocation intersects a forest

dislocation. This energy has been estimated to be between

Gb3s/5 and Gb3s/3 [37] and we assume it to be,

Qs =
1

4
Gb3s. (56)

For fcc materials, it is often seen that Gb3s ≈ 4eV [37],

hence Qs = 1eV = 1.6e−19J from Eq. 56. When a jog is

created by an applied stress τ∗ we can write,

Qs = τ∗V, (57)

where V is the activation volume defined as,

V = bsdaclc, (58)

with dac and lc denote the activation distance and average

free dislocation segment length, respectively. For jog for-

mation during forest dislocation interaction, dac ≈ bs [37],

and lc ≈ 1000bs [38]. Assuming bs = 2.86e−10 m, using

Eqs. 57 and 58, we get, V ≈ 1000b3s and τ∗ ≈ 7 MPa. Con-

ceptually, τ∗ is the same as τsol as the latter represents the

stress required for dislocations to overcome short range ob-

stacles like forest dislocations. This exercise allows us to

identify two important parameters for our crystal plastic-

ity simulations: τsol = 7 MPa and Qs = 1.6e−19 J.

8.2. The parameters influencing the electron-wind force

The two key parameters which affect the electron-wind

force are the specific dislocation resistivity ρD/ND and the
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free electron density ne. For the former, we use the value

stated for Aluminium in [39] while we compute ne using

the formula,

ne =
fNAρ

MA
, (59)

where, MA is the atomic mass, f is the number of free

electrons per atom, NA is the Avogadro number and ρ

is the density. We compute ne using the parameters for

Aluminium.
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[30] A. Granato, K. Lücke, J. Schlipf, L. Teutonico, Entropy factors

for thermally activated unpinning of dislocations, Journal of

Applied Physics 35 (9) (1964) 2732–2745.

[31] M. Molotskii, V. Fleurov, Work hardening of crystals in a mag-

netic field, Philosophical magazine letters 73 (1) (1996) 11–15.

[32] K. Okazaki, M. Kagawa, H. Conrad, An evaluation of the contri-

butions of skin, pinch and heating effects to the electroplastic

effect in titatnium, Materials Science and Engineering 45 (2)

(1980) 109–116.

[33] F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L.

Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius,

et al., DAMASK–The Düsseldorf Advanced Material Simulation

Kit for modeling multi-physics crystal plasticity, thermal, and

damage phenomena from the single crystal up to the component

scale, Computational Materials Science 158 (2019) 420–478.

[34] P. Eisenlohr, M. Diehl, R. A. Lebensohn, F. Roters, A spectral

method solution to crystal elasto-viscoplasticity at finite strains,

International Journal of Plasticity 46 (2013) 37–53.

[35] P. Shanthraj, P. Eisenlohr, M. Diehl, F. Roters, Numerically

robust spectral methods for crystal plasticity simulations of

heterogeneous materials, International Journal of Plasticity 66

(2015) 31–45.

[36] Q. Zheng, T. Shimizu, T. Shiratori, M. Yang, Tensile proper-

ties and constitutive model of ultrathin pure titanium foils at

elevated temperatures in microforming assisted by resistance

heating method, Materials & Design 63 (2014) 389–397.

[37] D. Hull, D. J. Bacon, Introduction to dislocations, Butterworth-

Heinemann, 2001.

[38] A. Evans, R. Rawlings, The thermally activated deformation

of crystalline materials, physica status solidi (b) 34 (1) (1969)

9–31.

[39] Z. Basinski, J. Dugdale, A. Howie, The electrical resistivity of

dislocations, Philosophical Magazine 8 (96) (1963) 1989–1997.

21


	1 Introduction
	2 Crystal plasticity model
	2.1 Kinematic and constitutive relationships
	2.2 Microstructure () and shear rates 

	3 Athermal mechanisms of EP 
	3.1 Paramagnetic de-pinning of dislocations
	3.1.1 Effect of a change in sol
	3.1.2 Effect of a change in slip
	3.1.3 Effect of a change in v0
	3.1.4 Effect of a change in passing stress pass

	3.2 Electron-wind force: Conrad and co-workers

	4 Thermal softening due to Joule-heating
	5 Results
	6 Discussion
	7 Acknowledgement
	8 Appendix
	8.1 Selection of Qs and sol
	8.2 The parameters influencing the electron-wind force


