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The thermodynamic entropy of the universe should increase in time by virtue of the second law of
thermodynamics. Within the open system paradigm – where the universe is composed out of a small
(quantum or classical) system coupled to one or multiple heat baths – the always positive entropy
production is supposed to faithfully capture the increase in thermodynamic entropy of the universe.
Indeed, recent progress has shown how to derive under very mild assumptions an always positive
quantity, which resembles many features of entropy production. Unfortunately, this approach does
not express the entropy production as a change in thermodynamic entropy of the universe. That is
to say, the very definition of the basic thermodynamic state function measuring the entropy of the
system-bath composite remained unclear.

Here, we will put forward a different approach based on the recently introduced “observational
entropy” by S̆afránek, Deutsch and Aguirre, which generalizes standard thermodynamic entropy
to time-dependent out-of-equilibrium processes in an isolated system [1–3]. We show that the
observational entropy with respect to an arbitrary measurement of the system and an energetic
measurement of the bath fulfills the following key properties:

(i) Its change is always positive under even milder assumptions as used in the previous approach,
(ii) it has a clear information theoretic interpretation as the lack of knowledge about the exact
microstate for a given energy E of the bath, (iii) in the ideal weak-coupling case the change in
observational entropy of the bath can be shown to be proportional to its change in energy divided
by temperature.

Thus, the change in observational entropy provides a legitimate candidate to quantify entropy
production, which is now by construction expressed as a change in a thermodynamic state function.
Furthermore, we show that the change in observational entropy is typically smaller than the proposed
entropy production definition of the previous approach. However, in the weak coupling limit they
are quantitatively almost identical. At the end, we also verify all our general findings by using
a ‘microcanonical master equation’ derived in the Markovian, weak coupling limit. This equation
keeps track of energetic changes in the bath and therefore contains more information than typically
used weak-coupling master equations in quantum and stochastic thermodynamics.

http://arxiv.org/abs/1906.09933v2
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I. INTRODUCTION

A. Motivation

Entropy production is a central concept to quantify the irreversibility of nonequilibrium systems and dissipative
structures and as such, it is of central importance to understand many situations encountered in biology, chemistry,
physics and engineering [4]. Within the open system paradigm, where a system exchanges energy and entropy with
its environment, entropy production Σ is typically expressed as

Σ = ∆SS +∆Senv ≥ 0, (1)

Here, ∆SS (∆Senv) measures the change in thermodynamic entropy of the system (environment). Positivity of entropy
production and the second law of nonequilibrium thermodynamics become equivalent statements then. Furthermore,
if the environment is composed out of several ideal heat baths ν, the change in thermodynamic entropy of the
environment can be expressed as ∆Senv ≡

∑

ν ∆Sν with ∆Sν = −βνQν . Here, Qν is the heat flow from bath ν into

the system and the proportionality constant is the inverse temperature βν of the bath. Then, entropy production
takes on the familiar form

Σ = ∆SS −
∑

ν

βνQν ≥ 0. (2)

In this paper we are interested in small systems S, which can be dominated by fluctuations and might show quantum
effects. Also within this scenario the notion of entropy production plays an essential role, e.g., to quantify the efficiency
of molecular motors or quantum heat engines in stochastic and quantum thermodynamics (see, e.g., Refs. [5–7] for
introductions). Conventionally, positivity of entropy production is derived from an effective master or Fokker-Planck
equation, which describes the dynamics of the system after tracing out the bath under various assumptions [5–8].
While this reassures the thermodynamic consistency of the derived master or Fokker-Planck equation, it is somewhat
unsatisfactory as it is not clear how entropy production emerges from the underlying microscopic (i.e., Hamiltonian)
dynamics of the system and the baths.
This paper claims to provide a valid and satisfactory microscopic derivation of entropy production for a large class

of open system scenarios. Indeed, as we will review in the next section, recent progress in nonequilibrium statistical
mechanics has almost provided a satisfactory answer to this question. But one important point was left open: so far
it was impossible to find a definition for a thermodynamic state function, which, first, describes the entropy of the
system-bath composite (the ‘universe’) and, second, whose change is equal to the entropy production. In that respect
previous derivations failed to show that entropy production measures the change in thermodynamic entropy of the
universe.

B. Previous derivations of positivity of entropy production

Deriving the laws of thermodynamics from an underlying microscopic (i.e., Hamiltonian) picture is a central theme
of statistical mechanics since its beginning. Here, we briefly review the approach by Esposito, Lindenberg and Van
den Broeck [9] where a microscopic (i.e., Hamiltonian) derivation of the second law of nonequilibrium thermodynamics
for a driven system in contact with multiple heat baths was provided. In case of a single heat bath, this result was
independently derived in Ref. [10], see also Ref. [11] for an early derivation in the classical case where a system acts
sequentially with different baths prepared at different temperatures. Similar work and extensions of this approach can
be found in Refs. [12–18]. Furthermore, related work showed how to derive ‘dissipation inequalities’ on a Hamiltonian
basis for a system in contact with a single heat bath [11, 19–23]. In this approach it is assumed that the system
starts in equilibrium and can relax back to it after the process has finished. While employing similar mathematical
manipulations, this approach is, strictly speaking, less general than the one that will be reviewed here which takes
explicitly the nonequilibrium nature of the initial and final system states into account. Also multiple baths are
commonly not treated there, but see Ref. [23]. For completeness, let us also mention an alternative approach for
cyclic Hamiltonian dynamics (i.e., where the initial and final Hamiltonian are the same) based on the notion of
complete passivity [24]. For the rest of this section we will focus on the derivation in Ref. [9]. We will also establish
notation here and illustrate the problem with this approach, which we will eventually overcome later on. We remark
that we choose a quantum mechanical notation throughout this paper, but the corresponding classical manipulations
are analogous.
Within the standard paradigm of open system theory, we will assume that the dynamics of the universe are modeled

by the Hamiltonian Htot(λt) = HS(λt)+HSB+HB. Here, HS(λt) is the system Hamiltonian with λt some externally
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specified driving protocol (e.g., a changing electric field). Furthermore, HB describes the bath Hamiltonian and HSB

the interaction between system and bath. The present approach can be generalized to the case of multiple heat baths
and a driven interaction Hamiltonian, but for ease of presentation we refrain from doing so in this section. Now, the
only assumption we will add is that the initial state of the universe is given by

ρtot(0) = ρS(0)⊗ πB, (3)

where ρS(0) is arbitary and πB ≡ e−βHB/ZB with ZB = trB{e−βHB} denotes the canonical equilibrium state of the
bath. This assumption is essential for the following and conventionally used in open system theory [8]. An extension
to correlated initial states is also possible for a single heat bath [25, 26], see also Refs. [27–29] for related ‘dissipation
inequalities’ and Ref. [24] for cyclic Hamiltonian processes. In this paper, however, we will exclusively focus on initially
decorrelated states.
Now, let us denote by SvN(ρ) = −tr{ρ ln ρ} the von Neumann entropy of the state ρ. Then, since the global

dynamics are entropy-preserving, we find immediately with the help of Eq. (3) that

∆SvN[ρS(t)] + ∆SvN[ρB(t)] = I[ρSB(t)] ≥ 0, (4)

where ∆SvN[ρ(t)] = SvN[ρ(t)]− SvN[ρ(0)] denotes the change in von Neumann entropy and I[ρSB(t)] = SvN[ρS(t)] +
SvN[ρB(t)]−SvN[ρSB(t)] ≥ 0 is the always positive mutual information. It is tempting to view Eq. (4) already as the
entropy production: at least it is always positive and given by a change in a state function, namely the sum of the local
von Neumann entropies. Indeed, if the ‘bath’ itself is microscopically small, it makes sense to identify the heat flux
directly via −βQ = ∆SvN[ρB(t)] [30]. Then, Eq. (4) formally takes on the conventional form of entropy production,
compare with Eq. (2) in case of a single heat bath. Unfortunately, for a mesoscopic or macrocopic heat bath this does
not provide a satisfactory resolution as the mutual information can always be bounded by I(ρSB) ≤ 2Q ln dim(HS),
where HS denotes the Hilbert space of the system S, the factor 2Q is 2 for quantum systems and 1 for classical
systems, and we assumed that (quite naturally) dim(HS) ≤ dim(HB). Thus, e.g., for a two-level system the entropy
production would be bounded from above for all times by 2Q ln 2, which is clearly in general not the case. As a
counterexample it suffices to consider, e.g., a driven system subjected to a laser field which dissipates energy into its
environment. The entropy production in this case should rather scale extensively with time. This point was recently
emphasized in Ref. [31].
Therefore, one employs a second important step by noting the exact identity ∆SvN[ρB(t)] = β∆EB −D[ρB(t)‖πB ],

where ∆EB = trB{HB[ρB(t)− ρB(0)]} is the change in bath energy and D[ρ‖σ] = tr{ρ(ln ρ− lnσ)} ≥ 0 is the always
positive relative entropy. Then, one identfies

Σ̃ ≡ ∆SS + β∆EB = I[ρSB(t)] +D[ρB(t)‖πB] ≥ 0 (5)

as the entropy production, here denoted by Σ̃ to distinguish it from our approach put forward later on. Upon
further identifying (minus) the change in bath energy with the heat flux into the system, Q = −∆EB , one obtains

Σ̃ ≡ ∆SS − βQ as in Eq. (2) for a single heat bath. It should be noted, however, that the correct identification of
heat is subtle outside the limit of a weakly coupled Markovian bath, compare, e.g., with the discussion in the classical
case [25, 29, 32–34] or various approaches in quantum thermodynamics [26, 35–41]. Therefore, we will mainly use the
notation ∆EB here.
Let us summarize the picture so far: Eq. (5) proposes a definition of entropy production, which

(i) is positive for arbitary system-bath dynamics and arbitary system and bath sizes based solely on assumption (3),

(ii) has a natural information theoretic interpretation1, and

(iii) has the conventional form as in phenomenological nonequilibrium dynamics [Eq. (2)], whereas attention has to
be paid to the point that the identification with heat is only valid in the weak coupling limit.2

While these achievements are remarkable, they leave open the question what is the definition of thermodynamic
entropy for the universe Suniv, whose change equals the entropy production. If Σ̃ were the correct definition of entropy
production, then the thermodynamic entropy of the universe at time t must be

Suniv(t) = SvN[ρS(t)] + βtrB{HBρB(t)}+ c

= SvN[ρS(t)] + SvN[ρB(t)] +D[ρB(t)‖πB ] + c̃

= SvN[ρS(t)] + SvN[ρB(t)] +D[ρB(t)‖ρB(0)] + c̃

(6)

1 Namely as deviation of the actual bath state ρB(t) from the equilibrium state πB as measured by the relative entropy. See also Ref. [31]
for a more specific discussion in that direction.

2 In the weak coupling limit ∆EB can be rigourously linked to the heat exchanges Q (known, e.g., from a weak coupling master equation)
by use of the two point measurement approach, see Ref. [42].
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such that ∆Suniv(t) = Σ̃. Here c and c̃ are arbitrary additive constants, which do not depend on time. Obviously,
the first line seems to be a rather awkward definition for thermodynamic entropy. However, the second line reveals
that this definition is identical to the local von Neumann entropies plus the relative entropy D[ρB(t)‖πB ]. While
looking more reasonable, this definition depends on the initial Gibbs state of the bath (and therefore on the initial
temperature), which is also unacceptable: the formal definition of a thermodynamic entropy should not depend on
such details. For the third line we noticed that πB = ρB(0) such that we can get rid of the formal dependence on πB

in the definition, but unfortunately the so defined entropy would no longer be a state function.

The goal of this paper is exactly to overcome this deficiency, while retaining the important properties (i) to (iii)
above. This requires us to put forward a different approach to the problem.

C. Observational entropy

Our notion of entropy for the universe, whose change we will identify with the entropy production, is based on the
recently introduced notion of “observational” (or “coarse grained”) entropy by S̆afránek, Deutsch and Aguirre [1–
3]. They claim that observational entropy provides a satisfactory generalization of standard thermodynamic entropy
to time-dependent out-of-equilibrium processes for arbitary isolated quantum and classical systems. What was not
investigated in Ref. [1–3], however, is the question whether observational entropy also applies to the open system
paradigm considered here (i.e., where the isolated ‘system’ is divided into a small system of primary interest and the
surrounding heat baths).

The basic idea of observational entropy is relatively easy explained in the classical case. Suppose we perform a
set of measurements on a thermodynamic system described by partitioning the phase space Γ into different cells
according to some coarse-graining procedure. Thus, each coarse graining Cα = {Cαi

}i partitions the phase space into
non-overlapping regions corresponding to one measurement outcome, i.e., Γ = ∪iCαi

and Cαi
∩ Cαj

= ∅ for i 6= j.
Here, α ∈ {1, . . . ,M} denotes the different measurements (e.g., position of particles, energy, magnetization, etc.).
The thermodynamic entropy of a system measured in such a way is then postulated to be

Sobs ≡ −
∑

C1,...,CM

pC1,...,CM
ln

pC1,...,CM

VC1,...,CM

, (7)

where pC1,...,CM
denotes the probability to obtain the joint measurement outcome (C1, . . . , CM ) and VC1,...,CM

describes
the number of possible microstates associated to it.

A couple of remarks are in order. First, as also noted in Ref. [1–3], not every observational entropy is thermo-
dynamically meaningful. Its usefulness depends crucially on the chosen observables. Second, for a ‘fine-grained’
measurement of all positions and momenta of all particles, we reproduce the Gibbs-Shannon entropy. On the other
hand, if we measure only the energy E, and if this is a conserved quantity, then we get the Boltzmann (surface but not
volume!) entropy lnVE back. Finally, a quantum extension by using projection operators in Hilbert space is possible

but more complicated as the order of the measurements now plays a role [1, 2]. S̆afránek et al. argue, however, that
for typical situations encountered in thermodynamics, the effect of the non-commutativity of the measurements be-
comes very small. In our case we will actually choose commuting measurements, namely one measurement performed
on the system Hilbert space and one on the bath Hilbert space. The construction of observational entropy is then
straightforward, see below.

D. Outline

The rest of this paper is organized as follows: In Sec. II we will present our choice of measurements, which defines the
observational entropy. Then, we will show that the change of observational entropy provides a legitimate candidate for
entropy production by verifying the points (i) to (iii) above for arbitary open system dynamics as in Sec. IB. We will
also quantitaively compare our definition of entropy production with the previous approach and the case of multiple
heat baths is treated in Sec. II D. Additional generally valid observations are discussed in Sec. II E. While the results
in Sec. II are very general, they are necessarily also a bit abstract. Hence, in Sec. III we will derive a ‘microcanonical
master equation’ for a system weakly coupled to a Markovian bath. This master equation takes explicitly into account
changes of the bath energy. Within this important approximation we will then see that we are also able to verify all
the above properties. Finally, we will conclude our findings in Sec. IV.
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II. GENERAL PICTURE

Our definition of thermodynamic entropy for the system-bath setup requires two measurements: an arbitrary (but
fine-grained) measurement of the system described by a set of rank-1 projectors |s〉〈s|, s ∈ {1, . . . , dimHS}, and a
measurement of the bath energy described by a set of projection operators ΠE,δ =

∑

Ei∈(E−δ,E]ΠEi,0. Here, δ denotes

a suitable width of the measured energy window (to be further specified in Sec. II B) and ΠEi,0 projects on a sharp
energy Ei such that HBΠEi,0 = EiΠEi,0 (notice that ΠEi,0 is not a rank-1 projector in case of exact degeneracies).
For an arbitary system-bath state ρSB the average post measurement state is given by

∑

s,E

|s〉〈s|ΠE,δρSBΠE,δ|s〉〈s| =
∑

s,E

psE |s〉〈s| ⊗ ρB(s, E). (8)

Here, psE = 〈s|trB{ΠE,δρSB}|s〉 denotes the probability to obtain measurement outcome (s, E) and the state of the
bath conditioned on that outcome is ρB(s, E) = 〈s|ΠE,δρSBΠE,δ|s〉/psE . Note that the average post measurement
state (8) has lost all quantum correlations, but is in general classically correlated. Now, the observational entropy [1–3]
becomes in this case

Sobs ≡ −
∑

s,E

psE ln
psE
VE,δ

, (9)

where VE,δ = trB{ΠE,δ} is the number of microstates in the bath with respect to a given energy window (E − δ, E].
The claim of this paper is now that Σ ≡ ∆Sobs(t) = Sobs(t)−Sobs(0) is the entropy production of a system (perhaps

subjected to a time-dependent driving λt) coupled to a single heat bath (multiple baths are treated in Sec. II D) by
verifying the points (i) to (iii) from above. As in Sec. I B we will need an additional condition on the initial system-
bath state, which is, however, milder than Eq. (3). Furthermore, we remark that our approach is in some sense close
to the two-point measurement approach [42] with the difference that we do not have to perfectly measure the energy
of the bath, see Sec. II B.
Before verifying the points (i) to (iii) in Sec. II C, we start with two general identities in Sec. II A followed by a

discussion in Sec. II B of how small we have to choose the width δ in an experiment such that all theoretical claims
of this paper remain true even if δ > 0.

A. Two general identities

We start by noting that for any system-bath state ρSB

Sobs = SSh(ps) + SEB

obs − I(psE). (10)

Here, SSh(ps) ≡ −
∑

s ps ln ps is the Shannon entropy of the probability distribution ps =
∑

E psE and

SEB

obs ≡ −
∑

E

pE ln
pE
VE,δ

(11)

can be interpreted as the observational entropy of the bath alone with respect to an energy measurement. Finally,
I(psE) =

∑

s,E psE ln(psE/pspE) is the classical mutual information between the measurement results of the system
state and the bath energy.
The second identity concerns only SEB

obs . For an arbitrary bath state ρB let ρB(E) ≡ ΠE,δρBΠE,δ/pE be the post-
measurement state of the bath conditioned on outcome E ignoring the measurement result s. This state is obtained
with probability pE =

∑

s psE = trB{ΠE,δρB}. Furthermore, we introduce the microcanonical equilibrium state
ρmic(E) = ΠE,δ/VE,δ with respect to a given energy E. Then, a straightforward calculation reveals

SEB

obs = SvN

[

∑

E

pEρB(E)

]

+
∑

E

pED[ρB(E)‖ρmic(E)], (12)

where we used the identity

SSh(pE) +
∑

i

pESvN[ρB(E)] = SvN

[

∑

E

pEρB(E)

]

, (13)
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which holds since the states ρB(E) are supported on orthogonal subspaces, see Theorem 11.10 in Ref. [43]. Equa-
tion (12) tells us that the observational entropy of the bath is identical to the fine-grained (von Neumann) entropy
of the average post-measurement state plus the additional ignorance (measured by the relative entropy) due to not
knowing the precise microstate of the bath for a given energy E.

B. Initial state and ideal measurement limit

For the moment, let us consider the initial state (3), generalizations are discussed in Sec. II E. The crucial ingredient
to show positivity of the second law in our approach is that, initially at time t = 0, the observational entropy of the
bath SEB

obs must coincide with the von Neumann entropy of the average post measurement state
∑

E pE(0)ρB(E, 0).
This means that, using Eq. (12), the following expression must vanish:

SEB

obs (0)− SvN

[

∑

E

pE(0)ρB(E, 0)

]

=
∑

E

pE(0)D[ρB(E, 0)‖ρmic(E)] (14)

For a Gibbs state of the bath we have

pE(0) = πE ≡
∑

Ei∈(E−δ,E]

e−βEiVEi,0

ZB
, ρB(E, 0) = πB(E) ≡

∑

Ei∈(E−δ,E]

ΠEi,0
e−βEi

pE(0)ZB
. (15)

Here, the projector ΠEi,0 has rank VEi,0 = trB{ΠEi,0} (which is greater than one in case of exact degeneracies). Using
this, it becomes clear that Eq. (14) can be written as

SEB

obs (0)− SvN(πB) =
∑

E

∑

Ei∈(E−δ,E]

e−βEiVEi,0

ZB
ln

e−βEiVE,δ
∑

Ej∈(E−δ,E] e
−βEjVEj ,0

, (16)

which vanishes in the ideal theoretical limit δ → 0. For finite δ we proceed by looking at the argument of the logarithm,

e−βEiVE,δ
∑

Ei∈(E−δ,E] VEi,0e
−βEi

=
eβδiVE,δ

∑

j∈[0,δ) e
βδjVE−δj ,0

, (17)

where we defined Ej = E − δj. Now, if the bath is macroscopically large, we expect that we can replace the sums by
integrals and by using the mean value theorem for integration, we end up with

eβδiVE,δ
∫ δ

0 dxeβxVE−x,0

=
eβδiVE,δ

eβξ
∫ δ

0 dxVE−x,0

= eβ(δi−ξ) = 1 + β(δi − ξ) +O[(βδ)2] (18)

with ξ ∈ [0, δ) and we used
∫ δ

0 dxVE−x,0 = VE,δ. Thus, in the limit

βδ ≪ 1 (19)

the observational entropy practically coincides with the von Neumann entropy for a thermal state. Experimentally,
this condition has to be met in order to ensure positivity of entropy production if the bath is initially in a Gibbs
state. In the following we will assume that the energy window δ is chosen small enough such that Eq. (19) holds and
we will henceforth simply denote VE = VE,δ and ΠE = ΠE,δ.

C. Verifying points (i) to (iii) and comparison with the previous approach for a single heat bath

For an arbitrary initial system-bath state ρSB(0) the change in observational entropy can be expressed as

∆Sobs = ∆SSh[ps(t)] + ∆SEB

obs −∆I[psE(t)]

= SSh[ps(t)]− SSh[ps(0)] + SvN

[

∑

E

pE(t)ρB(E, t)

]

− SvN

[

∑

E

pE(0)ρB(E, 0)

]

+
∑

E

pE(t)D[ρB(E, t)‖ρmic(E)]−
∑

E

pE(0)D[ρB(E, 0)‖ρmic(E)]− Is:E(t) + Is:E(0),

(20)
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where we used Eqs. (10) and (12). Here, ps(t) = 〈s|ρS(t)|s〉 and ρB(E, t) = ΠEρB(t)ΠE/pE(t). Next, we assume the

initial state and width δ to be as described in Sec. II B, such that SEB

obs (0) = SvN(πB). This allows us to confirm

∆Sobs = SSh[ps(t)]− SSh[ps(0)] + SvN

[

∑

E

pE(t)ρB(E, t)

]

− SvN(πB)

+
∑

E

pE(t)D[ρB(E, t)‖ρmic(E)]− I[psE(t)].

(21)

Now, as the entropy is preserved during any unitary evolution, we get SSh[ps(0)]+SvN(πB) = SvN[ρSB(t)] where ρSB(t)
is the time-evolved state starting from the initial state ρSB(0) =

∑

s ps(0)|s〉〈s| ⊗ πB . Writing also SvN[ρSB(t)] =
SvN[ρS(t)] + SvN[ρB(t)]− I[ρSB(t)], we get

∆Sobs = SSh[ps(t)]− SvN[ρS(t)] + SvN

[

∑

E

pE(t)ρB(E, t)

]

− SvN[ρB(t)]

+
∑

E

pE(t)D[ρB(E, t)‖ρmic(E)] + I[ρSB(t)]− I[psE(t)].

(22)

The positivity of ∆Sobs is now evident. First, by using that a projective measurement increases the entropy on
average, Theorem 11.9 in Ref. [43], we confirm that

SSh[ps(t)] ≥ SvN[ρS(t)], SvN

[

∑

E

pE(t)ρB(E, t)

]

≥ SvN[ρB(t)]. (23)

We expect both contributions, however, to be rather small. First, the change in system entropy due to the measurement
is at most ln dim(HS) and will likely be much smaller. Especially, we are free to choose the basis of the final
system measurement at time t such that we can let it coincide with the eigenbasis of ρS(t). Second, a large change
in bath entropy due to the final measurement requires the existence of large coherences trB{ΠEρB(t)ΠE′} 6= 0
between different energy sectors E 6= E′. This also seems very unlikely as it would imply the existence of macrosopic
Schrödinger cat states in the bath. Finally, another small contribution comes from the difference in mutual information,
which always obeys

I[ρSB(t)] = D[ρSB(t)‖ρS(t)⊗ ρB(t)]

≥ D





∑

s,E

psE(t)|s〉〈s| ⊗ ρmic(E)

∥

∥

∥

∥

∥

∑

s

ps(t)|s〉〈s| ⊗
∑

E

pE(t)ρmic(E)

]

= I[psE(t)],
(24)

This follows from monotonicity of relative entropy [44, 45] by noting that
∑

s,E psE(t)|s〉〈s|⊗ρmic(E) = ΦρSB(t) with
the completely positive and trace-preserving map defined via

ΦρSB ≡
∑

E

trB {|s〉〈s|ΠEρSB|s〉〈s|ΠE} ⊗ ρmic(E). (25)

Thus, all together we can conclude that

∆Sobs &
∑

E

pE(t)D[ρB(E, t)‖ρmic(E)] ≥ 0, (26)

where we used the symbol “&” to indicate that the difference between the two sites of the inequality is expected to
be rather small in the typical situation of a large heat bath. The only part, which can scale extensively with time,
is

∑

E pE(t)D[ρB(E, t)‖ρmic(E)]. Therefore, we conclude that entropy production arises because for a given energy

E of the bath we lose track of its exact microstate compared to the maximal uninformative microcanonical ensemble,
where all microstates are assumed to be equally likely. Thus, we have confirmed the points (i) and (ii) from above.
Next, to confirm (iii), we want to show that for a weakly coupled, macroscopic bath the change in observational

bath entropy is proportional to its change in energy. For that purpose it is indeed crucial to assume that the bath is
initially in a Gibbs state. Then, we write pE(t) = πE + ǫqE(t) with πE = e−βEVE/ZB and qE(t) is a set of numbers
such that

∑

E qE(t) = 0. Now, our assumption is that ǫ is a small parameter, i.e., the distribution of energies in the
bath remains close to the canonical probabilities throughout the time-evolution. This should be typically justified for



8

a weakly coupled, macroscopic bath. Notice that this does not imply that the entire bath state ρB(t) is close to the
Gibbs state πB . Then, we can write

∆SEB

obs = −
∑

E

[πE + ǫqE(t)] ln
πE + ǫqE(t)

VE
+
∑

E

πE ln
πE

VE
= β∆EB +O(ǫ2) (27)

with the chang ein bath energy ∆EB = ǫ
∑

E EqE(t). Hence,

∆Sobs = ∆SSh[pS(t)] + ∆SEB

obs − I[psE(t)] ≈ ∆SSh[pS(t)]− βQ ≥ 0, (28)

where we ignored the small contribution I[psE(t)] at the end. We have also identified Q = −∆EB, which is justified

in the limit considered here to derive ∆SEB

obs ≈ β∆EB .
Thus, as a preliminary conclusion, we have shown that Σ ≡ ∆Sobs fulfills the three desired properties (i) to (iii) and

therefore, provides a more suitable candidate for entropy production then Σ̃ from Eq. (5) because the latter cannot
be expressed as the change of a meaningful thermodynamic entropy for the system and the bath.
Nevertheless, it is instructive to compare Σ and Σ̃ quantitatively. From Eqs. (22) and (5) we obtain

Σ− Σ̃ = SSh[ps(t)] + SvN

[

∑

E

pE(t)ρB(E, t)

]

− SvN[ρSB(t)] +
∑

E

pE(t)D[ρB(E, t)‖ρmic(E)]− I[psE(t)]

− I[ρSB(t)]−D[ρB(t)‖πB ].

(29)

We consider first the very last term. This becomes after a little massage

D[ρB(t)‖πB] = trB

{

ρB(t)

[

ln ρB(t)−
∑

E

ΠE ln ρmic(E)ρB(E)

]}

= −SvN[ρB(t)]−
∑

E

pE(t)trB{ρB(E, t) ln ρmic(E)} −
∑

E

pE(t) lnπB(E).

(30)

By combining this result with the second and forth term of Eq. (29), we verify

SvN

[

∑

E

pE(t)ρB(E, t)

]

+
∑

E

pE(t)D[ρB(E, t)‖ρmic(E)]−D[ρB(t)‖πB] = SvN[ρB(t)]−D[pE(t)‖πB(E)], (31)

where we also made use of Eq. (13). Thus, we end up with the compact expression

Σ− Σ̃ = SSh[ps(t)]− SvN[ρS(t)]−D[pE(t)‖πB(E)]− I[psE(t)]. (32)

Taken together, the first two terms are non-negative (and identical to zero for classical systems), whereas each of the
remaining two terms is negative. In the weak coupling regime investigated above, we expect all terms to be rather
small. In fact, if pE(t) = πE + ǫqE(t) as above, then D[pE(t)‖πB(E)] = O(ǫ2) such that we can conclude Σ ≈ Σ̃.
Outside this regime, the only possibly unbounded term is D[pE(t)‖πB(E)] as the number of populated energy levels
for a very small δ can become very large. We therefore expect that, typically, we have

Σ̃ & Σ ≥ 0. (33)

This means that the previous approach typically yields a larger entropy production than our novel definition. Intu-
itively, this makes sense: in our approach we ideally know the entire distribution of energies in the bath whereas in
the previous approach only knowing the average energy flow to the bath is sufficient. Clearly, our approach stores
more information and hence, less entropy is produced.

D. Extension to multiple heat baths

The extension to multiple heat baths labeled by ν ∈ {1, . . . , N} is straightforward by measuring the energy of each
bath. The observational entropy is in this case

Sobs = −
∑

s,E1,...,EN

psE1...EN
ln

psE1...EN

VE1 . . . VEN

. (34)
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Here, we used that the number of microstates naturally factorizes, VE1...EN
= trB1...BN

{ΠE1 . . .ΠEN
} = VE1 . . . VEN

,
where ΠEν

describes the projector associated to measurement outcome Eν of bath ν. Furthermore, the natural
generalization of the initial state (3) to multiple baths is

ρtot(0) = ρS(0)⊗ πB1 ⊗ · · · ⊗ πBN
, (35)

which was also used in Ref. [9]. We note that every bath can have initially a different inverse temperature, i.e.,

πBν
= e−βνH

(ν)
B /ZBν

.
Under these circumstances (assuming that δ is chosen as in Sec. II B) we easily confirm that the initial observational

entropy is identical to

Sobs(0) = SvN

[

∑

s

ps(0)|s〉〈s| ⊗ πB1 ⊗ · · · ⊗ πBN

]

= SvN[ρtot(t)]. (36)

Furthermore, the observational entropy at time t can be split into its ‘local’ parts and its correlations, similar to
Eq. (10). Specifically,

Sobs(t) = −
∑

s

ps(t) ln ps(t)−
∑

ν

∑

Eν

pEν
(t) ln

pEν
(t)

VEν

−
∑

s,E1,...,EN

psE1...EN
(t) ln

psE1...EN
(t)

ps(t)pE1(t) . . . pEN
(t)

≡ SSh[ps(t)] +
∑

ν

S
EBν

obs (t)− Icor[psE1...EN
(t)].

(37)

Further use of relation (12) reveals that

Sobs(t) = SSh[pS(t)] +
∑

ν

SvN

[

∑

Eν

pEν
ρBν

(Eν , t)

]

+
∑

ν

∑

Eν

pEν
D[ρBν

(Eν , t)‖ρmic(Eν)]− Icor[psE1...EN
(t)]. (38)

Thus, similarly to Eq. (22), the change in observational entropy can be split into a family of terms, whose non-
negativity is evident:

∆Sobs = SSh[pS(t)]− SvN[ρS(t)] +
∑

ν

{

SvN

[

∑

Eν

pEν
ρBν

(Eν , t)

]

− SvN[ρBν
(t)]

}

+
∑

ν

∑

Eν

pEν
D[ρBν

(Eν , t)‖ρmic(Eν)] + Icor[ρtot(t)]− Icor[psE1...EN
(t)].

(39)

As before, we expect the non-negativity of the first line to be rather small (especially, it is exactly zero for classical
systems) such that

∆Sobs &
∑

ν

∑

Eν

pEν
D[ρBν

(Eν , t)‖ρmic(Eν)] + Icor[ρtot(t)]− Icor[psE1...EN
(t)]. (40)

Here, we introduced the notation

Icor[ρtot(t)] ≡ SvN[ρS(t)] +
∑

ν

SvN[ρBν
(t)]− SvN[ρtot(t)] = D[ρtot(t)‖ρS(t)⊗ ρB1(t)⊗ · · · ⊗ ρBN

(t)]. (41)

Since we can also write

Icor[psE1...EN
(t)] =

D





∑

s,E1,...,EN

psE1...EN
(t)|s〉〈s|ρmic(E1) . . . ρmic(EN )

∥

∥

∥

∥

∥

∑

s

ps(t)|s〉〈s|
∑

E1

pE1(t)ρmic(E1) · · ·
∑

EN

pEN
(t)ρmic(EN )

]

,

(42)

we can confirm Icor[ρtot(t)] − Icor[psE1...EN
(t)] ≥ 0 similar to Eq. (24). However, in contrast to the case of a single

heat bath, we can no longer expect this contribution to be small as the different baths can become correlated. This is
especially true outside the weak coupling case. Therefore, in the case of multiple baths we expect that there are two
major contributions to the entropy production. In any case, ∆Sobs ≥ 0 is ensured.
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Furthermore, following the same procedure as above, we can confirm in the weak coupling case that ∆SEν

obs =
βν∆EBν

. In addition, we expect in the weak coupling limit that Icor[ρtot(t)] & Icor[psE1...EN
(t)] ≈

∑

ν I[psEν
(t)], i.e.,

each bath acts like a separate bath entering independently the master equation describing the system [6, 7, 42].3 Hence,
we can write ∆Sobs(t) ≈ ∆SSh[ps(t)]−

∑

ν βνQν ≥ 0. This provides a microscopic derivation of the phenomenological
second law of nonequilibrium thermodynamics (2).

E. Additional observations

We end this general section with a couple of interesting observations:
Observation 1. The crucial ingredient to prove point (i), positivity of ∆Sobs, is that Eq. (14) vanishes. This is not

only true for a Gibbs state and a small enough measurement width δ. Indeed, Eq. (14) can be zero for many different
initial energy distributions pE(0) as long as the distribution of microstates within a given energy window is very close
to the microcanonical ensemble. The initial state of the bath can even contain quantum coherences between different
energy sectors as those get killed during the initial measurement.
Observation 2. One can also choose different measurements of the bath and positivity of ∆Sobs will still hold as

long as the initial observational entropy of the bath coincides with the von Neumann entropy of the average post
measurement state. In that respect the energy only seems to be an outstanding observable due to its connection to
the first law. To capture the effect of multiple conserved quantities, we can consider additional measurements, e.g.,
of the energy and particle number of the bath in case of a grand-canonical reservoir.
Observation 3. We also do not expect the initial product state assumption to be crucial. An initially correlated

system-bath state lowers the entropy production by at most I[psE(0)], which is typically negligible with respect to
the positive terms appearing in Eq. (26).
Observation 4. Instead of taking into account correlations between the measurement results of the system state and

the bath energy, we could also neglect them in the definition of observational entropy. All the three points (i) to (iii)

would remain valid for the choice S̃obs(t) ≡ SSh[ps(t)]+SEB

obs (t). In particular, we would typically have ∆Sobs ≈ ∆S̃obs.
Observation 5. Finally, we emphasize that none of our results depends on the particular form of the Hamiltonian.

Especially, the system-bath coupling could be time-dependent, HSB = HSB(λt), and even the bath Hamiltonian could
depend on time, HB = HB(λt).

III. THE MICROCANONICAL MASTER EQUATION

In this section we illustrate our general findings in the limit of a weakly coupled, Markovian bath. In contrast to
conventional master equations [5–8], we will derive a master equation describing the evolution of the system state
and the bath energies by using a correlated projection-operator method. Such a master equation was first derived
by Esposito and Gaspard [47] and we repeat a (slightly more generalized) derivation in Appendix A. Here, we will
investigate in detail the analytical and thermodynamic properties of this master equation, which was not done in
Ref. [47]. We will call this approach the ‘microcanonical master equation’ (MME) in the following.
The MME is a Pauli-like rate master equation for the probabilities psE(t) to find the system in state s and the

energy of the bath at E at time t. It reads

∂tpsE(t) =
∑

α,γ

∑

s′

2π

VE
ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′)}

[

VE

VE+ǫs−ǫs′
ps′,E+ǫs−ǫs′ (t)− psE(t)

]

. (43)

Here, the overall timescale of the dynamics is governed by the rate ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′)}. If one assumes

that the system-bath coupling Hamiltonian reads HSB =
∑

α Sα ⊗Bα, where Sα (Bα) are Hermitian system (bath)

operators, then Sss′

α ≡ 〈s|Sα|s′〉 describes the transition matrix elements with respect to the basis |s〉, which is
assumed in this section to be the (non-degenerate) energy eigenbasis of HS . Furthermore, the function fαγ(E,E′) ≡
trB{ΠEBαΠE′Bγ} describes how well the energies in the bath get redistributed. In obeys the useful relations (A6).
We remark that Eq. (43) reduces to Eq. (42) of Ref. [47] in the limit of a single system coupling operator Sα = δα,1S.

Multiple baths can be easily included by summing over ν and adding this superscript to Sα, f and V , but we will
only consider a single heat bath here. As this equation describes the time-evolution of all energies, we will indeed find
out below that the dynamics of this equation are entropy dominated. Furthermore, we remark that driven system

3 A critical discussion of this point can be found in Ref. [46].
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energies can be considered by replacing ǫs by ǫs(λt) provided that the change of energies is slow compared to the
decay of the bath correlation functions.

A. Properties

1. Reduction to the conventional Pauli master equation

As a simple crosscheck we investigate the limit in which our MME reduces to the conventional Pauli master equation
derived within the Born-Markov-secular approximation [8]. Formally, we can write Eq. (43) after summing over E as

∂tps(t) =
∑

E

∑

α,γ

∑

s′

2π

VE
ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′)}

[

VE

VE+ǫs−ǫs′
pE+ǫs−ǫs′ |s

′(t)ps′(t)− pE|s(t)ps(t)

]

. (44)

Here, we have introduced the conditional probability pE|s(t) ≡ psE(t)/ps(t) and we will now assume that this is

approximately given by pE|s(t) ≈ VEe
−βE/ZB for all s and all times t. This simplifies the expression to

∂tps(t) =
2π

ZB

∑

E

∑

α,γ

∑

s′

ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′)}

[

e−β(E+ǫs−ǫs′)ps′(t)− e−βEps(t)
]

. (45)

We now introduce the functions gαγ(ǫs−ǫs′) ≡
∑

E fαγ(E,E+ǫs−ǫs′)
e−βE

ZB
, which obey the symmetries gαγ(ǫs−ǫs′) =

eβ(ǫs−ǫs′)gγα(ǫs′ − ǫs) and g∗αγ(ǫs − ǫs′) = gγα(ǫs − ǫs′). They allows us to write

∂tps(t) = 2π
∑

α,γ

∑

s′

ℜ{Sss′

α Ss′s
γ gαγ(ǫs − ǫs′)}

[

eβ(ǫs′−ǫs)ps′(t)− ps(t)
]

. (46)

This corresponds to the typical Pauli master equation [8] with the rates satisfying local detailed balance, i.e., the rate
to jump from s′ to s is enhanced by a factor eβ(ǫs′−ǫs) compared to the inverse jump rate from s to s′ if ǫs′ > ǫs.

2. Conservation of energy

To confirm conservation of energy, we note that

∑

s,E

∑

α,γ

∑

s′

(ǫs + E)ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′)}

1

VE+ǫs−ǫs′

ps′,E+ǫs−ǫs′ (t)

=
∑

s,E′

∑

α,γ

∑

s′

(ǫs′ + E′)ℜ{Sss′

α Ss′s
γ fαγ(E

′ − ǫs + ǫs′ , E
′)}

1

VE′

ps′E′(t)

=
∑

s,E

∑

α,γ

∑

s′

(ǫs + E)ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′)}

1

VE
psE(t),

(47)

where we used the symmetry relation (A6) and made use of the freedom to relabel indices within the summation.
Equation (47) holds for any fixed time and even in presence of driving when ǫs = ǫs(λt). In this case one confirms
that

d

dt
[∆ES(t) + ∆EB(t)] ≡

d

dt

∑

s,E

[ǫs(λt) + E]psE(t) =
∑

s

ǫ̇s(λt)ps(t) ≡ Ẇ . (48)

This is the first law of thermodynamics in presence of driving.
Interestingly, for an undriven system Eq. (47) even implies that

d

dt
〈f(ǫs + E)〉 ≡

d

dt

∑

s,E

f(ǫs + E)psE(t) = 0 (49)

for an arbitrary function f(Etot) of the total energy Etot = ǫs + E. We can call this strict energy conservation. It
essentially implies that there is only one random variable in the problem (and not the two ǫs and E) because the
distribution for Etot remains fixed for all times. This conclusion holds, however, only in absence of driving.
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3. Steady state of the Pauli MME

We here consider the case where ǫs is held fixed in time (i.e., λ̇t = 0) and we ask for which state p̄sE the Pauli
MME (43) evaluates to zero. We call p̄sE a steady state in this case. One point we can immediately recognize from
Eq. (43) is that every state p̄sE which fulfills

VE

VE+ǫs−ǫs′

=
p̄(s, E)

p̄(s′, E + ǫs − ǫs′)
(50)

is a steady state. However, due to the fact that the energy is strictly conserved, there are infinitely many possible
steady states; indeed even infinitely many for every initial energy 〈ǫs + E〉(0) = E0 depending on how the probabilities
are initially distributed. For instance, one possible steady state is the overall Gibbs state

p̄sE =
e−βǫs

ZS

VEe
−βE

ZB
≡ πsE , (51)

where β must be fixed through E0 = −∂β ln(ZSZB).
On the other hand, imagine that we start with a definite initial condition such as psE(t = 0) = δs,0δE,E0 and we

assume that the energy eigenvalues are ordered according to ǫn > · · · > ǫ1 > ǫ0 ≡ 0. Then, the dynamics are restricted
to the following states with energies (ǫs, E):

(0, E0), (ǫ1, E0 − ǫ1), . . . , (ǫn−1, E0 − ǫn−1), (ǫn, E0 − ǫn). (52)

Note that the dynamics is not restricted to jumps between nearest neighbours as one might be tempted to think.4

The ratio of the rates to jump from one state to another are

rate[(ǫs, E0 − ǫs) → (ǫs′ , E0 − ǫs′)]

rate[(ǫs′ , E0 − ǫs′) → (ǫs, E0 − ǫs)]
=

VE0−ǫs′

VE0−ǫs

, (53)

which can be interpreted as a purely entropic factor. Thus, the dynamics of the MME are entropy dominated.
Typically, one expects that VE′ > VE if E′ > E. Then, the system tends to prefer low energies in order to increase the
entropy of the environment. A particularly interesting case arises if the bath behaves like an ideal heat bath. Using
Boltzmann’s entropy formula, we infer that VE = eSB(E)/kB where SB(E) is the entropy of the bath at energy E.
Now, the assumption of an ideal heat bath enters by invoking the standard definition of temperature, T−1 = S′

B(E),

which allows us to derive
VE0−ǫ

s′

VE0−ǫs
= eβ(ǫs−ǫs′). This implies that the ratio of the rates (53) fulfills the conventional

local detailed balance relation. One steady state of the MME with initial condition psE(t = 0) = δs,0δE,E0 is then
given by

p̄sE =

{

e−βǫs

ZS

1
n+1 if E = E0 − ǫs

0 otherwise
(54)

That is to say, the system equilbrated to the canonical ensemble with the temperature imposed by the initial energy of
the bath which becomes equally distributed over the available phase space. This is nothing else than the equivalence
of ensembles, i.e., the reduced state of a weakly coupled subsystem is a canonical distribution if the entire system has
a fixed energy E0. Note that the above state indeed fulfills

∑

s,E(ǫs + E)p̄sE = E0.

B. Entropy production and observational entropy

Conventionally, the entropy production for the Pauli master equation (46) can be expressed as

˙̃Σ(t) =
d

dt
SSh[ps(t)]− βQ̇(t) = −

∂

∂t

∣

∣

∣

∣

λt

D[ps(t)‖πs(λt)] ≥ 0, (55)

where πs(λt) = e−βǫs(λt)/ZS(λt) is the instantaneous canonical equilibrium state of the system at time t. The
derivative in Eq. (55) is evaluated with respect to a fixed λt and positivity of the entropy production follows from

4 The precise topology of the network depends strongly on the prefactor ℜ{Sss′

α Ss′s
γ fαγ(E,E + ǫs − ǫs′ )}.
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the two facts that the dynamics are Markovian and that πs(λt) is an instantaneous steady state of the dynamics, see,

e.g., Refs. [6, 8, 26]. Finally, Q̇(t) =
∑

s ǫs(λt)∂tps(t) is the heat flow into the system.
Similarly, also for the MME we can derive an always positive entropy production rate by considering

Σ̇(t) ≡ −
∂

∂t

∣

∣

∣

∣

λt

D[psE(t)‖p̄sE(λt)] ≥ 0, (56)

where p̄sE(λt) is any admissible steady state of the Pauli MME (independent of the initial condition), which is allowed
to depend parametrically on time through λt. As we have a multitude of possible steady states, see Sec. III A 3, there
are many different possible choices, each leading to a different positive ‘entropy production’ rate. The choice, which
leads to the desired final result, turns out be the Gibbs state from Eq. (51), where ǫs = ǫs(λt) is allowed to be
time-dependent. Indeed, upon integration of Eq. (56) we have

Σ(t) =

∫ t

0

ds

(

−
d

ds
+ λ̇s

∂

∂λs

)

D[psE(s)‖πsE(λs)]

= −D[psE(t)‖πsE(λt)] +D[psE(0)‖πsE(λ0)]−

∫ t

0

dsλ̇s
∂

∂λs

∑

s,E

psE(s) lnπsE(λs),

(57)

where we used the chain rule d
dt = ∂

∂t

∣

∣

λt
+ λ̇t

∂
∂λt

. The particular form of πsE(λt) reveals after some straightforward

manipulations that

Σ(t) =−
∑

s,E

psE(t) ln
psE(t)

VE
+
∑

s,E

psE(0) ln
psE(0)

VE

+ β
∑

s,E

{

−[ǫs(λt) + E]psE(t) + [ǫs(λ0) + E]psE(0) +

∫ t

0

dsǫs(λs)psE(s)

}

= ∆Sobs.

(58)

Here, for the final step we used the first law (48). Thus, we have confirmed that Σ(t) = ∆Sobs ≥ 0 also follows directly
from the Pauli MME.
Finally, we compare Σ(t) with Σ̃(t) obtained by integrating Eq. (55). First, we use that we can express the heat

flow within the MME approach as

− βQ(t) = β
∑

E

E[pE(t)− pE(0)] =
∑

E

[pE(t)− pE(0)] lnVE +∆SSh[pE(t)] +D[pE(t)‖πE ], (59)

if we assume that pE(0) = πE . If the initial state psE(0) = ps(0)pE(0) is furthermore decorrelated, we can confirm
that

Σ(t)− Σ̃(t) = −I[psE(t)]−D[pE(t)‖πE ] ≤ 0. (60)

This result is in direct analogy to our general finding (32). Thus, we have re-derived all our general findings within
the particularly imporant limit of a system weakly coupled to a Markovian bath. Notice that we could even derive
a stronger statement in that limit, namely that the rate of entropy production (56) is positive. This is usually not
the case within the general setup of Sec. II. Conditions which ensure the positivity of the entropy production rate
d
dtSobs(t) are missing; within the standard approach reviewed in Sec. IB answers were partially found in Refs. [26, 48].

IV. CONCLUSIONS

We have put forward a novel approach to understand and quantify entropy production in open (quantum) systems
driven arbitrarily far from equilibrium. For this purpose we constructed a suitable notion of entropy for the entire
universe (system plus bath) based on the recently introduced observational entropy from Refs. [1–3]. Then, using
very similar steps as in previous approaches (conservation of global von Neumann entropy, special – but slightly more
general – form of the initial system-bath state, see Sec. II B), we showed that the change in observational entropy
is always positive for arbitrary dynamics, has a clear information-theoretic interpretation, and can be linked to the
standard expression (2) in the limit of weak system-bath coupling. Therefore, our novel notion fulfills the three
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minimum requirements (i) to (iii), but – moreover and most importantly – it fulfills them expressed as a change
in a thermodynamically meaningful definition of global entropy. Thus, we were able to microscopically derive the
statement that entropy production measures the change in thermodynamic entropy of the universe, which is always

positive.

Quite interestingly, in the conventionally considered weak coupling limit we showed that the quantitative difference
between our and the former approach is negligible. This reassures the consistency of both, our and the former approach.
Outside the weak coupling regime, interesting difference could appear. As we have also stated the condition which
needs to be fulfilled to test this theory experimentally [Eq. (19)], we have the hope that it will be possible to measure
the global entropy production in the future, for instance, in cold atoms [49] or in electronic nanostructures coupled
to mesoscopic heat baths [50].

Finally, we believe that our results provide strong evidence that observational entropy as advertised in Refs. [1–3]
provides a good candidate for thermodynamic entropy of isolated out-of-equilibrium systems.
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where LI(t)ρ ≡ −i[HSB, ρ]. As our projection superoperator we choose

Pρ =
∑

E

trB{ΠEρ} ⊗ ρmic(E). (A2)

Below, we will denote ρS(E, t) ≡ trB{Pρ(t)} = trB{ΠEρ}. We remark that the validity of Eq. (A1) is only ensured
if (1 − P)ρ(0) = 0. Furthermore, we assume that tr{Bαρmic(E)} = 0 for all α and ν. The latter step can be done
without loss of generality [47].
Using ΠEΠE′ = δE,E′ΠE , the trace over the bath degrees of freedom of Eq. (A1) yields

∑

E

∂tρ̃S(E, t) =−
∑

E

∑

α,γ

∫ t

0

ds
[

〈Bα(t)Bγ(s)〉ESα(t)Sγ(s)ρ̃S(E, t) + 〈Bγ(s)Bα(t)〉E ρ̃S(E, t)Sγ(s)Sα(t)
]

+
∑

E,E′

∑

α,γ

∫ t

0

ds
[

〈Bγ(s)ΠEBα(t)〉E′
Sα(t)ρ̃S(E

′, t)Sγ(s) + 〈Bα(t)ΠEBγ(s)〉E′
Sγ(s)ρ̃S(E

′, t)Sα(t)
]

.

(A3)

Here, we defined the microcanonical average 〈. . .〉E ≡ trB{. . . ρmic(E)}. To obtain an equation for ρS(E, t), we drop
the sum over E, which appears on all sides. Then, after coming back to the Schrödinger picture and after a change
of integration variables τ = t− s, we are left with

∂tρS(E, t) =− i[HS , ρS(E, t)]−
∑

α,γ

∫ t

0

dτ
[

〈Bα(τ)Bγ〉ESαSγ(−τ)ρS(E, t) + 〈Bγ(−τ)Bα)〉EρS(E, t)Sγ(−τ)Sα

]

+
∑

E′

∑

α,γ

∫ t

0

dτ
[

〈Bγ(−τ)ΠEBα〉E′SαρS(E
′, t)Sγ(−τ) + 〈Bα(τ)ΠEBγ〉E′Sγ(−τ)ρS(E

′, t)Sα

]

.

(A4)

This is the microcanonical Redfield master equation, which only relies on the Born and weak-coupling approximation.
As such, it is still quite general, but hard to deal with in practise and theory.
We next take a look at the correlation functions. Denoting the energy of a single bath eigenstate by Ei = E + δi,

we obtain and approximate

〈Bα(τ)Bγ〉 =
∑

E′

ei(E−E′)τ

VE

∑

Ei∈(E−δ,E]

∑

E′

i
∈(E′−δ,E′]

trB{ΠEi,0BαΠE′

i
,0|Bγ}e

i(δi−δi′ )τ

≈
∑

E′

ei(E−E′)τ

VE
trB{ΠEBαΠE′Bγ} ≡

∑

E′

ei(E−E′)τ

VE
fαγ(E,E′).

(A5)

This approximation is similar but not identical to the one of Sec. II B. We expect it to be valid in the limit where δ
is small compared to differences in the eigenspectrum of HS and if the bath correlation functions are peaked around
τ = 0, i.e., in the limit typically associated with Markovianity. For later purposes we also note the symmetries

fαγ(E,E′) = fγα(E
′, E), f∗

αγ(E,E′) = fγα(E,E′) ∈ C. (A6)

In this Markovian limit we then send the integration limit t to infinity and we are left with

∂tρS(E, t) =− i[HS , ρS(E, t)]

−
∑

E′

∑

α,γ

∑

s,s′

Sss′

γ

∫ ∞

0

dτei(E−E′−ǫs+ǫs′)τfαγ(E,E′)

{

1

VE
Sα|s〉〈s

′|ρS(E, t)−
1

VE′

SαρS(E
′, t)|s〉〈s′|

}

−
∑

E′

∑

α,γ

∑

s,s′

Sss′

γ

∫ ∞

0

dτei(E
′−E−ǫs+ǫs′)τfγα(E,E′)

{

1

VE
ρS(E, t)|s〉〈s′|Sα −

1

VE′

|s〉〈s′|ρS(E
′, t)Sα

}

,

(A7)

where we decomposed Sγ(τ) =
∑

s,s′ S
ss′

γ ei(ǫs−ǫs′)τ |s〉〈s′| in the (assumed to be non-degenerate) energy eigenbasis of

HS . Next, we use
∫∞

0
dteixt = πδ(x), where we neglected any imaginary (Lamb shift) contributions. This allows us
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to write

∂tρS(E, t) =− i[HS , ρS(E, t)]

−
∑

α,γ

∑

s,s′

πSss′

γ

VE
fαγ(E,E − ǫs + ǫs′)

{

Sα|s〉〈s
′|ρS(E, t)−

VE

VE−ǫs+ǫs′

SαρS(E − ǫs + ǫs′ , t)|s〉〈s
′|

}

−
∑

α,γ

∑

s,s′

πSss′

γ

VE
fγα(E,E + ǫs − ǫs′)

{

ρS(E, t)|s〉〈s′|Sα −
VE

VE+ǫs−ǫs′

|s〉〈s′|ρS(E + ǫs − ǫs′ , t)Sα

}

.

(A8)

Finally, we apply the secular approximation assuming also that the differences in the energy spectrum of HS are
non-degenerate. This amounts to replacing

∑

s,s′

Sss′

γ Sα|s〉〈s
′|ρ 7→

∑

s,s′

Sss′

γ Ss′s
α |s′〉〈s′|ρ,

∑

s,s′

Sss′

γ Sαρ|s〉〈s
′| 7→

∑

s,s′

Sss′

γ Ss′s
α |s′〉〈s|ρ|s〉〈s′|,

∑

s,s′

Sss′

γ ρ|s〉〈s′|Sα 7→
∑

s,s′

Sss′

γ Ss′s
α ρ|s〉〈s|,

∑

s,s′

Sss′

γ |s〉〈s′|ρSα 7→
∑

s,s′

Sss′

γ Ss′s
α |s〉〈s′|ρ|s′〉〈s|.

(A9)

Hence, we end up with the microcanonical Born-Markov secular master equation:

∂tρS(E, t) =− i[HS, ρS(E, t)]

−
∑

α,γ

∑

s,s′

πSss′

γ Ss′s
α

VE
fαγ(E,E − ǫs + ǫs′)

{

|s′〉〈s′|ρS(E, t)−
VE

VE−ǫs+ǫs′

|s′〉〈s|ρS(E − ǫs + ǫs′ , t)|s〉〈s
′|

}

−
∑

α,γ

∑

s,s′

πSss′

γ Ss′s
α

VE
fγα(E,E + ǫs − ǫs′)

{

ρS(E, t)|s〉〈s| −
VE

VE+ǫs−ǫs′
|s〉〈s′|ρS(E + ǫs − ǫs′ , t)|s

′〉〈s|

}

.

(A10)

It is well-known that all quantum coherences exponentially die out with time and that the dynamics of this MME is
well-captured by a Pauli-like master equation. Defining psE(t) ≡ 〈s|ρS(E, t)|s〉, we end up with the Pauli MME (43)
as stated in the main text.
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