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Abstract

From the complex motions of robots to the oxygen binding of hemoglobin, the function of many

mechanical systems depends on large, coordinated movements of their components. Such move-

ments arise from a network of physical interactions in the form of links that transmit forces between

constituent elements. However, the principled design of specific movements is made difficult by

the number and nonlinearity of interactions. Here, we model mechanical systems as linkages of

rigid bonds (edges) connected by joints (nodes), and formulate a simple but powerful framework

for designing full nonlinear coordinated motions using concepts from dynamical systems theory.

We begin with principles for designing finite and infinitesimal motions in small modules, and show

that each module is a one-dimensional map between distances across pairs of nodes. Next, we

represent the act of combining modules as an iteration of this map, and design networks whose

geometries reflect the map’s fixed points, limit cycles, and chaos. We use this representation to

design different folding sequences from a deployable network and a soliton, to a branched network

acting as a mechanical AND gate. Finally, we design large changes in curvature of the entire

network, and construct physical networks from laser-cut acrylic, origami, and 3D printed mate-

rial to demonstrate the framework’s potential and versatility for designing the full conformational

trajectory of morphing metamaterials and structures.
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I. INTRODUCTION

From the Mantis shrimp strike [1] and cell membrane channels [2], to medical stents [3]

and solar sails [4], mechanical systems are prevalent in the natural [5, 6] and engineered

[7, 8] world. What makes these systems useful is their ability to change their geometry

in a coordinated way to amplify motion, release pressure in cells, pass through narrow

blood vessels, or dramatically increase surface area. Despite their differences, each of these

systems can be commonly represented as a mechanical network, where the rigid edges encode

constraints due to physical limbs or forces, and the nodes represent joints or constituent

elements. A simple and powerful framework for understanding the relationship between

network structure and coordinated motion is structural rigidity theory [9], originating from

early and seminal work by J. C. Maxwell [10–12]. Here, the number of coordinated motions

is elegantly given by the difference between the numbers of node coordinates and edges.

However, the successful design of coordinated motions depends not only on the existence

of a motion, but also on the time-evolving network geometry for the duration of the motion.

This changing geometry is determined by the set of node coordinates that satisfy edge

constraints, just as the distance between a robot’s joints are set by the length of a connecting

limb. Several works provide design principles relating edge placement to node motions in

small networks [13–16], and to detailed single-node trajectories or local perturbations in large

networks [17, 18]. Other works explore lattices in the study of topological mechanics [19–21]

in origami [22, 23], along with sequential and branched motions [24–28]. Excitingly, many

experimental techniques are being concurrently developed to physically construct desired

network geometries [29–32]. With a wide range of interdisciplinary interest, it is now timely

to develop a general framework for designing specific geometric trajectories in large networks.

Here, we develop such a framework by relating the geometry of a network to the progres-

sion of an iterated map in dynamical systems theory. We first draw on previous work that

allows us to design the positions and velocities of the nodes in a network module along a

coordinated motion [16]. Then, we demonstrate that each module acts as a one-dimensional

map between pairwise node distances at every point along this motion [33], and combine

modules to iteratively apply this map. We tie the map’s fixed points and limit cycles to

crystalline states of repeating module geometries, and the stability of these points and cycles

to the localization of motion to the edge or the bulk of the network. Finally, we design large
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changes in the shape of the entire network, and implement our framework by physically

constructing networks. Hence, we design a rich and complex set of large sequential motions

in networks through the dynamical properties of the map induced by a single module.

II. DESIGNING COORDINATED MOTIONS OF A SINGLE MODULE

To design motions in large networks, we first study the relationship between node motions

and edge placement in simple network modules. As an example, consider a 4-bar linkage with

N = 4 nodes and E = 4 edges in d = 2 dimensions (Fig. 1a). Each node has 2 coordinate

variables (x, y), and each edge adds a distance constraint between node coordinates. With

dN = 8 variables and E = 4 constraints, we have a dN − E = 4 dimensional space of

allowed node coordinates. Three dimensions are the rigid body translations and rotation that

exist for all 2-dimensional objects, and preserve the distances between all nodes (Fig. 1a).

The fourth defines a conformational motion that changes distances d1(t) and d2(t) between

unconnected nodes over time (Fig. 1b). Along this motion, we plot d2 against d1, generating

a 1-dimensional curve (Fig. 1c) that is a map f from distance d1 to distance d2 at any time

d2 = f(d1).

In a general network of N nodes and E edges in d-dimensions, the coordinates of node i

at time t ≥ 0 are a vector xi(t) ∈ Rd. Each rigid edge between nodes i and j has constant

length lij, and adds a distance constraint on the node coordinates

lij = ‖xi(t)− xj(t)‖2.

Then, the number of coordinated node motions M (also called zero modes) satisfying all

edge constraints is given by generalized Maxwell counting [10, 11] as the difference between

the number of coordinates dN (variables) and the number of edges E (constraints)

M = dN − E + S, (1)

where S is the number of states of self-stress. In our study, S = 0 unless otherwise stated.

From prior work, we can construct modules where we choose the positions and velocity

of a set of designed nodes, fixing both the distances d1 and d2 and the change in distances

δd1 and δd2 between these nodes [16]. We first choose a desired initial position and velocity
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FIG. 1. Designing node velocities and displacements as a conformational motion. (a)

Schematic of a 4-bar linkage with N = 4 nodes, E = 4 edges, and M = 4 zero modes, with

the 3 rigid-body motions indicated by red arrows. (b) Definition of distances d1 and d2 between

unconnected nodes that (c) are plotted at each point in time (d1(t), d2(t)) as the node positions

change along the conformational motion. (d) To design a motion, we choose the positions and

velocities of designed nodes (red nodes, arrows), and solve for the positions and velocities of a fully

connected variable node (blue curve, arrows) that do not change any edge lengths. (e) Definition

of two distances d1 and d2 between designed nodes, with (f) d1 and d2 at the initial node positions

as the red point, and the node velocities as the slope at that point. (g) Choice of initial (solid red)

and final (hollow red) designed node positions, with solutions to the initial (dark blue) and final

(light blue) variable node positions. (h) Constructed network where the distances d1 and d2 at the

initial and final node positions (i) are shown as red dots. (j) Choice of designed node velocities and

final positions, with corresponding solution spaces. (k) Placing variable nodes at the intersection

of these spaces fixes the initial position, final position, and velocities of the designed nodes along

the conformational motion, corresponding to (l) the initial point, final point, and slope of the map.

of the designed nodes (Fig. 1d, red). Next, we solve for the solution space of all positions
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and velocities of a fully connected variable node that together preserve the edge lengths

(Fig. 1d, blue). Finally, we add variable nodes and edges along this space until our module

has 1 conformational motion (Fig. 1e). The initial node positions fix a point (d1, d2) on the

map, and the node velocities fix the slope δd2/δd1 of the map at this point (Fig. 1f, red).

We can use the same method to construct modules where we choose the initial and final

positions of the designed nodes at t = 0 and t = T (Fig. 1g,h), thereby fixing the initial

and final distances between the designed nodes as points (d1(0), d2(0)) and (d1(T ), d2(T ))

along the map (Fig. 1i, red). We can also choose both the initial and final designed node

positions, along with the node velocities, to generate two solution spaces (Fig. 1j). By placing

variable nodes at the intersection of these spaces, we fix the initial distances (d1(0), d2(0)),

final distances (d1(T ), d2(T )), and slope δd2/δd1 of the map (see supplement), providing

considerable design power over the shape of the map (Fig. 1k,l, red).

III. MODULE COMBINATIONS AS ITERATED 1-DIMENSIONAL MAPS

Although the motion of a single module appears deceptively simple, we can design a wide

range of exotic motions by defining simple rules for combining modules. Recall that in our

4-bar linkage (Fig. 1a), we can relate the distance d1 to d2 with 1 application of our map

d2 = f(d1). For an identical second module with distances d′2 and d3 related by d3 = f(d′2),

we can join these modules by combining the nodes defining d′2 and d2 such that d′2 = d2.

Then, we can relate the distance d3 to d1 as 2 applications of our map (Fig. 2a)

d3 = f(d′2) = f(d2) = f(f(d1)).

With the k-th module having distances d′k and dk+1, by joining the nodes defining d′k of the

module and dk of the network, we can relate d1 to dk+1 as k applications of our map

dk+1 = f(dk) = · · · = fk(d1). (2)

Hence, the pairwise node distances of our combined network (d1, d2, · · · , dk+1) is equivalent to

the k-step trajectory of our iterated map from a specific initial distance (d1, f(d1), · · · , fk(d1)).

For our combined 4-bar linkage, we consider three different geometries at initial distances

d1 = 2 (dark blue), d1 = 2.5 (blue), and d1 = 3 (light blue) (Fig. 2b). For each geometry,

we show the 2-step trajectory of the iterated map as arrows of the same color in a cobweb
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FIG. 2. Representing networks of combined modules as iterated maps. (a) Two 4-bar

linkage modules, combined by joining the nodes defining d2 of the left module with those defining

d′2 of the right module, such that d3 = f(d′2) = f(d2) = f(f(d1)). (b) Three network geometries

at different initial distances d1 = 2, 2.5, and 3. (c) Cobweb plots where each set of colored arrows

represents a correspondingly colored network geometry at different d1. Each vertical arrow points

from dk to dk+1. (d) Two modules from Fig. 1j where d1 = d2 at both initial D∗1 and final D∗2

geometries, that combine by joining the nodes defining d2 and d′2. (e) Network of eight modules

starting at different d1, with (f) corresponding cobweb plots showing the 8 map iterations starting

at the stable fixed point d1 = D∗1 (dark blue), the unstable fixed point d1 = D∗2 (light blue), and an

intermediary distance D∗1 < d1 < D∗2 (blue) where dk tends towards the stable D∗1 as k increases.

(g) Alternate module combined by joining the nodes defining d2 and d′2. (h) Network of 16 modules

starting at 3 different initial distances. (i) Cobweb plots showing 16 map iterations with initial

distance at an unstable fixed point d1 = D∗ (dark blue), a transition Do < d1 < D∗ (blue), and a

stable period-2 cycle d1 = Do
1 (light blue). (j) Chaotic modules that are combined in (k) to form a

network starting at an unstable fixed point d1 = D∗ (dark blue), an unstable limit cycle d1 = Do

(light blue), and in between Do < d1 < D∗ (blue) to generate (l) a chaotic trajectory.
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plot [34]. For module k = 1, the arrows begin at initial distance dk = d1 = 2, 2.5, 3, and

move up to dk+1 = d2 = f(d1) to show one map iteration. For module k = 2, the arrows

move horizontally dk = d2, and up to dk+1 = d3 = f(d2) as another map iteration (Fig. 2c).

We begin with the concept of a fixed point, defined by a distance D∗ that maps to itself

D∗ = f(D∗). (3)

At D∗, the network is in a crystalline state, where the geometry of a set of modules repeats.

To demonstrate, we consider the module designed in Fig. 1j–l, where d1 = d2 = D∗1 in

the initial geometry, and d1 = d2 = D∗2 in the final geometry. As before, we combine two

modules by joining the nodes defining d′2 and d2 to form a network chain (Fig. 2d). In

combining eight modules by joining the nodes defining d′i and di, we form a chain with 1

conformational motion from the D∗1 crystalline state (Fig. 2e, dark-blue) to an intermediary

non-crystalline state (Fig. 2e, blue), to the D∗2 crystalline state (Fig. 2e, light-blue). In the

intermediary state, the distance dk+1 of each consecutive module k moves away from D∗2 and

towards D∗1 based on the stability of D∗1 and D∗2, defined by the slope at each point

s = f ′(d)|d=D∗ . (4)

If |s| < 1, then D∗ is stable, and the distance dk+1 of consecutive modules tends toward D∗.

If |s| > 1, then D∗ is unstable, and dk+1 of consecutive modules moves away from D∗. In

this example, D∗1 is stable and D∗2 is unstable, as seen in the cobweb plot (Fig. 2f).

We can also design modules with period-m cycles, defined by distances Do
1, D

o
2, · · · , Do

m

that repeat periodically every m iterations

Do
i = fm(Do

i ), i = 1, · · · ,m. (5)

We show a period-2 cycle with another module (Fig. 2g), and combine 16 modules with 1

motion that begins at d1 = D∗ (Fig. 2h, dark-blue), but has another crystalline state at

d1 = Do
1 where the geometry of every 2 modules repeats (Fig. 2h, light-blue). By the chain

rule, the stability of a period-m cycle is the product of slopes at every point on the cycle

[34]

s =
m∏

i=1

f ′(d)|d=Do
i
, (6)
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and is stable for |s| < 1 and unstable for |s| > 1. Here, the fixed point is unstable and

the limit cycle is stable, such that consecutive modules of the intermediate network tend

towards the limit cycle (Fig. 2h,i, blue). If both the fixed point and limit cycle are unstable

(Fig. 2j–k), a network with distance d1 at these points has a crystalline structure (Fig. 2l,

light and dark blue), but other distances d1 yield chaotic iterative behavior with network

geometries that depend sensitively on d1 (Fig. 2l, blue) with a Lyapunov exponent of ≈
0.312 (see supplement). By choosing the points and slopes in the map of a single module,

we design the full nonlinear motion of large networks using the behavior of the iterated map.

IV. DESIGN OF FOLDING SEQUENCE

Many recent applications such as morphing aircraft wings [35] and deployable satellite

antennas [36] require control over both the sequence of geometric change and the rigidity

of the bulk structure. Using the dynamical principles of the previous section, we design the

folding sequence of a network composed of modules by changing the stability of the module’s

map. At a crystalline state d1 = · · · = dk+1 = D∗, we can write the change in dk+1 with

respect to d1 by taking the derivative of our map Eq. 2 using the chain rule

d

dd1
dk+1 =

d

dd1
fk(d1) =

k∏

i=1

f ′(d)d=di=D∗ = sk. (7)

For a system where d1 and d2 change identically such that s = 1, a unit change in d1

causes a unit change in dk+1 because sk = 1, giving a uniform motion throughout the network

(Fig. 3a,b). If we increase the slope to s = 1.5, a unit change in d1 causes a much larger

change in dk+1, localizing the majority of the motion to the dk+1 (right) end (Fig. 3c,d).

For super-stability where s = 0, any infinitesimal change in d1 causes no change in dk+1,

thereby completely localizing the motion to the d1 (left) end (Fig. 3e). We can also extend

sequential motion to finite deformations by using multiple fixed points. The module in

Fig. 3e has been designed to have a stable fixed point D∗1, and an unstable fixed point D∗2,

such that the combined network collapses to this second crystalline state from d1 to dk+1

(left to right), creating a soliton that is a D∗2 crystal to the left, a D∗1 crystal to the right,

with a transition in between that repeats with the collapse of each module [33] (Fig. 3f, 5b).

Finally, we combine these sequential chains to create branched networks that act as me-

chanical AND gates. We take the dk+1-end nodes of one network from Fig. 3e, and combine
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FIG. 3. Spatial localization of folding sequence determined by fixed point stability.

(a) Module and combined network with conformational motion designed to have velocity (green

arrows) where d1 and d2 change equally such that the map dk+1 = f(dk) has a slope s = 1, and

(b) motion propagates uniformly across the network. (c) Module and combined network where d2

changes faster than d1 such that the map has slope s = 1.5, and (d) the network begins deforming

from the right. (e) Module and combined network where d2 stays constant with infinitesimal

change in d1 such that the map has slope s = 0 and is super-stable, completely isolating motion

to the left. This module has two fixed points D∗1 (initial) and D∗2 (final), such that the combined

network (f) collapses to the D∗2 geometry from left to right. (g) We take two of these networks, and

attach the d2 end of one to the halfway point of the other, such that two infinitesimal motions exist

(green arrows). These motions are mathematically coupled for finite motions, but super-stability

allows (h) one branch to be deformed independently from the other to numerical precision, yet (i)

both must collapse to (j) propagate the motion beyond the branch as a mechanical AND gate.

them with the middle nodes of another (Fig. 3g) such that their floppy ends face outward

(left and up). Because an infinitesimal change in d1 does not change d2, we generate self-

stress in Eq. 1 and have 2 conformational motions. If we finitely change d1 at one branch, we

also change the subsequent distances dk+1, such that the motion of both branches is theoreti-

cally coupled. However, because D∗1 is super-stable, this motion does not cause a measurable

change at the coupled nodes (to 64-bit precision) until one branch is almost completely

collapsed (Fig. 3h), after which we must collapse the second branch (Fig. 3i) to collapse

10



the whole network (Fig. 3j). Hence, we can generate effectively independent conformational

motions in branches that must all collapse for the motion to continue propagating.

V. DESIGN OF DEPLOYABLE LARGE-SCALE STRUCTURE

We now design the folding sequence and final geometry of combined modules to construct

networks with a desired macroscopic final structure using a single actuator. Specifically, we

design the curvature of a network chain’s final configuration by using different modules that

expand or contract the chain on either side.

FIG. 4. Designing macroscopic network geometry through curvature. (a–c) Network

modules that transition from the same initial D∗1 to final D∗2 fixed points symmetrically (d1 = d2)

and monotonically (ḋ1, ḋ2 > 0 from D∗1 to D∗2) along the conformational motion. The distance

between bottom nodes either (a) decreases (marked here as da), (b) does not change (marked as

db), or (c) increases (marked as dc). (d) By combining modules in an alternating pattern with

light-blue modules contracting the bottom nodes, and dark-blue modules expanding the top nodes,

the combined network forms a line in the initial conformation, and curves downward in the final

configuration. (e) Combined networks in their initial, intermediary, and final geometries designed

to (f) spell out the letters in the word “NETWORK.”

In three modules (Fig. 4a–c), the initial distances d1 = d2 = D∗1 and final distances d1 =

d2 = D∗2 are fixed points that are preserved across all modules. Further, all three modules

transition monotonically such that all final conformations can be reached by increasing either

d1 or d2 from the initial conformation, and symmetrically such that d1 = d2 throughout the

motion [28]. Hence, the full chain can reach the final conformation by only increasing d1. In

the first (second, third) module (Fig. 4a–c), the distance da (db, dc) between the bottom nodes
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decreases (does not change, increases). By combining modules in an alternating pattern, we

can create portions of a network that are straight in the initial conformation, but curve in

the final conformation (Fig. 4d). As a demonstration of design capability, we create seven

chains that, in their final conformation, spell out the word “NETWORK” (Fig. 4e–f).

VI. CONSTRUCTING PHYSICAL NETWORKS

FIG. 5. Physical construction of networks. (a) Photo of a super-stable module from Fig. 3e

constructed from laser-cut acrylic bars held together by Chicago screws at the joints, transitioning

between two fixed points D∗1 and D∗2. (b) Photo of combined network from Fig. 3f collapsing from

D∗1 to D∗2. (c) A 4-bar linkage with two crystal states D∗1 and D∗2, (d) combined hexagonally into

(e) an initially wide spiral helix with a channel D∗1, collapsing sequentially to a narrow closed helix.

(f) Photo of a creased square sheet of paper modeled as a linkage with 1 conformational motion

moving between two crystal states D∗1 and D∗2 (with a mountain fold at the purple edge, and valley

folds at the orange edges). (g) Two creased sheets combined by joining the nodes defining d2 and

d′2, along with a third node in each module marked in bright red. (h) A combined network of 12

sheets that sequentially collapses from the D∗2 to the D∗1 flat sheet crystal state from the zero-mode

localized to the left. (i) A 3D-printed planar module with two fixed points D∗1, D
∗
2. Each module is

composed of triangles connected by a thin layer of material, that (j) form a chain where (k) fixing

the cyan hinge and pulling the red hinge yields a sequential transition from D∗1 to D∗2.

Here, we implement this theory for designing the geometry of both the sequence and
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macroscopic structure of mechanical networks by constructing physical networks. We con-

struct the super-stable and sequentially collapsible networks from Fig. 3e,f by laser cutting

the edges from 1/8-inch thick acrylic, and connecting their joints using Chicago screws

(Fig. 5a,b). Additionally, many deployable applications [36] require a compact initial ge-

ometry and a precise, rigid final geometry. Using wooden sticks that are joined by a staple

prong at the joints, we show a 4-bar linkage with two crystal state fixed points D∗1 and D∗2,

where the D∗1 point is super-stable (Fig. 5d). These modules can be combined in a chain

(Fig. 5e) that yields a wide spiral with an open channel in the initial state D∗1, and collapses

to a narrow spiral with no channel in the final state D∗2 (Fig. 5f).

To demonstrate the generalizability of our framework to 3-dimensional space, we model

a creased square of paper as a linkage, where each crease is a rigid edge, and the intersection

of creases is a node (Fig. 5f). We define d1 and d2 to be the distances between opposing

corners in this sheet that collapses from the unfolded D∗1 to the folded D∗2 crystalline states.

If we combine these modules by joining the nodes defining d2 and d′2 (Fig. 5g), then we

obtain an origami structure that collapses sequentially from the left end to a flat geometry

(see supplement for details).

These principles also extend to planar networks comprised of polygons (e.g. triangles)

connected at vertices through a thin layer of flexible material (Fig. 5g). We designed a

module with two fixed points D∗1 and D∗2, where the initial point D∗1 is super-stable. We can

chain these modules as before to yield the same iterated map dk+1 = f(dk) (Fig. 5h), such

that we obtain a sequential transition from D∗1 to D∗2 by pulling on the network (Fig. 5i).

Importantly, because this network is printed as shown, there is no required assembly.

VII. DISCUSSION

Ever-arising mechanical challenges [35, 36] drive the development of innovative designs

[28, 37–39], which in turn spark novel applications [40, 41]. In this work, we presented a

simple theory for the principled design of a rich and complex set of folding sequences and

large-scale geometries through the properties of a single module. Due to the practical and

ubiquitous nature of linkages, these ideas are well-positioned to provide simple solutions to

complex problems in robotic grasping [42], deployable mechanisms [36], morphing mechanical

structures [35], and tunable metamaterials [43]. By writing the large, non-linear geometric
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conformation of a network as the iteration of one module, we retain the richness of network

motion while dramatically reducing design complexity.

Here, we studied the fundamental behaviors of this richness that directly arise from

iterated maps. Immediate extensions include designing modules with complex maps (more

than 2 fixed points, negative slopes at fixed points, critical slowing, bifurcations [34]), and

developing principles for combining modules with different maps. The theory can also extend

beyond iterated maps, where linkages follow a circular path that is not formally a function

(d2 is not uniquely determined by d1). For ease of manufacturing, previous work on planar

networks [25] motivates the development of a module design framework specific to these

systems. Finally, given the design framework for bistable linkages with elastic bonds [16],

a promising future direction lies in designing tunable vibrational modes for applications

in energy harvesting [44] and satellite antenna [36]. Hence, this simple theory provides a

versatile and unifying framework for designing large sequential conformational changes in

mechanical networks.
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[25] Coulais, C., Sounas, D. & Alù, A. Static non-reciprocity in mechanical metamaterials. Nature

542, 461–464 (2017).

[26] Lubbers, L. A. & van Hecke, M. Excess floppy modes and multi-branched mechanisms in

metamaterials with symmetries (2018). URL http://arxiv.org/abs/1810.06527.

[27] Stern, M., Jayaram, V. & Murugan, A. Shaping the topology of folding pathways in mechanical

systems. Nature Communications 9, 4303 (2018).

[28] Pellegrino, S. Deployable Structures, vol. 412 (Springer-Verlag Wien, 2001), 1 edn.

[29] Coulais, C., Sabbadini, A., Vink, F. & van Hecke, M. Multi-step self-guided pathways for

shape-changing metamaterials. Nature 561, 512–515 (2018).

17



[30] Overvelde, J. T. et al. A three-dimensional actuated origami-inspired transformable metama-

terial with multiple degrees of freedom. Nature Communications 7, 10929 (2016).

[31] Cui, H. et al. Three-dimensional printing of piezoelectric materials with designed anisotropy

and directional response. Nature Materials 18, 234–241 (2019).

[32] Zhao, Z. et al. 3D printing of complex origami assemblages for reconfigurable structures. Soft

Matter 14, 8051–8059 (2018).

[33] Zhou, Y., Chen, B. G.-g., Upadhyaya, N. & Vitelli, V. Kink-antikink asymmetry and impurity

interactions in topological mechanical chains. Physical Review E 95, 022202 (2017).

[34] Strogatz, S. H. Nonlinear dynamics and chaos (CRC Press, 2018).

[35] Sofla, A., Meguid, S., Tan, K. & Yeo, W. Shape morphing of aircraft wing: Status and

challenges. Materials & Design 31, 1284–1292 (2010).

[36] Puig, L., Barton, A. & Rando, N. A review on large deployable structures for astrophysics

missions. Acta Astronautica 67, 12–26 (2010).

[37] Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfig-

urable prismatic architected materials. Nature 541, 347–352 (2017).

[38] Wei, G., Chen, Y. & Dai, J. S. Synthesis, mobility, and multifurcation of deployable polyhedral

mechanisms with radially reciprocating motion. Journal of Mechanical Design 136, 091003

(2014).

[39] Cheung, K. C. & Gershenfeld, N. Reversibly assembled cellular composite materials. Science

341, 1219–1221 (2013).

[40] Yang, Z. et al. Topological acoustics. Physical Review Letters 114, 114301 (2015).
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I. GENERAL LINKAGE FRAMEWORK

The design and motion of linkages can be thought of as solutions to variables subject to

distance constraints. For a system of N nodes V = {1, · · · , N} in d-dimensions where the

i-th node has coordinate xi ∈ Rd, the variables are the node coordinates x ∈ RdN

x =




x1

x2

...

xN



.

If we connect node pairs with a set of E edges E ⊆ V × V , then an edge k between nodes i

and j has squared length l2k = (xi − xj)
>(xi − xj). Then the constraints are the distances

l =




l21

l22
...

l2E




= f(x), (1)

where f(x) measures the distance of each pair of connected nodes. Hence, the simplified

form of Maxwell counting is a difference between variables and constraints. For dN node

coordinates (variables) subject to E edge constraints, the dimension of solutions is generally

M = dN − E, (2)

where M is the dimension of independent node motions satisfying edge constraints. More

formally, our configuration space consists of dN node coordinates, and each edge constraint

l2k − (xi − xj)
>(xi − xj) = 0 defines an algebraic variety that is the set of node coordinates

satisfying the edge constraint. Each constraint defines a variety that has dimension dN − 1,

and the general intersection of E varieties of dimension dN − 1 is dN − E. While this

statement is generally true, there are pathological cases where it is not. For example, in

3-dimensions, two non-parallel planes will always intersect at a line. However, a parabaloid

may only intersect a plane at a single point, thereby violating Eq. 2, and generating self-

stress. Hence, we are motivated to find a more general formulation of Eq. 2.
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II. MOTIONS AND STATES OF SELF-STRESS

To see where this counting scheme fails, let us consider the set of infinitesimal displace-

ments in time, ẋ, that satisfy the distance constraints to linear order. We take the differential

with respect to time of edge length k, and enforcing the differential l̇k = 0 to linear order

δ

δt
l2k =

δ

δt
(xi − xj)

>(xi − xj)

2lk l̇ = 2(xi − xj)
>(ẋi − ẋj)

0 = (xi − xj)
>(ẋi − ẋj).

(3)

At any particular configuration of nodes x = x∗, we can treat the node velocities ẋ as

variables, and notice that the velocities are linear with respect to the positions in Eq. 3. We

can bring together these linear constraints in matrix form

0 = Rẋ, (4)

where R = R(x = x∗) is the rigidity matrix of size E× dN with mostly zeros, except in the

k-th row containing (x∗i − x∗j)
> multiplied by ẋi, and (x∗j − x∗i )

> multiplied by ẋj. Then

the nullspace of this matrix, N (R), provides the set of all node velocities that satisfy the

distance constraints to linear order (Eq. 4). In the general case for most node positions x∗,

the rigidity matrix has full rank, and the number of independent node motions (given by

the dimension of the nullspace) is simply

dim(N (R)) = dN − E,

in accordance with Maxwell counting (Eq. 2). However, there exists a small set of patholog-

ical node positions that cause R to lose rank, such that dim(N (R)) > dN −E. In this case,

we have a state of self-stress (SSS), where there is a greater number of infinitesimal motions

than expected. This issue motivates the definition of generalized Maxwell counting, where

given S SSS, the number of independent motions to linear order is given by

M = dN − E + S. (5)

Unfortunately, the ability of these extra motions to extend into finite deformations is com-

plicated, and falls under the domain of higher-order rigidity and bifurcation theory.
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III. ELABORATING ON SINGLE MODULE DESIGN: VELOCITY

The module design process presented in the main text arises from a slight reformulation

of this linkage framework. Previously, we fixed all node positions x∗, treated the node

velocities as variables ẋ, and solved for the velocities that preserve edge length to linear

order through the nullspace of the rigidity matrix (Eq. 4). Here, we partition the nodes

into two disjoint parts, V = VS ∪ VU : the specified nodes VS with corresponding positions

and motions xS and ẋS, and the unspecified nodes VU with corresponding positions and

motions xU and ẋU . Further, we assume that connections only exist between the specified

and unspecified nodes E = VS × VU to form a bipartite graph.

Consider the simple case of n specified nodes and 1 unspecified node. We can then write

the linearized constraints as

0 =




(xS1 − xU1)
>(ẋS1 − ẋU1)

(xS2 − xU1)
>(ẋS2 − ẋU1)
...

(xSn − xU1)
>(ẋSn − ẋU1)



.

If we fix the specified node positions xS = x∗S and motions ẋS = ẋ∗S as constants, then

0 =




(x∗S1 − xU1)
>(ẋ∗S1 − ẋU1)

(x∗S2 − xU1)
>(ẋ∗S2 − ẋU1)
...

(x∗Sn − xU1)
>(ẋ∗Sn − ẋU1)



.

We expand each equation and pull out the variable unspecified positions and motions

0 =




x∗>S1 ẋ
∗
S1

x∗>S2 ẋ
∗
S2

...

x∗>Snẋ
∗
Sn



−




x∗>S1

x∗>S2
...

x∗>Sn



ẋU1 −




ẋ∗>S1

ẋ∗>S2
...

ẋ∗>Sn



xU1 + x>U1ẋU1




1

1
...

1



,

and notice that there is only 1 nonlinear term in this system, namely c = x>U1ẋU1. If we

temporarily omit this nonlinearity, and substitute c as a free variable, we can write the
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linearized constraint equations as a linear system of equations b = Av




x∗>S1 ẋ
∗
S1

x∗>S2 ẋ
∗
S2

...

x∗>Snẋ
∗
Sn




︸ ︷︷ ︸
b

=




ẋ∗>S1 x∗>S1 −1

ẋ∗>S2 x∗>S2 −1
...

...
...

ẋ∗>Sn x∗>Sn −1




︸ ︷︷ ︸
A




xU1

ẋU1

c




︸ ︷︷ ︸
v

. (6)

Then, the unspecified node positions and motions arise as the particular vP = A+b and

homogeneous vH ∈ N (A) solutions to Eq. 6 where

v = vP + vH ,

that satisfy the one nonlinear constraint c = x>U1ẋU1. If an unspecified node that is connected

to all specified nodes is placed along this solution space, then the specified node positions

x∗S and motions ẋ∗S satisfy the edge constraints. By placing enough unspecified nodes and

edges along this space such that M = 4, the only remaining conformational motion becomes

ẋS.
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IV. ELABORATING ON SINGLE MODULE DESIGN: DISPLACEMENT

Much in the same way, we can design the initial and final positions of the specified

nodes. Consider again our bipartite graph of n specified nodes with initial x0
S and final x∗S

positions, fully connected to an unspecified node with initial x0
U1 and final x∗U1 positions.

The constraint we must satisfy is that the edge lengths at the initial and final positions

remain constant, such that




(x0
S1 − x0

U1)
>(x0

S1 − x0
U1)

(x0
S2 − x0

U1)
>(x0

S2 − x0
U1)

...

(x0
Sn − x0

U1)
>(x0

Sn − x0
U1)




=




(x∗S1 − x∗U1)
>(x∗S1 − x∗U1)

(x∗S2 − x∗U1)
>(x∗S2 − x∗U1)
...

(x∗Sn − x∗U1)
>(x∗Sn − x∗U1)



.

We can again expand these terms to yield




x0>
S1x

0
S1

x0>
S2x

0
S2

...

x0>
Snx

0
Sn



− 2




x0>
S1

x0>
S2

...

x0>
Sn



x0
U1 + x0>

U1x
0
U1




1

1
...

1




=




x∗>S1x
∗
S1

x∗>S2x
∗
S2

...

x∗>Snx
∗
Sn



− 2




x∗>S1

x∗>S2
...

x∗>Sn



x∗U1 + x∗>U1x

∗
U1




1

1
...

1



,

and rearrange to isolate the constants x0
S,x

∗
S from the variables x0

U ,x
∗
U to yield another

linear equation, with a similarly substituted nonlinear free variable c = x0>
U1x

0
U1 − x∗>U1x

∗
U1




x0>
S1x

0
S1 − x∗>S1x

∗
S1

x0>
S2x

0
S2 − x∗>S2x

∗
S2

...

x0>
Snx

0
Sn − x∗>Snx

∗
Sn




︸ ︷︷ ︸
b

=




2x0>
S1 −2x∗S1 −1

2x0>
S2 −2x∗S2 −1
...

2x0>
Sn −2x∗Sn −1




︸ ︷︷ ︸
A




x0
U1

x∗U1

c




︸ ︷︷ ︸
v

. (7)

Again, we see that b and A only contain specified node initial and final positions that we

fix as constants, such that the equation is linear in our unspecified node initial and final

positions, v. Our solution space is again given by a particular and homogeneous solution

v = vP + vH that satisfies one quadratic constraint c = x0>
U1x

0
U1 − x∗>U1x

∗
U1. By placing

unspecified nodes and edges on this space such that M = 4, we have 1 conformational

motion where the desired initial x0 and final x∗ have the same edge lengths.
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V. MODULE COMBINATION MAINTAINS 1 CONFORMATIONAL MOTION

Throughout the main text, we combine modules in 2-dimensional space, each with 1 con-

formational motion, by joining pairs of nodes. Here, we will demonstrate why the combined

network retains 1 conformational motion. As we previously mentioned, each module of N

nodes and E edges in d = 2 dimensional space has dN coordinate variables subject to E

constraints, for a total of dN − E = 4 dimensions of possible node motions. Three of these

motions are the rigid body translations and rotation that are present in all objects in 2

dimensional space, and the fourth is the conformational motion.

In 2-dimensional space, consider two modules that each have 1 conformational motion.

Then the first module has M1 = 4 motions, and second module has M2 = 4 motions, such

that a system with both modules has Mc = M1 + M2 = 8 motions. If we combine these

modules by joining two pairs of nodes, (i1, i2) from modules 1 and 2, as well as (j1, j2) from

modules 1 and 2, then we remove 4 variables because the x- and y-coordinates of nodes

i1 and i2 combine, and the x- and y-coordinates of nodes j1 and j2 combine. Hence, the

combined network will have Mc = M1 +M2 − 4 = 4 motions. Three of these motions must

be the rigid body translations and rotation, and the fourth is the conformational motion.
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VI. NUMERICAL FORM OF THE ITERATED MAP

Throughout the main text, we show the 1-dimensional curve of distances (d1, d2) between

unconnected nodes of a module as an iterated map. To numerically obtain this curve,

we perform a 4-th order Runge-Kutta numerical integration of the conformational motion.

To introduce some notation, we will use xt to represent all node coordinates in a module

at time t. Further, we will use column vectors sx(x
t), sy(x

t) and sr(x
t) to represent the

rigid body translational and rotational motion at xt, and collect them into a matrix S(xt) =

[sx(x
t), sy(x

t), sr(x
t)]. Finally, knowing the node coordinates at xt is sufficient to determine

the entries of the rigidity matrix R(xt) as shown in Eq. 4.

In Eq. 4, we show that the node motions which preserve edge lengths to linear order are

given by the nullspace of the rigidity matrix. Our modules are designed to have 4 possible

motions, such that the nullspace of R(xt) contains 4 linearly independent vectors that we

make orthonormal, and collect column-wise into a matrix W (xt). By projecting our rigid

body motions onto these nullspace vectors, we obtain the coefficients of our nullspace vectors

S>(xt)W (xt) that reconstruct the rigid body motions. Then the coefficients of our nullspace

vectors that reconstruct the conformational motion are orthogonal to S>(xt)W (xt), and are

given by c(xt) = N (S>(xt)W (xt)), such that the conformational motion at xt is given by

ẋt = g(xt) = W (xt)c(xt). (8)

Now that we have the instantaneous node velocities as a nonlinear function g of node

positions at time t, we are able to use the RK4 algorithm to numerically integrate the node

positions from the initial node positions x0. Then, given the trajectory of node coordinates

xt, we compute our 1-dimensional map by solving for the distances between unconnected

nodes d1(t) and d2(t) at each time point t. Further, we can quantify the error of this

numerical integration at any position xt by calculating the deviation of edge lengths at time

t from the known edge lengths at time t = 0. We note that this same procedure is used to

simulate forward the full network of combined modules with 1 conformational motion.
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VII. ANALYTIC FORM OF THE ITERATED MAP

While numerical integration yields points along the 1-dimensional map of conformational

motions over time given by d1(t) and d2(t), an analytical form of the map is desired for

numerically sensitive applications such as computing the Lyapunov exponent of a map.

Specifically, we would like the equational form of f for d2 = f(d1). We solve for this

equational form in our systems of 5 nodes (3 designed, 2 variable) and 6 edges. Without

loss of generality, we number the designed nodes such that d1 is the distance between nodes

1 and 2, and d2 is the distance between nodes 2 and 3, and we number the variable nodes

as 4 and 5. Further, we can always find a set of rigid body motions to place node 2 at the

coordinates (x2, y2) = (0, 0), and place node 1 at the coordinates (x1, y1) = (d1, 0).

We begin by writing the variable node positions as a function of (x1, y1) and (x2, y2)

through the distance constraints from the edge lengths. Specifically, nodes i = 4, 5 satisfy

l21i = (xi − x1)2 + (yi − y1) = x2i + y2i − 2d1xi + d21,

l22i = (xi − x2)2 + (yi − y2) = x2i + y2i ,

and subtracting the two equations, we can solve for xi, and resubstitute to solve for yi

xi =
d21 + l22i − l21i

2d1
yi = ±

√
l22i −

(
d21 + l22i − l21i

2d1

)2

.

From the known initial position of the nodes, x0, we can determine whether yi is positive

or negative. Then, we can write the position of node 3 as satisfying constraints

l234 = (x3 − x4)2 + (y3 − y4)2

l235 = (x3 − x5)2 + (y3 − y5)2,

which are the equations for two circles, one centered at (x4, y4) with radius l34, and another

centered at (x5, y5) with radius l35. The intersection of these circles yields x3 and y3, and is

solved symbolically as a function of d1. Because d2 is the distance between nodes 2 and 3,

and node 2 is located at (0, 0), the distance d2 is simply the length of the position of node

3, finally yielding the map d2 = f(d1) =
√
x23(d1) + y23(d1).
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VIII. CONDITION FOR A CONFORMATIONAL MOTION TO ACT AS A MAP

Throughout the main text, we consider the implications of viewing module combinations

as iterated maps. For this perspective to hold rigorously true, we must write d2 as a proper

function of d1, where each value of d1 uniquely determines a value of d2. This property

generally does not hold true along the full trajectory of a single module. For example,

consider the following module from the main text (Fig. 1a), with 1 conformational motion,

and distances d1 and d2 between unconnected red nodes. As the node coordinates change

along this conformational motion, we can plot the distance pair (d1, d2) as a continuous

1-dimensional curve that is some function of d1 and d2, shown in black. Immediately, we

notice that for many values of d1, there are many different possible values of d2 on the curve.

For the iterated map perspective to hold true, we must select a continuous segment of this

curve where d2 is uniquely determined by d1. For this particular module, we can select 4

such segments f1 (light blue), f2 (blue), f3 (dark blue), f4 (black) as 4 valid maps from d1

to d2 (Fig. 1b). We ensure that the combined networks of the main text are valid functions.

FIG. 1. Decomposition of a conformational motion into valid map segments. (a) A plot

of distances d1 versus d2 between unconnected red nodes in a module along the full conformational

motion, with example network geometries at select points. (b) Decomposition of the curve (d1, d2)

into four segments that uniquely map distance d1 to distance d2.
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IX. ELABORATING ON COBWEB PLOTS

In the main text, we discuss the representation of the conformation of a network of

combined modules using a cobweb plot. Here we go into more detail with the module used

in the previous section. We begin with two of these modules, where the nodes to be combined

are colored in bright red, and these nodes define the distance d1 in the left module, and the

distance d2 in the right module (Fig. 2a). We can take two of these combined networks

(Fig. 2a) with distances d1 and d3 for the left network, and d′3 and d5 for the right module,

and combine them at the bright red nodes defining d3 and d′3 (Fig. 2b). We can extend our

network by continuing to append modules (Fig. 2c). In this combined network, we show a

cobweb plot when we increase d1, and mark the distances di as squares on the map (Fig. 2d).
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FIG. 2. Module combination and map iteration. (a) The combination of two modules from

Figure 1a, where the bright red nodes defining d2 of the left module, and those defining d′2 of the

right module are combined. (b) Two combined networks from panel (a), where the bright red

nodes defining d3 and d′3 are joined. (c) The combined networks from panels (a) and (b), where

the bright red nodes defining d5 and d′5 are joined. (d) A cobweb plot of the network in panel (c),

where the initial distance d1 is marked as a black square, and the final distance d7 is marked in

white. The arrows begin at d1, and move up to d2 = f(d1) to a dark gray square representing d2.

Then, the arrows move left and down to d3 = f(d2). Subsequent left and down arrows correspond

to another iteration of the map dk+1 = f(dk), which are the distances between unconnected nodes

in the network.

X. NUMERICALLY CHARACTERIZING CHAOS: LYAPUNOV EXPONENT

In the main text, we show a chaotic network module whose map between distances

d2 = f(d1) is in the form of a general tent map, and which demonstrates chaotic behavior.

To quantify this behavior, we use the Lyapunov exponent that measures the sensitivity of

the trajectory of an iterated map to minute changes in initial conditions [1]. We iterate

the map n times for an initial distance d1 and a small perturbation d′1 = d1 + δ1, such

that dn+1 = fn(d1), and d′n+1 = fn(d′1). Then, we measure how far the trajectories have

diverged as δn+1 = d′n+1 − dn+1. The Lyapunov exponent captures the exponential rate, λ,

at which this divergence occurs according to |δn+1| = |δ1|enλ. For the trajectory of distances
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d1, d2, · · · at the limit of n→∞, this exponent is defined as the average log of the slope at

each distance

λ = lim
n→∞

(
1

n

n∑

i=1

ln |f ′(di)|
)
.

Across 1000 evenly spaced d1 across the full map range, we find a tight distribution of

positive exponents averaged around λ ≈ 0.312 > 0, which is a hallmark of chaotic systems.

0.304

0.312

0.319

FIG. 3. Trajectory divergence at chaos. (a) Map dk+1 = f(dk) of the chaotic module, starting

at 50 evenly spaced initial distances from d1 = 0.759 to d1 = 0.764, whose trajectories diverge after

11 steps. The map’s domain and range are bounded by a range of distances r. (b) We sample 1000

evenly spaced points along r as initial distances, iterate our map 5000 times to settle the distances

into the attractor, and compute the Lyapunov exponent for a subsequent 20000 map iterations.
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XI. MAPS OF PHYSICAL LINKAGE AND 3D-PRINTED MODULES

In the main text, we construct physical networks using our linkage design framework. In

addition, we also show a 4-bar linkage and a 3D printed planar network. Here we show the

maps d2 = f(d1) for these additional networks. For the 4-bar linkage, we begin in an initial

fixed-point collapsed state D∗1 that is super-unstable (slope = ∞), where an infinitesimal

change in d2 produces no change in d1. Further along the motion, we get another stable

fixed point D∗2 (Fig. 4a). As for the planar network, we can model each triangular face as a

triangular linkage, and plot the map of d2 = f(d1) along the conformational motion. This

module is super-stable at the initial fixed point D∗1, and is additionally super-unstable at

the final fixed point D∗2.

FIG. 4. Maps of physical networks. (a) Map d2 = f(d1) of the 4-bar linkage used as a deployable

example, with a super-unstable fixed-point D∗1 and a stable fixed-point D∗2. (b) Map d2 = f(d1)

of the planar network, with a super-stable fixed-point D∗1 and a super-unstable fixed-point D∗2.
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XII. CONSTRUCTION AND MAP OF ORIGAMI MODULE

Here we detail the construction of the origami module shown in the main text, and

numerically plot its map. We begin with a square of paper with side length L, and crease it

once along the diagonal. We label d1 and d2 as the distances between the opposite marked

corners of this square, and also label the mountain and valley creases (Fig. 5 a). We then

show the map of d1 versus d2 along the 1 conformational motion, with the corresponding

network geometries shown above sampled points along the map (Fig. 5b). At the flat

sheet configuration, the network exists at a kinematic bifurcation, such that other possible

trajectories exist, such as the network folding along the main diagonal crease with both

mountain or valley folds.

Mountain
Valley

FIG. 5. Origami sheet construction and map. (a) Construction of creases in square origami

sheet, with labeled dimensions and with mountain and valley folds. We label d1 and d2 as the

distance between the corresponding corners. (b) Map d2 = f(d1) of this origami sheet that has

two fixed points: D∗1 corresponds to the flat sheet configuration, and D∗2 corresponds to a folded

configuration. The flat sheet configuration sits at a kinematic bifurcation, where another trajectory

exists in which the network simply folds along the main diagonal crease.

[1] Strogatz, S. H. Nonlinear dynamics and chaos (CRC Press, 2018).
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