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We present an analytical approach to study simple symmetric random walks (RWs) on a crossing
geometry consisting of a plane square lattice crossed by nl number of lines that all meet each other
at a single point (the origin) on the plane. The probability density to find the walker at a given
distance from the origin either in a line or in the plane geometry is exactly calculated as a function
of time t. We find that the large time asymptotic behavior of the walker for any arbitrary number nl

of lines is eventually governed by the plane geometry after a crossover time approximately given by
tc ∝ n2

l . We show that this competition can be changed in favor of the line geometry by switching
on an arbitrarily small perturbation of a drift term in which even a weak biased walk is able to drain
the whole probability density into the line at long time limit. We also present the results of our
extensive simulations of the model which perfectly support our analytical predictions. Our method
can, however, be simply extended to other crossing geometries with a single common point.

I. INTRODUCTION

Random walks (RWs) are ubiquitous models of
stochastic processes playing an essential role in many
challenging problems in probability and statistical
physics [1–4]. For random walks, the probability den-
sity ρ(r, t) to find a walk at time t at a site with distance
r from its origin, obeys the scaling collapse [5]

ρ(r, t) ∼ t−df/dwf(r/t1/dw), (1)

with the scaling variable r/t1/dw , where df is the dimen-
sion of the underlying (possibly fractal) network. On
a lattice with translational invariance symmetry in any
spatial dimension d (= df ), it has been shown that the
walk is always purely diffusive, i.e., dw = 2, with a Gaus-
sian scaling function f , which has been the content of
many classic textbooks on random walks and diffusion
[1, 6]. The scaling relation (1) still remains valid when
translational invariance is blurred in certain ways or the
network is fractal (i.e., for non-integer df ). However,
anomalous diffusion with dw 6= 2 may arise in various
transport processes [5, 7, 8].
Using equation (1), it is now straightforward to conceive
the Pólya’s recurrence theorem [9] that a simple sym-
metric RWs on Zd lattice is recurrent in d ≤ 2, but tran-
sient in d ≥ 3. Also widely known is that the transition
between recurrence and transience occurs precisely at
d = 2, rather than at some fractal dimension 2 < df < 3.
In this sense, d = 2 is the ”critical dimension” for inter-
section of a two-dimensional set (i.e., the path of RWs)
and a zero-dimensional set (the origin). Moreover, it is
known [10] that the scaling limit of the simple RWs in
d dimensions converges to the d-dimensional standard
Brownian motion which has a certain invariance under
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FIG. 1: Illustration of the combined geometry in our model
composed of an infinite lattice plane and nl number of crossing
lattice lines that all share a single common point—the origin.

conformal maps in two-dimensions. The conformal in-
variance in d = 2 then provides a powerful tool to exactly
determine the values of the involved exponents [10].

Here we consider the RWs on a mixed geometry con-
sisting of an integer lattice Z2 which is crossed by nl num-
ber of lattices Z that all share a single common point—
the origin (see Fig. 1). The RWs initiate from origin
x = 0 at time t0 = 0 and we ask if the statistics of the
walks at time t obeys the scaling form (1).

Let us list the main results of this paper. (1) A com-
peting behavior is observed in which at early times the
crossing line geometries are dominant and become less
effective in time until a crossover time tc, after which the
plane geometry governs the statistics of the RWs.

(2) The probability density to find the random walker
at the origin behaves like ρ(0, t) ∼ t−α with 1/2 ≤ α ≤ 1
spanning the crossover behavior from early time t � tc
with α = 1/2 for the line geometry (d = 1 and dw = 2
in Eq. (1)), to long-time limit t � tc with α = 1 for
the plane geometry (d = 2 and dw = 2 in Eq. (1)).
Therefore, the symmetric RWs is always recurrent even
for arbitrarily large number of crossing lines (nl � 1)
which may assign a larger effective dimensionality (d > 2)
to the whole geometry.

(3) We find both analytically and numerically that the
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FIG. 2: (color online) Probability of finding the RWs at dis-
tance r from the origin either on a line (circles) or on the
plane (triangles) at time t = 200 for nl = 1 obtained from
numerical inverse z-transform of Eq. (9). Both probability
functions get wider in time.

crossover time tc grows with the number of crossing lines
nl with the approximate power-law relation tc ∼ n2l .

(4) Our analytical prediction for the mean squared dis-
placement of the RWs on a crossing line at long-time limit
t ' tc ∼ n2l , gives 〈z2l 〉 ∼

√
2/π3nl

√
t log t, which is well

supported by our results obtained from numerical simu-
lations of the model.

(5) The probability to find the RWs at a point rp ≡
(x, y) on the plane or at a point zl on a line at time t is
provided by the generating function given in Eq. (9).

The rest of this paper is structured as follows. In Sec-
tion II, we will present a general formulation of our model
for general combined lattices and briefly discuss its long-
time behavior. In Section III we will study an interesting
nontrivial example of the model composed of a lattice
plane and a chain which share a single point. Section IV
will discuss the asymmetric RWs on the chain competing
with a lattice plane and discuss its asymptotic behavior.
In Section V we will present the results of our numerical
simulations for a plane lattice crossed by nl number of
chains which show perfect agreement with our analytical
results. Finally, the last section concludes our discussion.

II. GENERAL STATEMENT AND
FORMULATION OF THE PROBLEM

We consider two general lattices a and b, on which the
random walk problem is known. We pose the following
question: what would be like the statistics of the random
walk motion if we connect a and b in a way that they have
a single point in common which we call O 1 . Consider a

[1] This problem can well be interpreted as finding the quantum
mechanical Green’s function of a single particle moving on the
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FIG. 3: (color online) Total probability for the walker to being
on one of the line geometries as a function of time (for even
time steps t = 2n).

classical symmetric random walk that starts from origin
O. We would like to determine the probability of finding
the walker at a given point (on a or b) at time step n.
The most simple quantity to determine for the combined
geometry is the first passage probability through the ori-
gin. Let us denote the probability of arriving at O for
the first time at the nth step by F0(n). For this quantity
the walker is required not to visit the point O until the
nth step. Therefore once it stepped into a or b right af-
ter the first walk, it should remain there and return to O
at the nth step. Depending on the coordination number
at O, the only shared point between the two domains a
and b, at the first step the walker would enter into either
a or b with probabilities pa and pb, respectively, where
pa + pb = 1. We now have

F0(n) = paF
a
0 (n) + pbF

b
0(n), (2)

where F i
0(n) with i = a, b denotes for the same quan-

tity as F0(n) for either isolated lattice. Using this sim-
ple relation, one can immediately obtain the total return
probability R to the origin,

R =

∞∑
n=1

F0(n) = paR
a + pbR

b. (3)

If the random walk is recurrent on each of the two lattices
a and b, i.e., Ra = Rb = 1, then it will be recurrent on
the combined geometry too i.e., R = 1.

With the first passage probability in hand, one can
find the site x occupation probability Px(n) as well. But
let us first consider the case for the origin, i.e., x = 0,
by letting P0(n) denote the probability of finding the
walker at origin at the nth step. This can be expressed
in terms of the first passage probability through O with

underlying lattices.
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FIG. 4: (color online) Mean squared displacement of the RWs
over time t on the plane, i.e., 〈r2p〉/t, as function of t in loga-
rithmic scale for different number of crossing lines nl = 1 to
300 from top to bottom. All data converge to the diffusion
constant Dp = 1 on the plane at long-time limit.

the following relation [3, 12]

P0(n) = δ0n +

n∑
i=1

F0(i)P0(n− i), (4)

in which the summation is assumed to be zero for n = 0.
Using z-transform, as a discrete-time equivalent of the
Laplace transform, on both sides of the equation (4) by
multiplying both sides by zn and summing over n, one
can find a simple equation for the generating function

P0(z) = 1 + F0(z)P0(z), (5)

in which we have used P0(z) =
∑
n z

nP0(n) and similar
relation for F0(z). Using equations (5) and (2) gives

P0(z) = (1− F0(z))
−1
,

=
(
1− paF a0 (z)− pbF b0(z)

)−1
, (6)

which together with the normalization condition pa+pb =
1, leads to the following result

1

P0(z)
=

pa
P a0 (z)

+
pb

P b0(z)
, (7)

that is very akin to the reciprocal of the total equivalent
resistance of two parallel resistors.

Now let us calculate the site occupation probability
Px(n) at a given site x other than the origin. This quan-
tity can be determined in terms of the solutions in the
individual geometries. The probability to arrive at x at
the nth step can be considered as the sum of the prob-
ability of being at the origin at any earlier time i < n
and arriving to the destination without visiting the ori-
gin on the remaining time n− i. The latter is known as
the ’taboo’ probability [3] denoted by Tx(n− i), in which
the walker avoids the origin. One can therefore find that
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FIG. 5: (color online) Mean squared displacement of the RWs
on a crossing line, i.e., 〈z2l 〉, as function of t in logarithmic
scale for different number of crossing lines nl = 1 to 300 from
bottom to top. The dashed lines show the comparison with
our analytical prediction of the behavior at long-time limit,
i.e., 〈z2l 〉 ∼

√
2/π3nl

√
t log t for t ' tc ∝ n2

l —see Fig. (6).

Px(n) can be cast into the following form

Px(n) =

n−1∑
i=0

P0(i)Tx(n− i), (8)

for which z-transformation provides Px(z) = P0(z)Tx(z).
Since the walker has to avoid the origin, it should stay
in one of the either a or b geometries during the time
interval (i, n]. This means one can write

Px(z) = P0(z)×
{
paT

a
x (z) x ∈ a

pbT
b
x(z) x ∈ b (9)

For a translationally invariant lattice one can show that

for x 6= 0, T a,bx (z) = F a,bx (z) = P a,bx (z)/P a,b0 (z).

A. long-time asymptotics

In order to determine the probabilities as function of
time from their z-transforms, one needs to do inverse
z-transformation which means to find the coefficients of
Taylor series about z = 0. It is often of more interest to
look at the behavior in the long-time limit which is en-
coded in z → 1− limit of the corresponding z-transform.
For instance, if the lattice a has the more rapidly decreas-
ing probability then its z-transform is less divergent. As

a result, Eq. (7) gives P0(z)
z→1−

≈ P a0 (z)/pa, meaning
that the long-time behavior is governed by the lattice a.
Then the Tauberian theorem [3, 11] can be used to obtain
the asymptotic behavior in time domain.
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III. 1d LATTICE AND SQUARE LATTICE

In this section, we are going to study an interesting
nontrivial example of the general formulation presented
in the previous section by taking a a square lattice in x-y
plane and b a one-dimensional (1d) lattice which crosses
a at a single point—the origin O (Fig. 1). The RW
problem is exactly solvable on these two lattices with
known results [3, 12]

P l0(z) =
1√

1− z2
z→1−

≈ [2(1− z)]− 1
2 (10)

P p0 (z) =
2

π
K(z2)

z→1−

≈ 1

π
log[1/(1− z)], (11)

where K(x) is the elliptic integral of first kind.
Long-time n→∞ behavior of the occupation probability
of the origin is decreasing algebraically with time given
by P l0(n) ≈ 1√

2πn
and P p0 (n) ≈ 1

πn on the chain and the

square lattice, respectively. Using Eq. (7) with pa = 2
3

and pb = 1
3 for the combined geometry and noting that

the second term in the right-hand side is dominant in the
limit z → 1− we have P0(n) ≈ 3

2πn . Since each lattice is
translationally invariant as we mentioned for x 6= 0 we

have T l,px (z) = P l,px (z)/P l,p0 (z). Therefore it is enough
to know P l,px (z) in order to calculate the probabilities
on other lattice points of combined lattice. For these
two lattices it is also analytically available. For example
P lx(z) = (1− z2)−1/2(1−

√
1− z2)|x|z−|x| and P px (z) can

be expressed in terms of hypergeometric functions [13].
Using Eq. 9 we obtain the site probability for a given
lattice point. A plot of probability as a function of posi-
tion at a given time is shown in Fig. 2 for line and plane.
To see how the diffusion takes place on the line for ex-
ample, we can calculate the moments of the probability
distribution. Total probability of finding the walker i.e.
the zeroth moment on the line, P l(n) =

∑
x∈l Px(n), is

given by

P l(z) =
1

3

2z

1− z +
√

1− z2
P0(z) (12)

Figure 3 shows the plot of this moment as a function of
time. As we can see the total probability of finding the
walker on the line raises first and then decreases. Using
Eq. 14 we can see that the long time behavior of the
total probability on the line is like P l(n) ∼ 1√

n
log(n).

The first moment vanishes because of symmetry under
x → −x. To see how fast the particle diffuses on the
line, it is also worth calculating second moment 〈z2l 〉 =∑

x∈l |x|2Px(n). We find

〈z2l 〉 =
1

3

z(1 + z)1/2

(1− z)3/2
P0(z) (13)

The time dependence at large time is like 〈z2l 〉 ∼√
n log(n).
Now we consider intersection of nl lines with a plane at

the origin. Due to symmetry, the motion of random walk
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FIG. 6: (color online) Main: The probability to find the ran-
dom walker at the origin x = 0 at time t, i.e., P (x = 0, t),
as function of t in logarithmic scale for different number of
crossing lines nl = 1 to 300 from left to right. The open cir-
cles mark the crossover time tc after which the behavior is
governed by the plane geometry with known scaling relation
∼ t−1 shown by the solid lines fitted to our data and followed
by the dashed lines before tc when the behavior is still affected
by the crossing line geometries. Inset: The crossover time tc
as a function of the number of crossing lines nl. The solid
line is the best power-law fit to our data tc ∼ n2

l in perfect
agreement with our analytical prediction—see the text.

on the lines will be the same as if there was a single line.
Therefore we can replace them with a single line but with
different probability of hopping to line at the origin. That
is to say pl = nl/(nl+2) and pp = 2/(nl+2). We now ask
the following question: could the asymptotic behavior,
which we obtained above, be changed in favor of the line
by increasing the number of lines nl? The answer is no,
because changing pl does not change the z dependence of
P0(z) at the limit z → 1 and therefore the asymptotic be-
havior will be dominated by the plane. However the prob-
ability pb will set a time scale before which the behavior
is effectively one-dimensional and then crosses over to
two-dimensional. The time scale tends to infinity as the
probability pl tends to one. We define the cross over time
t∗ = −1/ ln z∗ ≈ 1/(1 − z∗) where the z∗ is the value at
which two terms in the brackets in Eq. (7) become of
the same order,

pp
Pp

0 (z∗)
= pl

P l
0(z

∗)
. For small pp this condi-

tion is fulfilled at a value of z∗ very close to one. At this
limit we use the approximate forms of these probabilities
(10),(11) which gives 1

π

√
2(1− z∗) ln[1/(1−z∗)] = pp/pl.

This is a transcendental equation for z∗ and thus the solu-
tion is not algebraic, however, it can be easily shown that
1 − z∗ approaches zero faster than (pp/pl)

2 and slower

than (pp/pl)
(2+δ) for any positive δ.

IV. 1d BIASED WALK AND SQUARE LATTICE

A simple generalization of previous case which turns
out to be important is to consider asymmetric walk on
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the line. We denote different jump probabilities to the
right by p, and to the left by q = 1− p. This also can be
a representation of the walk on the Bethe lattice [14–16].
We should only replace the generating function of site
occupation probabilities of the line with

P lx(z) = (1− 4pqz2)−1/2(1−
√

1− 4pqz2)|x|

×
{

(2qz)−|x| x > 0
(2pz)−|x| x < 0.

(14)

It can be shown that the biased walk on the chain is not
recurrent. More quantitatively Rl = 1− |2p− 1| which is
less than one if p 6= 1

2 . As a result, the RW on the com-
bined geometry will no longer be recurrent as we have
R = 1 − 1

3 |2p − 1|. In contrast to the previous case, the
occupation of the origin is dominated by the behavior of
line. We can see that P l0(z) is convergent in the limit
z → 1−. As a result, Eq. (7) gives P0(z) ≈ 1

3P
l
0(z). Now

it can easily be shown that P0(2n) ∼ 1
3 (πn)−1/2(4pq)n.

It is also interesting to note that the first moment i.e. the
probability of finding the walker on the line is approach-
ing one which means that even an infinitesimal amount
of drift on the line will pull the walker into the line.

V. NUMERICAL SIMULATIONS

In this section we present the results of our extensive
numerical simulations of the model discussed in the previ-
ous sections and compare them with our analytical pre-
dictions. We consider systems of combined geometries
composed of a lattice plane and various number nl of lat-
tice lines nl = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 300.
The total simulation time for the cases nl = 1, 2, 3, 4, 5, 10
and 20, 30, 40, 50 and 100, 200, 300 are taken to be
105, 106, 107, respectively, to be able to capture their cor-
responding asymptotic behavior. All measured quanti-
ties are averaged over more than 5×108 independent sam-
ples for each case. We assume that the random walker
starts moving from origin at t0 = 0 in all computations.

The first natural and standard quantity of interest is
the mean squared displacement (MSD) of the RWs on
the combined geometries. In order to see the individ-
ual contribution of the lattice plane and the lines, we
have computed MSD for the plane (i.e., 〈r2p〉) and the

lines(i.e., 〈z2l 〉) at time t separately. Figures 4 and 5
show the corresponding dynamical evolution of MSD for
various number of crossing lines. As shown in Fig. 4, for
larger number of crossing lines at the beginning times,
the probability for the walker to go to one of the line ge-
ometries is higher (nl/(2 + nl)) than the plane (see also
Fig. 3) and therefore, if the walker goes to the plane from
origin (with probability 2/(2 +nl)) it is attracted by the
lines back to the origin which leads to the decrease in
MSD on the plane for nl � 1. At very large times, in-
stead, the plane geometry will become dominant and the
asymptotic behavior of the walker converges to a normal
diffusion on a plane with the diffusion constant Dp = 1.

This explains why all plots for different nl converge to
the same asymptotic value in Fig. 4.

Figure 5 also presents MSD on a line for various nl.
The dashed-lines show our analytical predictions for each
nl for the MSD on a line at the very long-time limit
which is nl-dependent, and shows perfect agreement be-
tween our numerical simulations and analytical approx-
imations. Notice that, unlike the symmetric diffusion
on a single line geometry (which is known to behave as
〈z2l 〉 ∼ t), the asymptotic behavior of the walks on the
lines in our model does not follow the free diffusion and
is governed by the square root of time containing a loga-
rithmic correction, i.e, 〈z2l 〉 ∼

√
2/π3nl

√
t log t for t� 1.

To better quantify the competition between the plane
geometry and the crossing lines, we have computed the
probability of finding the random walker at the origin
x = 0 at time t, i.e., P (x = 0, t), as function of t for
various nl. As shown in Fig. 6, the behavior of P (x =
0, t) shows two primary and asymptotic regimes roughly
for t < tc and t > tc, respectively, for a nl-dependent
crossover time tc. We find that at early times t� tc the
behavior is governed by ∼ t−1/2 for the line geometry
and crosses over to the long-time limit t ≥ tc with ∼
t−1 for the plane geometry. For every nl, we define tc
as the (approximately) first time after which the scaling
behavior of P (x = 0, t) is given by ∼ t−1 (marked by
the open circle symbols in the Main Fig. 6). The Inset
of Fig. 6 shows the scaling relation between the crossing
time and the number of crossing lines as tc ∼ n2l , which
is in close agreement with our analytical approximations
discussed at the end of Section III.

VI. CONCLUSIONS

We have studied analytically the random walks prob-
lem on a combined lattice geometry composed of two
generalized lattices with a single common point. After
a general formulation of the problem, we illustrated the
consequences in some nontrivial interesting examples by
considering a lattice plane crossed by nl number of lattice
lines at the origin. We have found that the probability
of returning to the starting point at a long time limit is
governed by the plane. The total probability of being
in the line geometry increases first at the beginning time
and then starts to decrease at larger times. Mean squared
displacement asymptotically converges to the normal dif-
fusion on the plane but it behaves like

√
t ln t on the line

geometries. We have shown that the crossover time from
the primary to the asymptotic regimes, scales approxi-
mately as tc ∼ n2l . Rather simple corollary is that the
walk will be recurrent if it is recurrent on both lattices
and will be transient if it is transient on at least one
of them. We also examined the stability of the asymp-
totic behavior of the walk by introducing a perturbation
to the model with a drift term along the line geometry
(for nl = 1). We have found that even an infinitesimal
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amount of drift can totally change the asymptotic be-
havior of the walk in a way that the line geometry will
dominate the long-time behavior of the perturbed model.

Our problem can also be viewed as a normal diffusion
on a lattice plane with a single defect-site of variable wait-
ing time. In this context, there has been studied [17] a
random reset problem on a d-dimensional lattice contain-
ing one trapping site with an exponential waiting time
at the defect which exhibits a localization-delocalization
phase transition. In our case, however, the waiting time
is a power-law given by the diffusion along the crossing

lines tuned by their number.
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