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We study anomalous transport arising in disordered one-dimensional spin chains, specifically fo-
cusing on the subdiffusive transport typically found in a phase preceding the many-body localization
transition. Different types of transport can be distinguished by the scaling of the average resistance
with the system’s length. We address the following question: what is the distribution of resistance
over different disorder realizations, and how does it differ between transport types? In particular,
an often evoked so-called Griffiths picture, that aims to explain slow transport as being due to rare
regions of high disorder, would predict that the diverging resistivity is due to fat power-law tails
in the resistance distribution. Studying many-particle systems with and without interactions we
do not find any clear signs of fat tails. The data is compatible with distributions that decay faster
than any power law required by the fat tails scenario. Among the distributions compatible with the
data, a simple additivity argument suggests a Gaussian distribution for a fractional power of the
resistance.

I. INTRODUCTION

The steady-state transport of a globally conserved
quantity is one of the simplest manifestations of non-
equilibrium physics. Understanding transport properties
of common quantum toy models is therefore of obvious
theoretical importance, even more so is the applied com-
ponent of the question. Furthermore, if the transport is
slow, the relaxation of an initial non-equilibrium state
to equilibrium will also be slow. Relaxation and ther-
malization properties1 are therefore intimately related to
transport.

In one-dimensional (1D) systems transport properties
can be especially rich. On the one hand there is a pos-
sibility to have integrable systems for which, at least if
they are translationally invariant, one generically expects
ballistic transport. One can understand that through the
existence of nontrivial conservation laws2, or behavior of
appropriate elementary excitations. Be it in an interact-
ing or a free model, they propagate without dissipation
resulting in a ballistic scaling of resistance R with system
length L as R ∼ L0, i.e. the resistance does not increase
with L. The other extreme situation is that of localiza-
tion, an example being Anderson localization3 (i.e. non-
interacting particles), for which R is exponentially large,
R ∼ exp (L/ξ). In 1D non-interacting particles localize
for any strength of an on-site potential. More recently
it has been realized4 that interactions do not necessarily
cause a breakdown of localization and that many-body
localization (MBL) is actually possible5–10, although the
situation is more complicated in geometries with higher
spatial dimensions.11,12 In a nutshell, 1D interacting sys-
tems can present ballistic transport in the absence of dis-
order, and are completely localized for sufficiently large
disorder.

A natural and not yet fully understood question con-
cerns disorder strengths intermediate between the clean

and the localized extremes. Does the transport type vary
continuously, or are there phase transitions, and if yes,
how and why do they occur? From the point of view
of (quantum) chaos theory13 one could argue that the
disorder, which renders models quantum chaotic, should
in general result in diffusive transport for which normal
(Ohm’s) scaling holds, R ∼ L. However, perhaps sur-
prisingly, this is not always the case.

In the Heisenberg model with a random on-site mag-
netic field (which is equivalent to interacting spinless
fermions on a lattice, with on-site random potentials) it
has been observed that the transport can in fact be sub-
diffusive14–28 with R ∼ Lγ , with γ > 1 and that there
is a phase transition at finite disorder strength Wc from
diffusive to subdiffusive transport21–27. Subdiffusion has
also been related to anomalous distributions of eigenstate
matrix elements29.

An explanation for the subdiffusive transport that was
offered is the so-called Griffiths effect picture30–33. This
ascribes the slow dynamics to rare blocking regions of
locally higher disorder that are bound to greatly influ-
ence transport in 1D systems. One of the predictions of
the Griffiths picture is fat tails21,34,35 in the distribution
p(R), p(R) � 1/Rβ , such that the average R does not
exist and therefore the law of large numbers does not ap-
ply, and the total resistance of a sample of size L scales
super-linearly with L.

While this could explain the dependence of the typical
R(L), so could other scenarios. Beyond the scaling ex-
ponents for average quantities, the Griffiths picture has
not undergone any independent test so far. It is there-
fore important to check other quantities to really see if
the Griffiths scenario is the correct phenomenological de-
scription of subdiffusion. Another reason that it is im-
portant to better understand the effects of rare regions is
because they feature prominently in many proposals to
describe the MBL transition using renormalization group
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techniques33,34,36,37. In those theories, the MBL transi-
tion arises due to competition between conducting and
(rare) insulating regions and as such the properties of
rare regions do matter.

There is also an alternative scenario for p(R) in which
R ∼ Lγ but its distribution does not have fat tails.
Namely, if we assume that the distribution of R1/γ has at
least two moments, then the law of large numbers should
lead to a Gaussian distribution of a quantity that is ex-
tensive (i.e., additive in L). Such arguments have in fact
been used a long time ago38 when looking for the correct
scaling variable of Anderson localization. This “addi-
tivity argument” results in general anomalous transport
with the scaling R ∼ Lγ in the thermodynamic limit
(TDL), while the variable x := R1/γ is normally (Gaus-
sian) distributed, so no fat tails are present in p(R).

A microscopic mechanism for subdiffusion alternative
to fat tails and rare regions is also indicated by the Fi-
bonacci model, both the non-interacting39,40 and the in-
teracting one41,42, where the potential is deterministic
and quasiperiodic, and therefore strictly speaking there
are no rare regions, but subdiffusion is still observed.

While a microscopic understanding of transport would
be the preferred goal, in the absence of any existing ana-
lytical picture, in this work we aim for a more modest
goal of first understanding the phenomenology of dif-
ferent transport types, in particular the distribution of
resistance p(R). In non-interacting systems, where we
can probe large system sizes, distributions are always
compatible with the above-mentioned additivity, that is
p(x = R1/γ) is Gaussian. For the interacting disordered
Heisenberg model numerics are more difficult and only
smaller systems are available, however, we can say that
for system sizes of order L ∼ 50, if we insist on fitting to
a power-law tailed distribution, the best fit power is large
and, furthermore, it increases with L. A plausible sce-
nario is therefore that in the TDL the additivity of R1/γ

would again result in a Gaussian p(R1/γ). We therefore
conclude that the fat tails scenario of the Griffiths pic-
ture cannot fully describe the distribution of resistance in
the subdiffusive regime, at least not on the scales avail-
able to present-day numerics and far away from the MBL
transition.

II. MODEL AND DESCRIPTION OF METHOD

We will henceforth consider the XXZ model typically
studied43 in the MBL context:

H =

L∑
i=1

sx
i s

x
i+1 + sy

i s
y
i+1 + ∆sz

is
z
i+1 + his

z
i (1)

where sαi = 1
2σ

α
i are spin-1/2 operators (σαi are Pauli ma-

trices), and hi are random fields at site i which are i.i.d.
numbers drawn from a distribution specified when rele-
vant. In this paper we look at either the non-interacting
model where ∆ = 0, usually called the XX model, or

the interacting XXX Heisenberg model with ∆ = 1. For
the interacting case, as soon as h > 0, at infinite tem-
perature, a diffusive region exists, giving way to a sub-
diffusive region starting at W ∼ 0.522 (for a box distri-
bution of width 2W ), i.e. relatively quickly after break-
ing integrability and rather far from the proposed MBL
transition44,45 WMBL ∼ 4.

To be as close to the TDL as possible we use an open
system formulation in which the XXZ chain is driven
at the boundaries by two ‘baths’, such that after a
long time the system ends in a non-equilibrium steady-
state (NESS). The expectation value of the spin current
jk ≡ sxks

y
k+1 − s

y
ks
x
k+1 in the NESS is then our main ob-

servable whose distribution we study. In order to simu-
late the open system we employ a super-operator version
of the time-evolving block decimation (TEBD) method46

used in similar studies22,24,47. Concretely, we simulate a
boundary-driven Lindblad master equation48–50 describ-
ing Markovian time-evolution of a system density matrix:

dρ

dt
= i [ρ,H] +

1

4
κ

4∑
k=1

([
Lkρ, L

†
k

]
+
[
Lk, ρL

†
k

])
, (2)

where H describes the closed system disordered Heisen-
berg chain (1), and where the Lindblad operators Lk ac-
count for generic magnetization driving by two ‘baths’.
They are defined as L1 =

√
1 + µσ+

1 and L2 =
√

1− µσ−1
on the left side, and L3 =

√
1 + µσ−L and L4 =

√
1− µσ+

L
on the right side. Unless mentioned otherwise, we use
κ = 1. With µ 6= 0 (we use µ = 0.001 in this paper),
there is an asymmetry in the driving between the two
sides and a non-zero, unique NESS magnetization current
is induced. As previously discussed in22, a microscopic
derivation of such a drive might be difficult, however in a
generic non-integrable model the details of the boundary
drive should not matter for the bulk physics.

For a given initial state we time-evolve until a series
of convergence criteria are fulfilled. The central quantity
of this simulation is the magnetization or spin current.
Its expectation value Tr (jkρ∞) ≡ j is, due to stationar-
ity, independent of the site index k. We use this spatial
homogeneity of the spin current as the most suitable in-
dicator of convergence. Further we also demand tempo-
ral uniformity51 of the spin current in order to exclude
a slow but spatially uniform drift in the current. We
choose as our spatial criterion that the standard devia-
tion of the individual currents on every bond k (excluding
those subjected directly to the Lindblad driving) relative
to the average current be σ(jk)/j ∼ 2% (at most 4% for
the largest disorder, where convergence is slower).

In the numerical TEBD algorithm, one fixes a bond
dimension χ for the representation of the state ρ and tries
to find an approximate NESS with this form of the state.
The higher χ, the better the approximation to the true
NESS. We start the search with a relatively low χ and
we take ρ(0) for each disorder realization as a completely
mixed local density matrix (infinite temperature). We
then use the obtained NESS at fixed χ as the initial state
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FIG. 1. Scaling of the average log10R with system length
L for the Lindblad-driven Anderson model with disorder
strength W = 2, and different coupling strength κ in the
Lindblad equation.

for a simulation with a higher matrix dimension χ, up to
a maximum of χ = 800. As the NESS is unique, we
make the reasonable assumption that every increase of
χ will bring our numerical approximation of the current
j closer to its true value. This proves more difficult for
stronger disorder and is discussed later. We present a
possible extrapolation that may be performed so that we
may approximate the fully converged current j(χ→∞).

For the discrete time-steps performed in TEBD, we
employ a fourth-order Trotter decomposition, mostly
with a time-step of dt = 0.4 for local two-site updates.
We checked that the results do not change with decreas-
ing dt within the tolerance described before.

Finally, we should mention that in all the cases stud-
ied so far, where a careful comparison has been made,
the Lindblad setting gives exactly the same transport as
for instance linear response calculations based on Green-
Kubo type formulas; for diffusion one can show this an-
alytically52, while for subdiffusion it has been verified
numerically42. The Lindblad equation is therefore just a
tool that enables us to study systems an order of magni-
tude larger than would be possible with other methods.

III. NON-INTERACTING MODELS

We shall first check the distribution p(R) for non-
interacting models, where numerics are easier and one
can use correspondingly larger L. An added advantage
is that we will also gain insight into how large L has to
be in order for p(R) to converge to its TDL.

We are going to check p(R) in two non-interacting
models, one will be non-interacting particles with an on-
site disorder (the Anderson model, or, equivalently, the
XX spin chain with disorder) that shows localization,
while the other will be the Fibonacci model in a regime
with subdiffusion. The Hamiltonian for both is (1) with

 1

 10

 100

50 0.1  1  10

lo
g

1
0
R

L/ξ

x
W=0.5

W=1
W=1.5

W=2
W=3
W=4
W=5

 1

 10

 100

0.5 2 5 1

ξ

W

16/W
2

f(W/1.6)

FIG. 2. Single-parameter scaling of average log10R for An-
derson localization. Data is shown for various W and L, for
instance, for W = 5 sizes up to L = 60 are shown, while
for W = 0.5 up to L = 2000. Inset: for small disorder
the localization length is ξ ∼ 1/W 2, while for larger disor-
der a better description is obtained by the scaling function
f(x) := 1/(−1 + 1

2
ln[1 + x2] + 1

x
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Ref. 54.

∆ = 0, and we use the boundary-driven Lindblad formal-
ism to get the NESS and the associated resistance R for a
particular potential realization hi as described in Sec. II.
For the Anderson model the goal is to check that indeed,
also in the Lindblad setting we get the expected result
known from a closed Hamiltonian formulation, namely
that R is exponentially large in L and log-normally dis-
tributed38,53. This should disperse any doubts that the
Lindblad setting could somehow crucially influence the
results we are presenting.

A. Additivity

Let us first recall the additivity argument38 as it will
turn out that in both non-interacting models p(R) agrees
with its predictions. For an arbitrary transport with
scaling R ∼ Lγ , one can argue that a quantity which
is additive will converge to a Gaussian distribution in
the TDL. This gives the correct result in the two limit-
ing cases: (i) localization, and (ii) diffusion. Namely, for
diffusion one does not expect any complications, leading
to a Gaussian distribution of R – later on we will check
that this is indeed the case for the interacting disordered
Heisenberg model in the diffusive phase. For localiza-
tion, where one has R ∼ exp (L/ξ), with ξ being the
localization length, one therefore expects that lima→0R

a

should be additive, leading naturally to the logarithm via
log x = lima→0(xa − 1)/a. And indeed, the logarithm of
R, which is equal to L/ξ, is extensive and is normally dis-
tributed38. Based on the results obtained in the present
paper we conjecture that the additivity may give the cor-
rect prediction for p(R) for any transport type.
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B. Anderson localized system

For systems of non-interacting fermions, e.g. the XX
spin chain, and for our choice of Lindblad operators the
whole Liouvillian (linear operator corresponding to the
RHS of Eq. 2) is quadratic in fermonic variables and can
therefore be efficiently numerically solved because one
needs to diagonalize only a matrix of size55 ∼ L instead
of a full Liouvillian which is of size 4L.

To probe Anderson localization in a Lindblad setting
we therefore take the XX spin chain, Eq. (1) with ∆ =
0, with on-site disorder hi, where hi are i.i.d. random
variables with Gaussian distribution with zero mean and
standard deviation56 W/

√
3.

We generate many instances of disorder realization,
calculating for each the steady-state and in particular
its NESS current j∞, see e.g. Ref.57 for technical details.
Because the system is quadratic, j∞ is trivially and ex-
actly proportional to the driving parameter µ. The re-
sistance is then simply

R = µ/j∞. (3)

We first check that the resistance is indeed exponentially
large in L. This is shown in Fig. 1. The coefficient of the
linear slope of logR ∼ L/ξ is nothing but the localization
length ξ. We can also see that asymptotically R does not
depend on the coupling strength κ used in the Lindblad
equation (2). Next we check predictions of the scaling
theory which says that R is not an independent function
of L and W , but rather a function of a single scaling
variable L/ξ. This is shown in Fig. 2.

Finally, we show the distribution of the resistance, our
main object of study. Gathering 106 disorder realizations
(except for L = 200 where we have 3 · 105) we plot his-
tograms of the distribution in Fig. 3. One can see that a
fairly large size L ≈ 100 is required in order to converge
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FIG. 4. Distribution p(x) for the non-interacting Fibonacci
model with W = 1.5 and three different choices of x: re-
sistance R (olive), the logarithm log10R (blue), and Rα=0.2

(red). Black curve is a Gaussian 1√
2π

e−x
2/2. In all cases we

show variables that have mean zero and variance 1, for in-
stance, in the R-case x := (R−R)/σ(R).

to a Gaussian. At smaller sizes, for instance L = 16,
the distribution is skewed towards larger R – there are
too many large-R instances. We also remark that get-
ting statistics for large L is harder not only because one
has to deal with larger matrices but also because larger
precision is required. For instance, for L = 16 one has
log10R ≈ 4.0 and the standard deviation of the distribu-
tion is σ ≈ 1.0, while for L = 200 one has log10R ≈ 39
and σ ≈ 3.9 (to that end j∞ had to be calculated to 60
digits of precision because the calculations become un-
stable once the current gets smaller than the standard
floating-point machine precision ∼ 10−16. To remedy
that one has to increase the number of digits of precision,
which can for instance be done easily in Mathematica).

Concluding this Anderson part we can say that the
results obtained are all expected – the main goal was to
check that the Lindblad setting does not introduce any
spurious effects. Furthermore we see that fairly large
systems are required in order to converge to the TDL
distribution p(R).

C. Subdiffusive non-interacting system

The Fibonacci model58,59 is a model of non-interacting
particles (XX spin chain) in which an on site potential
hj has strength hj = W or hj = −W , depending on the
site index j. There are several equivalent ways of how
to specify a quasiperiodic Fibonacci pattern of disorder.
A compact way is writing hj = W (2V (jg)− 1), with an

irrational g = (
√

5−1)/2 and periodic V (x) := [x+g]−[x]
with [x] being an integer part of x. One of the interesting
properties of the Fibonacci model is that its transport
type, i.e. the scaling exponent γ, continously varies39,40
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with potential amplitude W from ballistic γ = 0 at W =
0 all the way to localized γ →∞ in the limit W →∞. In
particular, for sufficiently large W (W larger than about
0.8) one has subdiffusion.

In the following we pick W = 1.5, a Lindblad cou-
pling strength κ = 1, and study the NESS current j∞
and the associated resistance R (3). In order to study
the distribution p(R) we need an appropriate ensemble.
Because H is fully deterministic for the Fibonacci model,
i.e. there is no explicit disorder, the best one can do is
to take a system of length L starting with potential hj
at a given site j0 different from the 1st one. In a sys-
tem of length L one can get L + 1 different H in such
a way, see e.g. Ref. 41. Due to reflection symmetry one
however gets only ∼ L/2 different NESS currents. Our
ensemble therefore consists of about L/2 instances for a
given L. The Liouvillian is again quadratic so systems
with L ∼ 103 can be studied. Still, the ensemble size
L/2 is too small for the purposes of obtaining the distri-
bution. To that end we take L ≈ 1000 as well as several
neighboring L and average data over all those L.

The scaling exponent of R is about γ ≈ 2.0 (which is
slightly different from γ = 1/β − 1 ≈ 1.6 obtained from
a wave-packet spreading in Ref. 42), however one should
be aware that possible different scaling exponents could
emerge using different sequences of L (see the Aubry-
Andre case for an example60). The additivity argument
would therefore predict that x := Rα with α = 1/γ ≈ 0.5
should be Gaussian distributed. However, on plotting
p(x) we noticed that we get better agreement with a
Gaussian upon taking the exponent α to be smaller than
0.5, the best fit being obtained for α ≈ 0.2.

This α is then used in Fig. 4 where we plot a histogram
of all data for a range of system sizes L = 978 − 1009,
resulting in a total 15,965 independent values of R. We

plot the distribution of three different quantities. We
can see that p(R) (olive) is clearly not Gaussian – there
are far too many large R instances. The distribution
of log10R (blue), being the limit of α → 0, differs less
from a Gaussian distribution (black). While it might be
difficult to distinguish the two distributions, we do how-
ever have a statistically significant difference (a couple of
sigma) in a number of consecutive bins at the left edge
(small negative x). The distribution of R0.2 (red) fits
within statistical error to a Gaussian (black), and there-
fore seems compatible with the additivity prediction that
the distribution of Rα is Gaussian.

At present it is not clear why the best exponent α ≈ 0.2
differs from 1/γ. In fact, there can be several reasons for
this, among them being multifractality of the model as
well as finite L (and merging statistics for different L).
Nevertheless, we can certainly say that in this, undoubt-
edly subdiffusive, model there are no fat power-law tails
in the distribution of R. This could be checked for fairly
large systems L ∼ 1000, much larger than is possible for
the XXX model which we focus on next.

IV. INTERACTING DISORDERED
HEISENBERG MODEL

In this section we study the XXX model, Eq.(1) with
∆ = 1, with a box distribution of disorder, hj ∈ [−W,W ].
As a test case for the open system simulation with in-
teractions, we first aim to reproduce an appropriate es-
timate for the diffusion-subdiffusion transition as pre-
sented in22. In contrast to the previous section, the
whole Liouvillian is no longer quadratic so we have to re-
sort to a matrix-product operator (MPO)-based method.
This method to obtain the NESS current is presented
in Sec. II. In Fig. 5, we perform the same analysis as
Ref. 22, in that we determine the NESS resistance R
for many disorder instances and system sizes L and fit
the resulting averaged values of R to obtain a transport
coefficient γ. We obtain a similar diffusion-subdiffusion
transition around the disorder strength of ∼ W = 0.5.
To estimate finite-size effects we employ a fit of the
form R = c0L

γ(1 + c1/L), which turns out to have
the best chi-square per d.o.f. of any form we tried (in
particular for W = 0.7 it has half the χ2 of the form
R = c0L(1 + c1/L + c2/L

2) which has the same num-
ber of d.o.f.’s). We observe that for W = 0.3, 0.4, the
best-fit γ is consistent with 1 (at 90% CL we have re-
spectively γ ∈ [0.97, 1.01] and [0.94, 0.99]), while for
W = 0.5, γ = 1.038 ± 0.005 (with the value 1 excluded
at 90% CL). For W = 0.7, γ = 1.10 ± 0.01 and for
W = 1.0, γ = 1.14 ± 0.03. While the finite-size correc-
tions become a little bit larger as W grows (c1 remains
below 5), the quality of the fit decreases (as indicated by
considerably larger chi-square values), essentially because
of the systematic errors due to the truncation of the bond
dimension in our algorithm. For the largest W = 1.3 the
errors associated with the finite bond dimension trunca-
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FIG. 6. The top panel shows the Schmidt values of the
middle bond of the MPO describing the NESS for two in-
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of the percentage deviation of the extrapolated values of the
resistance from the highest simulated χ = 200. The colored
points indicate the instances taken for the top panel.

tion are larger than the statistical ones (which are very
small, thanks to sample sizes of 3, 000 − 40, 000). The
precise values of γ are not very reliable but the power-
law fit remains the best fit. Moreover, the error due to
truncation of the bond dimension is systematically under-
estimating the resistance for larger L,W and therefore
underestimating γ (and its error).

In fact, during the search of the NESS, we observed
that for some instances we do not reach convergence to
the true NESS, due to the restriction of a finite χ. This
manifests itself in systematic upward drift of the value of
the resistance when increasing the bond-dimension fur-
ther, especially in the case of large disorder and there-
fore large resistance. In Fig. 6 we attempt to summa-
rize the situation for large resistance instances. The key
insight is that we may obtain a reasonable estimate of
the error from the Schmidt spectrum of the MPO de-
scribing the density matrix ρ. In practice we take the
non-zero Schmidt coefficients for a bipartite splitting of
a super-ket |ρ〉 into two halves of length L/2, denoted
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FIG. 7. The probability distribution of the scaled resis-
tance R/R for different system sizes at a disorder strength
of W = 0.5 (roughly at the diffusion-subdiffusion transition).
The black dashed line denotes a Gaussian fit to the data.

by A and B, |ρ〉 =
∑
j

√
λj |ξAj 〉|ξBj 〉, and integrate the

spectrum to obtain the rate at which the weight of ne-
glected Schmidt values decays to zero. We therefore make
the reasonable conjecture that the correct NESS value
of R is reached in a similar way. If the Schmidt coeffi-
cients decay algebraically as λj ∼ 1/jp, then we expect∑
j λnegl. ∼ 1/χp−1

max.

The top panel in Fig. 6 reflects this analysis with the
inset showing the extrapolation for two chosen instances.
We note that the spectrum does not change significantly
for different disorder strengths and appears reasonably
well converged with χmax for the largest Schmidt val-
ues. While the extrapolation in 1/χp−1 works well for
both instances, the prefactor is largely different between
the small and large disorder instance, resulting in very
different convergence properties of the NESS. We note
that all figures concerning the interacting model use ex-
trapolated values of the resistance R(χ → ∞), obtained
by using 1/χp−1 with p = 1.6. We thus display in the
bottom panel of Fig. 6 an overview of the percentage
deviation of the extrapolated values of the resistance
from the highest simulated χ, i.e. %∆R ≡ |(R(χ →
∞) − R(χmax))|/R(χmax). The results agree with our
intuition that at large disorder the NESS is increasingly
difficult to obtain for finite χ. Furthermore, in the case of
large W there is a positive correlation between the size of
R of the simulated instance and its associated extrapola-
tion error. Extreme cases such as displayed in Fig. 6 are
however rare and do not influence the probability distri-
butions p(R) significantly. The error bars in Fig. 5 and
for the obtained values of γ contain an estimated error
due to %∆R as well finite size effects ∼ A/L.

With this rigorous analysis of the convergence proper-
ties of the NESS simulation at hand, we aim to make a
reasonable statement about the occurrence of fat tails in
the distribution of resistances. In Fig. 7 we show that at
the boundary of the diffusion-subdiffusion transition, the
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FIG. 8. The top panel shows the probability distribution of
the scaled resistance R/R for different system sizes at a dis-
order strength of W = 0.7 (weak subdiffusion). The colored
dashed lines denote an exponentially decaying function with
parameter α (as described in the main text). The bottom

panel displays the probability distribution p(R1/γ/R1/γ), a
quantity that we believe could be Gaussian-distributed in the
TDL. The colored dashed lines are a fit to a Gaussian with
the same standard deviation.

distribution is indeed Gaussian and the additivity argu-
ment of Sec. III A holds therefore well. At fixed system
size L, increasing the disorder W further, there may be
some form of tails developing. However, increasing L at
fixed W the tails consistently decrease and the data can
be fit with a function that decreases faster than a power-
law with β = 2. In Fig. 8 and Fig. 9 we show the prob-
ability distributions of the resistance R scaled by R for
different system sizes for W = 0.7 and W = 1.3 respec-
tively. We find that this data fits the gamma distribution

f(x) = (1+α)(1+α)

Γ(1+α) xα exp [−(1 + α)x] well, indicating the

possibility of exponentially decaying tails. We observe
that α is an approximately linear function of system size
for all W . Alternatively, we may also fit the data to
a Levy-stable distribution which has a power-law decay,
but the power of the decay turns out very large, far big-
ger than the two which would signal a transition to ‘fat
tails’, and furthermore the power increases with system
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10�4

10�3

10�2

10�1

100

P
(R

1
/
�
/R

1
/
�
)

W : 1.3

gauss

L : 8

L : 16

L : 32

1 2 3 4

R/R

10�3

10�2

10�1

100

P
(R

/R
)

W : 1.3
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FIG. 9. The top panel shows the probability distribution of
the scaled resistance R/R for different system sizes at a disor-
der strength of W = 1.3 (stronger subdiffusion). The colored
dashed lines denote an exponentially decaying function with
parameter α (as described in the main text). The bottom

panel displays the probability distribution p(R1/γ/R1/γ), a
quantity that we believe could be Gaussian-distributed in the
TDL. The colored dashed lines are a fit to a Gaussian with
the same standard deviation.

size.
From the data, it is very hard to distinguish between

a Levy-stable distribution with a large power (not dis-
played here) and the displayed exponential decay, as one
needs both very precise numerics as well as large sample
sizes to do so. For our numerics we used up to 40,000
samples, but exact simulations on very small systems
suggest that in order to confidently discriminate the dif-
ference, larger samples might be needed. In addition to
the above analysis we also test for the possibility that
the simple quantity of R1/γ is additive and thus becomes
Gaussian in the TDL. In the bottom panels of Fig. 8
and Fig. 9 we therefore show the probability distribu-

tions p(R1/γ/R1/γ) and fit it to a Gaussian with the same
standard-deviation. This certainly does not work well
for small systems sizes, but as system sizes increase, the
quality of the fit improves.

While the difference between a power-law decay with
large power and an exponential decay cannot be resolved,
we may rule out the existence of fat tails, given that
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the power of the Levy-stable distribution is significantly
larger than 2 even for W = 1.3, and furthermore it grows
with increasing system size. While the precision due to
finite χ (e.g. ∆R) is not very high at larger W , and
the choice of extrapolation can affect the precise values
of R, in our view it cannot account for the lack of fat
tails (β ≈ 2) as that would require a significant redis-
tribution of weight to the tails, see e.g. top Fig. 9. It
remains imaginable that in order to capture the impli-
cations of rare regions we would require exponentially
many Schmidt values for an accurate depiction of long-
range coherence. However, to the best of our knowledge
this would be outside the reach of any current numerical
technique.

V. CONCLUSION AND PERSPECTIVE

We have studied the distribution of resistances for a set
of spin chains in the sub-diffusive regime. After validat-
ing our method on non-interacting models which show
subdiffusion or localization, we proceed with the analy-
sis of the Heisenberg model with random fields, which
has a diffusive, a subdiffusive and an MBL region. The
distribution of resistances does not show signs of long,
power-law tails at the largest values of disorder we can

study, a necessary ingredient of the phenomenology of
rare regions (Griffiths physics) at the basis of many works
on the ETH-to-MBL transition61. In particular, we ob-
serve regular distributions decreasing fast in R, with vari-
ance shrinking as the system size increases, converging
towards a self-averaging scenario opposite to the Grif-
fiths one. A simple distribution compatible in the ther-
modynamic limit with all our data for non-interacting
subdiffusive and localized, as well as for the interacting
subdiffusive XXX model, is a Gaussian distribution of
R1/γ . We offer no microscopic mechanism to explain our
observations, but we hope our work will provide the ba-
sis for a less speculative analysis of the Physics of the
MBL-to-ETH transition.
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