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Controlling spin-orbit interaction and its effect on superconductivity has been a long-standing problem in
two-dimensional inversion symmetry broken superconductors. An open challenge is to understand the role of
various energy scales in shaping the complex phase diagram in these systems. From a combined experimental
and theoretical study of resistance fluctuations and its higher order statistics, we propose a phase diagram for the
superconducting phase in the magnetic-field–spin orbit interaction energy plane for the quasi-two dimensional
electron gas at the interface of LaAlO3/SrTiO3 heterostructures. The relative variance of resistance fluctuations
increases by few orders of magnitude below the spin-orbit field BSO and a non-Gaussian component to the
fluctuations arises for fields below the upper critical field BC2. Theoretical calculations show that the non-
Gaussian noise predominantly arises due to percolative nature of the superconducting transition. We quantify
the strength and the relative importance of the spin-orbit interaction energy, Zeeman energy and the pairing
potential. Our work highlights the important role played by the interplay between these energy scales in framing
the fascinating phases seen in two-dimensional inversion-symmetry-broken superconductors.

I. INTRODUCTION

Unconventional superconductivity is of great interest both
from theoretical as well as experimental points of view [1, 2].
Anderson’s theorem [3] states that in the presence of both
time-reversal and inversion symmetries one gets even-parity
spin-singlet pairing in superconductors. The absence of ei-
ther one of these symmetries - either through Zeeman effect
(loss of time-reversal symmetry) or spin-orbit interaction (loss
of inversion symmetry) leads to the lifting of spin degener-
acy favoring the formation of odd-parity spin-triplet cooper
pairs [4]. The effect of broken time-reversal symmetry on
parity of cooper pairs is pretty well studied. There are several
examples of superconductors in nature where the presence of
magnetism leads to the appearance of non-trivial pairing - well
known examples being heavy Fermion systems (e.g. CeIn3
[5], CeCoIn5 [6] and UGe2 [7]), iron-pnictides [8], certain
organic superconductors. On the other hand, known exam-
ples of naturally occurring odd-parity pairing induced by spin-
orbit interaction (SOI) are much rarer - the obvious exceptions
being non-centrosymmetric superconductors like CePt3Si [9],
CeIrSi3 [10] and CeRhSi3 [10, 11]. Under certain conditions,
odd-parity pairing can be induced in two-dimensional super-
conductors in the presence of SOI [12, 13].

The quasi-two-dimensional electron gas (q-2DEG) formed
at the interface between (001) oriented SrTiO3 and LaAlO3

(hereafter referred as LaAlO3/SrTiO3) is one such system.
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Two factors lead to the appearance of a large Rashba SOI
in this system: (a) breaking of parity symmetry at the inter-
face, and (b) a large electric field perpendicular to the inter-
face, primarily due to polar catastrophe (and to a lesser ex-
tent due to applied back-gate voltage). It is interesting to note
that Rashba SOI has two notable consequences: (a) it induces
charge inhomogeneity at the interface at sub-micron length
scales [14], and (b) it induces an in-plane field perpendic-
ular to the k-vector of the charge carriers [15]. Both these
factors are expected to have a significant influence on super-
conductivity. Another advantage of this q-2DEG over con-
ventional non-centrosymmetric bulk superconductors is that
both superconducting TC and SOI strength are gate-voltage
tunable [16–18]. A variety of exotic phenomena have been
theoretically predicted to exist as a consequence of the SOI in-
cluding Fulde-Ferrell-Larkin-Ovchinikov-type (FFLO) super-
conductivity coexisting with ferromagnetism [13], exotic su-
perconducting pairing states which are an admixture of spin-
singlet and spin-triplet components [19, 20] and emergent Ma-
jorana quasiparticles [21].

In this paper we present detailed experimental studies of the
effect of SOI on the magnetotransport and spin fluctuations in
high-quality LaAlO3/SrTiO3 heterostructures at temperatures
much below the superconducting TC . Study of second- as
well as higher-order moments of fluctuations of dynamical
variables is a well established tool to probe the presence
of long-range correlations in systems undergoing phase
transitions [22–28]. From magnetotransport measurements
we identify the relevant field scales: upper critical field Bc2
and spin-orbit field BSO, which are gate voltage tunable. We
observe that close to these field scales, resistance fluctuations
and their higher order statistics develop strikingly non-trivial
features. Both from experimental and theoretical data, we
find that the interplay between spin-orbit interaction, pairing
energy and Zeeman energy creates a fascinating phase dia-
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gram very distinct from that usually found for conventional
two-dimensional (2D) superconductors.

II. EXPERIMENTAL DETAILS

Our measurements were performed on samples with 10 unit
cells of LaAlO3 grown by pulsed laser deposition (PLD) on
TiO2 terminated (001) SrTiO3 single crystal substrates. As re-
ceived SrTiO3 substrates were pre-treated with standard buffer
hydrofluoric (NH4F - HF) HF solution [29] in order to achieve
uniform TiO2 termination. The TiO2 termination of the sub-
strate realized with the buffer HF solution etching was con-
firmed from atomic force microscopy measurements. Prior to
deposition the treated substrates were annealed for an hour at
830◦C in oxygen partial pressure of 7.4 x 10−2 mbar. The
purpose of pre-annealing of substrates in oxygen atmosphere
at 830◦C was to remove any moisture and organic contami-
nants from the surface and also to reconstruct the surface so
that pure TiO2 termination is realized. Further, 10 unit cells
LaAlO3 were deposited at 800◦C at an oxygen partial pres-
sure of 1x 10−4 mbar. Growth with the precision of single
unit cell was monitored by the oscillations count using in-
situ RHEED gun. The epitaxial nature of the films was con-
firmed by HRXRD performed on a 20 unit-cell LaAlO3 film
grown under identical conditions on TiO2 terminated SrTiO3

which allowed us to measure the c-axis lattice parameter of
LaAlO3. The thickness of one unit cell from these measure-
ments came out to be 3.75 Å [30]. Ohmic electrical contacts
were achieved by ultrasonically bonding Au wires (25 µm di-
ameter) at the four corners of the device in a van der Pauw ge-
ometry. This technique is known to breakdown the 10 u.c. of
LaAlO3 and provide ohmic contact with the underlying elec-
tron gas [16, 18, 27, 28, 31–33]. All electrical measurements
were performed in a cryogen-free dilution refrigerator over
the temperature range 20–250 mK and magnetic field range
0–16 T. The relative angle between the magnetic field B and
the q-2DEG could be changed by rotating the sample in-situ
the dilution refrigerator and measurements were done with B
applied both parallel (B‖) and perpendicular (B⊥) to the in-
terface. The charge carrier density at the interface was con-
trolled using a back gate voltage Vg with the SrTiO3 acting as
the dielectric material. Measurements were performed over
the range −200 V< Vg <200 V. The interface was found to
be superconducting for all values of Vg > −10 V.

III. RESULTS AND DISCUSSION

We start with the results of magnetoresistance measure-
ments at Vg = 200 V. The superconducting transition tem-
perature TC (defined as the temperature where the zero field
resistance became 40% of its normal state value) was mea-
sured to be about 140 mK. Figure 1(a) presents the normalized
magnetoresistance Rsheet/RNsheet as a function of perpendic-
ular field B⊥ at different temperatures for Vg = 200 V. Here
RNsheet is the zero-field normal-state sheet resistance measured

at T = 300 mK. Fields of the order of 10 mT is enough to
destroy the dissipationless superconducting state. The corre-
sponding plots for B‖ are shown in Fig. 1(b). As expected,
given the quasi-2D nature of the system, the fields required in
this case were at least two-orders of magnitude higher.

In Fig. 1(c) we plot the upper-critical field Bc2 (defined
as the field at which the Rsheet(B) drops to 40 % of RNsheet)
versus T for both B⊥ and B‖. The values of Bc2 have been
normalized by the BCS paramagnetic Pauli limit Bp, defined
as
√

2gµBBp = 3.5kBTC [34, 35]; g being the gyromagnetic
ratio, kB the Boltzmann constant and µB the Bohr magneton.
The dependence of Bc2 on the temperature T for the out-of-
plane is fitted well by the phenomenological 2D Ginzburg-
Landau model [36]

Bc2⊥ =
Φ0

2πξGL(0)2
(1− T/Tc) (1)

where ξGL(0) is the in-plane GL coherence length at T = 0
K, Φ0 = h/2e is the flux quantum. The value of ξGL(0)
extracted from the fit is 55 nm which matches well with
previous reports [16, 37]. From Fig. 1(c) we observe that
Bc2‖ far exceeds the Clogston-Chandrashekhar limit which,
in the weak coupling approximation, is expected to limit
the value of the parallel upper critical field to Bc2‖ ≤ Bp.
This large enhancement of Bc2‖ has been reported previously
in (001) LaAlO3/SrTiO3 hetero-interfaces [16] and has been
postulated to arise from the presence of strong Rashba SOI
which weakens spin paramagnetism by mixing the quasipar-
ticle spin states [38, 39]. Other possible mechanisms like
anisotropic pairing mechanism, strong-coupling superconduc-
tivity or other exotic many-body effects have been considered
and ruled out by previous workers (see for example [16, 40]).

For the case of strong SOI, Bc2‖ is related to the spin-orbit
scattering time through [38]:

τSO = 0.362
~

kBTc

( BP
Bc2‖(0)

)2
(2)

Using this relation yields τSO = 4× 10−13 s for Vg=170 V.
The SOI strength can also be extracted from the measured

low-field magnetoconductance at T > TC . In a two dimen-
sional system with in-plane SOI, in the presence of a perpen-
dicular magnetic field B⊥, the correction to conductance ∆σ
takes the Maekawa-Fukuyama form [41]:

∆σ(B) =
e2

πh

[
Ψ
( B⊥
Bi +BSO

)
+

1

2
√

1− γ2
Ψ
( B⊥

Bi +BSO(1 +
√

1− γ2
)

− 1

2
√

1− γ2
Ψ
( B⊥

Bi +BSO(1−
√

1− γ2
)]
.

(3)

Here Ψ(x) = ln(x)+ψ(0.5+ 1
x ), where ψ is the digamma func-

tion. Bi = ~/(4eDτi) and BSO = ~/(4eDτSO) are in-
elastic and spin-orbit fields respectively (τi and τSO are re-
spectively the inelastic and spin-orbit scattering times), D is
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Figure 1: Normalized sheet resistance versus temperature T as a
function of (a) perpendicular field, B⊥ and (b) parallel magnetic
field, B‖. (c) Upper critical field Bc2 normalized by the Pauli para-
magnetic field Bp as a function of reduced temperature T/TC for
fields applied parallel to the interface (blue filled circles) and per-
pendicular to the interface (red open circles). The gray dotted lines
are fits to Eqn. 1. The measurements were performed at Vg = 200 V.
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Figure 2: (a) Magnetoconductance as a function of B⊥ at different
values of Vg . The scatter points are the measured data points while
the solid lines are fits to the Eqn. 3. (b) Plot of BSO (olive filled
circles) and Bc2‖ (red filled circles) versus Vg . The measurements
were performed at 245 mK.

the diffusion constant and γ is the Zeeman correction γ =
gµBB/4eDBSO (g and µB are the electron g factor and Bohr
magnetron respectively).

The low-field magnetoconductance at T = 245 mK is plot-
ted in Fig. 2(a). From the fits to these curves we extract the
τSO and BSO. The value of τSO extracted from the fits to
the magnetoresistance measured at Vg=170 V is 1.6×10−13 s
which matches closely with the value extracted using Eqn. 2.
The value of τSO, τi and τelas (elastic scattering time) are
shown in Fig. 11 in Appendix. As shown in Fig. 2(b), the
value of BSO increases by almost two orders of magnitude

as Vg is swept from -200 V to 200 V. At low Vg , BSO and
Bc2‖ are comparable (Fig. 2(b)). With increasing Vg , BSO
increases rapidly and becomes significantly larger than Bc2‖.

To probe the effect of spin-orbit interactions on charge car-
rier dynamics in the superconducting state, we studied resis-
tance fluctuations for different magnetic fields at T = 20 mK
(T/TC ≈ 0.1). The measurements were performed using a
standard four-probe ac measurement technique (For details
see Ref. [42]). Briefly, at each value of Vg and B, the de-
vice is biased by a small ac current and the time series of
resistance fluctuations δRsheet(t) is measured for 30 min us-
ing a dual-phase digital lock-in amplifier. The output of the
lock-in amplifier is recorded by a fast data acquisition (DAQ)
card. After extensive digital filtering of δRsheet(t) to remove
line frequency and aliasing-effects, the power spectral density
(PSD) of resistance fluctuations SR(f) was calculated using
the method of Welch Periodogram. The time-series of resis-
tance fluctuations for a few representative values of B‖, mea-
sured at T=20 mK and Vg=200 V, are plotted in Fig. 3(a). The
corresponding PSD are shown in Fig. 3(b). For all values of
Vg and B, the dependence of SR(f) on the frequency f was
found to be of the form SR(f) ∝ 1/fα with α ∼ 0.9 − 1.
SV (f) was always found to depend quadratically on the volt-
age V developed across the channel [see inset of Fig 3(b)] es-
tablishing that the measured noise originated from resistance
fluctuations of the sample.

The PSD of resistance fluctuations was integrated over the
measurement bandwidth (7 mHz-4 Hz) to obtain the relative
variance of resistance fluctuationsR:

R ≡ 〈δR
2
sheet〉

〈R2
sheet〉

=
1

〈R2
sheet〉

∫
SR(f)df (4)

In Fig. 4(a) we show the plots of relative variance of resistance
fluctuationsR as a function of B‖ at a few representative val-
ues of Vg at T = 20 mK. At high B‖, the noise has a very
shallow dependence on the field. Below a certain character-
istic field, which is specific to Vg , the noise increases rapidly
with decreasing B. Normally, one would expect this char-
acteristic field to be the upper critical field, above which su-
perconducting fluctuations are suppressed. However, a closer
inspection of the data reveals that the characteristic field scale
in this case is the spin-orbit field BSO. As the field decreases
below BSO, the noise increases rapidly – growing by over
four orders of magnitude in the narrow magnetic field range
Bc2‖ < B‖ < BSO. In Fig. 4(b) we show a scaling plot of the
noise R(B)/R(BSO) as a function of B/BSO. The data for
all Vg > −10 V collapse onto a single curve showing that in-
deed BSO is the relevant scale governing the B‖ dependence
of the resistance fluctuations in a superconductor with strong
SOI.

To understand the origin of the measured resistance fluc-
tuations, we studied their higher-order statistics. Such stud-
ies have been used extensively to detect the presence of long-
range correlations in systems undergoing magnetic, spin-glass
or superconducting transitions [22–28]. The Central Limit
Theorem states that for uncorrelated random fluctuators, the
fluctuation statistics is Gaussian. As the correlation length
in the system begins to diverge near a critical phase tran-
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sition, the resultant time-dependent fluctuation statistics be-
comes strongly non-Gaussian [22–24, 28]. We computed the
‘second spectrum’ which is the four-point correlation function
of the resistance fluctuations over a chosen frequency octave
(fl, fh) [43, 44]. It is mathematically defined as

Sf1R (f2) =

∫ ∞
0

〈δR2(t)〉〈δR2(t+ τ)〉 cos(2πf2τ)dτ (5)

where f1 is the center-frequency of the chosen octave and f2
the spectral frequency. Physically, Sf1R (f2) represents ‘spec-
tral wandering’ of the PSD with time. To avoid corruption of
the signal by the Gaussian background noise, the second spec-
trum was calculated over the frequency octave 93.75–187.5
mHz, where the sample noise is significantly higher than the
background noise. A convenient way of representing the sec-
ond spectrum is through its normalized form S

(2)
N defined as

S
(2)
N =

∫ fh−fl

0

Sf1R (f2)df2/[

∫ fh

fl

SR(f)df ]2 (6)

For Gaussian fluctuations, S(2)
N = 3. The measured val-

ues of S(2)
N as a function of B‖ is shown in Fig. 5(a).

We see that as the magnetic field is decreased below Bc2‖,
S
(2)
N starts increasing monotonically from its high field value

which was close to 3. This can be appreciated better from
Fig. 5(b) where we plot S(2)

N (B‖)/S
(2)
N (Bc2‖) as a function

of B‖/Bc2‖. The data for all Vg collapse onto a single plot
showing that the relevant field scale for the second spectrum
is Bc2‖. We note that scaling plot S(2)

N (B‖)/S
(2)
N (Bc2‖) re-

mains unchanged if Bc2‖ are defined for other resistance cri-
terion, e.g., Rsheet = 0.7RNsheet and Rsheet = 0.1RNsheet (see
Fig. 6 ). For Vg = −10 V, where the device is in resistive
state over the entire magnetic field range, the relative variance
of resistance fluctuations R is independent of field (Fig. 4)
and S(2)

N ' 3 (Fig. 5) showing that the fluctuations in normal
state in LaAlO3/SrTiO3 are Gaussian.

To summarize our observations so far: (a) for B‖ > BSO,
the resistance fluctuations are almost independent of B‖ and
have a Gaussian distribution, (b) there is a significant range
of field BSO > B‖ > Bc2‖ where the resistance fluctuations
depend strongly on B‖ while remaining Gaussian, and (c) for
B‖ < Bc2‖, the resistance fluctuations are large, have a strong
B‖-dependence and have a non-Gaussian distribution. In the
inset of Fig. 5(b) we summarize the data. One can see that the
magnetic field at which the second spectrum deviates from
the Gaussian value (we call it BNG) closely follows the upper
critical field Bc2‖ while the field at which the noise begins to
shoot up (labeledBN ) tracksBSO. At this point it is profitable
to compare these observations with what is seen for B⊥ for
this q-2DEG superconductor – a representative data taken at
T = 20 mK and Vg = 200 V is plotted in Fig. 4(b) (magenta
open circles). ForB⊥ > Bc2⊥, the noise is field-independent,
small in magnitude and Gaussian. For B⊥ < Bc2⊥, the noise
is non-Gaussian and diverges strongly as the field is reduced
( Fig. 5(b) - dark yellow squares). Notably, in contrast to
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B‖, the divergence of noise and appearance of non-Gaussian
component are concurrent. This has been observed previously
in other 2-dimensional superconductors and has been shown
to arise due to long range correlations between the vortices
near the transition [24, 27, 45–48].

We now discuss the possible origin of the decoupling of
BNG and BN in this system. As shown before [24, 27], it
is correlations between vortices that leads to non-Gaussian
noise in 2D-superconductors. Thus, it is natural that Bc2‖
(the field at which superconductivity is destroyed) and BNG
(the field at which non-Gaussian fluctuations vanish) coincide.
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The measured resistance fluctuations, however, persist beyond
Bc2‖ deep into the normal state, until B‖ ∼ BSO. Below we
present a plausible scenario which explains this. Strong SOI
present in this system ensures that the electronic spins are all
in-plane. As the electronic transport is diffusive, the k-vector
of the charge carriers take random values. Spin-momentum
locking due to SOI causes these charge carriers to feel an ef-
fective in-plane BSO field perpendicular to the k-vector. The
competition of this random BSO with B‖ brings down the in-
plane spin magnetic moment to ∼ (B‖/BSO)µB [4, 49, 50].
At large enough parallel magnetic fields, Zeeman energy en-
sures that all the spins are aligned along B‖. As B‖ is re-
duced to the order of BSO there begins to appear spins of op-

0.045 0.09 0.1
0.0

0.2

0.4

0.6

0.8

1.0

B || (
T)

εSOI (meV)

Bc2||

BSO

Figure 7: Schematic phase diagram showing the spin orientations at
the LaAlO3/SrTiO3 interface. Upper critical field Bc2‖ (blue line)
and spin-orbit field BSO (red line) have been plotted in the SOI-
energy εSOI and B‖ plane. Arrows indicate the direction of spin of
a single electron in the plane of the q-2DEG while circles represent
the cooper pairs.

posite signs which can form Cooper pairs. With further reduc-
tion of B‖, the superfluid density grows and for B‖ < Bc2‖
global phase coherence sets in. Thus, in the field range
BSO > B‖ > Bc2‖ there will exist domains of superconduct-
ing clusters in a background of normal carriers. We propose
that it is fluctuations of these superconducting clusters that
give rise to the large Gaussian noise over this field regime.
We present a schematic phase diagram of the spin orientation
in Fig. 7 in the SOI-energy εSOI and B‖ plane. The values
of εSOI have been obtained from τSO extracted from the fits
to the magnetoresistance data at different Vg using Eqn. 3.
This picture is in some sense analogous to what one gets in
the zero-field limit - as the temperature is reduced sufficiently
close to TC , there appears percolating clusters with finite su-
perfluid density in a resistive background which gives rise to
large Gaussian resistance fluctuations. It has been predicted
that FFLO state is favorable in the phases between Bc2 and
BSO [51, 52], which possibly, can have contributions to the
resistance fluctuations. Without experimental data, we refrain
commenting on it.

The magnetic field-induced transition to the superconduct-
ing state is affected by non-magnetic disorder [53, 54] and the
transition is assumed to be percolative in nature. To describe
such a percolative phase transition induced by in-plane mag-
netic field B, a random resistor network (RRN) model was
considered [55, 56]. In this model, we consider a square net-
work of identical resistors of size L×L, where L is the num-
ber of grid points along x or y direction. In the ideal scenario,
the resistor network is assumed to be connected by external
conducting wires to a voltage source V , which causes a cur-
rent I to flow through the network, so that the macroscopic
sheet-resistance is measured as Rsheet = V/I . In this model,
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(a) (b)

(c) (d)

(e)

Figure 8: Colormap of the sheet-resistance Rsheet in a 100 × 100
network in the RRN model at different in-plane magnetic fields (a)
B‖ = 1 T, (b) B‖ = 1.3 T, (c) B‖ = 1.6 T and (d) B‖ = 1.9
T, across the transition from superconducting state to the normal
metallic state. Blue background denotes regions with resistance
Rsheet = 0, while red dots/patches denote regions with high re-
sistance Rsheet = RN

sheet (Rsheet = RN
sheet being the resistance in

the normal metallic state). In this plot, temperature T = 20 mK and
gate-voltage Vg = 170 V. (e) The blue-line shows the variation of
the normalized resistance Rsheet/R

N
sheet (blue curve) with in-plane

magnetic field B‖ at T = 20 mK and Vg = 170 V, where RN
sheet

is the resistance in the normal metallic state. The theoretical fit ob-
tained using the RRN model is shown by the red open circles.

we discretize the resistance and define the mean resistance at
a grid point (xi, yi) by Ri, so that the macroscopic resistance
is given by averaging over all grid points in the network viz.
Rsheeet = (1/L2)

∑
iRi.

In the RRN model, we consider a 100 × 100 network in
which circular resistive clusters appear in the superconduct-
ing phase when B is increased, as shown in Fig. 8. The B-
dependence of the number and diameter of the clusters are
given, respectively, by Ncluster = Int.(C1(B − Bc)) and
Dcluster = C2Br, where Br = (B − Bc)/Bc, Bc is the crit-

(a) (b)

(c) (d)

Figure 9: Distribution of the relaxation time at different in-plane
magnetic field B‖ values (a) 1 T, (b) 1.3 T, (c) 1.6 T and (d) 1.9 T.
The distribution changes from non-Gaussian type to Gaussian type
as B‖ is increased across the transition from superconducting state
to normal-metallic state. In this plot, T = 20 mK and Vg = 170 V.

ical field for the superconducting transition (at a given value
of gate voltage Vg , we take Bc as the highest available crit-
ical field i.e. Bc = Bso), C1 and C2 are parameters which
are determined by fitting R with experimental data, the func-
tion Int.() returns the integer value of the number inside the
bracket. The value of the resistance inside the resistive clus-
ters is large, here we assumeRsheet = RNsheet, the value in the
normal metallic state at B = 2 T. The normalized resistance
at a field B is given by R/RN = 1/(1 + ξ2), where ξ is the
superconducting coherence length. We assume that in a dis-
ordered BCS superconductor with percolative superconduct-
ing transition, ξ follows a field dependence which is similar
to the temperature-dependence, predicted by Halperin-Nelson
equation, and can be expressed as ξ = (2/A) sinh(b/

√
Br),

where A and b are parameters which are determined by fit-
ting with experimental data. By fitting the experimental data
at T = 20 mK and Vg = 170 V, we obtain A = 1.8, b = 0.2,
C1 = 1000 and C2 = 1.65. The data have been plotted in Fig.
8(e). Spatial inhomogeneity on the two-dimensional super-
conductor broadens the BKT transition [27, 57] and a perco-
lation transition is well accessible within the Halperin-Nelson
theory.

The resistance at position (xi, yi) at a magnetic field B and
time t is given by Ri(B, t) = Ri(B) + δRi(B, t). We start
at B = 0.2 T with δRi(B, t = 0) = 0 and continuously up-
date Ri(B, t) at the interval of a relaxation time τ and finally
reach the maximum field B = 2 T. The amplitude of noise
δRi(B, t) is chosen randomly from a set {δRi(B, t)} of num-
bers which follows Gaussian distribution and has a standard
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deviation 0.001 and zero mean. The statistics of the noise is,
however, governed by the distribution of τ which is also cho-
sen randomly from a set {τn}. We assume that the Joseph-
son junctions, formed during the percolative superconducting
transition, contribute non-Gaussian component in the resis-
tance noise. We, therefore, consider that the distribution of the
relaxation time has two components which can be expressed
as {τn} = x{τn}NGC+(1−x){τn}GC ,NGC stands for non-
Gaussian component and GC for Gaussian component. The
fraction x, which defines the amount of non-Gaussianity in the
noise, is taken to be proportional to the ratio of the supercon-
ducting region to the non-superconducting region. The distri-
bution functions for {τn}NGC and {τn}GC are determined by
comparing the frequency-dependence of power spectral den-
sity (PSD) of resistance noise, given by the following equa-
tion, with the experimentally-obtained PSD:

SR(f) = lim
t0→∞

( 1

2t0

)(∫ t0

−t0
δR(t)ei2πftdt

)2
(7)

To incorporate the 1/f -dependence of PSD and the influence
of SOI, we include the second critical field Bc2|| in the PSD,
through the following relation:

SR(f) =

∫ ∞
0

dτF (τ)
2τ(B −Bc2||)3

1 + 2πfτ
, (8)

where F (τ) is the distribution function for τ . For
the GC, we have a Gaussian distribution F (τ) =

1/(
√

2πσ2)e−(τ−τGC)2/2σ2

, where σ and τGC are, respec-
tively, the variance and mean value of the Gaussian distri-
bution. For the NGC, we use a stretched exponential func-
tion F (τ) = 1/(2

√
π)
√
τe−τ/τNGC , typically used to study

glassy dynamics. With τGC = τNGC = 500 ns and σ =
100 ns, the PSDs are calculated at different fields and the cor-
responding distributions of {τn} are shown in Fig. 9.

The relative variance of the resistance fluctuations
R ≡ 〈δR2

sheet〉
〈R2

sheet〉
and the normalized second spectrum S

(2)
N

are calculated by using Eq. 4 and Eq. 6 respectively. A
plot of R and S(2)

N as a function of the field B for different
representative values of gate voltage Vg are shown in Fig.
10(a) and (c). The same set of obtained data, when plotted
with respect to the field values, scaled using the critical
fields Bso and Bc2||, reveals that R scales with Bso while
S
(2)
N scales with Bc2||, as shown in Fig. 10(b) and (d). The

critical fields Bc2|| (yellow squres) and spin-orbit fields Bso
(blue traingles), obtained from the simulation are shown as
a function of Vg along with experiment in Fig. 10(e). The
excellent match between experimental and simulation data
tells that a simple random resistor network model is able to
capture the essential features of resistance fluctuations close
to the upper critical field in 2D inversion symmetry broken
superconductors.
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Figure 10: Gate-voltage variation of (a) R with magnetic field B,
(b) normalized R with B/Bso, (c) S(2)

N with magnetic field B and
(d) normalized S(2)

N with B/Bc2|| at different values of gate-voltage
Vg . The normalization of the quantities, plotted on the vertical axis,
in (b) and (d) is performed using the respective values at the maxi-
mum value of the B field. In this plot, temperature T = 20 mK. (e)
Variation of the critical fields Bc2|| (yellow squres) and Bso (blue
traingles) with gate-voltage. The modeled gate-voltage dependence
is obtained from Fig.7.

IV. CONCLUSION

To conclude, we have probed, through careful measure-
ments of resistance fluctuations, the interplay of SOI, pairing
potential and Zeeman energy in the superconducting phase of
LaAlO3/SrTiO3. We find the presence of larger non-Gaussian
fluctuations below Bc2‖ arising due to correlated vortex-
dynamics. Large, Gaussian resistance fluctuations were seen
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Figure 11: Plot of spin-orbit scattering time τSO (olive filled cir-
cles), inelastic time τi (red filled squares), elastic time τelas (black
filled) and total scattering time τ = τi + τelas (blue open triangles)
versus Vg .

in the field range between Bc2‖ and BSO which indicate the
presence of superconducting clusters without global phase co-

herence. We identify and quantify the relevant energy scales
in this system - SOI, Zeeman energy and pairing potential.
Our work emphasizes the important role played by the inter-
play between these energy scales in framing the phase dia-
gram of 2-D inversion asymmetric superconductors.
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APPENDIX

In Fig. 11, we plot the different scattering times extracted
from Eq. 3 as a function of Vg at T = 245 mK. It can be seen
that for all Vg , total scattering time τ (=τi+τelas, where τi
and τelas are inelastic and elastic scattering time respectively)
is larger than spin-orbit scattering time τSO implying strong
spin-orbit interaction in the LaAlO3/SrTiO3 interface which
are gate voltage tunable.

[1] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[2] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[3] P. W. Anderson, Phys. Rev. B 30, 4000 (1984).
[4] M. Sigrist, in AIP Conference Proceedings (AIP, 2009), vol.

1162, pp. 55–96.
[5] H. Fukazawa and K. Yamada, J. Phys. Soc. Jpn. 72, 2449

(2003).
[6] C. Petrovic, P. Pagliuso, M. Hundley, R. Movshovich, J. Sar-

rao, J. Thompson, Z. Fisk, and P. Monthoux, J. Phys. Condens.
Matter 13, L337 (2001).

[7] A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braith-
waite, R. Calemczuk, and J. Flouquet, Phys. Rev. B 63, 144519
(2001).

[8] Y. Yin, M. Zech, T. Williams, X. Wang, G. Wu, X. Chen, and
J. Hoffman, Phys. Rev. Lett. 102, 097002 (2009).

[9] K. Samokhin, E. Zijlstra, and S. Bose, Phys. Rev. B 69, 094514
(2004).

[10] Y. Tada, N. Kawakami, and S. Fujimoto, Phys. Rev. B 81,
104506 (2010).

[11] N. Kimura, K. Ito, H. Aoki, S. Uji, and T. Terashima, Phys. Rev.
Lett. 98, 197001 (2007).

[12] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004
(2001).

[13] K. Michaeli, A. C. Potter, and P. A. Lee, Phys. Rev. Lett. 108,
117003 (2012).

[14] S. Caprara, F. Peronaci, and M. Grilli, Phys. Rev. Lett. 109,
196401 (2012).
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