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The canonical Evans–Majumdar model for diffusion with stochastic resetting to the origin assumes that reset-
ting takes zero time: upon resetting the diffusing particle is teleported back to the origin to start its motion anew.
However, in reality getting from one place to another takes a finite amount of time which must be accounted
for as diffusion with resetting already serves as a model for a myriad of processes in physics and beyond. Here
we consider a situation where upon resetting the diffusing particle returns to the origin at a finite (rather than
infinite) speed. This creates a coupling between the particle’s random position at the moment of resetting and
its return time, and further gives rise to a non-trivial cross-talk between two separate phases of motion: the
diffusive phase and the return phase. We show that each of these phases relaxes to the stead-state in a unique
manner; and while this could have also rendered the total relaxation dynamics extremely non-trivial our analysis
surprisingly reveals otherwise. Indeed, the time-dependent distribution describing the particle’s position in our
model is completely invariant to the speed of return. Thus, whether returns are slow or fast, we always recover
the result originally obtained for diffusion with instantaneous returns to the origin.

I. INTRODUCTION

Diffusion with stochastic resetting has drawn considerable
attention in recent times due to its rich non-equilibrium prop-
erties and various applications to first-passage theory. Con-
sider a diffusive particle that, at random moments in time,
is stopped and instantaneously returned to its initial position
[1, 2]. Recent studies have shown that such a procedure can
have dramatic consequences on the underlying process. For
example, in contrast to free diffusion, the resetting system at-
tains a non-equilibrium steady state at long times [1–4]; and
is moreover characterized by non-trivial relaxation dynamics.
The propagator has an inner core region near the resetting
point which relaxes to the steady-state while the outer region
continues to evolve with time; The border separating the two
regions grows with time according to a power law [5].

The simple model of diffusion with stochastic resetting has
been extended and generalized to cover: diffusion in the pres-
ence of a potential [6–8], in a domain [9–12], and arbitrary
dimensions [13]; diffusion in the presence of non-exponential
resetting time distributions e.g., deterministic [14], intermit-
tent [4], non-Markovian [15], non-stationary [16], with gen-
eral time dependent resetting rates [17], as well as other pro-
tocols [18]; and diffusion in the presence of interactions [19–
21]. The effect of resetting on random walks [22, 23], contin-
uous time random walks [24–26], Lévy flights [27, 28], and
other forms of stochastic motion [29–33], has also been stud-
ied.

One of the most salient effects of resetting on a diffusing
particle is that it renders its mean first-passage time to a tar-
get finite [1, 2]. The observation that resetting can also expe-
dite the completion of other stochastic processes has thereafter
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FIG. 1. An illustration of diffusion with stochastic resetting and con-
stant speed returns to origin. The dynamics consists of two modes:
(i) diffusion (blue), wherein the particle moves diffusively; and (ii)
return (orange), wherein upon resetting the particle returns to the ori-
gin at a constant speed. Here we study the steady-state and relaxation
dynamics of the probability densities ρD and ρR which govern the
diffusive and return phases respectively. We find that the steady-
state and relaxation dynamics of the overall density ρ = ρD +ρR is
completely invariant to the speed at which the particle returns to the
origin.

opened an active research front focused on first-passage under
restart [34–38] with immediate applications to physical chem-
istry and biological physics [39–46]. The effects of generic
resetting protocols on arbitrary first-passage processes were
characterized [35], sharp (deterministic) restart was proven to
be a winning restart strategy which cannot be beaten in terms
of mean first-passage time minimization [35], and additional
universalities associated with first-passage under restart were
also found [34, 37, 47].

The basic model of diffusion under resetting and most of
its variants considered resetting to be instantaneous i.e., upon
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resetting the particle is stopped and instantaneously returned
to its initial position. However, in reality it is clear that a par-
ticle cannot return (or be returned) to the origin in zero time.
Several attempts were then made to address this issue e.g., by
incorporating an overhead time (refractory period) that fol-
lows each resetting event [8, 30, 39, 40, 48]; but in all these
attempts it was assumed that there is no direct coupling be-
tween the overhead time and the position of the particle at
the resetting moment—which is clearly non-physical since
returning from afar usually takes longer. To address this is-
sue, we have recently introduced a comprehensive theory for
first-passage under space-time coupled resetting, a.k.a, home-
range search, which does not make any assumptions on the
underlying stochastic motion and is furthermore suited to treat
generic return and home-stay strategies [49]. In this comple-
mentary study, we set aside first-passage questions and focus
on the relaxation and steady-state properties of simple diffu-
sion with stochastic resetting and constant speed returns to the
origin (Fig. 1). As we will shortly demonstrate, this intriguing
case study exhibits a surprising invariance with respect to the
return speed.

II. DIFFUSION WITH STOCHASTIC RESETTING AND
CONSTANT SPEED RETURNS

Consider a Brownian particle which starts its motion at the
origin at time zero and performs simple diffusion. The motion
of such a particle is described by the diffusion equation

∂tρ(x, t) = D∂
2
x ρ(x, t), (1)

where D is the diffusion constant and ρ(x, t) is the propagator,
i.e., the probability density to find the particle at position x at
time t. To introduce stochastic resetting with instantaneous
returns into the model imagine that at any small time interval
∆t the particle’s motion can be reset with probability r∆t. If
such resetting happens, the particle will teleport back to the
origin and start its motion anew. The corresponding master
equation then reads [1, 2]

∂tρ(x, t) = D∂
2
x ρ(x, t)− rρ(x, t)+ rδ (x) . (2)

In this section, we will construct and solve a set of master
equations, akin to Eq. (2), that describe diffusion with stochas-
tic resetting and non-instantaneous returns. In particular, we
will consider a situation where returns are conducted at a con-
stant speed vr which means that the time taken to return from
position x is simply |x|/vr.

Similar to the above, we will once again denote the prop-
agator by ρ(x, t), but we will now discriminate between two
different phases of motion: (i) the diffusive phase in which the
particle performs Brownian motion; and (ii) the return phase
in which the particle returns to its initial position. Our propa-
gator thus has two contributions, one from each phase, and it
can be written as

ρ(x, t) = ρD(x, t)+ρR(x, t) , (3)

where ρD(x, t) and ρR(x, t) correspond to the probability den-
sities of finding the particle in the diffusion and return phases

respectively. It is clear that ρD(x, t) and ρR(x, t) are not indi-
vidually normalized as their sum is the total probability den-
sity ρ(x, t) which is normalized to one. Evidently the proba-
bilities to find the particle in the diffusion and return phases
are given by

pD(t)≡ Prob(diffusion) =
∞∫
−∞

dxρD(x, t),

pR(t)≡ Prob(return) =
∞∫
−∞

dxρR(x, t),

(4)

where pD(t)+ pR(t) = 1 at all times.
We now set to find the propagator ρ(x, t) which describes

our process. We start by considering the time evolution of the
position distribution in the return phase ρR(x, t). To this end,
we recall that particles in the return phase move at a speed
vr in the direction of the origin, i.e., to the left if x > 0 and
to the right if x < 0. The probability flux at x due to such
particles is thus ∂x[sgn(x)vrρR(x, t)] where sgn(x) stands for
the signum function which takes the value: +1 if x > 0, −1 if
x < 0, and zero otherwise. In addition, we note that particles
enter the return phase from the diffusion phase at a rate r.
The probability flux at x due to such particles is thus rρD(x, t).
Summing over the two possibilities above gives

∂tρR(x, t) = ∂x[sgn(x)vrρR(x, t)]+ rρD(x, t)

− 2δ (x)vrρR(x, t), (5)

where the last term on the right hand side serves as a sink and
accounts for the fact that returning particles switch to diffu-
sive mode upon arrival to the origin. Finally, we observe that
taking the spatial derivative on the right side of Eq. (5) cancels
the last term and leaves us with

∂tρR(x, t) = sgn(x)vr∂xρR(x, t)+ rρD(x, t) . (6)

We now turn our attention to the time evolution of the po-
sition distribution in the diffusive phase ρD(x, t). Proceeding
as before, we observe that a diffusing particle will be found at
position x at time t +∆t if at time t it was positioned at x−∆x
and provided that in the following time interval ∆t it diffused
an increment ∆x. Noting that the probability to continue dif-
fusing within this latter time interval is (1− r∆t) and setting
∆x =

√
2D∆tξ to be the corresponding infinitesimal displace-

ment (ξ is a standard normal random variable), we have

ρD(x, t +∆t) = (1− r∆t)〈ρD(x−∆x, t)〉

+ δ (x)
vr∆t∫
−vr∆t

dz ρR(z, t)+O(∆t2), (7)

where the average in the first term is taken with respect to the
random variable ξ , and the second term acts as a source which
accounts for the inflow of diffusing particles at the origin due
to particles returning from the domain [−vr∆t,vr∆t] and con-
sequently switching to diffusive mode. Taking the ∆t → 0
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limit, the corresponding continuous-time evolution equation
reads

∂tρD(x, t) = D∂
2
x ρD(x, t)− rρD(x, t)+2vrρR(0, t)δ (x) , (8)

where we assume, without much loss of generality, that
ρR(x, t) is also continuous around x = 0.

Equations (6) and (8) constitute a set of two coupled partial
differential equations that can be solved in the Laplace space.
Following Laplace transform, these equations read

sgn(x)vr∂xρ̃R(x,s)− sρ̃R(x,s)+ rρ̃D(x,s) = 0 , (9)

D∂
2
x ρ̃D(x,s)− (r+ s)ρ̃D(x,s)+ [2vrρ̃R(0,s)+1]δ (x) = 0 , (10)

where we have defined ρ̃R(x,s) =
∫

∞

0 dt e−stρR(x, t),
ρ̃D(x,s) =

∫
∞

0 dt e−stρD(x, t), and further assumed that the
particle has started in the diffusion phase at time zero i.e.,
ρD(x,0) = δ (x). Solving Eq. (10) with the natural boundary
conditions lim

x→±∞
ρ̃D(x,s) = 0, we obtain

ρ̃D(x,s) = A exp

[
−
√

r+ s
D
|x|

]
, (11)

where

A =
2vrρ̃R(0,s)+1√

4D(r+ s)
. (12)

Substituting Eq. (11) into Eq. (9), we obtain

ρ̃R(x,s) =
Ar

s+
√

r+s
D vr

exp

[
−
√

r+ s
D
|x|

]
. (13)

To find an explicit expression for the constant A in Eq. (12),
we first need to compute ρ̃R(0,s). This is done by setting
x = 0 in Eq. (13) and utilizing Eq. (12) to solve for ρ̃R(0,s).
This gives

ρ̃R(0,s) =
r
2s

1
vr +

√
D(r+ s)

. (14)

Substituting Eq. (14) into the expression for A in Eq. (12)
gives

A =
1
2s

s+ vr
√
(r+ s)/D

vr +
√

D(r+ s)
. (15)

Substituting Eq. (15) into Eq. (11) and Eq. (13), we conclude
that

ρ̃R(x,s) =
1
2s

r

vr +
√

D(r+ s)
e−
√

(r+s)/D |x|,

ρ̃D(x,s) =
1
2s

s+ vr
√
(r+ s)/D

vr +
√

D(r+ s)
e−
√

(r+s)/D |x| .

(16)

III. DIFFUSION WITH STOCHASTIC RESETTING IS
INVARIANT TO SPEED OF RETURN TO ORIGIN

It is clear from Eq. (16) that the probability densities de-
scribing the diffusing and returning phases depend on the re-
turn speed vr, as expected. It is, however, particularly striking
to observe that the total density is given by

ρ̃(x,s) = ρ̃R(x,s)+ ρ̃D(x,s) =
1
2s

√
r+ s

D
e−
√

(r+s)/D|x|, (17)

which means that it is completely invariant to the return speed.
Moreover, since the model of diffusion with stochastic reset-
ting and instantaneous returns can be obtained from our model
by taking the limit vr → ∞, the density in Eq. (17) must be
identical to that which was obtained in [1, 2] for this limiting
case.

To see the invariance result more directly recall that the
propagator of diffusion with stochastic resetting and instan-
taneous returns can be linked to that of simple diffusion by
taking advantage of a renewal approach [1, 2]. In Laplace
space, this connection reads

ρ̃∞(x,s) =
r+ s

s
ρ̃SD(x,r+ s) (18)

where ρ̃∞(x,s) and ρ̃SD(x,s) are the Laplace space solu-
tions of Eq. (2) (our model in the vr → ∞ limit) and
Eq. (1) (simple diffusion) respectively. Since the propa-
gator of simple diffusion is Gaussian, we have ρ̃SD(x,s) =∫

∞

0 dt e−ste−x2/4Dt/
√

4πDt = e−
√

s/D|x|/
√

(4Ds), which by
use of Eq. (18) leads to

ρ̃∞(x,s) =
1
2s

√
r+ s

D
e−
√

(r+s)/D|x| . (19)

The right hand side of Eq. (19) is identical to the right hand
side of Eq. (17), which means that the propagator of diffusion
with stochastic resetting and instantaneous returns is identi-
cal to the propagator of diffusion with stochastic resetting and
constant velocity returns. Thus, for all times and irrespective
of the return velocity we have

ρ(x, t) = ρ∞(x, t). (20)

To delve deeper and explicitly show this invariance and ad-
ditional properties of our processes, we now invert Eqs. (16)
and (17) to present real time solutions for ρD(x, t), ρR(x, t),
and ρ(x, t).

IV. TRANSIENT AND STEADY-STATE SOLUTIONS

Inverting Eq. (17), we compute the propagator governing
diffusion with stochastic resetting and constant speed returns
and find that it is given by

ρ(x, t) = L −1

[
1
2s

√
r+ s

D
e−
√

(r+s)/D|x|

]
= f (x)+b(x, t) , (21)
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where f (x) = α0
2 e−α0|x| with α0 =

√ r
D standing for the in-

verse mean distance traveled by the particle while it is in the
diffusive phase [1], and with

b(x, t) = e−rt exp
[
− x2

4Dt

]
√

4πDt
− α0

2
cosh

[
α0x
]

+
α0

4
exp
[
α0x
]

erf
[

x+2Dtα0√
4Dt

]
+

α0

4
exp
[
−α0x

]
erf
[
−x+2Dtα0√

4Dt

]
. (22)

The density of the returning phase is given by Eq. (16)
which can be inverted using the method of complex inversion.
This gives the density of the returning particles at all times in
an integral form which can be easily computed numerically

ρR(x, t) = L −1

[
1
2s

r

vr +
√

D(r+ s)
e−
√

(r+s)/D|x|

]

=
∫ t

0
dt ′ g1(t− t ′) g2(t ′) , (23)

where

g1(t) =
re−rt
√

4πDt
+

√
r3

4D
erf
(√

rt
)
, (24)

and

g2(t) = e−rt+v2
r t/D+vr |x|/D erfc

(
vr
√

t√
D

+
|x|√
4Dt

)
. (25)

Since ρD(x, t) = ρ(x, t)− ρR(x, t), the density of the diffus-
ing particles can then be obtained by subtracting the result in
Eq. (23) from the result in Eq. (21).

An exact, real-time, formula can also be given for the prob-
ability to be in the return phase pR(t); and hence for the prob-
ability pD(t) = 1− pR(t) to be in the diffusive phase. Integrat-
ing Eq. (13) over the space variable and inverting the Laplace
transform we find

pR(t) =
r

r0− r

(
e(r0−r)terfc

(√
r0t
)
+

√
r0

r
erf
(√

rt
)
−1
)
,

(26)
where r0 = v2

r/D. Clearly, the relaxation is non-exponential.
The results in Eqs. (21)-(26) are successfully corroborated
against numerical simulations in Fig. 2.

The densities of the diffusive and returning phases in the
steady state can be computed by taking t → ∞ limit in their
respective time-dependent expressions. But they can also eas-
ily be computed from Eq. (16) using the final value theorem.
A simple exercise then gives

ρD(x) = lim
s→0

s ρ̃D(x,s) =
α0 pD

2
e−α0|x| (27)

ρR(x) = lim
s→0

s ρ̃R(x,s) =
α0 pR

2
e−α0|x| (28)

where we recall that α0 =
√ r

D , and where pD = 1/r
1/r+α

−1
0 /vr

,

and pR = 1− pD are the steady-state probabilities to find the
particle in the diffusive and return phase respectively.
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FIG. 2. We simulated diffusion with stochastic resetting and com-
pared the results with the analytical predictions of Eqs. (21)-(26).
Top and middle: Densities at different times with vr = 0.2 (top) and
vr = 1 (middle). Histograms represent results of computer simula-
tions, dashed lines the corresponding analytical predictions. Bottom:
The probability of being in the return phase as a function of time for
different values of vr. Results obtained via computer simulations are
represented by dots. In all cases 106 trajectories were generated with
r = D = 1 and ∆t = 10−3.

The results for the steady-state probabilities to find the par-
ticle in the different phases can be understood by observing
that the particle spends r−1 units of time on average in the dif-
fusive phase and α

−1
0 /vr units of time on average in the return

phase. Note, however, that while these probabilities depend
on the return velocity vr they act only as scaling factors for
the same Laplace, ∼ e−α0|x|, distribution. Thus, while the re-
laxation dynamics governing the diffusive and return phases
are different, their steady-states are identical (up to a scaling
factor). Moreover, in the steady state we have

ρ(x) = ρD(x)+ρR(x) =
α0

2
e−α0|x| (29)

which, as expected, is identical to the expression found for
the case of stochastic resetting with instantaneous returns [1].
This nicely demonstrates that the Laplace distribution governs
all the steady-state distributions in our problem.

V. CONCLUSION

In this paper we studied diffusion with stochastic resetting.
In contrast to previous models where resetting is followed by
an instantaneous return to the origin, here we considered a
more realistic scenario in which the particle returns to the
origin at a constant speed. Surprisingly, we found that this
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FIG. 3. Illustration of the invariance properties of diffusion with stochastic resetting and constant speed returns to origin. The probability densi-
ties describing the diffusive phase ρD(x, t) in blue, and the return phase ρR(x, t) in orange, are plotted for different times t = {0.2,0.4,0.8,∞},
and different return speeds vr = 0.5 (solid lines) and vr = 5.0 (dashed lines). The total density ρ(x, t) = ρD(x, t)+ ρR(x, t) is also plotted
(dashed black). One can observe that while the relaxation of the diffusive and return phases depend on the return speed the relaxation of the
total density does not. Thus, as asserted by Eq. (17), this density remains the same regardless of whether returns are slow or fast. In particular,
as asserted by Eq. (20), this means that the total density behaves exactly as it does when returns are instantaneous (vr → ∞ limit depicted in
solid grey). Another interesting invariance is observed at the steady-state where all densities take on the same Laplace form (up to a scaling
factor) as was shown in Eqs. (27)-(29).

generalization has no effect on the steady-state of the process
and on its relaxation dynamics. Starting from the origin, the
probability to find the particle at position x at time t is the
same regardless of whether returns are slow or fast. Since
instantaneous returns are recovered in the limit of infinitely
high return speeds we find that the probability distribution
in our model is identical to the one describing the original
Evans–Majumdar model for diffusion with stochastic reset-
ting and instantaneous returns. This result is demonstrated in
Fig. 3 using the analytical expressions obtained in section IV.

The finite return speed considered herein gives rise to two
separate phases of motion: the return phase and the diffusive
phase. The overall dynamics of the process is attained by sum-
ming over the two phases, but one could also study the two
phases separately. We did so and found that while each phase
has its own relaxation dynamics, which is furthermore differ-
ent than the one governing the overall dynamics, the steady-
state distribution of the two phases is identical (up to a scaling
factor) and invariant to the return speed. Indeed, while the
relative contribution of the diffusing and returning phases to
the overall probability to find the particle at a given position
strongly depends on the return speed, the steady-states them-
selves are governed by the same Laplace distribution that in
turn also characterizes the steady-state distribution of the en-
tire process. This result is also demonstrated in Fig. 3.

Finally, we report that the invariance properties discovered
here for the special case of diffusion could be traced back
to a more fundamental invariance property which underlies
stochastic processes with space-time coupled resetting. This
is established and elaborately discussed in [50].
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