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We investigate the effect of sequentially disrupting the shortest path of percolation clusters at
criticality by comparing it with the shortest alternative path. We measure the difference in length
and the enclosed area between the two paths. The sequential approach allows to study spatial
correlations. We find the lengths of the segments of successively constant differences in length to
be uncorrelated. Simultaneously, we study the distance between red bonds. We find the probability
distributions for the enclosed areas A, the differences in length ∆l, and the lengths between the red
bonds lr to follow power law distributions. Using maximum likelihood estimation and extrapolation
we find the exponents β = 1.38± 0.03 for ∆l, α = 1.186± 0.008 for A and δ = 1.64± 0.025 for the
distribution of lr.

I. INTRODUCTION

The optimum path through a random energy land-
scape has been studied exhaustively in the past [1–4].
In particular also the blocking of sites along the opti-
mum path and the resulting second best path has been
considered [5]. Percolation clusters at criticality are re-
alizations of fractal uncorrelated random landscapes and
in the present paper we will study blocking the shortest
path. We consider site percolation on a square lattice at
the critical threshold. Assuming the model describes a
traffic situation [6] or a forest fire [7], it is important to
know how far the bypass and the surrounded area will
be in case of a blockade in the shortest path. A similar
investigation to ours was performed before [8] but on a di-
rected bond percolation grid and without the sequential
approach which allows to obtain the spatial correlations
along the path. Nevertheless, due to strong analogies
between the two models [9], we expect to obtain similar
results.

II. MODEL

We simulate site percolation on a two dimensional
square lattice at the percolation threshold pc = 0.592746
[10]. In the horizontal direction (left, right) we choose pe-
riodic boundary conditions to reduce finite size effects. In
vertical direction the upper and the lower boundaries are
open. Using the burning algorithm [11], we first extract
the shortest path l or ’chemical distance’ [12], between
the upper and the lower border of the lattice, which is
known to be fractal at p = pc [11, 13–16]. In our case
we consider only systems in which two completely sepa-
rated shortest paths do not exist. In case, the shortest
path is not unique, we choose randomly one. Next, we
walk along the shortest path, sequentially blocking each
time one site on the path and then run the burning al-
gorithm again to find the shortest alternative path. If
there are several second shortest paths of equal length

we choose the one enclosing the smallest area with the
original one. After each blocking event, the blocked site
will be unblocked again. An example is shown in Fig. 1,
where the original shortest path (yellow line with black
dots) is blocked (red site) and the shortest alternative
path is found (blue line with black dots). The enclosed
area is filled in light blue and the difference in length
is obtained by subtracting the lengths of the two paths.
In order to obtain good statistics we perform at least 1.4
million blocking events per lattice size, which ranges from
L = 200 up to L = 15000. We choose the functional form
of the probability density function by comparing the log-
likelihood ratios from; lognormal, exponential, power-
law, and exponentially truncated power-law. Accord-
ing to Ref.[17], we use maximum likelihood estimation
(MLE) for discrete exponentially truncated power-laws
based on the method used in Ref. [18]. The estimated
exponents for different lattice sizes L show algebraic con-
vergence to some limit value γ0 as L → ∞. By fitting
the estimated exponents γ(L) against γ(L) = γ0 + γsL

γe

using non-linear least squares, we extrapolate γ0. Since
the probability distribution in section IV, Fig. 4 follows
a power-law which is flattened in the beginning, we can
not use the method from Ref. [18]. Instead we use a
least squares fit applied on 12 normalized log-bins using
the points number 3 to 11.

III. DISTANCES BETWEEN SUCCESSIVE RED
BONDS

We start by extracting the shortest path and plotting
the average length of the shortest paths 〈l〉 against the
lattice size. We obtain the fractal dimension of the short-
est path 〈l〉 ∼ Ldmin with dmin = 1.123± 0.015, which is
within the error-bars in good agreement with Ref. [19].

Next we start blocking the shortest path at the top-
most site on the upper border and wander along the
shortest path until the lower border is reached. This
process of blocking all sites in a successive order we call
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FIG. 1. A percolating cluster with the shortest path (yellow
dashed),a site from the shortest path blocked (red), alter-
native second shortest path (blue dashed) and the smallest
enclosed area A (transparent blue). ∆l is the difference in
length between the two paths, here ∆l = 2.

’sequential disruption’. Each time we block a site, we
look for the shortest alternative path through the lattice.
In case where no alternative path through the lattice ex-
ists, we are blocking a cutting or red bond [14]. A red
bond is defined as a site belonging to the shortest path,
which when blocked disrupts the whole connection from
the top to the bottom. Supposing that the locations of
red bonds along the shortest path are uncorrelated [11],
we propose that the average length between red bonds
〈lr〉 scales as the ratio of the shortest path length 〈l〉 and
the number of red bonds 〈nr〉

〈lr〉 ∼
〈l〉
〈nr〉

= Ldmin−
1
ν (1)

because the number of red bonds scales with 〈nr〉 ∼ L
1
ν

[20], where ν = 4/3 is the exponent of the divergence of
the correlation length [21] and the shortest path scales
with 〈l〉 ∼ Ldmin , with dmin = 1.13077(2) [19]. As shown
in the inset of Fig. 2, we find that 〈lr〉 scales with L as
L0.39±0.02, which is within error bars in agreement with
Eq. (1).

We also study their empirical probability distribution.
We find the probability distribution of lr to follow an
exponentially truncated power law. We propose the fol-
lowing scaling ansatz:

p(lr, L) = L−δdminF (
lr

Ldmin
) (2)

We divide the argument of the scaling function F by
Ldmin motivated by the fact that lr is naturally limited by
the shortest path length. Using that the scaling function
F (x) ∼ x−δ for x → ∞, we have to multiply the scaling
function with L−δdmin . We confirm our scaling ansatz
with the good data collapse shown in Fig. 2 with the
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FIG. 2. Data collapse for the probability distribution func-
tion for the distances between red bonds p(lr) for different
lattice sizes L. The dashed line represents a power law fit
with exponent δ = 1.64 ± 0.025. The inset shows the aver-
age length between red bonds 〈lr〉 for different lattice sizes L.
The dashed line is a power law fit with exponent 0.39± 0.02
giving the lattice size dependency of 〈lr〉.

exponent δ = 1.64± 0.025. The truncation is due to the
finite size of the systems and is expected to vanish for
L→∞.

IV. DIFFERENCE IN LENGTH BETWEEN
SHORTEST PATHS

In this section we discuss the results concerning the
difference in length between the shortest path and the
next shortest alternative after removing one site of the
shortest path. We observe two cases of alternative paths.
They can either have the same (convergent) or different
(divergent) starting and end points. In the latter case
the two paths together form an open fork towards the
upper or lower border of the system. As shown in Fig. 3,
we measure the fraction of each case. Using an algebraic
fit of the form f = f0 +p1f(L)p2 , where f0 is the extrap-
olated value of the fractions for L→∞, we find that the
fraction of divergent cases tends to −0.01 ± 0.03, which
suggests that the divergent case might be just a finite size
effect and disappears in the infinite limit. It might also
be that the fraction of divergent paths does go to a very
small number in the thermodynamic limit [22? ]. Con-
sequently, we include only the convergent case in further
studies.

We find the probability distribution of ∆l to follow
an exponentially truncated power-law. We propose the
scaling ansatz of the form:

p(∆l, L) = L−βdminG(
∆l

Ldmin
) (3)

The division of the argument of the scaling function G
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FIG. 3. The fraction of convergent and divergent alternative
paths. The dashed line represents the algebraic fit. The inset
shows the data collapse for the probability distributions for
the difference in length ∆l for different lattice sizes, ranging
from L = 500 up to L = 15000. The dashed line depicts a
power law fit with exponent β = 1.38± 0.03.

by Ldmin is motivated by the fact that the fractal dimen-
sion of shortest distance follows 〈l〉 ∼ rdmin [19]. We find
the best model to be an exponentially truncated power
law. Indeed, we observe a convincing data collapse shown
in the inset of Fig. 3 and hence confirm our proposed scal-
ing ansatz with an estimated exponent of β = 1.38±0.03.
This value is consistent with the one found on a randomly
directed square lattice in Ref. [8].

We now consider the spatial correlation of the detours.
Therefore, we walk along the shortest path and count
over how many blocked sites the difference in length ∆l
between the shortest path and the next shortest path
stays the same. Successive sites which show the same
difference in length belong to the same ”segment”. As an
example consider in Fig. 1, instead of the red indicated
site, the previous one being blocked. Both, the alterna-
tive path and the difference in length stay the same and
hence the two successive sites belong to the same seg-
ment. We measure the lengths of these segments lb and
obtain them in a spatially ordered sequence. By calcu-
lating the sample autocorrelation function of the spatial
sequence of segment lengths, we find that the series is
uncorrelated. Meaning, that the length of one segment
is independent of the length of the previous one. We
present the distribution of the segment-lengths in Fig. 4.

The probability distribution of lb follows a power law
with an estimated exponent of ε = 3.3± 0.1. Hence, the
probability of finding longer constant segments decreases
rapidly.
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FIG. 4. Probability distribution of the segment lengths p(lb)
for different lattice sizes. The dashed line indicates a power
law fit with exponent ε = 3.3± 0.1

V. ENCLOSED AREA

Next, we study the enclosed area between the short-
est path and its next shortest alternative. We consider
only the well defined areas surrounded by a closed loop
formed by the two paths. Enclosed areas are apparently
compact objects and hence we divide the argument of the
proposed scaling function by L2 to collapse the data. We
find that the probability distribution function H follows
an exponentially truncated power law. Consequently, we
propose a scaling law of the form:

p(A,L) = L−2αH(
A

L2
) (4)

We obtain an excellent data collapse shown in Fig. 5
which verifies our proposed scaling law with an estimated
exponent of α = 1.186 ± 0.008. Our result is consistent
with previous findings on a randomly directed square lat-
tice [8] where an exponent of 1.189 ± 0.001 was found
and on an artificial landscape where the area between
watersheds was investigated [23] where an exponent of
1.16± 0.03 was reported.

VI. CONCLUSION

We studied the effect of sequentially blocking each site
along the shortest path of a critical two dimensional site
percolation cluster by considering the shortest alterna-
tive path. We derived the average distance between the
red bonds theoretically and confirmed it with numerical
results. We found the lengths between the red bonds
to be power law distributed and presented a scaling law
with an exponent δ = 1.64± 0.025. The comparison be-
tween the two paths provides us with the difference in
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FIG. 5. Data collapse for the probability distribution func-
tions of the areas enclosed by the shortest path and its
next shortest alternative p(A) for different lattice sizes L.
The dashed line indicates a power law fit with exponent
α = 1.186± 0.008

their length and the enclosed area between them. We
found the size of the smallest enclosed areas A and the
differences in length ∆l to be power law distributed with
exponents α = 1.186 ± 0.008 and β = 1.38 ± 0.03 using
MLE and verified our proposed scaling law by collapsing
the data. Further, we counted over how many succes-
sive blocked sites ∆l stays constant and called this quan-
tity lb. We found the series of spatially ordered segment
lengths to be uncorrelated by calculating the sample au-
tocorrelation function. We presented the distribution of
lb, which follows a power law with an estimated expo-
nent ε = 3.3± 0.1, using least squares on the log-binned
histogram.

Since percolation describes many natural processes like
forest fires [7], electrical breakdown [24] or traffic condi-
tions [6], it would be of interest to link the blocking ap-
proach to real systems. Also other shortest alternative
paths enclosing not only the smallest area, but rather all
possible areas could be investigated.
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