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Topological crystalline phases in electronic structures can be generally classified using the spatial
symmetry characters of the valence bands and mapping them onto appropriate symmetry indicators.
These mappings have been recently applied to identify thousands of topological electronic materials.
There can exist, however, topological crystalline non-trivial phases that go beyond this paradigm:
they cannot be identified using spatial symmetry labels and consequently lack any classification.
In this work, we achieve the first of such classifications showcasing the paradigmatic example of
two-dimensional crystals with twofold rotation symmetry. We classify the gapped phases in time-
reversal invariant systems with strong spin-orbit coupling identifying a set of three Z2 topological
invariants, which correspond to nested quantized partial Berry phases. By further isolating the set
of atomic insulators representable in terms of exponentially localized symmetric Wannier functions,
we infer the existence of topological crystalline phases of the fragile type that would be diagnosed
as topologically trivial using symmetry indicators, and construct a number of microscopic models
exhibiting this phase. Our work is expected to have important consequences given the central role
fragile topological phases are expected to play in novel two-dimensional materials such as twisted
bilayer graphene.

I. INTRODUCTION

Since the discovery of the quantum Hall effect [1], and
its theoretical explanation in terms of the topological
properties of the Landau levels [2–4], topological phases
of matter have become a rich playground for the theoreti-
cal prediction and experimental verification of new quan-
tum phenomena. From the birth of topological insulators
[5–12], to topological superconductors supporting Majo-
rana zero modes [13–17], to topological semimetals[18–
29], new types of topological phases keep arising. It
is fair to say that the major theoretical effort in the
field has been to classify, using appropriate mathemat-
ical schemes, all possible topologically distinct gapped
phases and subsequently relate them to topological in-
dices. In the presence of internal symmetries – time-
reversal, particle-hole and chiral symmetry – alone, the
classification of free-fermion gapped phases has been ob-
tained in all ten symmetry classes and arbitrary number
of dimensions [30–32]. The corresponding phases with
non-trivial topology feature, by the bulk-boundary cor-
respondence, protected gapless modes that are anoma-
lous [33, 34]. The chiral (helical) edge states of quantum
(spin) Hall insulators, as well as the single surface Dirac
cones of strong three-dimensional topological insulators
violating the fermion doubling theorem, are prime real-
izations of such anomalies.

In crystalline systems characterized by an additional
set of spatial symmetries, new topologically distinct
phases emerge [35–38]. The non-trivial topology of a sys-
tem is then manifested in the appearance of anomalous
gapless surface modes, which are present only on surfaces
that are left invariant under the protecting spatial sym-
metry and violate stronger versions of the fermion dou-

bling theorem [39, 40]. Furthermore, crystalline symme-
tries can also yield non-trivial topological phases, dubbed
higher-order topological states [41–58], characterized by
conventional gapped surfaces but with gapless anomalous
one-dimensional modes at the hinges connecting two sur-
faces related by the protecting spatial symmetry.

As long as insulating systems are concerned, the ex-
istence of anomalous surface or hinge boundary modes
is deeply connected to the fact that non-trivial topolog-
ical phases cannot be adiabatically connected to atomic
insulators, whose insulating nature can be understood
considering electrons as trapped classical point particles.
In other words, a topological non-trivial insulator only
arises when there is an obstruction in describing the sys-
tem using an atomic picture. Therefore, the ground state
of a topological non-trivial insulator cannot be repre-
sented using exponentially localized Wannier functions
respecting the internal and/or the set of spatial symme-
tries of the system [59]. This obstruction to a “Wannier-
representability”, the classification in terms of topolog-
ical invariants and the existence of gapless anomalous
boundary modes can be formulated in a unique consis-
tent framework for systems equipped only with internal
symmetries [59, 60]. When adding spatial symmetries,
however, different complications arise.

First, distinct atomic insulators, which are by defini-
tion topologically trivial, generally possess different crys-
talline topological invariants. This, in turn, requires a
careful inspection of such topological indices to identify
the criteria dictating the appearance of topologically non-
trivial crystalline phases. Second, there can exist “non-
Wannierazible” topological phases in crystals which do
not possess boundaries that are left invariant under the
protecting spatial symmetry. As a result, the surfaces of
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these systems are fully gapped even if the bulk is topolog-
ical. Notwithstanding these complications, substantial
progresses has been made with the theory of topologi-
cal quantum chemistry [61] and that of symmetry-based
indicators [62–64], which allows one to discriminate all
different atomic insulators from genuine topological non-
trivial phases using the spatial symmetry character of
the valence bands and their connectivity throughout the
Brillouin zone. Combining these theories with density-
functional-theory calculations has very recently led to
catalogues containing a huge number of topological ma-
terials [65–67].

Nonetheless, there exist topological phases that are
not detectable using the symmetry labels of the valence
bands. An extreme case is a system with only translation
symmetry: it can be in a topological “tenfold-way” phase
due to its internal symmetries, but it is signaled as being
topologically trivial using spatial symmetry indicators.
More importantly, there can exist topological crystalline
phases in low-symmetric crystals that are neither charac-
terizable by the symmetry content of the valence bands
nor by the tenfold-way [68]. To date, these phases lack
any classification and consequently any material realiza-
tion.

In this work, we achieve the first of such classifica-
tions. Specifically, we consider the paradigmatic example
of two-dimensional crystals with twofold rotation sym-
metry, i.e. in the wallpaper group p2, where the gapped
phases of time-reversal symmetric (non-magnetic) sys-
tems with sizable spin-orbit coupling cannot be classi-
fied with the symmetry data of the valence bands. In-
stead, we construct Berry phase related Z2 invariants to
first isolate and remove topologically non-trivial quantum
spin-Hall phases from the set of distinct gapped phases.
Thereafter, we enumerate all distinct atomic insulating
phases and classify them using a trio of Z2 topological
invariants. Using our Berry phase based classification,
we are able to determine: i) in systems with two oc-
cupied valence bands, the existence of topological non-
trivial crystalline phases similar in nature to the fragile
phases detected by symmetry eigenvalues in other wall-
paper groups [69, 70]. ii) with four occupied valence
bands, the emergence of an additional fragile topologi-
cal crystalline phase, whose possible existence has been
overlooked so far. To underline the importance of these
findings, we point out that topological crystalline phases
of the fragile type have been predicted to occur in magic-
angle twisted bilayer graphene [71–74].

This paper is organized as follows. In Sec. II we first
present the example of a time-reversal symmetric one-
dimensional atomic chain where the symmetry character
of the bands is not able to classify the distinct gapped
phases, and show that such a classification becomes in-
stead possible introducing a “partial” Berry phase Z2

invariant. We then show in Sec. III that these Z2 in-
variants can be also defined on high-symmetry lines in
the Brillouin zone of a two-dimensional crystal in the p2
wallpaper group, and can be used to first remove topo-

logical phases protected by time-reversal symmetry, and
then classify atomic and fragile topological phases when
two valence bands are occupied. In Sec. IV we introduce
a new Z2 invariant corresponding to a “nested” quan-
tized partial Berry phase, thanks to which we are able to
diagnose the atomic insulating phases realized with four
occupied valence bands and establish the existence of our
novel NF = 4 fragile topological insulator. The trio of
Z2 invariants is then used to classify all atomic insulating
phases for a generic number of occupied Kramers pairs
of bands in Sec. IV. Finally, we present our conclusions
and comment on extensions of our work in Sec. V.

II. MOTIVATION AND WARMUP IN 1D:
MIRROR-SYMMETRIC CHAINS

We start out by considering an atomic chain of spin
one-half electrons with time-reversal symmetry and an
additional mirror symmetry with respect to a one-
dimensional (1D) mirror point. Moreover, we will assume
inversion symmetry to be explicitly broken. The space
group G for this atomic chain is generated by

G = 〈{E|t} , {M|0}〉,

where E is the identity, t the lattice translation vector,
andM the mirror symmetry with respect to the 1D mir-
ror point. In the unit cell of this 1D crystal, there are
two distinct maximal Wyckoff positions whose site sym-
metry group, or stabilizer group, is isomorphic to the
point group Cs. The first, labelled 1a, has coordinate
x = 0 and corresponds to the origin of the unit cell. Its
stabilizer group is simply generated by {M|0}. Simi-
larly, the second maximal Wyckoff position, labelled 1b,
corresponds to the edge of the unit cell with coordinate
x = 1/2 in units of the lattice constant, and its sta-
bilizer group is generated by {M|1}, which is also iso-
morphic to Cs. For all other positions in the unit cell,
the stabilizer group only contains the identity. There-
fore these Wyckoff positions have multiplicity two and
coordinates (x,−x). Let us now enumerate the elemen-
tary band representations [75] for exponentially localized
Wannier functions (WFs) sitting at the maximal Wyckoff
positions 1a and 1b. They can be induced by considering
that in reciprocal space there are two mirror-symmetric
momenta in the Brillouin zone (BZ), i.e. Γ = 0 and
X = π. Moreover, since the stabilizer group of 1a does
not contain any translation, the mirror eigenvalues ±i at
Γ and X must be identical. On the contrary, the stabi-
lizer group of 1b contains a lattice translation of half a
unit cell and therefore the mirror eigenvalues at Γ and X
are opposite. The elementary band representations can
then be summarized as in Table I. Note that the “com-
posite” band representation for two symmetric WFs [57]
at the same position with opposite mirror eigenvalues ±i
have a representation content in momentum space that
is independent on whether they are centered at 1a or 1b.
This yields the equivalence ρ1ai ⊕ρ1a−i ↑ G ' ρ1bi ⊕ρ1b−i ↑ G,
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Wyckoff position Representation Γ X

1a ρ1ai ↑ G i i

ρ1a−i ↑ G −i −i
1b ρ1bi ↑ G i −i

ρ1b−i ↑ G −i i

Table I. Elementary band representation for the one-
dimensional space group of a mirror symmetric chain. The
first column indicates the maximal Wyckoff positions. The
second column the corresponding induced band representa-
tion, and the last two columns the mirror eigenvalues at the
center and edge of the 1D BZ.

which simply states that the corresponding pairs of ex-
ponentially localized WFs can be moved anywhere along
the line between the 1a and the 1b sites in opposite di-
rections.

The aforementioned composite band representation
becomes a physical elementary band representation
(PEBR) [61] when time-reversal symmetry Θ is taken
into account. This is because Θ requires the complex
irreducible one-dimensional representations at Γ and X
to double. The corresponding pairs of energy bands,
however, do not derive from Wannier states with charge
centers at arbitrary positions along the chain. Kramers
theorem indeed guarantees that exponentially localized
WFs come in Kramers degenerate pairs, in which each
pair has the same center. Moreover, while an even num-
ber of Wannier Kramers pairs centered at the maximal
Wyckoff positions 1a or 1b can be freely moved away
without breaking either the mirror or time-reversal sym-
metry, with an odd number of Wannier Kramers pairs sit-
ting at 1a or 1b the center of at least one pair of Wannier
states is unmovable [53]. Put differently, the parity of
Wannier Kramers pairs centered at the maximal Wyck-
off positions 1a and 1b represent stable topological Z2 in-
dices characterizing a one-dimensional time-reversal and
mirror-symmetric insulator. More importantly, these sta-
ble topological indices cannot be read off from the sym-
metry character of the bands since only one PEBR exists.
The discrepancy between the existence of real space sta-
ble topological indices and the absence of distinct PEBRs
can be overcome using the recent finding that Kramers
pairs of bands in a mirror symmetric [76], or equivalently
C2 twofold rotation symmetric [77], atomic chain possess
a Z2 topological index defined in terms of the “partial”
polarization introduced by Fu and Kane [78], which is
quantized by the presence of these point group symme-
tries. In its U(NF ) gauge invariant form it can be written
as

νM :=
1

π

[ˆ π

0

dkTrA(k) + i log
Pf [w(π)]

Pf [w(0)]

]
mod 2. (1)

In the equation above, we have introduced the non-
Abelian Berry connectionAm,n(k) = 〈um(k)| i∂k |un(k)〉,
and the sewing matrix wm,n(k) = 〈um(−k)|Θ |un(k)〉
that is antisymmetric at the Γ and X points and hence
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Figure 1. (color online) Evolution of the Wilson loop eigenval-
ues for a mirror and time-reversal symmetric Aubry-André-
Harper model [cf. Appendix A and Ref. 76] at NF = 4 by
sweeping the dimerization hopping amplitude δt while pre-
serving mirror symmetry (a) and changing the phase φV away
from the mirror-symmetric point φV = −π/4 (b).

characterized by its Pfaffian Pf(w). The Z2 invariant de-
fined above can be related to the charge centers of the
Wannier Kramers pairs by introducing the unitary Wil-
son loop operator [60, 79]

Wk+2π←k = exp

[
i

ˆ k+2π

k

A(k′)dk′

]
, (2)

where exp denotes path ordering of the exponential while
k is the Wilson loop base point. The eigenvalues of the
Wilson loop operator, exp(2πi νj), j labelling the occu-
pied bands, are independent of the base point k and
uniquely determine the Wannier centers νj . The presence
of mirror symmetry translates into a chiral symmetry for
the Wilson loop eigenvalues [70], thus implying that the
Wannier centers are restricted to the values νj = 0, 1/2
or to “unpinned” pairs (ν̄,−ν̄). Moreover, time-reversal
symmetry guarantees that each Wilson loop eigenvalue
has to be doubly degenerate. The concomitant presence
of mirror and time-reversal symmetry therefore yields∑
j νj mod 1 ≡ 0, and consequently

∑
j νj mod 2 ≡ νM

can only assume the values 0 and 1. Knowing the rela-
tion between the Z2 topological invariant and the Wan-
nier centers, we can straightforwardly classify the insulat-
ing states realized in a one-dimensional mirror-symmetric
atomic chain. In fact, with a total number of occupied
bands NF = 4n+2, n being integer, an insulating atomic
chain for which νM = 0 (νM = 1) will be characterized
by the presence of an odd number of Wannier Kramers
pairs at 1a (1b). If instead NF = 4n the system can
be described in terms of exponentially localized Wannier
functions with an even or odd number of Kramers degen-
erate pairs centered at 1a and 1b depending on whether
νM = 0 or νM = 1, respectively.

To verify the relation between the Z2 topological in-
variant νM and the Wannier centers distribution, we
have computed the Wilson loop spectrum for a time-
reversal and mirror symmetric one-dimensional spin-
ful Aubry-André-Harper model [cf. Appendix A and
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Wyckoff position Representation Γ X Y M

1a ρ1ai ↑ G i i i i

ρ1a−i ↑ G −i −i −i −i
1b ρ1bi ↑ G i −i i −i

ρ1b−i ↑ G −i i −i i

1c ρ1ci ↑ G i i −i −i
ρ1c−i ↑ G −i −i i i

1d ρ1di ↑ G i −i −i i

ρ1d−i ↑ G −i i i −i

Table II. Elementary band representation for the p2 wallpa-
per group G = 〈{E|t} , {C2|0}〉. The first column indicates
the maximal Wyckoff positions; the second column the cor-
responding induced band representation, and the last two
columns the C2 eigenvalues at the Γ = {0, 0}, X = {π, 0},
Y = {0, π} and M = {π, π} points in the BZ. In time-
reversal symmetric systems, the PEBRs obey the equivalence
ρ1a ↑ G ' ρ1b ↑ G ' ρ1c ↑ G ' ρ1d ↑ G.

Ref. 76], in which the half-filled NF = 4 insulating state
undergoes a band gap closing-reopening, accompanied by
a change of the Z2 topological invariant, by sweeping the
strength of the nearest-neighbor hopping amplitude δt.
As explicitly shown in Fig. 1(a), the insulating state can
be described in terms of two Wannier Kramers pairs cen-
tered at 1a and 1b in the νM = 1 region. On the con-
trary, a νM = 0 value of the topological invariant implies
the existence of two Wannier pairs centered at two mir-
ror related, non-maximal Wyckoff positions in the unit
cell. Moreover, by breaking the mirror symmetry of the
model [see Fig. 1(b)] the position of the exponentially
localized Wannier function can be freely moved at ar-
bitrary positions in the unit cell in agreement with the
fact that the space group in this case only contains the
identity. Finally, we emphasize that the change of the Z2

invariant is associated with a band gap closing-reopening
occurring at unpinned points in the BZ [76], which is a
restatement of the fact that the topological index charac-
terizing a mirror and time-reversal symmetric insulating
chain cannot be inferred from the symmetry character of
the occupied bands.

III. WALLPAPER GROUP p2: INSULATORS
WITH TWO OCCUPIED BANDS

Having established the Z2 classification of mirror and
time-reversal symmetric insulating chains in the absence
of symmetry indicators, we next consider the main fo-
cus of this work: two-dimensional (2D) crystals possess-
ing a C2 twofold rotation symmetry. The smallest two-
dimensional wallpaper group containing C2 is p2. It has
four maximal Wyckoff positions labelled as 1a = {0, 0},
1b = {1/2, 0}, 1c = {0, 1/2} and 1d = {1/2, 1/2}. Their
stabilizer group is isomorphic to C2, which implies that in
systems with time-reversal symmetry the induced band
representations have the same symmetry character [cf.

Figure 2. (color online) Schematic drawing of a C2 symmetric
Brillouin zone spanned by reciprocal lattice vectors g1 and
g2 with high-symmetry points Γ, X, Y and M . The contours
along which the partial Berry phases γI1 and γI2 are calculated
are drawn in green, a typical Wilson loop operator contour,
discussed in the main text, is drawn in red.

Table II].

However, the parity of the Wannier Kramers pairs
centered at 1a,1b,1c,1d still represent real space sta-
ble topological indices that discriminate between non-
equivalent atomic insulating states. To classify these
different atomic insulators, we first use the fact that
in the BZ of a twofold rotation symmetric crystal,
the C2 symmetry constraint C−12 H(k)C2 = H(−k) is
equivalent to a one-dimensional mirror symmetry con-
straint along the time-reversal invariant non-contractible
loop lines k1,2 ≡ 0, and k1,2 = G1,2/2. Therefore,
we can in principle define a quartet of Z2 invariants{
νMk1=0; νMk1=G1/2

; νMk2=0; νMk2=G2/2

}
[c.f. Fig. 2]. These

topological indices are not all independent, however,
since the differences νMk1,2=G1,2/2

− νMk1,2=0 can be re-

lated [80] to the Fu-Kane-Mele (FKM) Z2 topological
invariant [6, 78] characterizing a time-reversal invariant
2D topological insulator. This follows from the fact that
νMk1,2=G1,2/2

− νMk1,2=0 keeps track of the evolution of the

Wannier centers during a time-reversal pumping pro-
cess [60]. Therefore, the condition νMk1,2=G1,2/2

−νMk1,2=0 =

1 mod 2 immediately implies a quantum spin Hall (QSH)
insulating state. When dealing with insulating crystalline
systems without anomalous edge states (trivial FKM in-
variant), we are thus left with a Z2×Z2 classification [81],
which, as we will show below, is only able to diagnose the
atomic insulating states when one Kramers pair of bands
is occupied.

The assertion above can be immediately proved by us-
ing the fact that for an atomic insulator with two oc-
cupied bands, the exponentially localized Wannier Kra-
mars’ pair must be centered at one of the maximal Wyck-
off positions. Hence, the corresponding center of charge
already provides a Z2 × Z2 classification. Furthermore,
the center of charge can be straightforwardly connected
to the doublet of one-dimensional invariants νMk1,2=0 as

follows. Let us consider the Wilson loop operator in the
e1 directionW(k1+2π,k2)←(k1,k2) where (k1, k2) is the base
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Wyckoff position νMk1=0 ν
M
k2=0

1a 0 0

1b 0 1

1c 1 0

1d 1 1

Table III. The Z2 × Z2 classification of atomic insulators in
the p2 wallpaper group with one occupied Kramers pair, i.e.
NF = 2. The first column indicates the maximal Wyckoff
position, while the second and third column are the U(2)
gauge invariant line invariants.

point. Its eigenvalues exp [2πi νj(k2)] (j = 1, 2) depend
on the k2 coordinate of the Wilson loop base point and
the corresponding phases νj(k2) are the centers of the
one-dimensional hybrid Wannier functions [c.f. Fig. 2].
Due to time-reversal symmetry the Wannier bands realize
a Kramers related pair [c.f. Appendix B], and therefore
can be split into two time-reversed channels s = I, II
satisfying νI(k2) ≡ νII(−k2). The additional C2 rotation
symmetry mandates the Wilson loop spectrum to be chi-
ral symmetric, i.e. νI(k2) ≡ −νII(k2). As a result, the
center of charge of the Wannier Kramers pair in the e1
direction is

1

2π

˛
νI(k2)dk2 mod 1 ≡ νI(k2 = 0) mod 1 ≡

νMk2=0

2
.

Repeating the same argument using the Wilson loop op-
erator in the e2 direction, we therefore reach the classi-
fication of atomic insulators with one occupied Kramers
pair of bands summarized in Table III.

Strictly speaking, this classification does not enumer-
ate all possible insulating phases with a trivial FKM in-
variant. Contrary to 1D systems where all insulating
phases can be adiabatically continued to an atomic in-
sulating phase [62], in 2D systems there can exist topo-
logically non-trivial states that present an obstruction
to a representation in terms of symmetric and expo-
nentially localized WFs [69]. These topological phases
have been dubbed “fragile” topological phases since al-
though not admitting a Wannier representation by them-
selves, such a representation becomes possible when ad-
ditional trivial bands are added to the system. In recent
works, the existence and diagnosis of fragile topological
phases [70, 74, 82] have been linked to the topological na-
ture of disconnected PEBR’s [61]. However, the defining
characteristic of a fragile topological phase – the absence
of a Wannier gap in the Wilson loop spectrum that con-
sequently must display a non-trivial winding – can exist
also in our low-symmetric crystal with a single unsplit-
table PEBR.

In fact, due to the concomitant presence of the com-
muting two-fold rotation symmetry and time-reversal
symmetry, a crystal in the p2 space group is also in-
variant under the combined antiunitary symmetry op-
eration C2Θ with (C2Θ)2 = 1. Assuming a periodic and
smooth real gauge can be found [83], this also implies that

the Wilson loop operator in the e1,2 direction belongs to
the orthogonal group SO(2), with the homotopy group
π1 [SO(2)] = Z guaranteeing the existence of an integer
winding number invariant [84]. A C2Θ-protected fragile
topological phase of this kind has been first discussed
in Ref. 85 and dubbed Stiefel-Whitney (SW) insulator
since the parity of the winding number corresponds to
the second SW class invariant. Note that for a SW insu-
lator to exist, the total Berry phases along the k1,2 ≡ 0
lines – which correspond to the first SW class invari-
ant in a smooth and periodic real gauge – must vanish.
This constraint is immediately verified in a C2 crystal
with time-reversal symmetry. On the other hand, time-
reversal symmetry also guarantees the winding number
of the Wilson loop operator to assume 2Z values, which,
in the language of Ref. 85 would imply the Z2 second SW
class invariant to be trivial.

However, in a NF = 2 insulator with time-reversal
symmetry a Wilson loop spectrum winding an even num-
ber of times cannot be unwinded. Consider the Wil-
son loop operator W(k1,k2+2π)←(k1,k2) and assume, for

instance, that the line invariant νMk1=0 = 0. The Wil-
son loop spectrum has to display two symmetry enforced
degeneracies at k1 = 0, π with the corresponding hy-
brid Wannier centers at ν = 0. The absence of a Wan-
nier gap also implies the existence of two degeneracies at
time-reversal related momenta k̄1,−k̄1 where the hybrid
Wannier center ν = 1/2. The C2Θ symmetry mandates
that these unpinned degeneracies can be only moved [c.f.
Appendix B and Ref. 70] pairwise (as required by time-
reversal), and consequently cannot be destroyed. Hence,
the winding of the Wilson loop spectrum is robust, which
allows for the definition of a fragile topological phase in
insulators with one occupied Kramers pair of bands. Fur-
thermore, the Wilson loop winding can occur indepen-
dent of the Z2 line invariants, thus suggesting that the
complete classification in systems with a trivial FKM in-
variant is Z2 × Z2 × Z2, where the third Z2 invariant
discriminates between gapped and winding Wilson loop
spectra.

To verify the existence of the fragile topological phase
discussed above, we introduce a four-band tight-binding
model on a C3 and mirror symmetry broken honeycomb
lattice [see Appendix C for the corresponding tight-
binding model] with a full spectral gap at half-filling
[see Fig. 3(a)]. It can be thought of as being made of
two coupled Chern insulators with opposite Chern num-
bers C = ±2, thereby respecting time-reversal symmetry.
In Fig. 3(b) we show the Wilson loop spectrum along
the k1 direction, which displays the non-trivial winding
discussed above. We close this section by emphasizing
that the existence of the fragile topological phase does
not strictly rely on the existence of a single PEBR. In
Appendix C, we introduce a C4 symmetric tight-binding
model on the square lattice where the NF = 2 atomic
insulating states can be generally represented in terms
of symmetric WFs centered at the maximal Wyckoff po-
sitions 1a = {0, 0} and 1b = {1/2, 1/2}, which possess
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Figure 3. (color online) (a) Band structure of the NF = 2
fragile topological insulator with twofold rotation and time-
reversal symmetry. Energies have been measured in units of t.
There are no degeneracies other than those required by time-
reversal symmetry. (b) The Wilson loop spectrum along the
k1 direction for the half-filled insulating state. See Appendix
C for more details.

distinguishable PEBRs. The symmetry content of the oc-
cupied bands of our model is compatible with an atomic
insulator with a Wannier Kramers pair centered at 1b.
However, inspection of the Wilson loop spectrum firmly
establishes it as being a topological insulator of the frag-
ile type.

IV. Z2 × Z2 × Z2 CLASSIFICATION WITH NF = 4:
A NEW FRAGILE TOPOLOGICAL PHASE

With the Z2 × Z2 × Z2 classification of NF = 2 insu-
lating phases in our hands, we next consider insulators
with NF = 4. We will follow the same strategy used in
the preceding section, and enumerate and classify all the
existing atomic insulating phases. It is easy to see that
there exist seven distinct insulating states representable
in terms of symmetric WFs. In fact, with two Wannier
Kramers pair in the system, their centers will either lie at
two C2 related non-maximal Wyckoff positions or at two
distinct maximal Wyckoff positions. Therefore, the two
Z2 line invariants νM(k1,2 = 0) are insufficient to clas-
sify these states. Now we will show, using a procedure
similar to the “nested” Wilson loop one of topological
multipole insulators [42, 86], that it is possible to obtain
an additional Z2 invariant by identifying two sectors in
the Wilson loop spectrum, each of which carries its own
topological content, i.e. its quantized partial polariza-
tion.

We recall that the essential characteristic of a generic
atomic insulating state is the presence of a Wannier gap
in the Wilson loop spectrum. Its chiral symmetry, dic-
tated by the C2Θ symmetry, then allows us to distinguish
two regions, one symmetrically centered around ν = 0
and one symmetrically centered around ν = 1/2, each
possessing both twofold rotation and time-reversal sym-
metry, and populated by Kramers related pairs of Wan-
nier bands. We have plotted the possible Wilson loop

spectra for two Kramers pairs in Fig. 4, where the red
bands are centered around ν = 0 and the green bands
around ν = 1/2. The blue bands can be seen as centered
around either point [87]. Obviously, the parity of the
pairs of Wannier bands belonging to the gapped region
centered around ν = 1/2 can be linked to the line invari-
ants νMk1,2=0. Considering for instance the spectrum of the

Wilson loopW(k1,k2+2π)←(k1,k2) and further splitting the
Wannier bands in two time-reversed channels, we imme-
diately find that νMk1=0 = 0 (νMk1=0 = 1) if the Wilson loop
spectrum region centered at ν = 1/2 is populated by an
even [c.f. Figs. 3(b)-(d)] (odd [c.f. Fig. 3(a)]) number of
pairs of Wannier bands. Furthermore, we can obtain two
distinct Z2 invariants for the two disconnected regions of
the k1 dependent Wilson loop spectrum as follows. Let
us consider the Wilson loop operatorW(k1,k2+2π)←(k1,k2),
choosing its base point on the time-reversal and twofold
rotation symmetric line k2 = 0 [c.f. Fig. 2]. The corre-

sponding eigenstates
∣∣∣νje2;(k1,0)〉, where the subscript e2

specifies the k2 direction of the Wilson loop, satisfy

W(k1,2π)←(k1,0)

∣∣∣νje2;(k1,0)〉 = e2πiνj(k1)
∣∣∣νje2;(k1,0)〉 ,

and allow us to define the Wannier basis [42, 43],∣∣∣wje2;(k1,0)〉 =
∑
n

∣∣∣un(k1,0)〉 [νje2;(k1,0)]n, where n =

1, . . . , NF . Since the quantized partial polarization asso-

ciated to the Bloch Hamiltonian eigenfunctions
∣∣∣un(k1,0)〉

is unchanged by a general U(NF ) transformation, it fol-
lows that the Z2 invariant νMk2=0 can be equivalently com-

puted in the Wannier band eigenbasis
∣∣∣wje2;(k1,0)〉. More

importantly, working in such a basis allows us to de-
compose νMk2=0 into two different Z2 invariants, which we

dub as νM;0
k2=0 and ν

M;1/2
k2=0 , corresponding to the “nested”

quantized partial polarizations for the two gapped sec-
tors of the Wilson loop spectrum (the red and green
bands in Fig. 4, respectively). This is because, as men-
tioned above, the two gapped regions separately sat-
isfy both time-reversal and twofold rotation symmetry,
which guarantees that the partial polarization of the
corresponding Wannier band eigenstates is quantized.
Note that Wannier bands only respect twofold rotation
and time-reversal symmetry when the Wilson loop base
points lie on a mirror symmetric line.

Having obtained three distinct Z2 topological invari-
ants, we can now classify the atomic insulating phases
enumerated above. Fig. 4(a) schematically shows the k1-
dependent Wilson loop spectrum when the two gapped
sectors are each populated with one pair of Wannier
bands, and thus νMk1=0 = 1. The gapped sector cen-
tered around ν = 0 is further characterized by the Z2

invariant νM;0
k2=0, and its value dictates whether the Wan-

nier Kramers pair is centered at the maximal Wyckoff

position 1a (νM;0
k2=0 = 0) or 1b (νM;0

k2=0 = 1). The same
argument can be applied to the gapped sector centered
at ν = 1/2 to set apart Wannier Kramers pairs cen-
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Figure 4. (color online) Schematic drawings of the Wilson
loop spectra for the NF = 4 atomic insulating states in the
p2 wallapaper group. Panel (a) corresponds to four differ-
ent atomic insulating states, where the pair of bands around
ν = 0 (ν = 1/2) can have a Wannier center at 1a or 1b (1c
or 1d), respectively, which can be determined by calculating
their nested partial polarizations. Panel (b) corresponds to
an atomic insulator with Wannier Kramers pairs centered at
1a⊕1b, while panel (c) is for 1c⊕1d. In panel (d) the Wannier
functions are centered at C2 related generic points in the unit
cell.

Wyckoff positions νMk1=0 ν
M;0
k2=0 ν

M;1/2
k2=0

1a⊕ 1c 1 0 0

1a⊕ 1d 1 0 1

1b⊕ 1c 1 1 0

1b⊕ 1d 1 1 1

1a⊕ 1b 0 1 0

1c⊕ 1d 0 0 1

ν ⊕−ν 0 0 0

Table IV. The classification of atomic insulating states in the
p2 wallpaper group when two occupied Kramers pairs of bands
are occupied, i.e. NF = 4. The first column indicates the
centers of charge of the Wannier Kramers pairs; the second
column is the Z2 line invariant of the full Wilson loop spec-
trum; the second and third columns are the invariants de-
rived from the nested Wilson loops, which obey the sum rule(
νM;0
k2=0 + ν

M;1/2
k2=0

)
mod 2 = νMk2=0. The last row refers to in-

sulators where the Wannier Kramers pairs are centered at C2
related non-maximal Wyckoff positions.

tered at 1c (ν
M;1/2
k2=0 = 0) and 1d (ν

M;1/2
k2=0 = 1). This,

in turn, allows us to catalogue four distinct atomic insu-
lating states.

Next, we consider insulating states where the Wannier
bands occupy only one gapped sector of the Wilson loop
spectrum, and thus νMk1=0 = 0. Fig. 4(b),(c),(d) show the
allowed possibilities for the Wannier bands. They can
either realize a connected pair with two protected degen-
eracies at time-reversal related momenta (k̄1,−k̄1) or can
come in disconnected pairs, in which case the two pairs
can be arbitrarily assigned to the ν = 0 or the ν = 1/2

sector. Let us first inspect the value the invariants νM;0
k2=0

(ν
M;1/2
k2=0 ) assume for the connected pair of Wannier bands

shown in Fig. 4(b),(c). We can divide the four Wannier
bands in two time-reversed channels, that each possess
C2Θ symmetry. Then, an essential twofold degeneracy
in one channel at ν = 0 (ν = 1/2) implies a π Berry
phase [see Appendix B and Ref. 85], and consequently

the nested line invariant νM;0
k2=0 (ν

M;1/2
k2=0 ) is enforced to be

1. As a result, the schematic Wannier bands shown in
Fig. 4(b),(c) correspond to the atomic insulating phase
with Wannier Kramers pairs centered at 1a ⊕ 1b and
1c ⊕ 1d respectively. Using similar arguments, we also
find that the disconnected Wannier bands of Fig. 4(d)
are characterized by a zero nested partial polarization
[see Appendix B]. Therefore, in this atomic insulating
state the Wannier Kramers pairs are centered at two
non-maximal Wyckoff positions related to each other by
the twofold rotation symmetry. All in all, we have thus
reached the classification summarized in Table IV of the
seven distinct atomic insulating states realizable in the
p2 wallpaper group with four occupied bands.

When comparing this with the eight allowed config-
urations for the three Z2 invariants, one can immedi-
ately recognize that an insulating state characterized
by the two nested quantization polarization invariants

νM;0
k2=0 = ν

M;1/2
k2=0 = 1 with νM;0

k1=0 = 0 cannot be rep-
resented in terms of symmetric exponentially localized
Wannier functions. In fact, such a configuration featur-
ing essential degeneracies at unpinned momenta k1 both
around ν = 0 and ν = 1/2 would necessarily imply the
closing of the Wannier gap and hence a non-trivial wind-
ing of the Wilson loop. We thus conclude that such
an insulator corresponds to a topologically non-trivial
phase of the fragile type. Its stability against symmetry-
allowed perturbations is rooted in the fact that the pos-
sible local annihilation of the degeneracies on the ν = 0
or ν = 1/2 line requires a change of the line invariant

νMk2=0 =
(
νM;0
k2=0 + ν

M;1/2
k2=0

)
mod 2, which is only possible

with a bandgap closing-reopening point.
Let us now present a model realization of this novel

fragile topological insulating phase. The model is built
by stacking two quantum spin-Hall insulators on the hon-
eycomb lattice – the so-called Kane-Mele model [5] –
with opposite sign of the spin-dependent next-nearest
neighbor hopping t2 parametrizing the spin-orbit cou-
pling strength. Inversion symmetry is explicitly broken
by considering a chemical potential difference between
the two layers while the threefold rotation symmetry
breaking due to, e.g., a uniaxial strain [c.f. Fig. 5(a)] is
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Figure 5. (color online) (a) Top view of the strained honey-
comb bilayer realizing the NF = 4 fragile topological phase.
The intralayer spin-dependent hopping amplitude t2 has been
taken only along the zigzag direction to amplify the threefold
rotation symmetry breaking. (b) Bulk bands showing a full
spectral gap at half-filling. The parameter set is specified in
Appendix D. (c) The corresponding spectrum in a ribbon ge-
ometry demonstrate the insulating nature of the edges. (d)
Wannier bands along the k2 direction. The Wilson loop in
the k1 direction also show a similar winding.

incorporated taking direction dependent hopping ampli-
tudes t2. We also break theMz symmetry by introducing
a Rashba spin-orbit coupling term. Being composed of
two quantum spin Hall insulators, the FKM invariant of
the half-filled model is trivial, and with an explicit inter-
layer coupling the helical edge states disappear [see Ap-
pendix D for the model Hamiltonian and Fig. 5(b) for the
ribbon spectrum]. A direct computation of the Wilson
loop spectrum [c.f. Fig. 5(d)] shows the non-trivial wind-
ing with the line invariants νMk1,2=0 = 0 that present an

obstruction to the Wannier representation of this phase.
In Appendix D, we also present a spinful model inspired
by the px,y orbital model presented in Ref. [82] that also
realizes the NF = 4 fragile topological phase discussed
above.

V. MORE OCCUPIED BANDS

Contrary to the NF = 2 topologically non-trivial
phase, which is trivialized only when certain Kramers
pairs of bands are added , the NF = 4 topological insula-
tor discussed above is intensively fragile: it is trivialized
by the addition of a generic Kramers pair of bands. This
assertion can be immediately proved noticing that for a

Wyckoff positions νMk1=0 ν
M;0
k2=0 ν

M;1/2
k2=0

1a⊕ 1b⊕ 1c 1 1 0

1a⊕ 1b⊕ 1d 1 1 1

1a⊕ 1c⊕ 1d 0 0 1

1b⊕ 1c⊕ 1d 0 1 1

1a⊕ ν ⊕−ν 0 0 0

1b⊕ ν ⊕−ν 0 1 0

1c⊕ ν ⊕−ν 1 0 0

1d⊕ ν ⊕−ν 1 0 1

Table V. The Z2 ×Z2 ×Z2 classification of atomic insulating
states in the p2 wallpaper group when three occupied Kramers
pairs of bands are occupied, i.e. NF = 6, indicating the re-
lation between the Wannier Kramers pairs center of charges
and the (“nested”) quantized partial polarization topologi-
cal invariants. This classification is generically valid for an
arbitrary number of occupied bands NF = 4n + 2 with the
integer n ≥ 1, which will only include more unpinned pairs of
Kramers pairs.

generic NF = 6 insulating state, the Z2 × Z2 × Z2 clas-
sification is saturated by enumerating the phases with
symmetric Wannier function. In fact, with three Wan-
nier Kramers pairs in the system, their centers can either
lie on three distinct maximal Wyckoff positions, or two
Wannier pairs sit at C2-related non-maximal Wyckoff po-
sition with a third pair located at one maximal Wyckoff
position. Inspecting the possible features of the Wilson
loop spectrum and iterating the arguments presented in
the former sections we reach the classification summa-
rized in Table V. Note that this classification is generally
valid for NF = 4n+ 2 and n ≥ 1. In fact, by adding two
Wannier Kramers pairs to a state with NF = 6, we will
end up in one of the NF = 6 configurations [c.f. Table
V] with the addition of two Wannier Kramers pair cen-
tered at unpinned two-fold rotation symmetric momenta,
which do not change the Z2 invariants.

Finally, in Table VI we also provide the classification
of atomic insulators with four Wannier Kramers, which
is also valid for a generic number of occupied bands
NF = 4n and n > 1. Note that the distribution of Z2

invariants is strictly equivalent to the case of four occu-
pied bands. However, the topological non-trivial fragile
phase is substituted by an atomic insulator where the
four Wannier Kramers pairs are centered at the four max-
imal Wyckoff positions. In this configuration, in fact, the
Wilson loop spectrum is the superposition of Fig. 4(b)
and Fig. 4(c) which is allowed with a full Wannier gap
with a minimum number of eight Wannier bands.

VI. CONCLUSIONS

In this paper, we presented a classification of gapped
insulating phases that cannot be diagnosed using crys-
talline symmetry eigenvalues. We have showcased two-
dimensional crystals in the wallpaper group p2 where
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Wyckoff positions νMk1=0 ν
M;0
k2=0 ν

M;1/2
k2=0

1a⊕ 1b⊕ 1c⊕ 1d 0 1 1

ν1 ⊕−ν1 ⊕ ν2 ⊕−ν2 0 0 0

1a⊕ 1b⊕ ν ⊕−ν 0 1 0

1a⊕ 1c⊕ ν ⊕−ν 1 0 0

1a⊕ 1d⊕ ν ⊕−ν 1 0 1

1b⊕ 1c⊕ ν ⊕−ν 1 1 0

1b⊕ 1d⊕ ν ⊕−ν 1 1 1

1c⊕ 1d⊕ ν ⊕−ν 0 0 0

Table VI. The Z2×Z2×Z2 classification of atomic insulating
states in the p2 wallpaper group when four occupied Kramers
pairs of bands are occupied, i.e. NF = 8, indicating the re-
lation between the Wannier Kramers pairs center of charges
and the (“nested”) quantized partial polarization topologi-
cal invariants. This classification is generically valid for an
arbitrary number of occupied bands NF = 4n with the in-
teger n > 1, which will only include more unpinned pairs of
Kramers pairs.

all gapped phases have the same physical elementary
band representation, but they can be nevertheless clas-
sified with three Z2 topological invariants: the quan-
tized nested partial polarizations – partial Berry phases
– along high-symmetry lines in the two-dimensional Bril-
louin zone of the system.

Using the ensuing Z2 ×Z2 ×Z2 classification, we have
been able to classify all atomic insulating states and iden-
tify non-Wannierazible topological crystalline phases pro-
tected by twofold rotation symmetry and time-reversal
symmetry. Since the crystal does not possess bound-
aries that are left invariant under the protecting twofold
rotation symmetry, these topological phases do not dis-
play gapless anomalous boundary modes although their
bulk is topologically non-trivial. Instead, they represent
an example of the recently discovered fragile topology,
and thus they can be trivialized with the addition of
atomic valence bands. In this respect, we wish to em-
phasize that the fragile topological phase realized with
two occupied valence bands, which is similar in nature to
the fragile phases recently discussed in the literature in
other wallpaper groups does not necessarily decay into
a Wannierazible atomic insulating state when an addi-
tional Kramers related pair of bands are introduced. In
fact, such band addition might lead to our novel NF = 4
topological crystalline phase whose Wilson loop winding
is strictly protected by the quantization of the nested
quantized partial Berry phase in the presence of time-
reversal and twofold rotation symmetries.

An interesting direction for future research is the ex-
tension of the classification presented here to other wall-
paper and space groups where the symmetry data of
the valence bands could be combined with Berry phase
invariants to search for new topological electronic ma-
terials. Furthermore, the Berry phase invariants for
atomic insulating phases can be also exploited to ob-
tain, using the Wannier centers flow of hybrid Wannier

functions [53, 57], topological invariants for higher-order
topological insulators with helical hinge modes in non-
centrosymmetric crystals.
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Appendix A: Spin-orbit coupled
Aubry-André-Harper model

To analyze 1D atomic chains with time-reversal and
mirror symmetry with respect to a mirror point, we con-
sider a tight-binding model [76] for spin-1/2 electrons
corresponding to a generalized Aubry-André-Harper
model [88–90]

H =
∑
j,σ

[t0 + δt cos (πj + φt)] c
†
j+1,σcj,σ

+i
∑
j,σ,σ′

[λ0 + δλ cos (πj + φλ)] c†j+1,σs
y
σσ′cj,σ′

+
∑
j,σ

[V0 + δV cos (jπ/2 + φV )] c†j,σcj,σ + H.c.,

where c†j,σ is the creation operator for an electron at

site j with spin σ (σ =↑, ↓), and si are the conventional
Pauli matrices. The Hamiltonian contains harmonically
modulated nearest-neighbor hopping, spin-orbit coupling
and onsite potentials of amplitudes δt, δλ, and δV , and
phases φt, φλ and φV . The periodicities of the modu-
lated hopping and spin-orbit coupling have been chosen
to be of two lattice sites while the periodicity of the on-
site potential is four lattice sites. Moreover, t0, λ0 and
V0 are the site-independent amplitudes of the hopping,
spin-orbit coupling and on-site potential. The model pos-
sesses time-reversal symmetry whereas mirror symmetry
is preserved only for specific values of the phases φt,λ,V .
In Fig. 1 we have chosen the parameter set φt = φλ = π,
λ0 = 0.5t0, δλ0 = −0.3t0 and δV = t0. The Wilson loop
eigenvalues shown in Fig. 1(a) have been obtain using the
mirror-symmetric value φV = −π/4 while sweeping the
dimerized hopping amplitude δt. In Fig.1(b), instead, we
have fixed δt = −0.25t0 while sweeping φV away from the
mirror symmetric point.
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Appendix B: Nested partial polarization in Wilson
loop spectra with C2 and Θ symmetry

Here we show that the nested partial polarizations are
well-defined quantities in gapped Wilson loop spectra,
and that they are quantized in the presence of C2 and Θ
symmetry. In addition, we calculate the partial polariza-
tions for various Wilson loop spectra.

Let us start by examining how the symmetries act
on the Wilson loop. Consider the Wilson loop operator
W(k1,2π)←(k1,0), C2 and Θ symmetry then require [70, 79]

C2W(k1,2π)←(k1,0)C
†
2 =W†(−k1,2π)←(−k1,0),

ΘW(k1,2π)←(k1,0)Θ
† =W†(−k1,2π)←(−k1,0),

where the complex conjugate on the right-hand side
comes from the fact that both symmetries send k → −k
and hence reverse the contour of the Wilson loop opera-
tor. Furthermore, C2 relates the eigenvalues of the Wilson
loop operator

{νi (k1)} = {−νi (−k1)} ,

and time-reversal relates

{νi (k1)} = {νi (−k1)} ,

where {} denotes the set of eigenvalues. Hence C2Θ en-
forces a chiral symmetry in the Wilson loop spectrum.

Now let us show, following Ref. [70], that a single cross-
ing in the Wilson loop spectrum is locally protected by
the combination of C2 and Θ symmetry. Let us work in
a basis where C2Θ = K, where K indicates complex con-
jugation. The symmetry restriction on the Wilson loop
operator is then

KW(k1,2π)←(k1,0)K =W(k1,2π)←(k1,0),

since C2Θ sends k → k. Since the Wilson loop operator
in this basis is an SO (N) matrix, we can write it as
the exponential of an Hermitian matrix HW , which is
restricted by C2Θ such that

HW (k1) = −HW (k1)
∗
.

Near a two-band crossing, this restriction means that lo-
cally HW (k1) = k1 · σy. A single twofold degeneracy on
the ν = 0, 1/2 lines cannot be gapped out without break-
ing C2Θ symmetry, but only moved on the line. There-
fore, as for a Weyl point, the degeneracy can be only
removed by pair annihilation.

We now turn to the various possible Wilson loop spec-
tra, and compute their partial polarizations. In Fig. 6(a)
we have drawn a generic Wilson loop spectrum for one oc-
cupied Kramers pair. The corresponding Wannier bands
are given by

ϕIk = αψIk + βψIIk ,

ϕIIk = γψIk + δψIIk ,

where ψIk and ψIIk are the Bloch waves (schematically
drawn in Fig. 6(b) along the same contour), and the
coefficients are given by the eigenvectors of the Wilson
loop matrix [see also Sec. IV]. The Wannier bands in
Fig. 6(a) are thus obtained by a unitary transformation
on the occupied eigenstates of the Hamiltonian [(]Fig.
6(b)], and will be linear combinations thereof. These
Wannier bands satisfy [(]see again Fig. 6(a)],

ϕIk = eiθ(k)C2ϕI−k,
ϕIk = eiφ(k)ΘϕII−k.

The partial polarization is in this case given by the Berry
phase of ϕIk. Since ϕIk is C2 symmetric, its Berry phase,
and hence the partial polarization is quantized to 0, π.

Now consider two occupied Kramers pairs with two
crossings at ν = 0 (Fig. 6(c)). The colors indicate the
Kramers partners, and the dotted (solid) lines are C2
partners. To find the partial polarization we split the
bands into two time-reversal channels. The only pos-
sibility that leaves us with periodic subsets of bands is
taking the solid blue and dotted red bands together, and
the solid red and dotted blue bands together (shown in
Fig. 6(c) on the right).

Let us denote the solid blue Wannier band by a (k),
and define the red dotted band b (k) by

b (k) := C2θ (k) .

Clearly the bands are not periodic, and we have

a (2π) = b (0) ,

b (2π) = a (0) .

We now try to construct a periodic gauge by a basis
transformation, under which the partial polarization is
invariant. We define

ã (k) = [a (k) + b (k)] /2,

b̃ (k) = [a (k)− b (k)] /2.

Now

ã (2π) = [a (2π) + b (2π)] /2

= [b (0) + a (0)] /2

= ã (0) ,

hence ã (k) is periodic, however

b̃ (2π) = [a (2π)− b (2π)] /2

= [b (0)− a (0)] /2

= −b̃ (0) ,

is anti-periodic. Multiplying by a phase and defining

˜̃
b (k) = eik/2b̃ (k) ,



11

remedies this situation. Under C2Θ we now have

C2Θ ã (k) = ã (k) ,

C2Θ
˜̃
b (k) = e−ik/2b̃ (k)

= e−ik
˜̃
b (k) .

Using this, we can calculate the Berry phase of the two
bands separately,

γa =

ˆ
dk ã (k)

†
i∂kã (k)

=

ˆ
dk ã (k)

†
(C2θ)† (C2θ) i∂kã (k)

= −
ˆ
dk ã (k)

†
i∂kã (k)

= −γa

and

γb =

ˆ
dk

˜̃
b (k)

†
i∂k

˜̃
b (k)

=

ˆ
dk

˜̃
b (k)

†
(C2θ)† (C2θ) i∂k˜̃b (k)

= −
ˆ
dk

˜̃
b (k)

†
eiki∂ke

−ik˜̃b (k)

= −γb −
ˆ
dk ∂kk

= −γb − 2π,

from which we see γa = 0 and γb = π, and thus we
find that the partial polarization is π. In particular, this
shows that the nested polarization around ν = 0, 1/2 will
be π when there are an odd number of crossings in half
the Brillouin zone on this line.

Let us finally consider two occupied Kramers’ pairs
with a disconnected Wilson loop spectrum (see Fig. 6(d)-
(e)). To calculate the partial polarization of these bands,
let us first consider the red Kramers pair in isolation.
To calculate the partial polarization we need to again
calculate the Berry phase of the red dotted band. This
band does not posses C2 symmetry and hence its Berry
phase will not be quantized. In order to calculate the
partial polarization of the blue bands, we calculate the
Berry phase of the blue dotted band. However, since the
blue dotted and the red dotted bands are related by C2
symmetry, we find for their Berry phases

γIRed = −γIBlue,

and hence the partial polarization, which is the sum of
the two, is zero.

To calculate nested partial polarizations, we need to
select symmetric regions centered around ν = 0 and ν =
1/2. Since there are two gaps in the spectrum, we have
two choices. We can either include the pair of Kramers
pairs, or exclude them from either region. However, we
have just seen that the partial polarization of this set of
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Figure 6. (a) Schematic drawing of a generic Wilson loop
spectrum with one occupied Kramers pair. The two Wan-
nier bands ϕIk and ϕIIk are related to each other by time-
reversal symmetry, and are themselves C2 symmetric. (b)
Generic band structure corresponding to (a), the Wannier
states are obtained by linear combinations of the eigenstates
of the Hamiltonian ψIk,ψIIk . (c) Wilson loop spectrum for two
occupied Kramers pairs with two crossings at ν = 0. The
colors denote the two different Kramers pairs, and the C2
partners have a solid (dotted) line. The two time-reversal
channels are depicted on the right, which are by themselves
C2Θ symmetric. (d) Disconnected Wilson loop of two occu-
pied Kramers pairs, again color denotes Krames pairs, dotted
(solid) the C2 partners. (e) Corresponding band structure
with two occupied Kramers pairs.

bands is zero, and hence either choice will yield the same
result. Indeed for any NF , the only choice in selecting a
subset of bands centered around ν = 0, 1/2, is including
or excluding pairs of disconnected bands such as in Fig.
6(e), making the nested partial polarizations well-defined
quantities.

Finally, gapped Wilson loop spectra for arbitrary NF
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Figure 7. Bulk bands (a) and Wilson loop spectrum (b) for
the C4 symmetric fragile topological insulator. Plots are for
ε1/t = 0.1,ε2/t = −0.3, t2/t = 0.8, λ/t = 0.4.

will consist of linear combinations of the three cases pre-
sented here, and since the partial polarization is an ad-
ditive quantity, we know how to calculate it for arbitrary
NF .

Appendix C: Topological insulator models of the
fragile type with NF = 2

To show the existence of fragile topological insulating
phases in two-dimensional crystals with two-fold rota-
tion and time-reversal symmetries when only one pair of
Kramers related pairs are occupied, we start by consid-
ering the following two-band model of a Chern insulator
with C = +2,

H = {−t [1 + cos (ky) + cos (2kx)]− t2 cos (kx)} τx
{−t [− sin (ky)− sin (2kx)]− t2 sin (kx)} τy
− t3 sin (2kx) τz

where t, t2, t3 are hopping amplitudes, and τi are Pauli
matrices representing an internal degree of freedom. We
now add its time-reversal partner, and couple them with

HR = −iλ
{[
−1

2
sin (kx) + sin (ky)

]
iτxsx

+

[
1

2
− 1

2
cos (kx) + cos (ky)

]
iτysx

}
,

where λ is a hopping amplitude and si are Pauli ma-
trices acting in spin-space. This model consists of two
time-reversed copies of Chern insulators with Chern num-
bers C = ±2, and C2 symmetry. Taken together, the
Kane-Mele invariant is trivial but the Wilson loop spec-
tra wind, indicating a fragile topological insulator pro-
tected by C2Θ symmetry. The C2 symmetry operator is
C2 = iτx ⊗ sz and the time-reversal operator Θ = UK,
with U = I2 ⊗ isyand K is complex conjugation. The
plots in the main text are for the parameters t/t2 = 0.4
t/t3 = −1.6 λ/t = 0.15.

A topological phase of the fragile type can also be ob-
tained in a fourfold rotation symmetric system by consid-
ering the following C4 symmetric C = +2 Chern insulator,

H = −ε1 [cos (kx) + cos (ky)] (τ0 + τz)

− ε2 [cos (kx) + cos (ky)] (τ0 − τz)
− 2t [cos (kx)− cos (ky)] τx

− t2 [sin (kx) sin (ky)] τx,

where ε1, ε2, t, t2 are hopping amplitudes. We then again
add a time-reversal copy and couple them by

Hmix = −λ [sin (kx) τ0sy + sin (ky) τ0sx] .

The bulk bands and Wilson loop spectrum are plot-
ted in Fig. 7. The C4 operator is represented by
C4 = τz ⊗ eisz/4, and time-reversal by Θ = UK with
U = I2 ⊗ isy and K is complex conjugation. The
symmetry eigenvalues of the occupied bands at Γ are
{eiπ/4, e−iπ/4}, and at the M point {−e−iπ/4,−eiπ/4},
which are compatible with a Wannier function centered
at the maximal C4 symmetric position 1b = {1/2, 1/2}.

Appendix D: Fragile topological insulators with two
occupied Kramers pairs of bands

To construct a fragile topological insulator with two oc-
cupied Kramers pairs, we consider two copies of a quan-
tum spin Hall insulator (the Kane-Mele model [5]) with
broken C3 symmetry on a honeycomb lattice,

HαKM = −tα
∑
〈i,j〉,σ

cα†i,σc
α
j,σ + εα

∑
i,σ

cα†i,σc
α
j,σ

− (−1)
α
itα2

∑
〈〈i,j〉〉x̂,σ

ηijc
α†
i,σc

α
j,σ

− iλα
∑

〈i,j〉,σ,σ′

cα†i,σ (d× s)
σσ′

z cαj,σ′ ,

where α = 1, 2 denotes the two copies of the Kane-
Mele model, tα denotes the hopping amplitude, 〈i, j〉 the
sum over nearest-neighbors, tα2 the amplitude of intrinsic
spin-orbit coupling, 〈〈i, j〉〉x̂ the sum over next-nearest
neighbors only in the x-direction, ηij = +1 (−1) for hop-
ping in the clockwise (counter-clockwise) direction, λα

the Rashba amplitude, d the vector between two sites,
s the vector of Pauli matrices and εα an on-site poten-
tial. Note that we have only taken intrinsic spin-orbit
coupling along one direction, and hence we have broken
C3 symmetry.

We now couple the two copies with the following term

Hmix (t3) = −t3

∑
i,σ

c2†i,σc
1
i,σ +

∑
〈i,j〉,σ

c2†i,σc
1
j,σ

+
∑

〈〈i,j〉〉ŷ,σ

c2†i,σc
1
j,σ

 ,
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Figure 8. Bulk band spectrum (a) and Wilson loop spectrum
(b) of the HamiltonianHpxpy for ε = 0.5, tπ/tσ = 1.5, t2/tσ =
3.75, λ/tσ = 1.2

where 〈〈i, j〉〉ŷ denotes next-nearest neighbor hopping

along the ŷ-direction. When t12 and t22 have a differ-
ent sign, this Hamiltonian can be in a fragile topolog-
ical phase. The time-reversal operators is Θ = UK
with U = iτ0σ0sy and the twofold rotation operator
C2 = iτ0σxsz, where τi, σi and si are Pauli matrices
that act in copy-space, sub-lattice space and spin-space
respectively. The plots in the main text are made for
the parameters t2/t1 = 1.1, t12/t

1 = 1.1, t22/t
1 = −0.9,

ε1/t1 = −ε2/t1 = 0.1, λ1/t1 = λ2/t1 = 0.15, t3/t
1 =

0.25.
A different way to construct a model exhibiting this

fragile topological phase is by considering a model of px,y
orbitals on a honeycomb lattice introduced in Ref. [82],

Hpxpy (k) =

(
0 hk
h†k 0

)
+H1

k ,

with

hk =
1

2

(
1 + α e−ik2 + e−ik1

)
(tσ + tπ)

− 1

2

(
−1

2
+ α e−ik2 − 1

2
e−ik1

)
(tσ − tπ)σz

+

√
3

4

(
−1 + e−ik1

)
(tσ − tπ)σx,

and

H1
k = − t2

4

{
sin [i (k2 − k1)] + sin [ik1]

−ρ sin [ik2]} τz ⊗ σy,

where tσ and tπ are the hopping amplitudes for the σ and
π pairing, t2 is the amplitude of next-nearest-neighbor
hopping and σi and τi are Pauli matrices that act in or-
bital and sublattice space respectively. α and ρ are two
parameters we have introduced to break the C3 symme-
try. For α = ρ = 1, the C3, symmetry is preserved and
our Hamiltonian is equivalent to the one in Ref. [82].

We now take two copies of two copies of Hpxpy (k),
where one copy has spin pointing in the positive x-
direction, and the other spin pointing in the negative
x-direction. In addition, we shift the momentum along
the x-direction of the copies in opposite direction:

H = Hpxpy (k − x̂ε) |←〉 〈←|+Hpxpy (−k + x̂ ε)
∗ |→〉 〈→|

+Hmix |→〉 〈←| , (D1)

where the spins are mixed by

Hmix = −iλ sin (kx) τ0 ⊗ σ0.

This Hamiltonian has C2 and Θ symmetry, where C2 =
−τ0σxeisxπ/2, and Θ = UK with U = −iτ0σ0sy and K
complex conjugation, and τi, σi, si Pauli matrices acting
in orbital-space, sublattice-space and spin-space respec-
tively. Fig. 8 shows the bulk band spectrum and the
Wilson loop spectrum.
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B. Büchner, T. Kim, et al., Phys. Rev. B 95, 241108
(2017).

[23] A. Lau, K. Koepernik, J. van den Brink, and C. Ortix,
Phys. Rev. Lett. 119, 076801 (2017).

[24] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Phys. Rev. B 83, 205101 (2011).

[25] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107,
127205 (2011).

[26] A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B
85, 165110 (2012).

[27] A. Lau and C. Ortix, Phys. Rev. Lett. 122, 186801
(2019).

[28] T. Ojanen, Phys. Rev. B 87, 245112 (2013).
[29] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer,

X. Dai, and B. A. Bernevig, Nature 527, 495 (2015).
[30] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
[31] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[32] A. Kitaev, in AIP Conference Proceedings, Vol. 1134

(AIP, 2009) pp. 22–30.
[33] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[34] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057

(2011).
[35] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[36] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and

L. Fu, Nat. Comm. 3, 982 (2012).
[37] J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and

L. Fu, Nat. Mat. 13, 178 (2014).
[38] T. H. Hsieh, J. Liu, and L. Fu, Phys. Rev. B 90, 081112

(2014).
[39] C. Fang and L. Fu, arXiv preprint arXiv:1709.01929

(2017).
[40] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe,

Phys. Rev. X 8, 031070 (2018).
[41] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang,

S. S. Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv.
4, eaat0346 (2018).

[42] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,
Science 357, 61 (2017).

[43] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,
Physical Review B 96, 245115 (2017).

[44] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook,
A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock,
S. Jeon, I. Drozdov, et al., Nat. Phys. 14, 918 (2018).

[45] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Phys. Rev. B 97, 205135 (2018).

[46] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and
G. Bahl, Nature 555, 346 (2018).

[47] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal,
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