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The potential of semiconductors assembled from nanocrystals (NC semiconductors) has been 

demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light 

emitting diodes, solar cells, photodetectors, thermoelectrics, and phase charge memory cells. 

Despite the commercial success of nanocrystals as optical absorbers and emitters, applications 

involving charge transport through NC semiconductors have eluded exploitation due to the 

inability to predictively control their electronic properties. Here, we perform large-scale, ab-initio 

simulations to understand carrier transport, generation, and trapping in NC-based semiconductors 

from first principles. We use these findings to build a predictive model for charge transport in NC 

semiconductors, which we validate experimentally. Our new insights provide a path for systematic 

engineering of NC semiconductors, which in fact offer previously unexplored opportunities for 

tunability not achievable in other semiconductor systems.  
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Main Text 

Assembly of colloidal nanocrystals (NCs) into thin films1 is envisaged as a means to achieve 

next generation, solution-processed semiconductors with electronic properties (e.g., band-gaps,2 

band-edge positions,3 mobilities,4 and free carrier densities5) that can be defined to match specific 

application requirements.6–10 This tunability is enabled by a multi-dimensional design space, where 

size, shape, composition, surface termination, and packing of the NCs can be systematically and 

independently controlled. While parametric studies have demonstrated some of the scaling 

relations in this design space,11–15 the fundamental mechanism driving charge transport in NC-

based semiconductors has remained unclear, making it difficult to build up predictive models for 

charge transport in NC semiconductors or tap the full potential of NCs as building blocks for 

electronic materials through theory-guided design. 

Here, we perform large-scale, ab-initio simulations to understand carrier transport, generation, 

and trapping in NC-based semiconductors from first principles. We use these findings to build and 

experimentally validate a predictive model for charge transport in NC semiconductors. This 

predictive model allows us to design NC semiconductors with unique properties not achievable in 

the bulk, and the fundamental insights into charge carrier dynamics sets a clear agenda for the 

development of NC chemistry and self-assembly to realize novel semiconductors. 

Ab initio Investigation of Charge Transport 

Only recently has it been computationally feasible to treat the full atomic complexity of a NC 

ab initio, and this has proven key to understanding the mechanisms driving charge carrier 

dynamics on individual NCs.16 In order to elucidate the mechanisms for charge transport in NC-

based semiconductors, we implement large-scale density functional theory (DFT) calculations on 

individual NCs, and on systems containing up to 125 NC (> 200000 atoms) (Fig. 1a-b).   
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As a model system, we use lead sulfide (PbS) NCs in the quantum confined regime (i.e., with 

radii r < ~3 nm) terminated with iodine ligands.17 Since NC size is a parameter that is easy to 

systematically control in experiments, we perform calculations for different sized NCs in order to 

validate the resulting charge transport model with experiments. Details are provided in the 

Methods. 

Polaron Formation and Reorganization Energy 

Before we understand how charge moves across a NC-based semiconductor, we must first consider 

the impact of the presence of a charge carrier on an individual NC. To do so, we compute the 

ground state physical structure of the NCs in their neutral charge state and when charged. Upon 

charging with an electron (or hole), the Pb-iodine ligand bonds on the (111) surfaces of the NCs 

expand (or contract), while the Pb-S bond lengths remain unchanged (Fig. 1c, Fig. S1, and 

Supplementary Information note 1). Thus, the presence of a charge carrier on a NC can lead to 

the formation of a polaron. Because such polarons result from electrostatic interaction of the charge 

carrier with the negatively charged functional group of the ligands, polaron formation can be 

expected in any NC system with X-type ligands18 (e.g. halides, thiols, carboxylates).  

Charge transfer from one NC to another thus implies a rearrangement of atoms at the surface of 

the two NCs. Although the shifts in bond length are small (up to 0.5 pm or 0.02% of the 3.22Å 

nominal bond length), the associated reorganization energy for charge transfer between two NCs, 

λ, is large (10s to 100s of meV) (Fig. 1d). The reorganization energy decreases with increasing 

NC size due to a reduced carrier density across the NC and an increased number of ligands. In the 

Supplementary Information note 2, we explain why it is reasonable to ignore the contribution 

to λ stemming from reorganization of the neighboring NCs (i.e., outer-shell reorganization). 
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Electronic Coupling in NC Semiconductors  

Having now understood that the presence of a charge carrier on a NC can lead to the formation of 

a polaron, we can determine the type of transport (band-like or hopping) by calculating the 

electronic coupling between neighboring nanocrystals, Vct. 

Small angle x-ray scattering measurements on PbS NCs have demonstrated that they assemble 

into a body-centered-cubic (BCC), face-center-cubic, and related structures, along with alignment 

of the individual NCs with respect to the superlattice structure as depicted in Fig. 1e for a BCC 

structure.19–21 We consider two relative orientations for neighboring NCs: [111]-neighbors and 

[100]-neighbors (Fig. 1e). We calculate electron and hole couplings for both orientations (i.e., V111 

and V100) over a range of r and inter-NC facet-to-facet distances, Δff (Fig. S2 and Supplementary 

Information note 3). The results for Δff = 6Å are shown in Fig. 1d. Vct increases strongly as the 

size of the NC decreases in agreement with analytical calculations modelling the NCs as spherical 

potential wells.22 This trend is explained by an increased carrier density on the outer atoms of the 

NC with increasing confinement in smaller NCs. The coupling in the [100] direction is about an 

order of magnitude larger than in the [111] direction, due to strong confinement of the carriers 

away from the ligand-rich [111] facets.16  

Phonon-Assisted Charge Transfer  

The fact that Vct is more than an order of magnitude smaller than λ over the range of r and Δff of 

typical PbS NC-semiconductor with X-type ligands informs us that, in these systems, the charge 

carriers are polarons localized to individual NCs, and that charge transport occurs through a 

phonon-assisted charge transfer (polaron hopping) between neighboring NCs.  

Since the charge carrier deforms the Pb-ligand bonds upon polaron formation, charge transfer 

will be driven by the Pb-ligand vibrations. Ab-initio calculations of the phonon density-of-states 
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of PbS NCs,16 backed by inelastic neutron23 and x-ray24 scattering, indicate that Pb-ligand 

vibrations for common X-type ligands occur at energies ћω < ~15 meV. Therefore, at temperatures 

above ~175K, charge transfer will occur at a rate:25 

𝑘𝑐𝑡 = 𝑁𝑃
2𝜋

ℏ
𝑉𝑐𝑡

2√
1

4𝜋𝜆𝑘𝐵𝑇
𝑒−(Δ𝐸+𝜆)2/4𝜆𝑘𝐵𝑇 , (1) 

where ΔE = EP – ER (i.e. the energy of the products minus the energy of the reactants) and NP is 

the number of degenerate product states (Fig. 1f). At temperatures below ~175K, transfer rates 

will saturate to their temperature-independent, low temperature limit (Supplementary 

Information note 4), or, in the presence of disorder, transport will transition to an Efros-Shlovskii 

variable range hopping regime.26  

Assuming a NC-semiconductor of isoenergetic NCs and no applied field (E = 0), Eq. 1 predicts 

charge transfer times on the order of 10-100s ps for PbS NC-semiconductors at room temperature, 

in agreement with recent measurements.13 Since intra-band carrier cooling rates in PbS NCs 

proceed at 100s fs times scales,27 the reactant and product states are thus the highest occupied 

electronic states (in the case of hole transport) or the lowest unoccupied electronic states (in the 

case of electron transport). This is in agreement with experimental measurement of the mobility 

band gap in a NC-semiconductor scaling linear with the band gap of the individual NCs.28 

Energetic Landscapes in NC Semiconductors  

In a realistic NC-semiconductor, E ≠ 0, with differences in the alignment between the highest 

occupied (or lowest unoccupied) states of neighboring NCs contributing to E. Since a large E 

will have significant impact on the time scales of transport, it is therefore critical to understand 

and control the energetic landscape within a NC solid. One contribution to E is the distribution 

of the individual NC bandgaps, stemming from size and shape disorder of the constituent NCs. 

Additionally, deep, electronic trap states are known to exist in NC-semiconductors,29 and possible 



 6 

explanations of their origin include mid-gap states on individual NCs30 and fused NC dimers.31 

Here, we demonstrate oxidized or reduced doped NCs in the NC-semiconductor also form 

electronic traps in NC-semiconductors.  

An individual NC is doped according to the oxidation-number sum rule:32,33 

𝑁𝐶𝑉𝐶 + 𝑁𝐴𝑉𝐴 + ∑ 𝑉𝑖𝑖 = {

0, intrinsic,
< 0, p − doped,
> 0, n − doped,

 (2) 

where Nx is the number of the cations (C) and anions (A), and I are the impurities and ligands with 

valence Vx comprising the NC. Doped NCs will in general be energetically unfavorable; however, 

small densities of doped-NCs are to be expected through reaction kinetics.33 For PbS-NCs for 

example, an excess of Pb during synthesis can lead to a small fraction of n-doped PbS NCs, and 

exposure of PbS NC-semiconductors to oxygen leads to p-doping. 

We compute the electronic structure of a NC-semiconductor containing a single n-doped NC 

surrounded by intrinsic NCs (Fig. 2a). For reference, the electronic structures of isolated intrinsic, 

n-doped, and oxidized n-doped NC (with net charge e+) are shown in Fig. 2b. In a NC 

semiconductor, if the n-doped NC is not oxidized, its energy levels remain aligned with those of 

the neighboring intrinsic NCs (Fig. 2c). However, oxidation causes a shift in the energy levels of 

the n-doped NC as well as its neighbors (Fig. 2c, Fig. S3).  

Within a NC-semiconductor, oxidized n-doped NCs thus behave as electronic traps for electrons 

and as barriers for hole transport. Equivalently, reduced p-doped nanocrystals present traps for 

holes and barriers for electrons (Fig. S4). Defining the trap depth (ET(r, Δff)) as the extent of the 

shift of energy level in an oxidized or reduced doped NC relative to a NC infinitely far from the 

doped NC (Fig. 2d, Fig. S5), we find that our calculated trap depths agree with the experimentally 

measured trap depths23,28 as well as the charging energy of the NCs computed using the measured 
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size-dependent dielectric constant for PbS NC-semiconductors.34 Thus, while trap states have been 

typically ascribed to mid-gap electronic states on individual NCs, traps will also be presented by 

the presence of charged, doped-NCs in a NC-semiconductor. 

In this picture, trapping and release of charge carriers from traps is thus simply phonon-assisted 

charge transfer between the highest occupied or lowest unoccupied states of neighboring NCs with 

rates given by Eq. 1, where ET(r, Δff) is included in E. Doing so results in release rates on the 

order of 102  for r = 1 nm NCs and up to 108 for r = 3 nm, in agreement with the rates characterized 

previously with thermal-admittance-spectroscopy23 (see Fig. S6). 

These results also indicate that the excess carrier on a doped NC must overcome a large energetic 

barrier (equal to ET) to become a free carrier in the NC-semiconductor. Particularly in small NCs, 

where ET is large, free carrier densities in NC-based semiconductors will be negligible even when 

large densities of doped-NCs are present. For example, for a semiconductor made of r = 1.6 nm 

PbS NCs, assuming 1% of NCs are n-doped, the free electron density at room temperature will be 

~1012 cm-3, in stark contrast to the total density of n-doped NCs, ~1016 cm-3. However, the 

formation of a space-charge region can lead to oxidation (or reduction) of the doped NCs, resulting 

in high trap densities. 

To summarize, our calculations provide several key insights into charge transport in 

semiconductors assembled from NCs: 1) charge on individual NCs forms polarons, 2) charge 

transport occurs via phonon-mediated charge transfer, and 3) oxidized or reduced doped-NCs 

become electronic traps states within the NC-semiconductor. 

Experimental Validation of Charge Transport and Trapping Models 

We experimentally validate these insights into charge transport in NC-based semiconductors by 

performing time-of-flight (TOF) photocurrent transient measurements4 (see Methods, Fig. S7). In 
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a TOF measurement, a laser pulse generates a low density of charge carriers in the NC-

semiconductor (Fig. 3a), and the displacement current generated by the electrons or holes 

traversing the film of thickness d is measured for a range of biases across the device, VB, at 

temperatures T ~220 - 330K (Fig. 3b). The resulting transients can be fit with two distinct power 

laws at short and long times (Fig. 3b), with their intersection taken as an effective transit time, 

ttr(VB,T). ttr(VB,T) corresponds to the maximum of the statistical distribution of carrier transport 

times across the device, and, by fitting ttr(VB,T) simultaneously for all temperatures T and biases 

VB (Fig. 3c), it is possible to extract an effective mobility, 𝜇𝑒𝑓𝑓: 

𝑑

𝑡𝑡𝑟(𝑉,𝑇)
= 𝜇𝑒𝑓𝑓(𝑟, ∆𝑓𝑓, 𝑇)

(𝑉𝐵+𝑉𝐵0)

𝑑
, (3) 

where VB0 is the built-in field in the device. The long-time portion of the transient reflects the 

large dispersion in carrier transit times, and are discussed further in Supplementary Information 

note 6.   

We first note that, in the limit that the potential drop across neighboring NCs is smaller than the 

reorganization energy ((VB + VB0)(2r+ Δff)/d << λ), we can use Eq. 1 to write: 

𝜇𝑒𝑓𝑓(𝑟, Δ𝑓𝑓 , 𝑇) = 𝑁𝑝
2𝜋

ℏ

𝑉𝑐𝑡
2

𝜆1/2

(2𝑟+∆𝑓𝑓)
2

2𝑘𝐵𝑇
√

1

4𝜋𝑘𝐵𝑇
𝑒−𝐸𝐴/𝑘𝐵𝑇 . (4) 

and thereby extract Vct  and EA from experiment (Fig. S8). We find good agreement between the 

experimentally extracted Ve* and Vh* and computed values for electron and hole coupling in the 

[100] direction (Fig. 3d). The extracted activation energies, which range from 70 meV to 150 meV 

(Fig. 3e), are larger than those expected for a NC-semiconductor with no energetic disorder (EA = 

λ/4 ~ 10 meV to 40 meV) (Fig. 1d). Instead, the activation energies are consistent with the values 

expected when electronic traps dominate the timescales of carrier transport. The fact that the 

electronic coupling Vct measured in this trap-limited transport regime agrees with our calculations 
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of Vct between neighboring NCs indicate that the trap states limiting the effective mobility in NC-

based semiconductors are those stemming from oxidized (or reduced) doped-NCs. 

Predictive Model for Charge Transport 

Confident in our new understanding of charge-transport in NC-based semiconductor, we build 

a Kinetic Monte Carlo (KMC) simulation of polaron transport, which we parameterize with the 

DFT calculated values for electronic coupling Vct, reorganization energy λ, and electronic trap 

depth ET (See Methods). In this multiscale model, charge transport across a NC-based 

semiconductor is simulated as sequential charge transfers between neighboring NCs i and j.  The 

rate of charge transfer is kij (which is given by Eq. 1) with energy offset between neighboring NCs, 

ΔEij, is taken as  

Δ𝐸𝑖𝑗 = (𝐸𝑔,𝑗 − 𝐸𝑔,𝑖)/2 − 𝐸⃗ 𝑧 ∙ (𝑟 𝑗 − 𝑟 𝑖), (5) 

where Eg,i is the band-gap of NC i, Ez is the electric field across the NC-semiconductor (assumed 

to be in the z-direction), and ri are the coordinates of NCs. For our simulation, we construct 

artificial NC semiconductors having the thicknesses and containing the different sized NCs that 

are investigated experimentally with TOF, and simulate current transients for different biases, 

carrier types (electrons and holes), and temperatures.  Only the density of trap states as a function 

of NC size, pT(r), is left as a free parameter (Supplementary Information note 7). The examples 

shown in Fig. 4a highlight that all simulated transients (red lines) match the measured transients 

(blue lines), both the effective mobilities defined by ttr(VB,T), as well as the long-time (t > ttr(VB,T)) 

dispersion of the transients. We find trap states densities selected to achieve agreement are within 

the expected range, and otherwise, no fitting is carried out to achieve the agreement between the 

simulated and experimental current transient measurements. 

Discussion 
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This predictive, multiscale model can be used to systematically design next generation NC-based 

semiconductors. Here, we consider how to overcome one intrinsic limitation we identified, namely 

the one-to-one correspondence between the free carrier generation in a NC and the formation of 

deep traps.  

In Fig. 4b, we plot the simulated relative mobility of a PbS NC-semiconductor, (μeff / μ0), defined 

by the time required for ~63% of the carriers to traverse a 400 nm-thick film, as a function of 

bandgap disorder σEg and trap density ρT, relative to that for a trap- and disorder-free NC-

semiconductor, μ0. While band-gap disorder has a similar impact on carrier mobility for both small 

and large NCs, the impact of deep traps can most easily be mitigated by using larger NCs, or by 

significantly decreasing Δff (e.g. through epitaxially connected NC-semiconductors 11) since ET(r, 

Δff) decreases with increasing r and decreasing Δff).  

Our insights enable us to identify a more flexible approach: a NC semiconductor composed of 

intrinsic NCs can be doped with p- or n-doped NCs with bandgaps larger than that of the intrinsic 

NCs. With proper selection of bandgap, the shifted highest occupied state of oxidized p-doped 

NCs or the lowest unoccupied state of reduced n-doped NCs will align with the highest occupied 

states or lowest unoccupied states of the intrinsic NCs (Fig. 4c). This simultaneously eliminates 

deep traps and energetic barriers for thermal release of carriers, and leads to multiple orders of 

magnitude higher mobilities and free carrier densities. Such a strategy can be achieved with a 

bimodal size distribution of NCs or with equal-sized doped NCs of a different core material (and 

thus different bandgaps). 

In summary, our insights highlight the need to reframe how we think about charge transport, 

trapping, and doping in NC semiconductors. As previously discussed, we should expect to find 

similarly large reorganization energies for any small NCs with X-type ligands, and the formation 
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of trap states upon charging of doped NCs should similarly occur, and the approaches employed 

here can be readily adapted in order to parameterize other NC-semiconductors. Finally, we note 

that our modeling here assumes negligible exciton polarization across individual NCs. For large 

fields and/or weak confinement, both the reorganization energy and electronic coupling will 

become field dependent, effects will which will need to be accounted for in modelling of the 

transport. 

Within the polaron hopping regime, NCs semiconductors present highly tunable systems that 

offer complete control of electronic coupling through tuning of the electronic confinement in the 

individual NC, the spacing, and the topology of the NC lattice, as well as the activation energies 

associated with transport through tuning of the NC dispersity, doping, and surfaces. By controlling 

the phonon densities-of-states and electron-phonon coupling through atomic engineering of the 

NCs and their surfaces, the rates and temperature-dependences of transport can also be 

systematically tuned. The example of PbS NC-based semiconductors illustrates how it is possible 

to engineer electronic anisotropies into semiconductors (i.e., transport in [100] will be faster than 

in [111]), without resorting to anisotropic crystal structures. This enables the creation of 

semiconductors with isotropic optical properties but with highly anisotropic electronic properties 

(as in the case of PbS), or with highly anisotropic optical properties and highly isotropic electronic 

properties. These findings position NC semiconductors not only as highly tunable, solution-

processed semiconductors but also as model, tunable systems for studying the fundamental physics 

of charge transfer processes. 
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Methods 

Atomistic Model Construction for DFT Calculations 

Atomistic models for the NCs are constructed according to the atomistic model proposed by 

Zherebetskyy et al.17 Bulk rocksalt PbS (with a Pb or S atom centered on the origin) is cut along 

the eight (111) planes and six (100) planes at plane to origin distances (r) defined by the Wulff 

ratio RW 

r
(1,0,0 )

= AR
W

, r
(1,1,1)

= AR
W

 1
.  (M1) 

A Rw = 0.82 is used.17  The scalar A is adjusted such that the resulting NC is S-terminated on the 

(111) facets. These (111)-surface terminating S atoms are then replaced with the desired ligand 

(for all calculations here, iodide anions). To obtain an intrinsic semiconductor NC, overall charge 

balance must be maintained according to eq. 4 in the main text. For all NC sizes investigated here, 

1-2 ligands, or lead-ligand pairs are removed from the as cut atomistic model in order to satisfy 

charge balance. For the doped NCs, a single ligand or lead-ligand pair is additionally removed. All 

removed atoms are taken from the corners of the NCs corresponding to the intersection of the [111] 

and [100] facets. 

Electronic Structure and Electron Transfer Parameterization Calculations 

All electronic structure calculations are performed within the CP2K program suite utilizing the 

quickstep module.35 Calculations are carried out using a dual basis of localized Gaussians and 

plane-waves,36 with a 300Ry plane-wave cutoff. Double-Zeta-Valence-Polarization (DZVP),37 

Goedecker–Teter–Hutter pseudopotentials for core electrons, and the Perdew–Burke–Ernzerhof 

(PBE) exchange correlation functional are used for all calculations, as in previous calculations for 

PbS NCs.16,23 Convergence to 10-8 in Self-Consistent Field calculations is enforced for all 

calculations unless otherwise specified. 



 13 

 

Non-periodic boundary conditions in atomic coordinates and electric potential are used (with the 

exception of the superlattice calculations which uses periodic boundary conditions for both), 

through the use of a wavelet Poisson solver.38 Geometry optimization is performed with the 

Quickstep module utilizing a Broyden–Fletcher–Goldfarb–Shannon (BFGS) optimizer. All atoms 

in all systems are relaxed using maximum force of 24 meVÅ-1 as convergence criteria. 

Reorganization Energy Calculations Reorganization energies are calculated using a half- cell 

approach.39 We first fully geometrically relax the atomic coordinates, Qx, and compute the total 

energy of the neutral NC, En(Qn), the NC with an additional electron, Ee(Qe), and a NC with a hole, 

Eh(Qh). We then perform energy calculations, without any geometry optimization, for En(Qe), 

En(Qh), Eh(Qn), Ee(Qn). Then, 

  (M2) 

Electronic Coupling These calculations are performed on a system of two NCs, oriented according 

to the two configurations in Fig. 2 of the main text, for all NC sizes, r, and a range of facet to facet 

separations, Δff. V(r,Δff) for the CBM and VBM is then taken as half the splitting of the resulting 

antisymmetric and symmetric states in the combined system.40 

Superlattice Electronic Structure Calculations The electronic structure of the NC superlattices 

were calculated utilizing the Kim-Gordon method (KG), which partitions a weakly interacting 

system into subunits. Namely, it forces the overall Hamiltonian of the superlattice (the weakly 

interacting system) to be block diagonal, where each block corresponds to a strongly interacting 

subunit (each individual NC). The KG approximation should be very much suitable for the NC-

superlattices, given our finding of weak electronic coupling between the NCs, and localization of 
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charge carriers on individual NCs as a result of the large reorganization energies associated to 

polaron formation. A detailed description of the KG method can be found elsewhere.41 For the 

calculations here, a linear-scaling approach to self-consistent field was employed, using a full 

embedding potential for the nonadditive kinetic energy correction to the PBE functional. 

Calculations are performed on 5x5x5 structures (corresponding to ~200 000 atoms for the largest 

NC), as calculations as a function of superlattice size indicate a convergence of the trap-depth with 

this size (see Fig. S2). In Fig. S2 we additionally plot the trap depth for the 0.9 nm NC as a function 

of ff, which, as expected, indicates an increase in trap depth with an increase in NC-NC separation 

resulting from weaker screening. 

Kinetic Monte Carlo Simulations 

General The Kinetic Monte Carlo simulations are performed within the limit of low charge carrier 

concentration, which assumes negligible interaction between the charge carriers. Charge transport 

is then simulated as sequential charge transfers (CT) between NCs. The CT rate between two NCs 

i and j, kij, is given by Eq. 1 in the main text, 

 (M3) 

where ΔEij is the energy of the products minus the energy of the reactants, and NP is the number 

of degenerate product states. We take ΔEij as 

 (M4) 

where Eg,i is the band-gap of NC i, Ez is the electric field across the NC-solid (assumed to be in 

the z-direction), and ri is the coordinate of NC i.  
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For PbS NCs, intervalley coupling which stems from the [100] facets of the NC, break the 4-fold 

degeneracy of the valence band maximum (VBM) and conduction band minimum (CBM) of bulk-

PbS in the NCs. This results in NC conduction band minima and valence band maxima of which 

are either singly or triply degenerate. This splitting is discussed in detail elsewhere 16, but we find 

the ordering to vary between differently sized NCs, i.e. for some sizes the VBM/CBM are 

singly/triply degenerate, whereas for other sizes, they are found to be triply/singly degenerate. We 

therefore use an average of NP = 2 for both electron and hole transfer. 

If a charge carrier is assumed to be on NC i, the NC to which it hops, and the time required for that 

hop to occur are determined in the following way 42: First, the CT rates, the set {kj}, are computed 

for a hop from NC i to all of its [100] and [111] nearest neighbors, the set {j}, according to eq. 

M3. Next, the hopping time to all nearest neighbors, the set {tj}, are calculated via inverse 

transform sampling, 

 (M5) 

where Ui is a random number pulled (one for each NN {j}) from a uniform distribution between 0 

and 1. The smallest hopping time from the set {tj} is then taken as the hopping time, and the hop 

occurs to the NC, j, which corresponds to this smallest hopping time.  

Superlattice Construction and TOF simulations Simulations are performed on a BCC 

superlattice of NCs with unit cell dimensions 32x32x1000. The bandgaps of each NC in the 

superlattice are pulled from a normal distribution with a mean of 0, and band gap inhomogeneity 

is characterized by a standard deviation 𝜎𝐸𝑔. Deep traps are added to the superlattice structure at 

random, at a density T, according to the trap depth given by eq. 5 in the main text and eq. M4 in 

the Supplementary Materials. The levels of each deep traps nearest neighbors are additionally 
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shifted, according to the parameterization presented in Supplementary Materials. We assume that 

the electrostatic shifts are additive, i.e. two neighboring traps will additionally shift each other’s 

levels further, according to the parameterization in Supplementary Materials. 

A single charge carrier is initialized at time t=0 on a randomly selected NC at z=0. The KMC then 

proceeds by sequentially hopping the carrier from NC to NC according to the procedure outlined 

above. The simulation is then terminated once the charge carrier reaches a z value corresponding 

to the device thickness. The result of the simulation is a set of charge carrier arrival times at a 

given NC coordinate, {tj, rj}, from which we can compute the TOF measured displacement current, 

 (M6) 

where d is the device thickness. This procedure is carried out stochastically for 105 charge carriers 

and the results averaged for the overall TOF transient, generating a uniquely disordered NC-

superlattice for each charge carrier simulated. 

PbS Synthesis, Device Fabrication and Characterization 

PbS Synthesis Colloidal oleic-acid capped PbS NCs are synthesized using the hot injection method. 

The as synthesized NCs are washed 3 times in mixtures of ethanol and methanol, and finally 

suspended in hexane at a concentration of 40 mg/mL. We determine the size of the NCs from their 

absorption spectrum using a well-established parametric model.4 

PbS NC-Layer Fabrication PbS NC-layers were fabricated on substrates described below through 

sequential dipcoating in (i) PbS NC solution diluted to 5mg/ml in hexane, (ii) crosslinking solution 

of 6mM ethanedithiol (EDT) in anhydrous acetonitrile, and (iii) rinsing solution of anhydrous 

acetonitrile. Dip-coating was carried out in air. The thickness of the PbS-NC layers were adjucsted 

by the number of dip-coating cycles, and thicknesses were measured from SEM cross-sections of 
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the devices after characterization, using ~100 measurements of the thickness over a cross-section 

spanning the entire device. 

Device Fabrication For the standard heterojunction devices, a TiO2 nanoparticle paste (DSL 90-

T, Dyesol), diluted to 125mg/mL in acetone was spun on fluorinated tin oxide/glass substrates 

(Solaronix) at 2500rpm for 60s. Samples were annealed on a hotplate at 500ºC for 60min, then 

immersed in a 60mM titanium-tetrachloride/deionized water solution at 70 ºC for 30min, and then 

placed on a hotplate at 500ºC for 60min after thorough rinsing with deionized water. Top contacts 

of MoOx/Au/Ag (20nm, 100nm, 500nm) electrodes were deposited by thermal evaporation. For 

the inverted heterojunction devices, NiO was deposited by RF magnetron sputtering using a 

99.95% purity NiO target onto indium tin oxide (ITO) glass substrates (Thin Film technologies) 

using a 10% partial pressure of oxygen. Top contacts of LiF/Al/Ag (10nm, 100nm, 500nm) 

electrodes were deposited by thermal evaporation. 

Electrical Characterization Samples are mounted into a cryostat (Janis ST-500) and remain in 

vacuum during the measurements. I-V measurements are carried out using a Keithley 2400 source 

measure unit. A mercury(xenon) DC arc lamp (Newport) and an air mass filter, calibrated using a 

piezoelectric sensor and an optical power meter (Thor Labs S302C, PM100D) provide AM1.5G 

illumination for solar cell characterization. For the TOF measurements, the devices are mounted 

on a Nikon Eclipse Ti-U optical microscope. A 405nm, 100ps excitation pulse is provided by a 

Hamamatsu picosecond pulsed laser (PLP-10). We note that the excitation energy is larger than 

the bandgap of the NCs, however, this should not impact the transient dynamics as PbS NCs have 

hot-carrier cooling times on the order of 100s of fs. Voltage biases were applied using an Agilent 

33522A arbitrary waveform generator and the current was measured on a Rohde&Schwarz 
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RTM1054 oscilloscope through the 50Ω input. Measurements were averaged over 1024 cycles at 

a frequency of 10kHz. 
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Supplementary Information is linked to the online version of the paper at 

www.nature.com/nature. 
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Fig. 1 Charge Transfer in NC-solids (a) Atomistic model of a PbS nanocrystal (NC) with halide 

(I) surface passivation and its quantized electronic structure. (b) Depiction of a thin film of 

nanocrystals (i.e, a NC solid). (c) Schematic of the nuclear reorganization, where the Pb-X bonds 

on the surface of the NC expand or shrink in the presence of an electron or hole. (d) Calculated 

reorganization energy (top) and electronic coupling (bottom) for electrons (blue) or holes (red) 

between [100] (squares) and [111] (circles) nearest neighbors (as depicted in (e)), assuming a facet-

to-facet distance, Δff, of 6 Å in the [111] direction. (f) Configurational diagram for charge transfer 

between two nanocrystals, where an electron (black dot) moves from the nanocrystal on the left 

(configuration of reactants, QR, with ground state energy ER) to the nanocrystal on the right (QP 

and energy ER). The reorganization energy (λ) and electronic coupling (VCT) is shown graphically. 
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Fig. 2 Origin of deep traps in NC-semiconductors. (a) A schematic representation of an n+ or 

p- NC in a solid of intrinsic NCs, where the shift in the energy structure will be screened by 

neighboring NCs, and a contour plot of the energy shifts of the lowest unoccupied electronic level 

in NCs (r = 0.95 nm with Δff = 0.6 Å) for an n+ NC in an NC solid. (b) Electronic structure of 

intrinsic, n-doped, and oxidized n-doped NC (n+). (c) Highest occupied electronic levels (red) and 

lowest unoccupied electronic levels (blue) of an n, n+ NC at the Γ point in the BCC lattice and its 

intrinsic neighbors in the [111] and [100] directions in a NC-solid. (d) Trap depth as a function of 

NC size for NCs in vacuum (circles) and for NC-solids (squares). Experimentally measured trap 

depths on PbS NC-solids 23,28 (gray circles) and the NC charging energies calculated for a sphere 

of radius r in a PbS NC-solid (dashed gray line) (see Supplementary Information note 5).  
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Fig. 3 Trap-Limited Transport in NC-solid. (a) Schematic of time-of-flight (TOF) photocurrent 

transient measurements. (b) Hole transients measured at various biases and temperatures on a NC-

solid (rNC = 2.21 nm). (c) Plot of the hole velocity, d/ttr, versus applied field, VB/d, at various 

temperatures. Solid lines indicate the fit to eq. 4. (d) Electronic coupling and (e) activation energy 

extracted from TOF measurements as a function of the NC radius r compared to computed Vh[100] 

and EA assuming trap limited transport (dashed lines).  
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Fig. 4 Predictive Model for Charge Transport (a) Measured TOF transients (blue) and Kinetic 

Monte Carlo (KMC) simulated transients (red) are shown for various NC sizes, temperatures, 

biases, and device thicknesses. Distribution of carrier transit times from the simulated transients 

(dashed black line). (b) Plot of the ratio of the effective mobility as a function of trap density ρT 

and NC bandgap disorder σEg to the effective mobility of a trap and disorder free NC-solid for 

smaller (top) and larger (bottom) NC sizes, calculated for a 400nm-thick NC-solid at 300K (c) 

Doping without the formation of trap states can be achieved by introduction of larger-bandgap, n- 

or p-doped NCs. Simulations demonstrate that this prevents a decrease in effective mobility at high 

carrier concentrations. 

 


