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Abstract

We derive some of the axioms of the algebraic theory of anyon [A. Kitaev, Ann. Phys., 321, 2
(2006)] from a conjectured form of entanglement area law for two-dimensional gapped systems.
We derive the fusion rules of topological charges and show that the multiplicities of the fusion
rules satisfy these axioms. Moreover, even though we make no assumption about the exact
value of the constant sub-leading term of the entanglement entropy of a disk-like region, this
term is shown to be equal to lnD, where D is the total quantum dimension of the underlying
anyon theory. These derivations are rigorous and follow from the entanglement area law alone.
More precisely, our framework starts from two local entropic constraints which are implied by
the area law. From these constraints, we prove what we refer to as the “isomorphism theorem.”
The existence of superselection sectors and fusion multiplicities follow from this theorem, even
without assuming anything about the parent Hamiltonian. These objects and the axioms of the
anyon theory are shown to emerge from the structure and the internal self-consistency relations
of the information convex sets.

1. Introduction

One of the outstanding questions in modern physics concerns the classification of quantum
phases. Many attempts have been already made to classify quantum phases over the past decade.
For instance, gapped free-electron systems are completely classified [1, 2]. For more general short-
range entangled states, an approach based on cobordism was proposed [3]. One-dimensional
(1D) gapped systems are completely classified at this point [4, 5, 6, 7]. A general gapped
two-dimensional (2D) systems are expected to be described within the framework topological
quantum field theory; see [8], for example.

This whole slew of different approaches raises a natural question. Why are there so many
different approaches, and how can we ever be sure that the classification is complete? The main
difficulty lies in identifying the correct framework. In the presence of interaction, one often
needs to make a nontrivial assumption. The only exception so far is the one-dimensional (1D)

Preprint submitted to Annals of Physics June 11, 2020

ar
X

iv
:1

90
6.

09
37

6v
3 

 [
co

nd
-m

at
.s

tr
-e

l]
  9

 J
un

 2
02

0



gapped system. Hastings’ theorem [9] implies that any gapped 1D system obeys an area law.
This subsequently implies that a matrix product state can approximate the ground state with a
moderate bond dimension. It is this result from which a classification of quantum phases of 1D
gapped system [4, 5, 6] follows.

However, in higher dimensions, an analog of Hastings’ theorem is unknown. This is mainly
because proving area law in 2D gapped systems remains challenging. Furthermore, even if area
law turns out to be correct, the states that satisfy area law may not be well-approximated by
an efficient tensor network [10]. These facts suggest that a classification program in 2D cannot
merely mimic the classification program for 1D gapped systems. In fact, in any classification
proposal based on tensor networks, there will always be a lingering question on whether we are
not missing any unknown phases.

While it is widely believed at this point that topological quantum field theory (TQFT)
describes all possible gapped phases in 2D, there is currently no rigorous argument that supports
this belief. The existence of a three-dimensional (3D) gapped phase outside of the TQFT
framework [11] shows that there may be gapped phases of matter that lie outside of the TQFT
framework. Even if TQFT turns out to be the correct framework in 2D, understanding of where
this framework comes from remains as an important fundamental problem.

Motivated by this state of affairs, we initiate a program in which a familiar set of axioms of
TQFT can be derived from a seemingly innocuous assumption about entanglement. We show
that some of the basic concepts of the algebraic theory of anyon [12], i.e., superselection sectors
and fusion multiplicities, emerge from a familiar form of entanglement area law [13, 14]:

S(A) = α`− γ, (1)

where S(A) is the von Neumann entropy of a simply connected region A, ` is the perimeter of A,
and γ is a constant correction term1 that only depends on the topology of A. The sub-leading
correction, which vanishes in the `→∞ limit, is suppressed here.

We then show that our definition of the fusion multiplicities satisfies all the properties one
would have expected from the algebraic theory of anyon. Again, these properties are derived
from Eq. (1). Moreover, we further derive the following well-known formula:

γ = lnD,

where D is the total quantum dimension of the anyon theory we defined. Our derivation is rigor-
ous under the assumption (Eq. (1)) and is completely independent from the previous approaches,
i.e., an approach based on an effective field theory description [13] and explicit calculations in
exactly solvable models [14].

While our assumption is not as rigorous as Hastings’ proof of the 1D area law, it is something
that is widely accepted at this point. Therefore, we believe this would be a reasonable starting
point to obtain a general understanding of gapped phases. A similar, but a markedly different
starting point of our work would be the two axioms we have identified. These two axioms are
entropic conditions on bounded-radius disks (Axiom A0 and A1 in Sec. 2.1). We can show that
these two axioms follow from Eq. (1), but after that, we never use Eq. (1) explicitly. All of our
results follow directly from the axioms.

1Nontrivial sectors, e.g., non-Abelian anyons and topological defects, can modify the constant term. It is a
widely-adopted notation that γ is the constant term for a disk in the absence of nontrivial sectors.
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In other words, the axioms of the anyon fusion theory can be derived from Eq. (1). The
same conclusion follows from our axioms as well; see Axiom A0 and A1. While the conclusion
would be the same either way, we would like to advocate for the use of the axioms over Eq. (1)
for the following reasons. The first reason is that Axiom A0 and A1 are assumed to hold on
patches whose size is independent of the system size. Therefore, in principle, one can verify
these axioms in time that scales linearly with the system size. Under a promise that the state is
translation-invariant, the time can be reduced to a constant. In contrast, Eq. (1) is defined over
length scales that are comparable to the system size. Verifying this assumption will incur an
exponential computational cost. Secondly, in the continuum limit, the leading term of Eq. (1)
depends on the ultraviolet-cutoff. On the other hand, the axioms manifestly cancel out this
divergent piece.

Our framework is completely Hamiltonian-independent, in the sense that we only require
the existence of a global state on the system satisfying the two local entropic constraints. This
work is motivated from a number of recent observations: that local reduced density matrices of
topological quantum phases often have a quantum Markov chain structure [15, 16, 17, 18, 19,
20, 21, 22, 23]. The key overarching concept is a convex set of density matrices introduced in
[18], which is later rediscovered and studied under the name “information convex (set)” [22, 23].
Roughly speaking, this is a set of density matrices which are locally indistinguishable from some
reference state. In our context, this reference state would be the ground state of some local
Hamiltonian. However, we do not use the fact that the state is a ground state.

Our framework opens up a concrete route to classify gapped quantum phases without re-
sorting to ad-hoc assumptions. In addition, we believe our framework is capable of answering a
long-standing open question about topological phases. The question is if a single ground state
contains all the data necessary to define a topological phase. Given that we can define a notion
of topological charges and fusion multiplicities from a single ground state, progress may be made
by using our framework. Our approach can be generalized to a broader context, e.g., to higher
dimensions and to setups in which a topological defect [24] or a boundary is present [25]. We
will discuss these applications in our upcoming work.

The rest of this paper is organized as follows. In Sec. 2, we specify our formal setup and
summarize our main results. In Sec. 3, we prove fundamental properties of the information
convex sets, which are the key to obtaining some of the axioms of the algebraic theory of anyon.
We shall refer to this part of the full algebraic theory of anyon as the anyon fusion theory from
now on. In Sec. 4, we define the notion of superselection sectors and fusion multiplicities in
our framework and prove that the definition satisfies all the axioms of the anyon fusion theory.
In Sec. 5, we show that the constant term γ in the area law equals the logarithm of the total
quantum dimension. In Sec. 6, we conclude with a discussion.

2. Setup and Summary

Let us begin with a general setup and state our physical assumptions. Before we delve into the
details, it will be instructive to discuss the physical system we have in mind. We are envisioning
a gapped system in 2D, which consists of microscopic degrees of freedom, e.g., spins. We would
like to coarse-grain these microscopic degrees of freedom so that we can view non-overlapping
blocks of spins as gigantic “supersites,” see Fig. 1. We can consider the limit in which the length
scale of each block is large compared to the correlation length. We would like to define a sensible
notion of distance between the subsystems as well as their topologies.
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(a) (b)

Figure 1: An illustration of the setup. (a) A graph G = (V,E) with each vertex represents a “supersite” which
contains a cluster of microscopic degrees of freedom, e.g. spins in real space. The edges encode the locality of the
underlying physical system and it allows us to define a notion of topology for a set of vertices. (b) A zoomed-in
depiction of a supersite. It contains a block of physical spins. The length scale of each block is a constant that
is large compared to the correlation length.

More concretely, we can consider a quantum many-body spin system with a tensor product
structure H = ⊗v∈VHv, where Hv is a finite-dimensional Hilbert space and V is a set of vertices
of a finite graph G = (V,E) defined on a 2D closed manifold2. By specifying the set of edges E,
we can define a natural notion of distance on this graph (the graph distance). We denote the
state space of H by S(H), which is the set of all density matrices on H. We say operator O has
support on X ⊆ V if O = OX ⊗ IV \X where IV \X is the identity operator.

We assume that there is a partition of the manifold into simply connected subsystems so
that each v ∈ V is associated with one of these subsystems. Furthermore, there is an edge
between v1, v2 ∈ V if and only if the subsystems associated with the vertices are adjacent to
each other. This assumption lets us define a notion of topology for a set of vertices. Without
loss of generality, let U be a set of vertices and U be a union of the subsystems associated with
the vertices in U . The topology of U is defined as the topology of U . By construction, a single
vertex is topologically a disk. However, a more general topology, e.g., an annulus, can be built
out of a union of the vertices.

Throughout this paper, we consider a state σ ∈ S(H) satisfying two axioms shown below.
We will call this state the (global) reference state. We always use σ to refer to the same reference
state unless specified otherwise. We use σA to represent the reduced density matrix of σ on a
region A. Physically interesting examples of the reference state are the ground states of gapped
local Hamiltonians. However, our derivations are only based on the properties of the quantum
state. Technically, we are allowed to assume the global state to be pure σ = |ψ〉〈ψ| without loss
of generality. This is because one can always show the existence of a pure state which has the
same local reduced density matrices as the given reference state (see Theorem B.1).

For the readers’ convenience, we have summarized the key concepts in Table 1.3

2Our results work for both orientable and non-orientable manifolds provided that a reference state σ exists.
3We thank the referee for this suggestion.
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Notation Brief description Reference
σ The global reference state that satisfies Axiom A0 and A1 N/A
σb Reduced density matrix of σ over region b
µ(r) A set of σb over b whose radius is smaller than r Eq. (2)
Σ(Ω) The information convex set of a region Ω Definition 3.1

Table 1: A list of notations and their descriptions.

2.1. Axioms

We start by defining a set of density matrices

µ(r) = {σb|b ∈ B(r)}, (2)

where B(r) is a set of balls of radius less or equal to r and σb is the reduced density matrix of the
reference state (σ) on b. Because r will be chosen to be a constant independent of the system
size, we will simply denote µ(r) by µ. We will refer to the set of b ∈ B(r) as the set of µ-disks.

The axioms of our framework concern two entropic constraints on the set of µ-disks.4 Let
S(ρ) = −Tr(ρ ln ρ) be the von Neumann entropy of a state ρ. We assume that Axiom A0 and
A1 hold for all µ-disks.

Axiom A0. For any σb ∈ µ, for any configuration of subsystems BC ⊆ b topologically equiva-
lent to the one described in Fig. 2,

S(σBC) + S(σC)− S(σB) = 0. (3)

C

B

Figure 2: A disk is divided into its “core” (C) and outer boundary (B). The boundary (B) is chosen to be thick
enough so that correlation between C and the complement of BC is negligible.

Axiom A1. For any σb ∈ µ, for any configuration of subsystems BCD ⊆ b topologically
equivalent to the one described in Fig. 3,

S(σBC) + S(σCD)− S(σB)− S(σD) = 0. (4)

4The two local entropic constraints A0 and A1 are originally proposed by one of us in Ref. [17] The first
attempt at deriving the axioms of anyon theory from these conditions was presented in Ref. [18].
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C

B

D

Figure 3: A disk is divided into its “core” (C) and its outer boundary, which is further divided into two pieces
(B and D).

To see the physical meaning of these axioms, we observe that Eq. (3) implies

I(A : C)σ ≡ (SA + SC − SAC)σ = 0, (5)

where A is contained in the complement of BC and I(A : C) is the mutual information. This
result follows from the strong subadditivity (SSA) of von Neumann entropy [26]. The mutual
information is a measure of the total amount of bipartite correlation. Therefore, Axiom A0 can
be viewed as a formalization of the intuition that long-range two-point correlation vanishes in
gapped ground states. However, note that the assumption is strictly stronger than the vanishing
of mutual information itself. For instance, an infinite temperature Gibbs state satisfies Eq. (5)
but does not satisfy A0. Eq. (4) implies that the quantum conditional mutual information
vanishes:

I(A : C|B)σ ≡ (SAB + SBC − SB − SABC)σ = 0, (6)

where A is contained in the complement of BCD. Again, A1 is a stronger condition than
Eq. (6).

While these axioms can be derived from Eq. (1), they are weaker assumptions and may
hold in more general settings. Moreover, we expect these axioms to be a more well-defined
way of formulating our assumptions compared to Eq. (1) because they manifestly get rid of the
leading divergent term in the area law. In reality, we expect our assumptions to be satisfied only
approximately, up to an error that decays exponentially with r

ξ
, where r is the length scale of the

subsystems and ξ is the correlation length. We believe our framework has a natural extension
to these cases since every theoretical tool we use can be generalized to such situations (see also
Discussion).

How we use these axioms will be explained later in this paper, starting from Section 3.
However, for the hasty readers, we can briefly summarize our intuition as follows. The intuition
behind A0 is that the correlation between two sufficiently separated subsystems is negligible.
This fact allows us to decouple two such subsystems without affecting either of them too much.
The intuition behind A1 is more profound and subtle. Let us consider the following example.
Suppose we have a density matrix over AB and another density matrix over BC. Our goal is
to “merge” these two density matrices; we want to construct a density matrix over ABC whose
marginal density matrices on AB and BC are consistent with the given data. It is well-known
that one cannot generally do this in quantum systems. For example, if AB is a maximally
entangled state and BC is also (the same) maximally entangled state, there cannot be an
extension of these density matrices into a single state acting on ABC. By assuming Axiom
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A1, we can bypass this difficulty and merge the density matrices that are given to us. The
majority of our key results follow from this merging process. In particular, we shall extensively
use nontrivial identities involving the entropies of the merged subsystems.

2.2. Main results

Our framework employs the notion of information convex set [18, 22], the structure of which
has been recently conjectured [23]. Loosely speaking, this is a set of reduced density matrices on
a given subsystem; these density matrices are locally indistinguishable from the global reference
state, but with an extra structure on this set in order to facilitate our analysis; see Sec. 3.2 for
the details. Crucially, information convex sets are defined from a single state. As such, we do
not need to invoke any assumption about the parent Hamiltonian.

The following results follow from Axiom A0 and A1. Again, we do not assume anything
about the parent Hamiltonian.

1. Isomorphism theorem
Let A and B be two subsystems which can be smoothly deformed from one to another.
We show that the information convex sets associated with A and B are isomorphic (Theo-
rem 3.10). These sets can be mapped onto each other by a linear bijective map. Moreover,
these maps preserve the distance and the entropy difference between the elements of the in-
formation convex set. Concretely, let Φ be one such map. Then D(ρ, ρ′) = D(Φ(ρ),Φ(ρ′))
for any distance measure D(·, ·). Moreover, S(ρ)−S(ρ′) = S(Φ(ρ))−S(Φ(ρ′)). Therefore,
the structure of the information convex set only depends on the topology of the region
associated with it.

2. A well-defined notion of topological charges
We show that the information convex set of an annulus is a simplex whose extreme points
are orthogonal to each other. That is, any state ρ in the information convex set of an
annulus must have the following form (Theorem 4.1):

ρ =
⊕
a

pa σ
a ,

where {pa} is a probability distribution over a finite set, and σa is a state only depending on
the choice of the region. We define the label a as a topological charge/superselection sector
of the system. In exactly solvable models (e.g., toric code), σa corresponds to a reduced
density matrix of an annulus that surrounds a topological charge a. Different superselection
sectors are perfectly distinguishable from each other. Moreover, the isomorphism theorem
(see the first main result) implies that the charge is globally well-defined. We furthermore
prove that for each sector, there exists a unique anti-sector (Sec. 4.3).

3. Extracting fusion multiplicities
We completely characterize the information convex set of a 2-hole disk. We show that any
element in this set can be expressed as

ρ =
⊕
a,b,c∈C

pcab ρ
abc,

where C is the set of topological charges, {pcab} is a probability distribution, and {ρabc}
are mutually orthogonal quantum states labeled by a, b, and c. We show that, for each
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choice of a, b and c, the set {ρabc} forms a state space of a finite-dimensional Hilbert
space; see Theorem 4.5. The dimensions of these Hilbert spaces are identified as the fusion
multiplicities of the underlying anyon theory. In the context of the anyon theory, a and
b label the two charges associated with the holes and c represents the total charge of the
disk.

4. Axioms of the anyon fusion theory
Our definition of the fusion multiplicities (see the third main result) satisfies all the axioms
of the anyon fusion theory. The proof is based on the merging technique [21]. We derived
several consistency relations by “merging” two density matrices and comparing the entropy
of the reduced density matrices before and after the merge. An equation that relates these
entropies leads to the axioms of the anyon fusion theory.

5. Topological entanglement entropy
From our definition of the fusion multiplicities, we further show that the sub-leading con-
stant term γ in Eq. (1) is the logarithm of the total quantum dimension. Unlike in [13],
our derivation makes no assumption about the underlying effective field theory.

As a corollary, many of the anyon data can, in principle, be extracted from the local infor-
mation of a single ground state. Importantly, we do not need to assume that the low-energy
excitations can be described by a unitary modular tensor category. (Instead, we need A0 and
A1.) In contrast, an oft-used numerical method [27] requires global information of multiple
ground states and the assumption that the system is described by a modular tensor category.
Also, Haah [28] has attempted to extract the topological S-matrix from a single ground state.
Haah’s final argument that his invariant matches the S-matrix, however, still relies on the mod-
ular tensor category assumptions.

Finally, we can also define a unitary string operator that creates an anyon pair. The support
of the string can deform freely as long as the endpoints are fixed (Appendix H).

3. Axiom extension, Information convex set and Isomorphism Theorem

We have proclaimed in Section 2.2 that we can, among many things, establish a globally
well-defined notion of topological charge. Because our axioms (Axiom A0 and A1) are assumed
to hold only on bounded-radius disks, the fact that such a notion can even exist in the first place
is not obvious at all.

In order to explain how this works, we choose the main theme of this section to be “local
to global.” Starting from our local axioms (Axiom A0 and A1), we will see how we can infer
some of the global statements we made in Section 2.2. The first step in this direction lies in
extending our local axioms to larger regions. Note that our axioms are assumed to hold only on
(bounded-sized) µ-disks. In Section 3.1, we will show that the axioms in fact hold on arbitrarily
large disks.

Then we move onto a concept that plays the central role in this paper: information convex
set. In order to define an information convex set, we need to fix a subsystem and consider a set
of states on this subsystem which are locally indistinguishable from the given reference state.
Let us refer to this subsystem as Ω′ and the set of states as Σ̃(Ω′).

The set Σ̃(Ω′) is not the information convex set, but we are getting close. For every state in
Σ̃(Ω′), trace out part of the subsystem that lies at the “outer edge” of Ω′; see Fig. 6. This way,
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we get a set of reduced density matrix over a subset of Ω′. Let this subset be Ω. What we have
obtained is the information convex set of Ω, which we refer to as Σ(Ω). As one can see, this
is quite an involved definition! However, in our opinion, we have a sensible justification. Why
we choose Σ(Ω) over Σ̃(Ω′) as a main actor of our story will be the main topic of discussion in
Section 3.2.

In Section 3.3, we derive the key technical result of this section: the isomorphism theorem
(Theorem 3.10). This theorem establishes an equivalence between information convex sets for
topologically equivalent subsystems connected by a path.

This section may seem a bit abstract at first, so it will be useful to have a concrete physical
picture in mind. Consider a topologically ordered medium [29] that can host anyons [30, 31]. It is
well-known that, within such a medium, there is a globally well-defined notion of superselection
sectors and fusion space. This is because one can adiabatically transport anyons from different
regions and compare them. For example, suppose we have two anyons that are well-separated
from each other. How would we able to decide if they are the same anyon type or not? One can
adiabatically bring either of the anyons to some fixed location and perform an Aharonov-Bohm
type interference experiment. If the underlying anyon theory is unitary, there must be some
experiment that can distinguish two different types of anyons.

In the above illustrative example, we observed that there is a physical process by which we
can compare anyons or even a collection of anyons with each other. This comparison is possible if
one can transport these objects from one place to another. The isomorphism theorem formalizes
this transportation process in a Hamiltonian-independent manner.

3.1. Extension of the axioms

In this Section, we show that our axioms (Axiom A0 and A1) hold on arbitrarily large disks.
Results in this section have been discussed in Ref. [17]. In order to understand this section, one
should become familiar with the notion of quantum Markov state [32, 15]. A quantum Markov
state is a tripartite state, say over subsystems A,B, and C, such that

I(A : C|B) = S(ρAB) + S(ρBC)− S(ρB)− S(ρABC)

is equal to 0. These states enjoy several nontrivial properties, which we make extensive use of.
The following two lemmas will be used frequently.

Lemma 3.1. Let ρABC and σABC be density matrices such that (1) ρAB = σAB and ρBC = σBC;
(2) I(A : C|B)ρ = I(A : C|B)σ = 0. Then ρABC = σABC.

The proof follows from Ref. [33]. Suppose we know σAB and σBC for the partition in Fig. 4.
Then A1 implies I(A : C|B)σ ≤ (SBC + SCD − SB − SD)σ = 0. This lemma implies that the
state σABC is uniquely determined by its reduced density matrices. Moreover, there is a CPTP
map which can recover σABC from its reduced density matrices. This map is known as the Petz
recovery map.

Lemma 3.2. (Petz recovery map [33]) For any tripartite state ρABC, I(A : C|B)ρ = 0 if and
only if

ρABC = EρB→BC(ρAB) , (7)

where EρB→BC (the Petz recovery map) is defined as

EρB→BC(XB) = ρ
1
2
BCρ

− 1
2

B XBρ
− 1

2
B ρ

1
2
BC .
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A B C D A

B
C

D

Figure 4: An illustration of the growth procedure of a disk from AB to ABC. Here A can be large and BCD is
contained in a µ-disk in a manner similar to Fig. 3.

c
b

d
c
b

d
c
b

d
d′C

B

(a)

C

B

D

(b)

C

B

D

(c)

Figure 5: The extension of the axioms. A disk is divided into either BC or BCD. A µ-disk is on a smaller length
scale, i.e., the small dashed circle surrounding the colored region. These figures represent three ways of enlarging
C by a small step. (a) bc ⊆ B and d ⊆ C; (b) bc ⊆ B and d ⊆ C; (c) bc ⊆ B, d ⊆ C and d′ ⊆ D.

Now we are in a position to state the main result of this section. In Proposition 3.3, we show
that Axioms A0 and A1 hold for all disks. By assumption, these axioms hold for µ-disks. The
nontrivial part of the statement is that the axioms hold at a larger length scale.

Proposition 3.3. For a reference state satisfying axioms A0 and A1, the entropic conditions
Eq. (3) and Eq. (4) are satisfied on all larger disk-like subsystems.

Proof. We shall extensively use the following two inequalities:

SBC + SC − SB ≥ SBB′C + SC − SBB′ , (8)

SBC + SCD − SB − SD ≥ SBB′C + SCDD′ − SBB′ − SDD′ . (9)

Both of them follow from SSA.
Let us first extend Axiom A0 to a larger scale. Without loss of generality, consider a disk

and its subsystem B and C, shown in Fig. 5(a). Assume that BC is not contained in any µ-disk.
One can consider a sequence of (enlarged) subsystems to obtain this disk (BC) from a µ-disk.

For this purpose, it suffices to consider the following two moves. The first move is to enlarge
B while keeping C fixed. The second move is to enlarge C while keeping BC fixed. Our goal
is to show that, for both of these steps, the linear combination of entropy SBC + SC − SB is
non-increasing. The first move preserves Eq. (3) because of Eq. (8) where we set B t B′ to be
the enlarged B. To understand why the second move preserves Eq. (3), consider a deformation
depicted in Fig. 5(a). We need to show SBC + SC − SB is non-increasing when we deform C to
include the colored region of Fig. 5(a). A variation of Eq. (9), which involves the µ-disk bcd, is

SB + SCc − SB\c − SC ≤ Sbc + Scd − Sb − Sd = 0. (10)

10



Therefore, both moves preserve Eq. (3). Because any disk can be enlarged from a µ-disk by
applying a sequence of these moves, Axiom A0 holds for any disk.

Now, let us move on to Axiom A1. Similarly, we can obtain a larger disk, say BCD, from a
µ-disk by making use of the following moves. As usual, the choice of the subsystems are similar
to the one used in Axiom A1. The first move is to enlarge B and D while keeping C fixed. The
second move is to enlarge C while keeping BCD fixed.

Let us show that the entropic condition (4) holds at every step. The first move preserves
Eq. (4). This is because inequality (9) can be applied to enlarged region BB′ and DD′. Notably,
B′ and D′ can be chosen to touch each other. This allows us to show Eq. (4) for the arbitrary
BB′ and DD′ satisfying the topology condition, by suitably choosing B and D in the initial
µ-disk. For the second move, we can consider the following sequence of small steps shown in
Fig. 5(b)(c) as well as the same steps in which the choice of B and D are switched. Here is the
justification of each small step. It is sufficient to justify the steps shown in Fig. 5(b) and (c).
Regarding the enlargement process described in Fig. 5(b), we have

SB + SCDc − SB\c − SCD ≤ Sbc + Scd − Sb − Sd = 0. (11)

For the enlargement process in Fig. 5(c), we have

SB + SCDc − SB\c − SCD ≤ Sbc + Scdd′ − Sb − Sdd′ = 0. (12)

Therefore, both Eq. (3) and Eq. (4) hold at larger length scales. This completes the proof.

3.2. Information convex set

Care must be taken in reading this section, for we are about to explain the most important
concept in this paper: information convex set. Let us begin with some definitions. We say
that two density matrices ρ and ρ′ are consistent with each other if they have identical density
matrices on the overlapping support, i.e., ρA = ρ′A where A is the intersection of the support of
ρ and that of ρ′, and denote it by

ρ
c
= ρ′.

For each subsystem Ω ⊆ V , we can define its information convex set by first considering
the “thickening” of Ω. Let ∂Ω ⊆ V be a set of vertices that are (graph) distance 1 away from
Ω. If the subsystem Ω t ∂Ω is topologically equivalent to Ω, we refer to that subsystem as a
thickening of Ω. Let there exists a thickening of Ω; we denote the thickening as Ω′. Intuitively,
Ω′ is a subsystem that can be smoothly deformed into Ω such that Ω′\Ω is a boundary of Ω with
a non-vanishing thickness. This thickness must be chosen to be sufficiently large compared to
the correlation length of the underlying state.

Now, we are in a position to define the information convex set.

Definition 3.1. Let Ω ⊆ V be a subsystem and let Ω′ be the thickening of Ω. The information
convex set of Ω is defined as

Σ(Ω) ≡ {ρΩ|ρΩ = TrΩ′\Ω ρΩ′ , ρΩ′ ∈ Σ̃(Ω′)} , (13)

where Σ̃(Ω′) is defined as
Σ̃(Ω′) = {ρΩ′|ρΩ′

c
= σb, ∀σb ∈ µ}.
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This definition was first advocated in [18]. A related Hamiltonian-based definition was in-
troduced in Ref. [22].

One may have thought that Σ̃(Ω) would be a more natural definition of information convex
set. However, it turns out that the local indistinguishability constraints are insufficient to fix
some of the degrees of freedom at the boundaries of Ω. For this reason, it is possible for some of
the elements in Σ̃(Ω) to possess entanglement between two distant µ-disks in the vicinity of the
boundary of Ω. Moreover, even a multipartite correlation may arise along the boundary. These
exceptional elements cannot be regarded as the reduced state of a state on a larger support that
is also locally indistinguishable from the reference state. In particular, they contain unnecessary
extra information that has nothing to do with the anyon theory. The additional partial trace
operation in the definition of Σ(Ω) removes such irrelevant correlations around the boundaries.

As it stands, the definition of information convex set is independent of our axioms (Axiom
A0 and A1). However, once we impose these axioms, one can come up with a more restrictive
definition of information convex set that does not involve Ω′. This definition is formulated in
Definition C.1. Proposition C.4 establishes the equivalence of the two.

Ω

Figure 6: This figure is a schematic depiction of regions involved in the definition of information convex set Σ(Ω).
Here Ω is the annulus between the black circles, annulus Ω′ ⊇ Ω is the thickening of Ω, i.e., the region between
gray circles. Any element in Σ̃(Ω′) is consistent with the reference state σ on every µ-disk contained in Ω′ (the
blue disks). We chose Ω to be an annulus for illustration purposes. Other topologies are allowed as well.

Below, we derive properties of the information convex set. First of all, information convex
set is a convex subset of the state space. This follows straightforwardly from the definition.

Proposition 3.4. For any nonempty Ω ⊆ V , Σ(Ω) is a nonempty finite-dimensional compact
convex set. Furthermore, if Ω ⊆ Ω′ and ρΩ′ ∈ Σ(Ω′), then TrΩ′\Ω ρΩ′ ∈ Σ(Ω).

Proof. The state space of a finite-dimensional Hilbert space is a finite-dimensional compact
convex set. The partial trace operation TrΩ′\Ω is linear and bounded. Therefore, the image
of the partial trace is compact and convex. The last statement is a direct consequence of
Definition 3.1.

Secondly, we show that the information convex set of a disk contains a single element. We
use this result throughout this paper, primarily for identifying the uniqueness of the global state
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on a sphere and for defining the vacuum sector.5

Proposition 3.5. For any disk-like subsystem ω, we have

Σ(ω) = {σω}, (14)

where σω ≡ Trω̄|ψ〉〈ψ| and ω̄ is the complement of ω.

Proof. The idea is illustrated in Fig. 7, which involves a repetition of the “growth process”
described in Fig. 4. Starting from a µ-disk, one can grow the disk until the enlarged disk covers
ω.

Let us get into the details. First, recall that Σ(ω) is nonempty since it contains σω. Let
us pick another element σ′ω ∈ Σ(ω). According to Definition 3.1, σω and σ′ω must be identical
on a µ-disk. Therefore, we can repeatedly use the conditional independence condition, i.e.,
I(A : C|B)σ = I(A : C|B)σ′ = 0, to show that the reduced density matrices of the two states are
identical on increasingly larger disks; see Lemma 3.1. The disk can grow to the point it covers
ω. Thus, we can conclude that σ′ω = σω.

Figure 7: A µ-disk can grow until it covers a larger disk ω.

More generally, we can consider the information convex set of a subsystem which is not
topologically a disk. We shall discuss the structure of such set in Section 4. The following fact
will be important for that discussion. Let Ω be an arbitrary subsystem. We show that, for any
element in the information convex set of Ω, its reduced density matrix on a disk-like region is
equal to the reduced density matrix of the reference state on the same region.

Proposition 3.6. Any state ρΩ ∈ Σ(Ω) satisfies

TrΩ\ω ρΩ = σω (15)

on any disk-like subsystem ω ⊆ Ω.

Proof. By Proposition 3.4, for any state ρΩ ∈ Σ(Ω), TrΩ\ωρΩ is an element of Σ(ω). By Propo-
sition 3.5, the set Σ(ω) contains only one element.

As a side note, we can always choose the reference state to be pure even if the initially given
reference state is not. This is because the information convex set of the entire system is the
state space of a finite-dimensional Hilbert space (see Theorem B.1); one can simply choose one
of the pure states in this space to be the reference state. This pure reference state, restricted to
the µ-disks, would be consistent with the initially given reference state.

An interesting special case is when the underlying manifold is a sphere (S2). In this case,
the global state is unique and thus pure.

5As a side note, let us point out that this result is based only on A1. Therefore, the uniqueness of the element
for the information convex set of a disk can hold more generally, even when A0 breaks down.
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Proposition 3.7. Σ(S2) = {|ψ〉〈ψ|}.

Proof. Let us begin by setting up an appropriate set of subsystems. Partition the sphere into
three subsystems, A,B, and C. We choose C to be a disk and B to be an annulus that surrounds
C; see Fig. 2. The complement of BC, i.e., A, is a disk.

Without loss of generality, suppose we have two states ρABC , σABC ∈ Σ(S2). We show that
they must be equal. By Proposition 3.5, their reduced density matrices are identical on AB and
BC. SSA implies that for both states,

I(A : C|B) ≤ S(BC) + S(C)− S(B),

where we suppressed the dependence on ρ and σ. Either way, the right hand side is 0 because
our axioms hold at any scale; see Proposition 3.3. Because ρABC and σABC both have vanishing
conditional mutual information (conditioned on B) and have identical density matrices (on AB
and BC), we can use Lemma 3.1. Therefore, ρABC = σABC .

By Theorem B.1, Σ(S2) is isomorphic to a state space of a finite-dimensional Hilbert space.
Because this set has a unique element, the global reference state must be pure.

3.3. Elementary steps and isomorphism theorem

In this section, we establish an isomorphism between two information convex sets. This
isomorphism exists if the subsystems associated with the two sets are topologically equivalent and
can be smoothly deformed into each other. More precisely, in order to establish an isomorphism,
we require that the two subsystems to be connected by a path (Defintion 3.2).

Crucial to this analysis is the concept of state merging. Suppose we have two quantum states
ρ and σ which share an overlapping support and consistent. The question is whether one can
consistently “sew” them together. Namely, can we find a state which is consistent with both
ρ and σ? This is known as the quantum marginal problem. In general, even deciding whether
there is such a state or not is known to be extremely difficult [34]. There are several nontrivial
necessary conditions [16, 17], but sufficient conditions are rare.

However, one of us has found a nontrivial sufficient condition [21]. We restate the result for
the reader’s convenience.

Lemma 3.8. (Merging Lemma [21]) Given a set of density matrices S ≡ {ρABC} and a density
matrix σBCD such that ρBC = σBC and

I(A : C|B)ρ = I(B : D|C)σ = 0, ∀ρ ∈ S , (16)

there exists a unique set of “merged” states {τ ρABCD = EσC→CD(ρABC)} which satisfy the following
properties.

(1) τ ρ is consistent with ρ and σ, i.e.

τ ρABC = ρABC and τ ρBCD = σBCD. (17)

(2) Vanishing conditional mutual information,

I(A : CD|B)τρ = I(AB : D|C)τρ = 0, ∀ ρ. (18)
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(3) The conservation of von Neumann entropy difference, for arbitrary ρ, ρ′ ∈ S,

S(τ ρABCD)− S(τ ρ
′

ABCD) = S(ρABC)− S(ρ′ABC). (19)

The significance of this lemma lies on the fact that one can guarantee the existence of a
global state from a (relatively) local information. What is given to us are the density matrices
over ABC and BCD, together with the conditions that can be verified on ABC and BCD. In
particular, these conditions can be directly verified from the given states. Once the conditions
are verified, one can guarantee the existence of a state over ABCD that is consistent with the
given density matrices.

The merging lemma (Lemma 3.8), together with our axioms (Axiom A0 and A1) underpin
the majority of our technical work. The interplay between the two is what allows us to start
from strictly local information and conclude something nontrivial at a larger scale. Roughly
speaking, such analysis is carried out as follows. Our axioms allow us to upper bound certain
conditional mutual information by 0. We can then apply this fact to Lemma 3.8 repeatedly to
merge (many) density matrices. In particular, we can merge elements of multiple information
convex sets into an element of yet another information convex set. This not only allows us to
smoothly deform the boundary of a subsystem (Fig. 8) but also allows us to consider merging
processes with nontrivial topology changes; see Sec. 4.3.

Now, we are in a position to prove the isomorphism theorem. This theorem establishes an
equivalence between two information convex sets whose underlying subsystems can be smoothly
deformed into each other. We first explain a method to establish the equivalence when one
subsystem is merely an “infinitesimal” deformation of the other. Of course, the word infinitesimal
should not be taken literally, because we are considering a quantum many-body system on a
lattice. What we mean is that one subsystem can be obtained from the other by either attaching
or removing a region whose size is comparable to that of the µ-disks.

Imagine zooming into the region in which this deformation occurs. Without loss of generality,
we can consider two subsystems Ω = ABC and Ω′ = ABCD depicted in Fig. 8, where CD is
contained in a µ-disk. We can show that there exists a bijection between Σ(Ω) and Σ(Ω′). This
is the content of Proposition 3.9. The proof is in Appendix C.

D

C

B

A

Figure 8: Two slightly different subsystems Ω = ABC and Ω′ = ABCD (only a part of A is shown). BCD is
a disk and CD is contained in a µ-disk. The topology of A can be arbitrary. We require B to be thick enough,
so that A and D are separated by at least 2r + 1. (Recall that r is the scale used in defining the µ-disks; see
Eq. (2).)
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Proposition 3.9. Consider the partition in Fig. 8. (Note: A and D are assumed to be separated
by at least 2r+1 in Fig. 8.) Let the domain of TrD and EσC→CD to be Σ(Ω′) and Σ(Ω) respectively.

Im TrD ⊆ Σ(Ω)

Im EσC→CD ⊆ Σ(Ω′).
(20)

Moreover, for all ρΩ ∈ Σ(Ω) and ρΩ′ ∈ Σ(Ω′),

TrD ◦ EσC→CD(ρΩ) = ρΩ, (21)

EσC→CD ◦ TrD(ρΩ′) = ρΩ′ . (22)

In particular, TrD and EσC→CD are bijections.

As a side note, Proposition 3.9 further implies that the isomorphism EσC→CD : Σ(Ω)→ Σ(Ω′)
is independent of the choice of B and C. To see why, consider two choices, say BC ⊆ Ω and
B′C ′ ⊆ Ω. Consider two maps EσC→CD and EσC′→C′D. Suppose there exists an element of Σ(Ω)
which, under these two maps, is mapped into two different elements of Σ(Ω′). Upon applying
TrD to these two states, by Proposition 3.9, both states must be mapped back to the same state.
This implies that TrD is not injective, which contradicts Proposition 3.9.

There are two simple corollaries of Proposition 3.9, which will become handy in the rest of
the paper. First, the bijective map TrD and EσC→CD preserves the distance between two states.

Corollary 3.9.1. (Distance preservation) Let ρΩ, ρ
′
Ω ∈ Σ(Ω) and ρΩ′ , ρ

′
Ω′ ∈ Σ(Ω′). For any

distance measure D(·, ·) between quantum states,

D(ρΩ, ρ
′
Ω) = D(EσC→CD(ρΩ), EσC→CD(ρ′Ω)) (23)

and
D(ρΩ′ , ρ

′
Ω′) = D(TrD(ρΩ′),TrD(ρ′Ω′)). (24)

Proof. For both identities, the proof is practically identical. So we only discuss the proof of the
first identity. Because both EσC→CD and TrD are CPTP maps, distance is nonincreasing under
these maps. Therefore,

D(ρΩ, ρ
′
Ω) ≥ D(EσC→CD(ρΩ), EσC→CD(ρ′Ω))

≥ D(TrD ◦ EσC→CD(ρΩ),TrD ◦ EσC→CD(ρ′Ω))

= D(ρΩ, ρ
′
Ω),

(25)

where in the last line we used Proposition 3.9. Therefore, D(ρΩ, ρ
′
Ω) = D(EσC→CD(ρΩ), EσC→CD(ρ′Ω)).

We note that, while we only considered distances between two quantum states, the same
proof applies to the preservation of the fidelity F (ρ, τ) = (Tr

√√
ρ τ
√
ρ)2. While fidelity is not

a distance measure, its behavior is monotonic under application of CPTP maps. Therefore, the
proof of Corollary 3.9.1 still applies.

In fact, we can show more. Even the entropy difference is preserved under TrD and EσC→CD.
The proof of this statement is a simple byproduct of the proof of Proposition 3.9. The proof
follows immediately from property (3) of Lemma 3.8.

16



Corollary 3.9.2. (Entropy difference preservation) Let ρΩ, ρ
′
Ω ∈ Σ(Ω) and ρΩ′ , ρ

′
Ω′ ∈ Σ(Ω′).

The von Neumann entropies satisfy

S(ρΩ)− S(ρ′Ω) = S(EσC→CD(ρΩ))− S(EσC→CD(ρ′Ω)) (26)

and
S(ρΩ′)− S(ρ′Ω′) = S(TrD(ρΩ′))− S(TrD(ρ′Ω′)). (27)

Therefore, given a subsystem Ω and its information convex set Σ(Ω) we can establish a
bijection between Σ(Ω) and Σ(Ω′) where Ω′ is a slight deformation of Ω. In order to apply
Proposition 3.9, Ω′ must be topologically equivalent to Ω. We refer to the process of subtract-
ing/adding a disk-like region to a given subsystem as the elementary step of the deformation.

The isomorphism between two information convex sets can be established by repeating these
elementary steps. However, we have to be careful on two points. First, for two given topologically
equivalent subsystems, there can be more than one way to deform one to the other. Second,
even if the underlying subsystems are topologically equivalent, there may not be a smooth
deformation between the two. As a trivial example, suppose we have two spheres. We can place
two subsystems on each of these spheres. Even if these subsystems are topologically equivalent
to each other, there is no sequence of subsystems that smoothly deforms one to the other. Even
on a connected space, one cannot make such a statement; see Fig. 10.

Therefore, these (potentially different) isomorphisms must be labeled by their paths. Let us
formalize this notion below.

Definition 3.2. (Path) A finite sequence of subsystems {Ωt} with t = i/N and i = 0, 1, 2, · · · , N ,
(N is a positive integer), is a path connecting Ω0 and Ω1 if each pair of nearby subsystems in
the sequence are related by an elementary step of deformation, illustrated in Fig. 8.

Because a path is built up from elementary steps, we obtain the following theorem.

Theorem 3.10. (Isomorphism Theorem) If Ω0 and Ω1 are connected by a path {Ωt}, then there
is an isomorphism

Φ{Ωt} : Σ(Ω0)→ Σ(Ω1) (28)

uniquely determined by the path {Ωt}. Moreover, it preserves the distance and the entropy
difference between elements

D(ρ, σ) = D
(
Φ{Ωt}(ρ),Φ{Ωt}(σ)

)
(29)

S(ρ)− S(σ) = S
(
Φ{Ωt}(ρ)

)
− S

(
Φ{Ωt}(σ)

)
, (30)

where D(·, ·) is any distance measure which is non-increasing under CPTP-maps.

We omit the proof since it straightforwardly follows by applying Proposition 3.9 repeat-
edly. For any path {Ωt}, we can define an inverted path {Ω1−t} which reverses the sequence of
subsystems. This leads to the inverse isomorphism Φ{Ω1−t} : Σ(Ω1)→ Σ(Ω0).

Generally speaking, different paths may give rise to different isomorphisms. That is, under
two different isomorphisms, an element of the information convex set may be mapped to two
distinct elements. However, sometimes, we merely need the existence of an isomorphism. In
that case, we will use a notation

Σ(Ω0) ∼= Σ(Ω1)

to indicate the existence of such an isomorphism. Under this condition, any distance measure
and entropy difference is preserved; see Eqs. (29) and (30).
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4. Fusion data from information convex sets

The isomorphism theorem (Theorem 3.10) guarantees that the structure of the information
convex set only depends on the topology, as long as the underlying subsystems can be smoothly
deformed from one to another along some path.

We now focus on how to extract the information of the topological charges and the corre-
sponding fusion rules from the information convex set. We do this by studying how the geometry
of the information convex set depends on the topology of the underlying subsystem. We then use
the merging technique (Lemma 3.8) to relate subsystems with different topologies and obtain
several consistency equations. We then define the fusion rules and show that they satisfy all the
constraints expected from the known algebraic theory of anyon [12]. The result of this study is
summarized in Table 2.

Physical data Number of holes
Superselection sectors 1
Fusion multiplicities 2

Axioms of the fusion theory 1, 2, 3, 4 (merging)

Table 2: Physical data that can be extracted from disks with different number of holes.

4.1. Superselection sectors/topological charges

Let us define a notion of superselection sectors, which is one of the key ingredients of the
algebraic theory of anyon [12]. Historically, the notion of superselection sectors was introduced
in the context of local field theory; see [35, 36]. In the context of topologically ordered systems
which is most relevant to our discussion, a nontrivial superselection sector corresponds to an
anyon type that cannot be created by any local operator.

There are several recent attempts to rigorously formulate the superselection sectors based on
operator algebra assumptions. One approach is based on the operator algebra on an annulus [28,
37], and another approach is based on the operator algebra on a cone-like subsystem of an infinite
lattice [38, 39]. Our approach to characterize the superselection sectors is similar to the one based
on the operator algebra on annuli. However, these two approaches differ in their assumptions
and their range of validity.

We will identify a well-defined information-theoretic object and find that this object coincides
with the conventional notion of superselection sectors in anyon theory. Importantly, we find that
the information convex set of an annulus forms a simplex (Theorem 4.1). The simplex has a
finite number of extreme points. Moreover, these extreme points are orthogonal to each other.
See Fig. 9(c) for an illustration. (See Appendix A.1 for the general definition of extreme points.)
We will define these extreme points as the superselection sectors.

Theorem 4.1. (Simplex Theorem) For an annulus X, the information convex set is the convex
hull of a finite number of orthogonal extreme points, {σaX}, i.e.

Σ(X) =

{
ρX

∣∣∣∣∣ρX =
⊕
a

paσ
a
X

}
, (31)

where {a} is a finite set of labels and {pa} is a probability distribution.
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(a) (b)

Σ(X) =

σ1
X

σa
X

σb
X

· · ·

(c)

Figure 9: (a) Division of an annulus X into three thinner annuli L, M , R. (b) A path (extensions-extensions-
restrictions-restrictions) which generates an isomorphism Σ(L) ∼= Σ(X) ∼= Σ(R). (c) A schematic depiction of the
simplex structure of Σ(X). The extreme points are the “corners” of the simplex. If the annulus X is contained
in a disk, then one of the extreme points has the vacuum label “1”.

Here we show a sketch of the proof of Theorem 4.1. (See Appendix D.1 for the full proof). The
orthogonality follows from the factorization property of the fidelity F (ρ, τ) = (Tr

√√
ρ τ
√
ρ)2.

Let FX be the fidelity of two extreme points in the information convex set of X = LMR in
Fig. 9(a). (We use the same convention for subsystems.) By using the fact that any extreme
point has I(L : R) = 0 (Corollary D.5.1), we find

FLR = FLFR. (32)

Because the fidelity is non-decreasing under a partial trace, we have FLMR ≤ FLR. Since
X and L,R are annuli connected by paths, see Fig. 9(b), the isomorphism theorem implies
F = FL = FR = FLMR and thus

F ≤ F 2. (33)

F ∈ [0, 1]. Therefore, the two extreme points are either the same (F = 1) or orthogonal (F = 0).
This derivation also shows that we can copy the information of the extreme point to L and R
simultaneously. The finiteness of the label set follows from the orthogonality and the setup that
the Hilbert space is finite-dimensional.

Theorem 4.1 implies that Σ(X) forms a simplex in the state space. It has a finite number
of extreme points {σaX}, which can be perfectly distinguished from each other by a projective
measurement supported on the annulus. The simplex structure also implies that its elements
can only store classical information in the probability distribution {pa}. The isomorphism the-
orem 3.10 guarantees the universality of the label set, i.e., the fact that the same set of labels
applies to all annuli, which could be connected to each other by a path. Note that there could be
annuli not connected by any path, e.g., the X0 and X1 in Fig. 10. Theorem 4.1 is still applicable
for both annuli, but the label sets for them can be different. This is related to the existence of
topological defects [24].

One of the extreme points is special. Consider a contractible annulus (see X0 in Fig. 10 for
example). The information convex set of such annulus has a special extreme point which we
label as “1”; physically, this corresponds to the vacuum sector.
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𝑋1

𝑋0

Figure 10: A pair of annuli X0 and X1 on a torus. They cannot be connected by any smooth path because X0

is contractible and X1 is non-contractible.

Proposition 4.2. Let ω be a disk. For any annulus X ⊆ ω

σ1
X ≡ Trω\X σω, (34)

is an extreme point of Σ(X).

See Appendix D.2 for the proof. Importantly, the notion of vacuum sector is unambiguous
because Σ(ω) has a unique element if ω is a disk; see Proposition 3.5.

Now we are ready to define the superselection sectors in our framework. When there is a
pair of anyons, the topological charge can be measured by an Aharonov-Bohm type interfer-
ometry measurement by braiding the anyons [40]. Indeed, the projective measurement used for
distinguishing different σaX corresponds to this interferometry measurement for several exactly
solvable models. Based on this observation, we identify each label of the extreme points as a
superselection sector of the system.

Definition 4.1. Let X be a contractible annulus. The set of superselection sectors is a set of
extreme points in Σ(X).

Except for the vacuum sector, we label each extreme points with the lower-case Roman
letters:

C = {1, a, b, c, · · · } . (35)

Several authors have already made attempts to define superselection sectors in 2D gapped
phases. A statement analogous to the simplex theorem was obtained recently in [37] for models
with a local commuting parent Hamiltonian. This proof is based on the operator-algebraic
framework of Haah [28].

We expect our derivation to hold more generally, because we make no assumption about
the parent Hamiltonian. If the area law (Eq.(1)) holds, our results follow. In particular, if we
can prove approximate versions of our statements, we may be able to rigorously define a notion
of superselection sectors for models with non-zero Hall conductance or non-zero chiral central
charge. These models cannot have a commuting projector parent Hamiltonian [41, 42].

The isomorphism theorem guarantees the label set of the superselection sector to be inde-
pendent of the details of the annulus. However, this theorem in itself does not imply there is
a well-defined way to compare the topological charges for two annuli. Indeed, in the presence
of a topological defect, transporting the same superselection in two different ways may result in
different sector [24].

In order to show that the isomorphisms associated with different paths are identical, one
necessarily has to invoke an extra condition on the paths. Lemma 4.3 establishes one such
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condition. Roughly speaking, it is possible to compare two annuli unambiguously independent
of the path, as long as both paths lie in a single disk.

Lemma 4.3. Let X0 and X1 be two annuli contained in a disk C; see Fig. 11 for example.
Let {X t

(1)} and {X t
(2)} be two paths connecting X0 and X1 such that X0

(i) = X0, X1
(i) = X1 for

i = 1, 2. Moreover, assume that ∪tX t
(1) ⊆ C, ∪tX t

(2) ⊆ C. Then, the isomorphisms

Φ{Xt
(1)
} : Σ(X0)→ Σ(X1)

and Φ{Xt
(2)
} : Σ(X0)→ Σ(X1)

are identical.

X̃0 X̃1

C

B

X0

X1

Figure 11: Both C and BC are disks. B is an annulus. X0, X1, X̃0 and X̃1 are annuli. Note that X0 and X1

are subsets of C. In the proof of Lemma 4.3, we construct an extension Xt → X̃t with B ⊆ X̃t.

Lemma 4.3 implies that we can always treat Φ{Xt
(1)
}(σ

a
X0) as the label a for X1. The key

idea behind the proof is that one can copy the information about which superselection sector
lies inside an annulus to a common annulus; see Fig. 11 for illustration. The proof is left in
Appendix D.2.

Now that we have defined a notion of superselection sectors, we can define their quantum
dimensions. We will do so by investigating a contribution to the entanglement entropy that
depends on the choice of this sector. We will use the following definition. Later, we will be able
to determine their value.

Definition 4.2 (Entropy contribution of superselection sector). For a contractible annulus X,
we define the universal contribution to von Neumann entropy from superselection sector a as

f(a) ≡ S(σaX)− S(σ1
X)

2
. (36)

The denominator 2 is introduced to take into account that X has two boundaries. For
a connected 2D manifold, f(a) is a real number that does not depend on the choice of the
contractible annulus. This is because the entropy difference is preserved by an isomorphism.
Furthermore, f(1) = 0 by definition.

Later, we shall study similar contributions for a n-hole disk with n ≥ 2. We will find that f(a)
appears generically, even for these more generic subsystems. The repeated appearance of these
objects hint at a possibility that there may be nontrivial relations concerning f(a). Indeed, we
will later see that f(a) = ln da, where da is the quantum dimension of an anyon/superselection
sector a. We will also be able to derive the fusion axioms and an expression for topological
entanglement entropy.
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4.2. Fusion rules and fusion spaces

The fusion rules determine the possible choice of the total composite topological charge of
two given topological charges. In the algebraic theory of anyons, the fusion rule for charges a
and b is formally written as

a× b =
∑
c

N c
ab c ,

where N c
ab ∈ Z≥0 is the fusion multiplicity. This is analogous to the fact that two spin-1

2
particles

can fuse into spin-0 or spin-1 particle. Nevertheless, there is a fundamental difference between
the fusion of spins and that of anyons. For the definition of particle spins and their fusion rules,
rotational symmetry is often needed either in the Hamiltonian or the Lagrangian. In contrast,
the notion of topological charges and their fusions are expected to emerge from the collective
properties of a many-body quantum system [43, 44, 12]. Indeed, we emphasize that our axioms
(Axiom A0 and A1) are unrelated to any symmetry.

In our framework, the superselection sectors were identified from annuli. Thus, one may
expect the fusion rules to be extracted from 2-hole disks. In this section, we show that this is
indeed the case. Let us consider a 2-hole disk Y , which we depict in Fig. 12. Let B1, B2 and
B3 be the three annuli around the boundaries of Y . The information convex set of each annulus
has the same simplex structure, and we can label the extreme points by the same label set. Let
Σc
ab(Y ) be a convex subset of Σ(Y ), defined as

Σc
ab(Y ) ≡

ρY ∈ Σ(Y )

∣∣∣∣∣∣
TrY \B1 ρY = σaB1

TrY \B2 ρY = σbB2

TrY \B3 ρY = σcB3

 , (37)

where σaBi is an extreme point of Σ(Bi), i = 1, 2, 3. The convention of charge labeling among
the different annuli is fixed by Lemma 4.3. Σc

ab(Y ) may be empty if there is no state satisfying
all the conditions. We call such a combination of (a, b, c) forbidden.

Y ′

B1

D1

B2

D2

B3

Figure 12: A 2-hole disk Y = BY ′, with B = B1B2B3. B1, B2 and B3 are three annuli surrounding the three
boundaries of Y . Y D is a disk, where D = D1D2. D1 and D2 are the two disks surrounded by annuli B1 and
B2.

We show that every extreme point of Σ(Y ) is contained in some Σc
ab(Y ). Because Σ(Y ) is a

convex set, the entire set can be characterized by {Σc
ab(Y )}. Each Σc

ab(Y ) is isomorphic to the
state space of a finite-dimensional Hilbert space Vc

ab. These two results are summarized below
in Theorems 4.4 and 4.5.
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Theorem 4.4. For a 2-hole disk Y , the information convex set Σ(Y ) is the following convex
combination

Σ(Y ) =

{
ρY =

⊕
a,b,c∈C

pcab ρ
abc
Y

∣∣∣∣∣ ρabcY ∈ Σc
ab(Y )

}
, (38)

where {pcab} is a probability distribution.

Proof. After taking a partial trace, the reduced density matrix of an extreme point of Σ(Y )
reduces to an extreme point of Σ(B1), Σ(B2) and Σ(B3). This fact follows from Lemma D.7 in
the appendix. Therefore, every extreme point of Σ(Y ) is in Σc

ab(Y ) for some a, b, and c. This
implies Eq. (38).

This theorem implies that one can classify the extreme points by a triple of labels (a, b, c).
Furthermore, the convex combination in Eq. (38) is orthogonal, since one can perfectly distin-
guish these labels by projective measurements on the three distinct annuli.

Now we study the geometric structure of each Σc
ab(Y ). We should emphasize an important

difference between Σc
ab(Y ) and the information convex set of an annulus. On an annulus, the

information convex set has a classical structure specified by a probability distribution {pa}a∈C.
In contrast, Σc

ab(Y ) is coherent in the sense that it is isomorphic to the state space S(Vc
ab) of a

certain finite dimensional Hilbert space Vc
ab. If the dimension of Vc

ab is greater or equal to 2, the
structure of Σc

ab(Y ) allows the storage of quantum information. This structure is established by
the following theorem.

Theorem 4.5. Consider a 2-hole disk Y . ∀a, b, c ∈ C,

Σc
ab(Y ) ∼= S(Vc

ab), (39)

where Vc
ab is a finite-dimensional Hilbert space.

A particular choice of (a, b, c) is forbidden, when dimVc
ab = 0. See Appendix E for the proof

of Theorem 4.5. The key idea is to show that there is a quantum channel which simultaneously
purifies every extreme point of Σc

ab(Y ) into a state in Hilbert space HEY (E is an auxiliary
system). We then show that any superposition of the purified states reduces to an extreme
point of Σc

ab(Y ) on Y . It follows that the quantum channel which achieves the purification
provides an isomorphism between Σc

ab(Y ) and S(Vc
ab).

We call the Hilbert space Vc
ab defined in Theorem 4.5 as the fusion space. Physically, this

Hilbert space is nonempty if the superselection sectors a, b has a total charge of c. We thus
define the fusion rule using the dimension of the corresponding fusion space.

Definition 4.3. We define the fusion rule of labels a, b in C by the formal product

a× b =
∑
c∈C

N c
ab c , (40)

where N c
ab ≡ dimVc

ab.

The results in Theorem 4.4 and Theorem 4.5 generalize to n-hole disks with n ≥ 3. The
same applies to the concepts of fusion spaces and fusion rules.
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4.3. Derivation of the axioms of the fusion rules

In this section, we show how the axioms of the anyon fusion theory emerge from our axioms.
This derivation includes the existence of antiparticles and a set of rules that {N c

ab} has to satisfy.
We have defined the set of superselection sectors

C = {1, a, b, c, · · · }

in terms of the extreme points of Σ(X), where X is a contractible annulus. C is always a finite
set and there is a unique sector 1 ∈ C which we refer to as the vacuum. We have also identified
a set of non-negative integers {N c

ab} encoded in the structure of Σ(Y ) with a 2-hole disk Y .
The following is a list of the results we are going to prove under our definitions.

1. N c
ab = N c

ba. (Proposition 4.6).

2. N c
a1 = N c

1a = δa,c. (Proposition 4.7.)

3. The existence of an anti-sector ā ∈ C for ∀a ∈ C such that N1
ab = δb,ā. (Proposition 4.9

and Definition 4.4.)

4. N c
ab = N c̄

b̄ā
. (Proposition 4.10.)

5.
∑

iN
i
abN

d
ic =

∑
j N

d
ajN

j
bc. (Proposition 4.11.)

Together, these properties form a subset of the axioms of the algebraic theory of anyon outlined
in Appendix E of [12], also known as the unitary modular tensor category (UMTC). Concretely,
what we derive in this section is the set of axioms of fusion rule algebra [45] which is also known
under the name commutative fusion ring [46]. It contains slightly less axioms than a fusion
category because we have not defined the F -symbols.6

In the derivation of the axioms of the fusion rules, we will extensively use the merging
technique to relate subsystems of different topologies. From our axioms, we can infer that
elements in the information convex sets are quantum Markov states with respect to many relevant
partitions of certain subsystems. Because quantum Markov states can be merged together
(Lemma 3.8), we can merge many of the elements of the information convex sets together.
Moreover, this merging process can be repeated many times. With this process, we can generate
elements of an information convex set over some region from information convex sets of its
subregions. We refer the readers to Proposition C.5 in the appendix for the technical details.

Proposition 4.6.
N c
ab = N c

ba. (41)

Proof. Let us consider a path which maps a 2-hole disk Y back to itself by exchanging the
two internal holes. Associated with this path, there is an automorphism Σ(Y ) ∼= Σ(Y ). The
automorphism permutes the labeling and induces an isomorphism Σc

ab(Y ) ∼= Σc
ba(Y ) for each

a, b, c. Thus, N c
ab = N c

ba.

Proposition 4.7.
N c

1a = N c
a1 = δa,c. (42)

6F -symbols will give further constraints to the fusion multiplicities, the simplest examples are studied in [47].
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1

Figure 13: A hole with the vacuum charge can be merged with a disk. The case shown in this diagram involves
an annulus and a disk, but the idea works for any n-hole disk with n ≥ 1. The left side shows the topology of
the subsystems before they are merged. Also, the number “1” is the vacuum sector. The merged subsystem is
shown on the right. The three concentric lines partition the disk into the four subsystems used in the merging
process.

Proof. Suppose ρY ∈ Σc
1a(Y ) for 2-hole disk Y . Then the hole with the vacuum charge can

be merged with a disk, see Fig. 13. After the merging process, we obtain an annulus X. The
density matrix obtained from the merging process belongs to Σ(X). The isomorphism theorem
implies that the two boundaries of X detect the same topological charge. Therefore, N c

1a = δa,c.
Then, N c

a1 = δa,c follows from Proposition 4.6.

One implication of this result is that Σ1
11(Y ) contains a unique element, which we call σ1

Y .
This statement generalizes to n-hole disks with n ≥ 3. The following lemma, which is about
the universal contribution to the von Neumann entropy, will be useful for the rest of the proofs.
Moreover, this lemma will be one of the key results that establish a connection between this
contribution and the quantum dimension.

Lemma 4.8. Let ρY be an extreme point of Σc
ab(Y ) and σ1

Y be the unique element of Σ1
11(Y ),

then
S(ρY )− S(σ1

Y ) = f(a) + f(b) + f(c), (43)

where f(·) is the function defined in Definition 4.2.

The proof is in Appendix E. The key idea is that for an extreme point of Σc
ab(Y ), we can

prove a condition similar to that in A0, which converts the entropy of a pair of 2-hole disks into
that of the three annuli around the three disjoint boundaries of Y . The result generalizes easily
to n-hole disks for any n ≥ 3.

Compared to the previous proofs, the proofs of the rest of the properties requires a new
technique. The key idea lies in deriving consistency equations of the entropy difference, obtained
by the following four steps:

(i) Obtain an element of an information convex set by merging two (or three) extreme points
of the information convex sets associated with the subsystems.

(ii) Compute the entropy of the merged element from the entropy formulas with respect to
the pre-merged regions.

(iii) Compute the entropy of the merged element from the entropy formula with respect to
the post-merged regions.

(iv) The entropy obtained from these two perspectives must yield the same result. This leads
to a set of consistency equations, which leads to a set of nontrivial relations.
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a

b

a

b

Figure 14: Merging two annuli and obtain a 2-hole disk. On the right side, there are two thin disk-like regions
in the middle, which are chosen to be the B and C subsystem in the merging lemma (Lemma 3.8).

For a concrete example of the method, let us study the case shown in Fig. 14. The cases in
Fig. 15, 16, 18, 19, 21 employ a similar logic. Let us explain the idea, which is broken down into
four steps.

(i) We can merge the pair of annuli for any chosen charge pair a, b ∈ C. This is possible
because the conditions required for merging are satisfied. Let us call the merged state as σa×bY .
It follows that σa×bY ∈ conv

(⋃
c Σc

ab(Y )
)
. Since the merged state exists, the set conv

(⋃
c Σc

ab(Y )
)

is nonempty. This implies that
∑

cN
c
ab ≥ 1, ∀a, b ∈ C. Moreover, σ1×1

Y is equal to σ1
Y , which is

the unique element of Σ1
11(Y ).

(ii) From the perspective of the two annuli, the von Neumann entropy difference can be
expressed as:

S(σa×bY )− S(σ1
Y ) = 2f(a) + 2f(b). (44)

This result follows from the fact that merging preserves the entropy difference; see property
(3) of Lemma 3.8. More explicitly, this result follows from conditional independence condition
(I(A : D|BC) = 0) of the merged state; see Fig. 14. Here A (D) is the upper (lower) annuli,
with charge a (b); the two annuli are separated by disk-like region BC in the middle.

(iii) From the perspective of the 2-hole disk Y , the von Neumann entropy difference is

S(σa×bY )− S(σ1
Y )

= f(a) + f(b) + ln(
∑
c

N c
abe

f(c)). (45)

To derive this result, note that the merged state is the maximal entropy element in conv
(⋃

c Σc
ab(Y )

)
.

This is because the entropy of any state in conv
(⋃

c Σc
ab(Y )

)
can be upper bounded by its

marginals by the SSA and the merged state saturates this bound. Given the structure of Σ(Y ),
it is easy to find the maximal entropy in terms of {N c

ab} and f(·). We calculated the maximal
entropy and obtained Eq. (45) [23].

(iv) By comparing the two perspectives in Eq. (44) and Eq. (45), we find

ef(a)ef(b) =
∑
c

N c
abe

f(c). (46)

Readers well-versed in the fusion theory of anyon may have noticed the similarity between ef(a)

and the quantum dimension [12]. This is not a coincidence. In Sec. 5, we shall see that they
are, in fact, the same thing. To establish their equivalence, we will derive a few more identities
involving {N c

ab}.
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Moreover, we can calculate the probability of having charge c on the third boundary

P(a×b→c) =
N c
abe

f(c)

ef(a)ef(b)
. (47)

Its physical meaning is the probability to have an outcome c from the fusion of two independently
created charges a and b. In terms of the density matrices, P(a×b→c) is the coefficient of the element
in the center of Σc

ab(Y ) when writing σa×bY in terms of a convex combination.
It is worth noting that the same function f(·) appears in the entropy of the annulus and

the 2-hole disk. This is crucial for the comparing the two perspectives (Eq. (44) and (45)).
With this equivalence, we are in a position to derive more properties of {N c

ab}. In deriving these
properties, we will curtail our explanation a bit, because the argument is essentially the same.

1

a

1

a

Figure 15: Merging a pair of annuli to obtain a 2-hole disk. We first deform the annulus associated to 1 so that
it becomes “longer” vertically. Then, the annulus associated to a is merged into the interior of this deformed
annulus. The two thin U -shaped disk-like regions are chosen to be the subsystem B and C in the merging lemma
(Lemma 3.8).

Proposition 4.9. For each charge sector a ∈ C, there is a unique sector ā ∈ C such that

N1
ab = δb,ā. (48)

It further satisfies the following properties.

1̄ = 1, ¯̄a = a, f(ā) = f(a). (49)

Proof. From the merging of two annuli with charges 1 and a shown in Fig. 15, we can derive
that

∑
bN

1
ab ≥ 1, ∀ a because the merged state always exists. Furthermore, ef(a) =

∑
bN

1
abe

f(b).
Let us pick a sector b such that N1

ab ≥ 1. We can see that ef(a) ≥ ef(b). However, since
N1
ab = N1

ba, by repeating the same logic we obtain ef(b) ≥ ef(a). For both of them to be true, we
must have a unique sector ā such that N1

ab = δb,ā and f(a) = f(ā). Then it follows from N1
11 = 1

that 1̄ = 1. Since N1
āa = N1

aā = 1, we have ¯̄a = a.

Definition 4.4 (Antiparticle). We define the antiparticle of a ∈ C as the unique sector ā ∈ C
established in Proposition 4.9.

The definition of ā is universal and insensitive to the choice of the subsystem. Furthermore,
on a sphere, one could alternatively define ā according to a nontrivial automorphism of Σ(X),
see Appendix G.

Proposition 4.10.
N c
ab = N c̄

b̄ā. (50)
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a ā

1

b b̄

1

a ā

b b̄

1

Figure 16: Merging a pair of 2-hole disks to obtain a 4-hole disk.

a ā

b b̄

1

c c̄

Figure 17: The fusion of (a, b) and (b̄, ā), and matching the fusion probabilities P(a×b→c) and P(b̄×ā→c̄).

Proof. We consider the merging process in Fig. 16. Before merging, the density matrices are
two extreme points from Σ1

aā(Yu) and Σ1
bb̄

(Yd), if we call the pair of 2-hole disks as Yu and Yd.
Since Na

11 = δ1,a, the outermost boundary of the merged subsystem must have charge 1.
Now let us view the merged state in a different way, as depicted in Fig. 17. We have derived

that N1
cd = δd,c̄, which implies that in the merged state, the fusion outcome of a× b and that of

b̄ × ā are perfectly correlated. Whenever we get the outcome c from the fusion of a and b, we
must get c̄ from the fusion of b̄ and ā.

Furthermore, a and b in this state are “independently created” in the sense that fusion
probability P(a×b→c) obeys Eq. (47). To see why, consider partial trace operations over (i) a
region which connects the hole with charge ā to the outer boundary and (ii) a region which
connects the hole with charge b̄ to the outer boundary. These regions are chosen so that the
remaining subsystems are topologically equivalent to the ones appearing on the right side of
Fig. 14. Recalling the general inequality I(AA′ : CC ′|B) ≥ I(A : C|B), we observe that the
annulus associated with a and the annulus associated with b are independent conditioned on a
disk-like region in between them that separates the two annuli. As we have already discussed
above, this conditional independence condition implies that P(a×b→c) obeys Eq. (47). Of course,
an analogous argument can be applied to P(b̄×ā→c̄).

Because c and c̄ are completely correlated,

P(a×b→c) = P(b̄×ā→c̄). (51)

Then, noticing f(a) = f(ā) from Eq. (49), we can derive N c
ab = N c̄

b̄ā
.

As mentioned earlier, the results in Theorem 4.4 and Theorem 4.5 generalize to n-hole disks
with n ≥ 3, and the same applies to the concepts of fusion space and fusion rules. Let us
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introduce a few notations for n = 3 which are useful for the next proof. For a 3-hole disk Z,
we use Σ(Z) to denote its information convex set, Σd

abc(Z) to denote the convex subset of Σ(Z)
with fixed charges a, b, c, d on the boundaries (Fig. 18). The corresponding fusion space Vd

abc has
a finite dimension Nd

abc ∈ Z≥0.

Proposition 4.11. The fusion rules are associative, i.e.,

Nd
abc =

∑
i

N i
abN

d
ic =

∑
j

Nd
ajN

j
bc. (52)

Proof. The key idea is to obtain a 3-hole disk Z in two different ways; see Fig. 18 and 19. The
first method gives us a lower bound of Nd

abc in terms of N c
ab, and the second method shows the

bound saturates.

a b c

d
i

Yl

YR

a b c

j
d

YL

Yr

Figure 18: Merging a pair of 2-hole disks to obtain a 3-hole disk. Here Z = Yl ∪YR = YL ∪Yr. Here a, b, c, d, i, j
are labels of the topological charges.

Let us consider the merging of a pair of 2-hole disks to obtain a 3-hole disk shown in Fig. 18.
We summarize the logic in a streamlined fashion in (i), (ii), (iii) below.

(i) Let us consider the left side of Fig. 18, which describes the merging of Yl and YR. We
pick an orthonormal basis of Vi

ab, which can be chosen to be the extreme points of Σi
ab(Yl). The

number of such extreme points is equal to N i
ab, which is the dimension of the Hilbert space Vi

ab.
Applying the same logic to YR, we see that the number of these extreme points is Nd

ic.
(ii) Let us pick two arbitrary extreme points from the sets discussed above (one from Σi

ab(Yl)
and another from Σd

ic(YR)) and merge them. We get an element in Σd
abc(Z). It is an extreme

point. This fact is verified by calculating the von Neumann entropy and making use of the 3-hole
version of Lemma 4.8. This way, we get N i

abN
d
ic number of extreme points, and any two of them

are orthogonal. This follows from the fact that fidelity is nondecreasing under a CPTP map.
(iii) By applying the merging process for all i, we find

∑
iN

i
abN

d
ic mutually orthogonal extreme

points of Σd
abc(Z). Therefore, we must have

Nd
abc ≥

∑
i

N i
abN

d
ic. (53)

The reason is Nd
abc is the maximal number of mutually orthogonal extreme points in Σd

abc(Z).
Similarly, from the right side of Fig. 18, we have

Nd
abc ≥

∑
j

Nd
ajN

j
bc. (54)

We did not find a way to turn “≥” into “=” from Fig. 18 alone. However, we can show
“=” by considering a different way of merging subsystems; see Fig. 19. The merged element,
which we call σa×b×cZ , is the maximal entropy element of conv

(⋃
d Σd

abc(Z)
)
. Comparing with
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Figure 19: Merging three annuli to obtain a 3-hole disk.

σ1
Z , the unique element of Σ1

111(Z), it has an extra 2(f(a) + f(b) + f(c)) contribution to the von
Neumann entropy. On the other hand, we use the structure of Σ(Z) to calculate the maximal
entropy in the sector with charge a, b, c in terms of {Nd

abc}, we find a contribution equals to
f(a) + f(b) + f(c) + ln(

∑
dN

d
abce

f(d)). These two perspectives must provide a consistent answer.
Thus,

ef(a)ef(b)ef(c) =
∑
d

Nd
abce

f(d). (55)

However, from Eq. (46) we know that

ef(a)ef(b)ef(c) =
∑
d

(
∑
i

N i
abN

d
ic)e

f(d) (56)

and ef(·) is positive since f(·) is real. So the “≥” in Eq. (53) must be replaced by “=” and the
same replacement works for Eq. (54). Thus, we conclude that Eq. (52) holds.

The result and proof of proposition 4.11 generalizes to n-hole disks with n > 3.

5. Topological entanglement entropy

In this section, we show that the sub-leading term γ of the area law (1) for a disk is given
by the well-known formula

γ = lnD , (57)

where D is the total quantum dimension defined from our definition of the fusion multiplici-
ties {N c

ab}. We show this result by calculating two different linear combinations of subsystem
entropies7 respectively proposed by Kitaev-Preskill [13] and Levin-Wen [14], see Fig. 20.

The sub-leading term γ is called the topological entanglement entropy (TEE) [13]. There
are two known methods for deriving TEE: assuming an underlying field theory description or
explicitly calculating entropy in an exactly solvable model. Our method, on the other hand,

7More precisely speaking, we show that a certain linear combination of entanglement entropy must be lnD.
This result implies that γ = lnD is the only consistent value of the sub-leading term in the area law formula
Eq. (1).
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Figure 20: (a) The Kitaev-Preskill partition; (b) the Levin-Wen partition.

shows that the area law formula itself implies the equivalence of TEE and lnD, which may
be applicable to a larger class of systems. The ingredients behind this proof are scattered in
literature [16, 19, 21, 22]. Recently, one of us showed that the quantum dimension must show
up in the von Neumann entropy if the fusion space is coherently encoded in the 2-hole disk [23].
In this work, we further reduce the assumption to our Axiom A0 and A1. The end result is the
same.

We begin by defining the quantum dimensions in our framework.

Definition 5.1. We define the set of quantum dimensions {da} as the unique positive solution
of the equation set

dadb =
∑
c

N c
ab dc , (58)

where N c
ab is defined in Definition 4.3. We also define the total quantum dimension D by

D =
√∑

a∈C d
2
a.

Note that given the results in Sec. 4.3, the uniqueness of Eq. (58) is guaranteed by the Perron-
Frobenius theorem, see e.g. appendix of [23] for a self-contained derivation. Furthermore,

dā = da, da ≥ 1, d1 = 1. (59)

Recall that, from the merging in Fig. 14, we have obtained Eq. (46), and since ef(a) is positive,
we must have

f(a) = ln da. (60)

In Ref. [14], it is proposed that the conditional mutual information I(A : C|B) for the
partition in Fig. 20(b) matches to 2 lnD. In the paper, it is proven for a class of exactly solvable
model called the Levin-Wen model (also known as the string-net model) [48]. Here we show that
the same formula also holds in our framework.

Proposition 5.1. For the Levin-Wen partition (Fig. 20(b)), it holds that

I(A : C|B)σ1 = 2 lnD. (61)

Proof. Let us consider the merging process in Fig. 21, which obtains an annulus X from a pair
of disks. Let σ̃X ∈ Σ(X) be the element obtained from merging. It is in the center of Σ(X), i.e.
the maximal entropy element. Dividing X according to the Levin-Wen partition in Fig. 20(b),
gives I(A : C|B)σ̃ = 0 because of the property of the merged state; see Lemma 3.8.
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Figure 21: Merging a pair of disks to obtain an annulus. Two disks are deformed so that, once merged together,
they form an annulus.

Because of the simplex structure of Σ(X) (see theorem 4.1) and the fact that f(a) is equal
to ln da (see Eq. (60)), we can express σ̃X as a convex combination of extreme points

σ̃X =
∑
a

d2
a

D2
σaX .

This formula is obtained by maximalizing the von Neumann entropy. From it, one derives
S(σ̃X)− S(σ1

X) = 2 lnD. It follows that Eq. (61) is true.

Proposition 5.2. For the Kitaev-Preskill partition,

γ ≡ (SAB + SBC + SCA − SA − SB − SC − SABC)σω (62)

where ω = ABC, see Fig. 20(a), then γ = lnD.

The idea of the proof is to relate the Levin-Wen combination with two copies of Kitaev-
Preskill combinations. See Appendix F for the proof.

Because there are gapped systems in which these axioms are violated by spurious contribu-
tions to the area law [49, 50], one should not expect our result is applicable to every gapped
system. These violations may be pathological unless certain symmetries are imposed. However,
they can persist in certain subsystem symmetry-protected phases [51]. Reconciling our frame-
work with these systems remains as an outstanding open problem. Nonetheless, our result does
shed some light on a related issue: if we check the quantum state on a finite length scale and
verify A0 and A1, then it is guaranteed that TEE will not suffer from any spurious contribution
on all larger length scales.

6. Summary and discussions

In this paper, we have initiated a derivation of the axioms of the algebraic theory of anyon
from a conjectured form of entanglement area law for the ground states of 2D gapped phases.
Our framework is based on two entropic constraints (axiom A0 and A1), which are implied by
the area law formula. We have defined the superselection sectors and the fusion spaces through
the geometry of the information convex sets. The axioms of the anyon fusion theory are derived
from the internal self-consistency relation of the information convex sets. Moreover, we have
provided a rigorous derivation of the well-known formula for TEE, γ = lnD. While our main
physical motivation was to consider ground states of 2D gapped phases, we only required a single
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quantum state satisfying our axioms as the input. Our result implies that many of the anyon
data can be extracted from local information of a single ground state alone.

Some of the readers may contest that our exact area law assumption is unrealistic. It would be
desirable to relax this assumption to something that is less restrictive. We expect our framework
to have a natural extension to the case in which Axiom A0 and A1 holds approximately. This
is because every technical tool we have used in this paper has an analog for such situations. For
instance, the merging lemma can be generalized by using the approximate recovery map [52].

It should be noted that there are gapped systems in which Axiom A1 is violated. Such
corrections are known as the spurious contributions to the area law [49, 50]. The existence of
the spurious contribution implies that one should not expect our result to hold in every gapped
system. While we do not have a solution to this problem, one may hope to take one of the
following approaches. First, one may show that the notion of superselection sectors and the
fusion rules are stable under a finite-depth quantum circuit when starting from a state that
satisfies our axioms. Alternatively, one may attempt to show that there is always a finite-depth
quantum circuit that can remove the spurious contribution.

While we have proved a set of axioms pertinent to the anyon fusion theory, further work is
necessary to reproduce the anyon theory in its known form. It would be interesting to investigate
whether our axioms give rise to a well-defined notion of R and F -symbols. Also, could the S
and T -matrices be extracted from a single ground state? Can we prove that every anyon theory
consistent with our axioms are modular? To tackle these questions, one may need to recover a
certain U(1) phase that is missing in the density matrix formulation, perhaps with the help of
the string operator shown to exist in Appendix H.

A more ambitious question is whether we can arrive at a complete classification of two-
dimensional gapped phases from our axioms. The current conjecture [12] is that two systems are
in the same phase if and only if their underlying anyon theory and the chiral central charges are
identical. In Ref. [12], Kitaev speculated: “To prove or disprove this statement, a mathematical
notion of equivalence between topological phases is necessary. It may be based on local (or
quasilocal) isomorphisms between operator algebras.” Our framework seems to be the step in
the right direction, given that we have a sensible definition of isomorphism between different
subsystems and that we could derive axioms of the anyon fusion theory from a reasonable physical
assumption. Such a feat will be a complete and rigorous justification of the point of view that
2D gapped quantum phases can be described by the anyon theory [12, 44].

Compared to the existing approaches that compute entanglement measures on ground states,
information convex set leads to a more incisive understanding of the underlying topological
phase. Upon calculating entanglement entropy from a given ground state, one often obtains
an order parameter that reveals partial information about the underlying quantum phase. An
oft-cited example is the total quantum dimension [13, 14]. Remarkably, we found that a much
more refined set of data can be extracted by studying the information convex set of the ground
state. This includes quantum dimensions and fusion multiplicities. Because two different anyon
theories can give rise to the same total quantum dimension but different (individual) quantum
dimensions and fusion multiplicities, information convex set clearly contains richer data than
entanglement entropy.

Moreover, starting from our entanglement-based assumptions (Axiom A0 and A1), we were
able to derive the basic concepts of anyon theory from the internal consistency relations between
the elements of the information convex set. What is surprising is that the emergent physical laws
that appear in these topologically ordered systems were logical consequences of these axioms;
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we did not need to make any further assumptions. It would be interesting to understand how
widely this approach can be applied in other circumstances.

Obvious areas to explore further would be higher dimensions and setups in which a topological
defect [24] or a boundary is present [25]. Such studies may be an ideal framework to classify
topological phases in 3D, which remains as an outstanding open problem. We will discuss these
applications in our upcoming work.
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A. Notations and useful facts

In this appendix, we summarize basic notations of convex analysis and quantum information
theory. Well-known facts in quantum information theory will be summarized in a self-contained
manner. This section can be skipped for readers who are familiar with convex analysis and
strong subadditivity of entropy.

A.1. Convex sets

Here we review facts about convex sets. We consider a subset of a finite-dimensional real
space RN closed under convex combinations, where N ∈ Z≥0. The convex set is compact if it is
a compact subset of RN . For our purpose, for an N dimensional Hilbert space, the real space
R2N2

could be identified as the 2N2 real components of an operator acting on the Hilbert space.
We use conv(X ) to denote the convex hull of a set X ⊆ RN , which is the smallest convex set

that contains set X . In other words, it is the set of all convex combinations of elements in X .
An extreme point of a convex set S is a point in S, which does not lie in any open line

segment joining two points of S. We use ext(S) to denote the set of extreme point of a convex
set S.

Finally, we notice the Minkowski-Caratheodory theorem, which states that: Let S be a compact
convex subset of RN of dimension n. Then any point in S is a convex combination of at most
n+ 1 extreme points. This is the reason we often talk about extreme points. Note that, without
compactness, an element of a convex set sometimes cannot be written as a convex combination
of extreme points.

A.2. Quantum information facts

We shall use Greek letters, e.g., ρ, σ for density matrices. Subsystems are specified in the
subscript, e.g. ρA, σB. We frequently use AB as a shorthand notation of the disjoint union of
A and B (i.e., A t B) when A ∩ B = ∅. We will sometimes call a (reduced) density matrix as
a state for short. Also, we will sometimes refer to the reduced density matrix of a state as its
marginal. We use S(H) to denote the state space of a Hilbert space H. It is the set of all density
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matrices on H. A direct sum is denoted as
⊕

. It is a sum with objects living on orthogonal
supports.

In order to quantify the distance between two quantum states, we use the trace distance,
defined as

‖ρ− σ‖1 ≡ Tr
√

(ρ− σ)2

for any pair of density matrices ρ and σ. This is a reasonable notion of distance because two
states close in trace distance cannot be distinguished well by any measurement.

We shall use a variety of quantum mechanical entropies in our discussion. These are all
defined in terms of the von Neumann entropy of a state, which is defined as

S(ρ) ≡ −Tr(ρ ln ρ).

Depending on the context, we shall use the following shorthand notations to denote the von
Neumann entropy of the reduced density matrix over some subsystem: SA, (SA + SB)ρ. In the
first case, the global state should be obvious from the context. In the second case, the global
state is ρ.

There are two information-theoretic quantities that will play an important role in this paper:

I(A : B) ≡ SA + SB − SAB,
I(A : C|B) ≡ SAB + SBC − SB − SABC .

The first quantity, known as the mutual information between A and B, quantifies a correlation
between A and B. The second quantity, known as the conditional mutual information between
A and C conditioned on B, quantifies the correlation between A and C given a knowledge on
B. By the strong subadditivity of entropy [26], I(A : C|B) ≥ 0 for any quantum state.

Below, we summarize the basic facts about quantum states and entropies. Most of these
statements can be found in [53].

A.2.1. Fidelity

Let us begin with the fidelity between two quantum states, which is defined as

F (ρ, σ) =

(
Tr

√
ρ

1
2σρ

1
2

)2

. (A.1)

This is a natural generalization of the absolute value of inner product into mixed state (and
from the whole system to subsystems). Indeed, one can easily verify F (ρ, σ) = |〈ψ|ϕ〉|2 when
ρ = |ψ〉〈ψ| and σ = |ϕ〉〈ϕ|. Furthermore, F (ρ, σ) ∈ [0, 1] and F (ρ, σ) = F (σ, ρ).

Why do we care about fidelity? It is because fidelity enjoys several useful properties. As a
starter, F (ρ, σ) can give a reasonably tight upper and lower bound on ‖ρ − σ‖1. In particular,
F (ρ, σ) = 1 if and only if ‖ρ− σ‖1 = 0 and F (ρ, σ) = 0 if and only if ‖ρ− σ‖1 = 2. Moreover,
fidelity has a rather special property:

F (ρA ⊗ ρB, σA ⊗ σB) = F (ρA, σA) · F (ρB, σB), (A.2)

which will play an important role in the proof of Theorem 4.1. There is an intuitive explanation
for both of these facts. The first fact says that two density matrices have zero (unit) overlap if
and only if the two states are orthogonal (identical).
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Lastly, if two quantum states have unit fidelity, their purifications are identical up to a
unitary operator acting on the purifying space [54]. In other words, two states |ψAB〉 and |ϕAB〉
have the same reduced density matrix on subsystem B if only if there is a unitary operator UA
such that

|ϕAB〉 = UA ⊗ IB|ψAB〉. (A.3)

A.2.2. Quantum channels

Quantum channel, also known as complete-positive trace-preserving (CPTP) map, is the
most general form of physical operation that can be applied to a quantum state. It is a linear
map from bounded operators on HA to bounded operators on HA′ . It preserves positivity, even
in the presence of any ancillary system, and also preserves trace and hermiticity.8 In particular,
it maps density matrices to density matrices. It can be written in an explicit form using a set
of Kraus operators {Ma}:

EA→A′(XA) =
∑
a

MaXAM
†
a , (A.4)

where
∑

aM
†
aMa = IA and IA is the identity operator on HA. With the definition of CPTP

map, we could discuss some additional properties.
Quantum channels do not make two quantum states more distinguishable than they already

are. This means that the trace distance is nonincreasing under quantum channels. More relevant
to us is the fact that the fidelity is nondecreasing under quantum channels.

F (E(ρ), E(σ)) ≥ F (ρ, σ), (A.5)

for any quantum channel E . Since partial trace is also a quantum channel, we have

F (ρA, σA) ≥ F (ρAB, σAB). (A.6)

A.2.3. Properties of entropies

Let us begin with a few elementary facts about entropy. First, SA = SB for an arbitrary pure
state |ϕAB〉. Secondly, suppose a set of density matrices {ρi} has mutually orthogonal supports,
i.e. ρi ⊥ ρj,∀i 6= j, then

S(
∑
i

piρ
i) =

∑
i

pi(S(ρi)− ln pi), (A.7)

where {pi} is a probability distribution.
For a bipartite quantum state, we have the following set of well-known inequalities:

I(A : B)ρ ≥ 0

SBC + SC − SB ≥ 0.
(A.8)

The first inequality is known as the subadditivity of entropy, and the second inequality is known
as the Araki-Lieb inequality [55]. It is interesting to study the conditions under which these
inequalities are satisfied with equality. The mutual information is 0 if and only if the underlying
state is a product state over A and B. The condition for saturating the Araki-Lieb inequality is

8That we require the map to preserve positivity in the presence of any ancillary system is important. Other-
wise, there are operations, e.g., transpose of a matrix, that preserves the positivity in the absence of an ancillary
system but may not if the ancillary system is entangled with the system of interest.
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more subtle and interesting. We will revisit this condition later after we discuss inequalities for
tripartite quantum states.

The most important inequality involving a tripartite quantum state is the strong subaddi-
tivity (SSA) of entropy [26]:

I(A : C|B) ≥ 0. (A.9)

This inequality is surprisingly powerful in that inequalities that may look “stronger” than this
inequality are in fact implied by SSA. Here is a list of such inequalities:

I(AA′ : BB′) ≥ I(A : B)

I(AA′ : CC ′|B) ≥ I(A : C|B)

I(AA′ : CC ′|B) ≥ I(A : C|A′BC ′)
SBC + SC − SB ≥ I(A : C)

SBC + SC − SB ≥ I(A : C|B)

SBC + SC − SB ≥ SBB′C + SC − SBB′
SBC + SCD − SB − SD ≥ I(A : C|B)

SBC + SCD − SB − SD ≥ SBB′C + SCDD′ − SBB′ − SDD′ .

Also, let {ρiAB} be a set of density matrices and {pi} is a probability distribution, then∑
i

pi(SAB − SB)ρi ≤ (SAB − SB)∑
i piρ

i . (A.10)

To see why, let us introduce an auxiliary system C with an orthonormal basis {|iC〉}. Let
ρABC ≡

∑
i pi ρ

i
AB ⊗ |iC〉〈iC | and notice I(A : C|B)ρ ≥ 0.

A.2.4. The structure of quantum Markov states

If a tripartite quantum state satisfies SSA with equality, then such a state has a rather special
property. Such a state is referred to as a quantum Markov state [32, 15]. Let ρ be a quantum
Markov state such that it has a vanishing conditional mutual information I(A : C|B)ρ = 0.
Then the following facts hold.

1. ρABC is uniquely determined by its marginals ρAB and ρBC . The recovery can be done
with a quantum channel, see Lemma 3.1 and 3.2 of the main text.

2. There is a decomposition of the Hilbert space HB into a direct sum of tensor products
HB =

⊕
jHbLj

⊗HbRj
such that

ρABC =
⊕
j

pj ρAbLj ⊗ ρbRj C , (A.11)

where {pj} is a probability distribution, ρAbLj is a density matrix on HA⊗HbLj
and ρAbRj is

a density matrix on HbRi
⊗HC .

3. Eq. (A.11) implies that

TrB ρABC =
∑
j

pjρ
j
A ⊗ ρjC . (A.12)

Note that it is separable and therefore subsystem A and C have only classical correlations
(no quantum correlation).
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Now, we can make an important connection between the states saturating the Araki-Lieb in-
equality and quantum Markov states. The density matrices which saturate Araki-Lieb inequality
have the properties summarized in Lemma A.1.

Lemma A.1. The following conditions about density matrix ρBC are equivalent.

(1) (SBC + SC − SB)ρ = 0, (saturated Araki-Lieb).

(2) Any state ρABC which reduces to ρBC on BC has I(A : C)ρ = 0 and I(A : C|B)ρ = 0.

(3) For any expression of the form ρBC =
∑

i qi ρ
i
BC, where {qi} is a probability distribution

with qi > 0, ∀ i and {ρiBC} is a set of density matrices, we have

ρC = TrB ρ
i
BC , ∀ i. (A.13)

(4) Let ρBC =
∑

i qi|iBC〉〈iBC |, with qi > 0, ∀ i and 〈iBC |jBC〉 = δi,j, ∀ i, j, we have

TrB |iBC〉〈jBC | = δi,j ρC , ∀ i, j. (A.14)

Proof. (1) ⇒ (2). Let us purify ρABC and obtain |ΨA′ABC〉. Condition (1) implies I(A′A :
C)|Ψ〉〈Ψ| = 0 and I(A′A : C|B)|Ψ〉〈Ψ| = 0. Then, we use the facts I(A′A : C) ≥ I(A : C) and
I(A′A : C|B) ≥ I(A : C|B).

(2)⇒ (1). Simply consider a pure ρABC .
(1), (2) ⇒ (3). Let ρABC =

∑
i qi|iA〉〈iA| ⊗ ρiBC with an orthonormal set of vectors {|iA〉}.

Since I(A : C)ρ = 0, a projective measurement in {|iA〉} will not change the density matrix on
C. It follows that ρC = TrB ρ

i
BC , ∀ i.

(3) ⇒ (4). Let us introduce an auxiliary system A to purify ρBC =
∑

i qi|iBC〉〈iBC | into
|ΨABC〉 =

∑
i

√
qi |iA〉 ⊗ |iBC〉. Here {|iA〉} is an orthonormal basis of the Hilbert space HA.

Therefore, one may obtain ρBC from |ΨABC〉〈ΨABC | by taking a partial trace TrA. For an
arbitrary orthonormal basis {|φiA〉} we could define pi ρ

i
BC ≡ 〈φiA|ΨABC〉〈ΨABC |φiA〉. Recall that

the condition Eq. (A.13) applies to any basis. For the “diagonal” basis {|iA〉}, one derives
TrB |iBC〉〈iBC | = ρC , ∀ i. Then, consider an “off-diagonal” basis which contains a basis vector
|ϕθij〉 = 1√

2
(|iA〉+eiθ|jA〉) with i 6= j and θ ∈ [0, 2π]. One derives that, for ∀ i 6= j and ∀ θ ∈ [0, 2π],

eiθTrB |iBC〉〈jBC |+ e−iθTrB |jBC〉〈iBC | = 0.

Therefore, TrB |iBC〉〈jBC | = 0 for i 6= j. Thus, Eq. (A.14) holds.
(4)⇒ (1). Let us introduce an auxiliary system A to purify ρBC into |ΨABC〉 =

∑
i

√
qi|iA〉⊗

|iBC〉. Here {|iA〉} is an orthonormal basis of the Hilbert space HA. Then, it follows from
Eq. (A.14) that I(A : C)|Ψ〉〈Ψ| = 0 which implies condition (1).

B. Information convex set on a closed manifold

In this section, we show that the information convex set of a closed manifold is isomorphic
to a (state space of a) finite-dimensional Hilbert space; see Theorem B.1.

Theorem B.1. Let M be a closed 2D manifold. Let σ be a reference state on this manifold
satisfying axiom A0 and A1. With respect to this reference state,

Σ(M) = S(V) (B.1)

for some finite dimensional Hilbert space V ⊆ H. Moreover, V is nonempty.
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Proof. Because Σ(M) is a subset of the state space of a finite-dimensional Hilbert space, one
can represent an element ρ ∈ Σ(M) as

ρ =
∑
i

pi|i〉〈i|

for some pi > 0 and an orthonormal set of vectors {|i〉}. The state ρ is consistent with σ on any
disk. This fact follows from Proposition 3.6.

We show below that the reduced density matrices of |i〉〈i| on the µ-disks are equal to those
obtained from the reference state σ. Without loss of generality, consider a µ-disk, say c. Consider
an annulus that surrounds c, which we denote as b. This annulus is chosen so that bc is again
a disk. By Proposition 3.3, (Sbc + Sc − Sb)ρ = 0. By Lemma A.1 (1) ⇒ (3), for ρbc = σbc =∑

i piTrM\bc(|i〉〈i|), we find that

σc = Trb(TrM\bc(|i〉〈i|)). (B.2)

Therefore, we conclude
TrM\c(|i〉〈i|) = σc (B.3)

for all |i〉.
Now we show that any state in the span of {|i〉} lies in Σ(M). Let |{|i〉}| = N . Note that

1
N

∑
i |i〉〈i| ∈ Σ(M). Moreover, this state is equal to a uniform mixture over {U |i〉} for any

unitary U acting on the span of {|i〉}. Therefore, for any such U , we find

TrM\c(U |i〉〈i|U †) = σc (B.4)

for all |i〉. This follows from the same logic that leads to Eq. (B.3). The fact that Σ(M) is
nonempty follows from the existence of σ ∈ Σ(M). This completes the proof.

C. Elementary step of the isomorphism theorem

Our goal here is to prove the elementary step of the isomorphism theorem; see Proposition 3.9.
The proof involves an alternative formulation of the information convex set, which we denote as
Σ̂(Ω). Under Axiom A0 and A1, Σ(Ω) becomes equivalent to Σ̂(Ω). However, generally, we do
not expect these two sets to be equivalent.

C.1. An alternative formulation of the information convex set

The set Σ̂(Ω), which we define in Definition C.1, enjoys a number of properties which are
not evident from the definition of Σ(Ω). We use these facts to prove Proposition 3.9. The entire
proof is admittedly lengthy and circuitous. A more succinct proof is left for the readers to work
on.

The key difference between the definition of Σ̂(Ω) and Σ(Ω) is that the latter involves an
extended subsystem9 whereas the former does not.

Definition C.1. Let Σ̂(Ω) be a set such that ∀ρ ∈ Σ̂(Ω)

1. ρ
c
= σb ∀σb ∈ µ.

2. I(A : C)ρ = 0 for the partition in Fig. 22.
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Figure 22: A partition of the subsystem Ω for defining Σ̂(Ω); see the second condition of Definition C.1. Let
Ω = ABC where BC is a subsystem contained in a µ-disk. The horizontal line is the boundary of Ω. Only part
of A is shown for illustration purposes.
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Figure 23: A partition of the subsystem Ω for defining Σ̂(Ω); see the third condition of Definition C.1. Let
Ω ⊇ ABC where BC is a subsystem contained in a µ-disk. The horizontal line is the boundary of Ω. Only part
of A is shown for illustration purposes.

3. I(A : C|B)ρ = 0 for the partitions in Fig. 23.

This definition does not make it clear why Σ̂(Ω) is convex. The following proposition estab-
lishes this fact.

Proposition C.1. Σ̂(Ω) is convex.

Proof. Let ρΩ, λΩ ∈ Σ̂(Ω). We wish to show that their convex combination also satisfies the
three conditions in Definition C.1. Without loss of generality, consider the convex combination
pρΩ + (1− p)λΩ where p ∈ [0, 1].

The first condition in Definition C.1 is trivially true. For the second condition, note that
ρAC = ρA ⊗ ρC and λAC = λA ⊗ λC . Moreover, because C is in a µ-disk, ρC = λC = σC .
Therefore, any convex combination of ρ and λ is also factorized over AC. Lastly, for the third
condition, let us consider the conditional mutual information of the convex combination.

I(A : C|B)pρ+(1−p)λ = (SBC − SB)pρ+(1−p)λ + (SAB − SABC)pρ+(1−p)λ

≤ p(SBC − SB)ρ + (1− p)(SBC − SB)λ

+ p(SAB − SABC)ρ + (1− p)(SAB − SABC)λ

= p I(A : C|B)ρ + (1− p)I(A : C|B)λ

= 0.

(C.1)

To derive this bound, we used the following two facts. First, BC is in a µ-disk. Therefore,
SBC−SB is the same for ρ, λ, as well as their convex combinations. Second, conditional entropy
is concave; see Eq.(A.10).

9In the main text, we referred to the extended subsystems as Ω′.
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Therefore, I(A : C|B) = 0 for the state pρ+ (1− p)λ, for any p ∈ [0, 1]. This completes the
proof.

DCBA

DC′B′A

Figure 24: A schematic depiction of subsystem ABCD. The partition B′C ′ = BC is chosen such that no
µ-disk overlaps with both AB′ and CD. Note that, the subsystems A,B,C,D are allowed to take a variety of
topologies.

In a variety of circumstances, elements in Σ̂(ABC) and Σ̂(BCD) can be merged, and the
merging result is an element of Σ̂(ABCD). This is the content of the following proposition.

Proposition C.2. Consider two density matrices ρABC ∈ Σ̂(ABC) and λBCD ∈ Σ̂(BCD). If
the following conditions hold, ρABC and λBCD can be merged. Moreover, the resulting density
matrix is an element of Σ̂(ABCD).

1. There exists a partition B′C ′ = BC, such that no µ-disk overlaps with both AB′ and CD;
see Fig. 24.

2. ρ
c
= λ.

3. I(A : C|B)ρ = I(B : D|C)λ = 0.

4. I(A : C ′|B′)ρ = I(B′ : D|C ′)λ = 0.

Proof. It follows from the conditions of the proposition that ρABC and λBCD can be merged. In
fact, there are two different ways to merge these density matrices. Using the third condition, we
get τABCD ≡ EλC→CD(ρABC) and using the fourth condition, we get τ ′ABCD ≡ EρB′→AB′(λBCD).

Note that τABCD = τ ′ABCD. This is because both of them satisfy I(A : D|BC) and they have
the same marginal on ABC and BCD. Therefore, Lemma 3.1 implies that τABCD = τ ′ABCD.

Below, we show that τABCD is an element of Σ̂(ABCD). In order to prove this claim, we
need to show that τABCD satisfies the condition 1, 2, and 3 in Definition C.1. Condition 1 is
easy to check. Because no µ-disk overlaps with both AB′ and CD, the overlap between a µ-disk
and ABCD is either contained in ABC or BCD.

For the second and the third condition, the key observation is that we have the freedom to
choose the quantum channel:

τABCD ≡ EλC→CD(ρABC) = EρB′→AB′(λBCD). (C.2)

For every µ-disk near the boundary of subsystem ABCD, we could pick a suitable quantum
channel, (either EλC→CD or EρB′→AB′), which has no overlap with the µ-disk.

For the second condition, we use the following fact. Suppose, without loss of generality, we
are given a mutual information between two subsystems say X and Y . The mutual information
does not increase under a quantum channel acting only on either X or Y . Indeed, the channels
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we described above are instances of such quantum channels. Therefore, the mutual information
in the second condition is upper bounded by 0. This subsequently implies that the second
condition holds.

For the third condition, we use a similar fact. Now, suppose we are given a conditional
mutual information I(X : Y |Z). This also does not increase under a quantum channel acting
only on either X or Y . Therefore, with the same logic, the third condition holds as well.

Proposition C.3. Consider Ω = ABC and Ω′ = ABCD whose partitions are depicted in Fig. 8,
(note that A and D are assumed to be separated by at least 2r+ 1). Let EσC→CD be the Petz map
constructed from the reference state density matrix σBCD. Then,

TrD ◦ EσC→CD(ρΩ) = ρΩ, ∀ ρΩ ∈ Σ̂(Ω), (C.3)

EσC→CD(ρΩ) ∈ Σ̂(Ω′), ∀ ρΩ ∈ Σ̂(Ω). (C.4)

Proof. Eq. (C.3) follows directly from Lemma 3.8. To see why, let us observe that ρΩ and σBCD
can be merged using Lemma 3.8. With condition 1, 2, 3 in Definition C.1, one could verify the
two conditions required in Lemma 3.8. First, ρΩ is consistent with the global state on any disk
ω ⊆ Ω. In particular, ρΩ

c
= σBCD. Second, I(A : C|B)ρ = I(B : D|C)σ = 0.

Eq. (C.4) is essentially a corollary of Proposition C.2. It is straightforward to construct the
B′C ′ required in Proposition C.2 and check all the conditions. The 2r + 1 separation between
A and D is large enough for the construction. This completes the proof.

C.2. Equivalence of the definitions

Now we can show that Σ̂(Ω) is equivalent to Σ(Ω). This justifies our choice of calling Σ̂(Ω)
as the information convex set.

Proposition C.4. Σ(Ω) = Σ̂(Ω), ∀Ω.

Proof. If Ω is a closed manifold, then it is obvious that Σ(Ω) = Σ̂(Ω). If Ω has boundaries, it
is easy to show that Σ(Ω) ⊆ Σ̂(Ω) from the assumptions. On the other hand, Proposition C.3
implies that any ρΩ ∈ Σ̂(Ω) can be written as ρΩ = TrΩε\Ω ρΩε for some element ρΩε ∈ Σ̂(Ωε).
This is because of Eq. (C.4) and that Ω and Ωε are connected by a path which consists of a
sequence of elementary extensions. It follows that ρΩ ∈ Σ(Ω) and therefore Σ(Ω) ⊇ Σ̂(Ω). Thus,
Σ(Ω) = Σ̂(Ω), ∀Ω. This completes the proof.

C.3. Merging with Σ(Ω)

In a variety of circumstances, we can merge elements in multiple information convex sets
into an element of yet another information convex set. This follows from Proposition C.2 and
the established equivalence between Σ(Ω) and Σ̂(Ω) (Proposition C.4).

Proposition C.5. Consider two density matrices ρABC ∈ Σ(ABC) and λBCD ∈ Σ(BCD). If
the following conditions hold, ρABC and λBCD can be merged. Moreover, the resulting density
matrix belongs to Σ(ABCD).

1. There exists a partition B′C ′ = BC, such that no µ-disk overlaps with both AB′ and CD;
see Fig. 24.

2. ρ
c
= λ.
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3. I(A : C|B)ρ = I(B : D|C)λ = 0.

4. I(A : C ′|B′)ρ = I(B′ : D|C ′)λ = 0.

Proof. The proof directly follows from Proposition C.2 and C.4.

Remark. Importantly, Proposition C.5 implies that the merged results in Fig. 13, 14, 15, 16,
18, 19, 21 are elements of some information convex sets.

A special case relevant to the proof of isomorphism theorem is the following corollary.

Corollary C.5.1. The merging process in Fig. 8 generates a map from Σ(Ω) to Σ(Ω′), i.e.

EσC→CD(ρΩ) ∈ Σ(Ω′), ∀ ρΩ ∈ Σ(Ω), (C.5)

where EσC→CD is the Petz map constructed from the reference state density matrix σBCD.

Proof. The proof follows from Proposition C.3 and C.4.

C.4. Proof of Proposition 3.9

Now, we are in a position to prove Proposition 3.9.

Proposition 3.9. Consider the partition in Fig. 8. (Note: A and D are assumed to be separated
by at least 2r+1 in Fig. 8.) Let the domain of TrD and EσC→CD to be Σ(Ω′) and Σ(Ω) respectively.

Im TrD ⊆ Σ(Ω)

Im EσC→CD ⊆ Σ(Ω′).
(20)

Moreover, for all ρΩ ∈ Σ(Ω) and ρΩ′ ∈ Σ(Ω′),

TrD ◦ EσC→CD(ρΩ) = ρΩ, (21)

EσC→CD ◦ TrD(ρΩ′) = ρΩ′ . (22)

In particular, TrD and EσC→CD are bijections.

Proof. We have shown that TrD is a linear map which maps elements of Σ(Ω′) into elements
of Σ(Ω) (Proposition 3.4). Conversely, upon applying EσC→CD to ρΩ we obtain a merged state
τ ρABCD of ρΩ and σBCD. (Here σBCD is the reduced density matrix of the reference state.) We
can merge them using the merging lemma (Lemma 3.8) because (1) ρBC = σBC follows from
Proposition 3.6 and (2) the requisite conditional independence conditions follow from A1. While
the merging lemma guarantees the existence of τ ρΩ′ , it remains to show that τ ρΩ′ is an element of
Σ(Ω′). This fact follows from Corollary C.5.1. This step requires that BC is large enough, or
equivalently, A and D are separated by enough distance.

Now, it remains to prove Eqs. (21) and (22). Eq. (21) holds because the merged state is
consistent with the given marginals; see Eq. (17). Eq. (22) follows from the fact that the state
on both sides of the equation obey I(AB : D|C) = 0 and that they have the same reduced
density matrices over ABC and CD; they are equal to ρABC and σCD. According to Lemma 3.1,
the two global states must be identical.
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D. Extreme points

In this section, we prove various properties of the extreme points of the information convex
set. Throughout this section, we shall often consider a slight “thickening” of a subsystem. Like
the convention we used in the main text, a thickening of a subsystem Ω is an enlarged subsystem
Ω′ which is obtained by expanding the boundaries of Ω.

If the boundary of Ω is expanded by a thickness of δ, we shall refer to that subsystem as Ωδ.
For the ensuing analysis, it will be convenient to consider a length scale ε, which is comparable
to a single lattice spacing for the convention used in the main text.

Let us begin with the following lemma.

Lemma D.1. Suppose ρΩ2ε ∈ Σ(Ω2ε) can be written as

ρΩ2ε =
∑
i

qi ρ
i
Ω2ε
, (D.1)

where {qi} is a probability distribution with qi > 0, ∀i and {ρiΩ2ε
} is a set of density matrices.

Then,
TrΩ2ε\Ω ρ

i
Ω2ε
∈ Σ(Ω). (D.2)

Proof. It suffices to show that every ρiΩ2ε
reduces to σb ∈ µ on any µ-disk b ⊆ Ωε. In order

to show this fact, consider bε ⊆ Ω2ε. Let C = b and choose B such that bε = BC. Then, the
topology of BC is identical to the one shown in Fig. 2.

Because our axioms hold at a scale larger than the µ-disks(Proposition 3.3), and that ρBC =
σBC(Proposition 3.6), we conclude that (SBC+SC−SB)ρ = 0. Now, apply Lemma A.1 (1)⇒ (3).
We conclude

ρib = ρb = σb

for any i and any µ-disk b ∈ Ωε. This completes the proof.

The following lemma shows that any element in the information convex set has zero condi-
tional mutual information for onion-like partitions; see Fig. 25.

Lemma D.2. Let Ω = ABC. Suppose B and C are concentric annuli described in Fig. 25.
Then,

I(A : C|B)ρ = 0, ∀ ρABC ∈ Σ(ABC). (D.3)

Proof. Let us consider a sequence of regions Cm with m = 0, 1, 2, 3, · · ·M with C0 = ∅, CM = C,
and Ci ⊆ Ci+1. Here BCi+1 is an “infinitesimal deformation” of BCi as in Fig. 4.

We want to show that

(SABCi − SBCi)ρ = (SABCi+1
− SBCi+1

)ρ, (D.4)

for i = 0, · · · ,M − 1. Equivalently, we can show that

I(A : δCi+1|BCi) = 0, (D.5)

where δCi+1 = Ci+1\Ci. One can upper bound the left hand side of Eq. (D.5) by 0. To see why,
first use I(AA′ : C|B) ≥ I(A : C|A′B) so that

I(A : δCi+1|BCi) ≤ I(ABCi\Di : δCi+1|Di), (D.6)
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where Di ⊆ BCi is a disk-like subsystem that separates δCi+1 from ABCi\Di. In particular, we
choose Di such that DiδCi+1 is contained in a µ-disk. Then, one can upper bound the right-hand
side of Eq. (D.6) by 0, by using Axiom A1. Therefore,

(SABC0 − SBC0)ρ = (SABCM − SBCM )ρ,

which justifies Eq. (D.3).

A B C

Figure 25: Here Ω = ABC is an arbitrary subsystem with a boundary. B and C are concentric annuli covering
the boundary.

Lemma D.3. Consider an extreme point σ
〈e〉
Ω2ε
∈ Σ(Ω2ε) written as

σ
〈e〉
Ω2ε

=
∑
i

qi ρ
i
Ω2ε

(D.7)

where {qi} is a probability distribution with qi > 0, ∀i and {ρiΩ2ε
} is a set of density matrices.

Then,
TrΩ2ε\Ω ρ

i
Ω2ε

= TrΩ2ε\Ω σ
〈e〉
Ω2ε
, ∀ i

is the same extreme point of Σ(Ω).

Proof. It follows from Lemma D.1 that TrΩ2ε\Ω ρ
i
Ω2ε

is an element of Σ(Ω) for all i. The nontrivial
statement is that the reduced state on Ω is an extreme point and that the reduced state does
not depend on i.

Suppose there is a dependences on i. Then TrΩ2ε\Ω σ
〈e〉
Ω2ε

must be a convex combination of
these distinct elements, so this density matrix cannot be an extreme point. This contradicts
with the isomorphism theorem (Theorem 3.10), which implies that TrΩ2ε\Ω σ

〈e〉
Ω2ε

is an extreme
point of Σ(Ω). (Recall that any linear bijective map between two convex sets must map extreme
points to extreme points.) Therefore, the density matrix TrΩ2ε\Ω ρ

i
Ω2ε

is independent of i and it
follows that it is an extreme point of Σ(Ω).

Lemma D.4. Consider an extreme point σ
〈e〉
Ω2ε
∈ Σ(Ω2ε) and let B = Ω2ε\Ω, then

(SBΩ + SΩ − SB)σ〈e〉 = 0. (D.8)

Proof. This result follows from Lemma D.3 and (3)⇒ (1) of Lemma A.1.

The significance of Lemma D.4 is that it applies to any subsystem. In particular, for 2-hole
disks, we obtain the following corollary.
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Corollary D.4.1. Let Y be a 2-hole disk divided according to Fig. 12, i.e. Y = BY ′. Let σ
〈e〉
Y

be an extreme point of Σ(Y ), then

(SBY ′ + SY ′ − SB)σ〈e〉 = 0. (D.9)

Lemma D.5. Let Ω = ABC with a choice of subsystems described in Fig. 25. If σ
〈e〉
Ω is an

extreme point of Σ(Ω):
I(A : C)σ〈e〉 = 0. (D.10)

Proof. Since σ
〈e〉
Ω ∈ Σ(Ω), from Lemma D.2,

I(A : C|B)σ〈e〉 = 0. (D.11)

Then, it follows from the explicit structure of quantum Markov state Eq. (A.11) and (A.12) that

TrB σ
〈e〉
Ω =

∑
i

pi ρ
i
A ⊗ ρiC , (D.12)

where ρiA and ρiC are density matrices (which may or may not belong to Σ(A) and Σ(C)). {pi}
is a probability distribution. We know from the isomorphism theorem 3.10 that σ

〈e〉
A ≡

∑
i pi ρ

i
A

is an extreme point of Σ(A).
Since A is thick enough, let A = A′2ε. Here A′ has the same topology as A but it is thinner.

From Lemma D.3 we know that TrA\A′ ρ
i
A = σ

〈e〉
A′ , ∀ i. Therefore, I(A′ : C)σ〈e〉 = 0. Since we

could enlarge A′ (as that in Fig. 4) until it recovers A without changing the mutual information,
we conclude that I(A : C)σ〈e〉 = 0.

As an immediate application of Lemma D.5, we can prove the following factorization property
between subsystem L and R described in Fig. 9. This plays an important role in the proof of
the orthogonality of the extreme points.

Corollary D.5.1. For the annulus X = LMR in Fig. 9(a), for any extreme point σaX ∈ Σ(X),

TrM σaX = σaL ⊗ σaR, (D.13)

where σaL and σaR are the reduced density matrices of σaX on L and R respectively.

Corollary D.5.2. Consider the partition of a 2-hole disk Y in Fig. 12, i.e. Y = Y ′B and
B = B1B2B3. Let σ

〈e〉
Y be an extreme point of Σ(Y ), then

(SB1 + SB2 + SB3 − SB)σ〈e〉 = 0. (D.14)

Note that Eq. (D.14) is equivalent to saying that σ
〈e〉
B1B2B3

is a tripartite product state.

D.1. Orthogonality of extreme points

Below, we present the proof of Theorem 4.1, which establishes the orthogonality of extreme
points.

Theorem 4.1. (Simplex Theorem) For an annulus X, the information convex set is the convex
hull of a finite number of orthogonal extreme points, {σaX}, i.e.

Σ(X) =

{
ρX

∣∣∣∣∣ρX =
⊕
a

paσ
a
X

}
, (31)

where {a} is a finite set of labels and {pa} is a probability distribution.
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Proof. Let us divide an annulus X according to Fig. 9(a) and consider the path in Fig. 9(b)
which defines an isomorphism Σ(L) ∼= Σ(X) ∼= Σ(R). Let us consider an extreme point σaX
and let its image in Σ(L) and Σ(R) be σaL and σaR. It follows from the isomorphism theorem
(Theorem 3.10) that (1) they are extreme points; (2) they are the reduced elements of σaX . For
a pair of extreme points σaX and σbX ,

F (σaX , σ
b
X) = F (σaL, σ

b
L) = F (σaR, σ

b
R), (D.15)

since the isomorphism preserves fidelity. According to Corollary D.5.1, reducing each extreme
point (σaX) to LR gives a tensor product structure (σaL ⊗ σaR). Thus,

F (σaX , σ
b
X) ≤ F (σaL ⊗ σaR, σbL ⊗ σbR)

= F (σaL, σ
b
L) · F (σaR, σ

b
R).

(D.16)

The first line follows from the monotonicity of fidelity, namely, the fact that fidelity is nonde-
creasing when restricted to a smaller region (LR ⊆ X). Eqs. (D.15) and (D.16) imply that
F (σaX , σ

b
X) is either 0 or 1. If F (σaX , σ

b
X) = 1 then σaX = σbX , so a = b. If F (σaX , σ

b
X) = 0 then

σaX ·σbX = 0, i.e. σaX and σbX live on orthogonal subspaces. This justifies the direct sum structure.
Since a finite dimensional Hilbert space could only accommodate a finite number of orthogonal
subspaces, the extreme points form a finite set.

D.2. Implication of the orthogonality

Based on the orthogonality of the extreme points, we can prove several new facts about
the elements of the information convex set. In the remainder of this section, we use both the
isomorphism theorem (Theorem 3.10) and the simplex theorem (Theorem 4.1). Let us begin
with a succinct formula for the mutual information.

Proposition D.6. Let ρX =
∑

a paσ
a
X be an element of Σ(X), written in terms of the orthogonal

extreme points. Let X = LMR be a subsystem described in Fig. 9(a). Then,

I(L : R)ρ = −
∑
a

pa ln pa. (D.17)

A similar result has been obtained in [20] using Chern-Simons theory. We obtained the same
result as a consequence of A0 and A1.

Proof. From Theorem 3.10 we know that the reduced elements of σaX on L and R, which we
call as σaL and σaR, are extreme points of Σ(L) and Σ(R) respectively. Moreover, it follows
from Corollary D.5.1 that TrMσ

a
X = σaL ⊗ σaR. From the orthogonality relation (Eq. (31)) of

Theorem 4.1. We obtain

(SL)ρ = H(p) +
∑
a

paS(σaL),

(SR)ρ = H(p) +
∑
a

paS(σaR),

(SLR)ρ = H(p) +
∑
a

pa(S(σaL) + S(σaR)),

where H(p) ≡ −∑a pa ln pa is the Shannon entropy of the probability distribution {pa}. The
claim follows straightforwardly from these equations.
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As a consequence, we can identify the extreme points of Σ(X) as the elements with zero
correlation between L and R.

Corollary D.6.1. An element ρX ∈ Σ(X) is an extreme point if only if I(L : R)ρ = 0 for the
partition in Fig. 9(a).

Lemma D.7. Let Ω = ABC with a choice of subsystems described in Fig. 25. If σ
〈e〉
Ω is an

extreme point of Σ(Ω), TrΩ\C σ
〈e〉
Ω is an extreme point of Σ(C).

Proof. Let us consider an annulus subset A′ ⊆ A next to BC. I(A′ : C)σ〈e〉 = 0 follows
from Lemma D.5. Then, because A′BC is a partition of annulus similar to LMR in Fig. 9(a),

I(A′ : C) = 0 guarantees that TrΩ\C σ
〈e〉
Ω is an extreme point of Σ(C). This step follows from

Corollary D.6.1.

The proof of Proposition 4.2 and Lemma 4.3 are also discussed below.

Proposition 4.2. Let ω be a disk. For any annulus X ⊆ ω

σ1
X ≡ Trω\X σω, (34)

is an extreme point of Σ(X).

Proof. Without loss of generality, assume there is a disk D surrounded by R (in Fig. 9(a)). Let
us consider the disk ω = LMRD. There is a constraint SMRD + SRD − SM = 0 for the unique
element of Σ(ω), because of the enlarged version of A0 (Proposition 3.3). This implies that
I(L : R)σ1 = 0. Then it follows from Corollary D.6.1 that σ1

X is an extreme point of Σ(X).

Lemma 4.3. Let X0 and X1 be two annuli contained in a disk C; see Fig. 11 for example.
Let {X t

(1)} and {X t
(2)} be two paths connecting X0 and X1 such that X0

(i) = X0, X1
(i) = X1 for

i = 1, 2. Moreover, assume that ∪tX t
(1) ⊆ C, ∪tX t

(2) ⊆ C. Then, the isomorphisms

Φ{Xt
(1)
} : Σ(X0)→ Σ(X1)

and Φ{Xt
(2)
} : Σ(X0)→ Σ(X1)

are identical.

Proof. The key of the proof is the existence of an extension X t
(i) → X̃ t

(i), where B ⊆ X̃ t
(i) for

each path label i = 1, 2 and for any time step t; see Fig. 11. For both i = 1, 2, the sequence of
configurations {X̃ t

(i)} forms a path.
Let us show that two isomorphisms on the “extended paths”, Φ{X̃t

(1)
} and Φ{X̃t

(2)
}, are identical.

(Each of them maps Σ(X̃0) to Σ(X̃1).) Because every subsystem in the paths contains annulus
C, the reduced density matrix on C is unchanged during the process, (for any t). Since an
element in Σ(X̃0) (or Σ(X̃1)) is uniquely determined from its reduced density matrix on C
independent of the chosen path, the two isomorphisms Φ{X̃t

(1)
} and Φ{X̃t

(2)
} must be identical.

To complete the proof, note that Φ{Xt
(1)
} and Φ{Xt

(2)
} are determined from Φ{X̃t

(1)
} and Φ{X̃t

(2)
}

by taking a partial trace. This completes the proof.
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E. Fusion space

Here, we prove that the convex set Σc
ab(Y ) is isomorphic to the state space of a finite-

dimensional fusion space Vc
ab. Recall that a, b, and c are superselection sectors and Y is a 2-hole

disk. We begin with the following lemma, which characterizes the extreme points of Σc
ab(Y ).

Lemma E.1. Let Y be a 2-hole disk. Then, every extreme point of Σc
ab(Y ) has the same von

Neumann entropy.

Proof. Consider a partition of Y into Y = BY ′ as described in Fig. 12. Let λY and ρY be two
extreme points of Σc

ab(Y ) and δ ≡ S(λY ) − S(ρY ) be the entropy difference between the two
states. Eq. (D.9) and (D.14) imply that (SY +SY ′)λ and (SY +SY ′)ρ are identical. Also, by the
isomorphism theorem (SY + SY ′)λ − (SY + SY ′)ρ = 2δ. Thus, δ = 0.

We have seen that all the extreme points of Σc
ab(Y ) have the same entropy. It follows

that a non-extreme point, which is a convex combination of multiple extreme points, must
have higher entropy. This fact follows from the general property of von Neumann entropy,
S(
∑

i piρ
i) ≥ ∑i piS(ρi), where {pi} is a probability distribution with pi > 0. The equality is

achieved if and only if all ρi are identical. Thus, we have the following corollary.

Corollary E.1.1. If the entropy of an element ρY ∈ Σc
ab(Y ) is identical to that of an extreme

point of Σc
ab(Y ), then ρY itself is an extreme point of Σc

ab(Y ).

Theorem 4.5. Consider a 2-hole disk Y . ∀a, b, c ∈ C,

Σc
ab(Y ) ∼= S(Vc

ab), (39)

where Vc
ab is a finite-dimensional Hilbert space.

Proof. Recall that we have already partitioned Y into BY ′; see Fig. 12. We shall consider
two different partitions of B. In Fig. 12, we have already considered a partition of B into
B = B1B2B3, which is a (disjoint) union of three annuli (B1, B2, and B3). We shall also consider
a different partition of B = BLBMBR. Here BL is a (disjoint) union of three “outermost” annuli
and BR is a (disjoint) union of three “innermost” annuli; see Fig. 26.

In total, we are considering 9 disjoint subsets of B, Y ′, and E; see Table E.3 for a detailed
discussion on the partition of B. Here E is an auxiliary Hilbert space used to purify a density
matrix supported on Y = BY ′.

Partitions B1 B2 B3

BR (Inner) B1R B2R B3R

BM (Middle) B1M B2M B3M

BL (Outer) B1L B2L B3L

Table E.3: A partition of B used in the proof of Theorem 4.5.

The statement is trivially true if Σc
ab(Y ) is empty. In this case dimVc

ab = 0. For a nonempty

Σc
ab(Y ), we use {σ〈e〉xY } to denote the set of extreme points of Σc

ab(Y ) and use λY for a generic
element of Σc

ab(Y ). For the extreme points, the alphabet e signifies that the density matrix is
an extreme point. They are labeled by x, y, and z in this proof.
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E BL BM BR Y ′

Figure 26: A partition of B used in the proof of Theorem 4.5. This figure does not represent the actual
underlying geometry. Rather, it represents the relative distance between the “inner” part of Y (i.e., Y ′) and the
annuli surrounding Y ′(i.e., BR, BM , and BL). Auxiliary system E is introduced to purify the extreme points.
Here BR is the “innermost” part of B that is directly in contact with Y ′, BM is a disjoint union of annuli
surrounding BR, and BL surrounds BM .

Pick an extreme point, say σ
〈e〉x
Y . Let us purify σ

〈e〉x
Y into |ϕxEY 〉 and let ρEB be its reduced

density matrix on EB. From Corollary D.4.1, one can verify I(E : BMBR|BL)ρ = 0. Moreover,

for ∀λY ∈ Σc
ab(Y ) we have I(BL : Y ′|BMBR)λ = 0 and ρEB

c
= λY . From the merging lemma

(Lemma 3.8), there is a quantum channel EρBL→EBL which defines a set of states

SEY ≡ {EρBL→EBL(λY ) |λY ∈ Σc
ab(Y )} (E.1)

obtained from merging ρEB with λY . It follows that Σc
ab(Y ) ∼= SEY . Below, we will determine

the structure of SEY .
Let us first show that the extreme points of SEY are pure states. For the particular extreme

point we have already considered, i.e., σ
〈e〉x
Y , the merged state is obviously the pure state |ϕxEY 〉.

Because all the extreme points in Σc
ab(Y ) have the same entropy (Lemma E.1) and because the

entropy difference is preserved under the map EρBL→EBL (property (3) of Lemma 3.8), all the
other extreme points are also mapped to pure states. This means the quantum channel EρBL→EBL
purifies all the extreme points of Σc

ab(Y ) simultaneously.
Now, we show SEY is the state space of a finite dimensional Hilbert space. The nontrivial

statement is that any superposition of pure states in SEY is again in SEY . Once this statement is
verified, the finiteness of dimension follows straightforwardly from the fact that Σc

ab(Y ) is finite
dimensional. To prove this claim, we consider a normalized state

|ϕzEY 〉 ≡
∑
i

zi|ϕyiEY 〉, (E.2)

where {|ϕyiEY 〉} is the set of purifications (in SEY ) of a finite (sub)set of extreme points {σ〈e〉yiY ∈
Σc
ab(Y )}. The complex numbers zi can be arbitrary as long as |ϕzEY 〉 is normalized. It is sufficient

to show |ϕzEY 〉〈ϕzEY | ∈ SEY . A proof is done by the following steps.

1. The reduced density matrix of |ϕzEY 〉 on EBLBM is ρEBLBM . This is because (1) I(EBLBM :
Y ′) = 0 on |ϕxEY 〉 and (2) |ϕzEY 〉 = OY ′ |ϕxEY 〉 for some operator OY ′ supported on Y ′. The
first equation follows from Corollary D.4.1. The second equation follows from the fact that
|ϕyiEY 〉 and |ϕxEY 〉 have the same reduced density matrix ρEB ∀ yi. In fact, Eq. (A.3) implies
an explicit choice OY ′ =

∑
i ziU

i
Y ′ , where U i

Y ′ are unitary operators.

2. The reduced density matrix of |ϕzEY 〉 on BMBRY
′, which we denote as σ

〈e〉z
BMBRY ′

, is an

extreme point of Σc
ab(BMBRY

′). To see this, we first observe that |ϕzEY 〉〈ϕzEY |
c
= σb for

any µ-disk b ⊆ (BMBRY
′)ε. The logic to establish this fact is similar to that leads to

the point made above: (1) |ϕxEY 〉 has vanishing correlation between b and EY \bε and (2)

|ϕzEY 〉 = OEY \bε|ϕxEY 〉 for some OEY \bε . Thus, σ
〈e〉z
BMBRY ′

∈ Σ(BMBRY
′). Its reduced density
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matrix ρBM determines the charge sectors a, b, c. The entropy of σ
〈e〉z
BMBRY ′

is identical to

that of known extreme points of Σc
ab(BMBRY

′), e.g., σ
〈e〉x
BMBRY ′

. Therefore, according to

Corollary E.1.1, σ
〈e〉z
BMBRY ′

is an extreme point of Σc
ab(BMBRY

′).

3. The state |ϕzEY 〉 has vanishing conditional mutual information I(BL : BRY
′|BM) = 0.

Therefore, its reduced density matrix on Y is uniquely determined from its reduced density
matrices ρBLBM and σ

〈e〉z
BMBRY ′

(by Lemma 3.1). Therefore, TrE|ϕzEY 〉〈ϕzEY | is the extreme

point of Σc
ab(Y ) obtained from an extension of σ

〈e〉z
BMBRY ′

. We denote this extreme point as

σ
〈e〉z
Y .

4. From the discussion above one can see, for any |ϕzEY 〉 of the form (E.2), there exists an

extreme point σ
〈e〉z
Y of Σc

ab(Y ) such that

|ϕzEY 〉〈ϕzEY | = EρBL→EBL(σ
〈e〉z
Y ). (E.3)

Thus, |ϕzEY 〉〈ϕzEY | ∈ SEY .

We have proved that the set SEY in Eq. (E.1) is the state space of some finite dimensional Hilbert
space. The Hilbert space depends on the purification, but its dimension cannot depend on this
detail. The reason is that the state spaces of two finite-dimensional Hilbert spaces are isomorphic
if and only if the dimension of the Hilbert spaces are the same and that SEY ∼= Σc

ab(Y ). Therefore,
we can assign an abstract finite dimensional Hilbert space Vc

ab with dimVc
ab = N c

ab ∈ Z≥0, such
that

Σc
ab(Y ) ∼= SEY ∼= S(Vc

ab). (E.4)

Here S(Vc
ab) is the state space of Vc

ab. This completes the proof.

Lemma 4.8. Let ρY be an extreme point of Σc
ab(Y ) and σ1

Y be the unique element of Σ1
11(Y ),

then
S(ρY )− S(σ1

Y ) = f(a) + f(b) + f(c), (43)

where f(·) is the function defined in Definition 4.2.

Proof. From Lemma E.1, we know that all the extreme points of Σc
ab(Y ) have the same entropy.

It follows that f(a, b, c) ≡ S(ρY )− S(σ1
Y ) depends only on the sector (a, b, c). Let us determine

f(a, b, c) in terms of the universal contributions f(·) in Definition 4.2. Let Y = BY ′ according
to Fig. 12.

2f(a, b, c) = (SY + SY ′)ρ − (SY + SY ′)σ1

= (SB)ρ − (SB)σ1

= (S(σaB1
) + S(σbB2

) + S(σcB3
))

− (S(σ1
B1

) + S(σ1
B2

) + S(σ1
B3

))

= 2(f(a) + f(b) + f(c)).

(E.5)

In the first line, we used the isomorphism theorem. Recall that the isomorphism preserves the
entropy difference. In the second line, we applied Eq. (D.9). In the third line, we applied
Eq. (D.14). The fifth line follows from Definition 4.2. This completes the proof.
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F. Topological entanglement entropy for the Kitaev-Preskill partition

In this section, we provide a proof of Proposition 5.2.

Proposition 5.2. For the Kitaev-Preskill partition,

γ ≡ (SAB + SBC + SCA − SA − SB − SC − SABC)σω (62)

where ω = ABC, see Fig. 20(a), then γ = lnD.

Proof. In the following, all the von Neumann entropies are calculated for the reference state σ.
By deforming the subsystems using the idea in Fig. 4, one shows that the value γ in Eq. (62)
is invariant under small deformations of subsystem A, B, C. Since large deformations can be
built up from small ones, γ is a topological invariant. In the following, we calculate its value.

B2

C

A

B1 D

Figure 27: The partition of a disk in the proof, where B = B1B2 and that ABC is the Levin-Wen partition.

First, let us consider subsystem choice A,B1, D in Fig. 27, and find

γ = SAD + SDB1 + SAB1 − SA − SD − SB1 − SADB1 . (F.1)

Second, we consider subsystem choice AD,B1, B2C in Fig. 27, and find

γ = SBC + SADB1 + SADB2C

− SB2C − SB1 − SAD − SABCD .
(F.2)

Both partitions are equivalent to the Kitaev-Preskill partition Fig. 20(a). Adding up Eq. (F.1)
and Eq. (F.2), and using

SABCD + SD = SABC ,

SDB1 + SADB2C = SB1 + SAB2C ,

SAB2C = SAB2 + SB2C − SB2 ,

SB1 + SB2 = SB,

SAB1 + SAB2 − SA = SAB,

(these results follow from the quantum Markov chain structure of the global reference state, i.e.
the fact that Eqs. (3) and (4) are satisfied on all length scales larger than a constant value), we
find

2γ = SAB + SBC − SB − SABC
= 2 lnD.

Therefore, γ = lnD.
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G. Antiparticles and automorphism of annulus on a sphere

In this appendix, we discuss a connection of antiparticle with the automorphisms of the
information convex set of an annulus on a sphere. Intuitively, the connection comes from two
facts. First, the automorphism only depends on the topological class of the path that maps
the annulus back to itself. This fact is established by Lemma 4.3. Second, on a sphere, the
topological class of the paths is described by the braid group on a sphere 10. In general, we
use Bn(V ) to denote the n-string braid group of manifold V . Physically, this is related to the
spacetime diagram of n particles braiding on a manifold V . In our framework, it is related to
the deformation of a subsystem (V with n holes) by a path and then goes back to itself. For our
purpose, an annulus is a 2-hole sphere, and the relevant result is the 2-string braid group on a
sphere:

B2(S2) = Z2. (G.1)

For an automorphism of Σ(X) generated by a path {X t} with X0 = X1 = X, where X is
an annulus on a sphere, we could draw a spacetime diagram corresponding to the path. The
spacetime diagram shows the braiding of two holes. The braiding belongs to one of the two
classes in B2(S2) = Z2, so does the path.

The path in the trivial class could be smoothly deformed into the path X t = X, ∀ t. The
corresponding automorphism of Σ(X) preserves the superselection sectors, i.e., it maps each
extreme point back to itself.

On the other hand, a path in the nontrivial class generates an automorphism of Σ(X) which
permutes the extreme points according to

Φ(σaX) = σāX , ∀ a ∈ C.

Intuitively, a nontrivial path switches the pair of holes. Furthermore, if one introduces an
oriented loop to the annulus X, which deforms smoothly with X, then the loop will end up in
the opposite orientation after X is mapped back to itself according to the nontrivial path.

H. String operators

Proposition H.1. Given a pure reference state |ψ〉, two holes within a disk and ∀ a ∈ C, there
exists a deformable unitary string operator U (a,ā) supported within the disk, such that the state

|ϕ(a,ā)〉 ≡ U (a,ā)|ψ〉, (H.1)

has topological charges a and ā in the two holes.

Here, deformable means the support of U (a,ā) can be deformed smoothly while keeping its
endpoints fixed. It is easy to see, for a = 1, the string can be chosen to be the identity operator
while for a 6= 1, the string cannot break apart. While this result is not directly useful in
the current work, we expect it to play a role in deriving more advanced fusion and braiding
properties, e.g., the S-matrix.

10https://homepages.warwick.ac.uk/ maseay/doc/braids.pdf
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a ā

Y W

U (a,ā)

Figure 28: Disk ω is the union of 2-hole disk Y and its two holes. W is the complement of ω. The topological
charges a and ā within the two holes are created by unitary string operator U (a,ā). The support of U (a,ā) is the
union of the deformable gray area and the two holes shown in red.

Proof. Let ω be the disk required in the proposition and W is its complement, see Fig. 28. One
can verify that σW ≡ Trω|ψ〉〈ψ| ∈ Σ(W ) and that σW is an extreme point. The 2-hole disk
Y ⊆ ω is obtained by erasing the two holes from disk ω. From Proposition 4.9, Σ1

aā(Y2ε) contains
a unique element which we denote as σaā1

Y2ε
, where Y2ε is a thickening of Y . Here the subscript

2ε means that Y is expanded along its boundary by two lattice spacings; see the beginning of
Appendix D for a related discussion.

The elements σW and σaā1
Y2ε

, whose supports are overlapping around the boundary of ωε, can
be merged and the resulting state is an extreme point of Σ(WY2ε), where WY2ε is again the

thickening of WY by two unit lattice spacing. Let |ϕ(a,ā)〉 = |ϕ(a,ā)
WY2ε
〉 ⊗ |ϕV \WY2ε〉, where |ϕ(a,ā)

WY2ε
〉

is an eigenvector (with nonzero eigenvalue) of the merged state and |ϕV \WY2ε〉 is an arbitrary
pure state. According to Lemma D.3, the reduced density matrix of |ϕ(a,ā)〉 on WY is identical
to that of the merged state. Therefore, |ϕ(a,ā)〉 has topological charges a and ā within the two
holes, and |ϕ(a,ā)〉 is identical to the reference state |ψ〉 on any subsystem W ′ ⊆ WY which is
connected to W by a path, where the path is within WY . In particular, choose W ′ to be the
complement of disk ω′, where ω′ is the union of the gray string and the two holes in Fig. 28.
Since |ψ〉 and |ϕ(a,ā)〉 are identical on W ′, by applying Eq. (A.3), we have |ϕ(a,ā)〉 = U (a,ā)|ψ〉 for
a unitary operator U (a,ā) supported on ω′. Because we may deform W ′ and ω′, the support of
U (a,ā) can be deformed smoothly. This completes the proof.
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[45] J. Fröhlich and T. Kerler, Quantum groups, quantum categories and quantum field theory
(Springer, 2006).

[46] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, vol. 205 (American
Mathematical Soc., 2016).

[47] V. Ostrik, arXiv preprint math/0203255 (2002).

[48] M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005), cond-mat/0404617.

[49] S. Bravyi, unpublished (2008).

[50] L. Zou and J. Haah, Phys. Rev. B 94, 075151 (2016), 1604.06101.

[51] D. J. Williamson, A. Dua, and M. Cheng, Phys. Rev. Lett. 122, 140506 (2019), 1808.05221.

[52] O. Fawzi and R. Renner, Comm. Math. Phys. 340, 575 (2015).

[53] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition (Cambridge University Press, New York, NY, USA, 2011), 10th ed.,
ISBN 1107002176, 9781107002173.

[54] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976), ISSN 0034-4877, URL http://www.

sciencedirect.com/science/article/pii/0034487776900604.

[55] H. Araki and E. H. Lieb, Comm. Math. Phys. 18, 160 (1970).

57

cond-mat/0404617
1604.06101
1808.05221
http://www.sciencedirect.com/science/article/pii/0034487776900604
http://www.sciencedirect.com/science/article/pii/0034487776900604

	1 Introduction
	2 Setup and Summary
	2.1 Axioms
	2.2 Main results

	3 Axiom extension, Information convex set and Isomorphism Theorem
	3.1 Extension of the axioms
	3.2 Information convex set
	3.3 Elementary steps and isomorphism theorem 

	4 Fusion data from information convex sets
	4.1 Superselection sectors/topological charges
	4.2 Fusion rules and fusion spaces
	4.3 Derivation of the axioms of the fusion rules

	5 Topological entanglement entropy
	6 Summary and discussions
	A Notations and useful facts
	A.1 Convex sets
	A.2 Quantum information facts
	A.2.1 Fidelity
	A.2.2 Quantum channels
	A.2.3 Properties of entropies
	A.2.4 The structure of quantum Markov states


	B Information convex set on a closed manifold
	C Elementary step of the isomorphism theorem
	C.1 An alternative formulation of the information convex set
	C.2 Equivalence of the definitions
	C.3 Merging with ()
	C.4 Proof of Proposition 3.9

	D Extreme points
	D.1 Orthogonality of extreme points
	D.2 Implication of the orthogonality

	E Fusion space
	F Topological entanglement entropy for the Kitaev-Preskill partition
	G Antiparticles and automorphism of annulus on a sphere
	H String operators

