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Abstract.

We study the Yukawa model with one scalar and one axial scalar fields, coupled

to N copies of Dirac fermions, in curved spacetime background. The theory

possesses a reach set of coupling constants, including the scalar terms with odd

powers of scalar fields in the potential, and constants of non-minimal coupling

of the scalar fields to gravity. Using the heat-kernel technique and dimensional

regularization, we derive the one-loop divergences, describe the renormalization

of the theory under consideration and calculate the full set of beta- and gamma-

functions for all coupling constants and fields. As a next step, we construct

the renormalized one-loop effective potential of the scalar fields up to the terms

linear in scalar curvature. This calculation includes only the contributions from

quantum scalar fields, and is performed using covariant cut-off regularization

and local momentum representation. Some difficulties of the renormalization

group approach to the effective potential in the case under consideration are

discussed.
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1 Introduction

The interaction between scalar fields with Dirac spinors through a Yukawa interaction is

attracting a special attention in quantum field theory in curved spacetime. In this respect
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one can mention recent analysis that includes both scalar and a pseudoscalar couplings

[1] and more recently with the inclusion of a gauge field [2, 3]. In the present work we

continue the previous treatment of Yukawa model with sterile scalar discussed in [4] and

extend it to the case of the two (ordinary and axial) scalars with a Yukawa coupling to

fermions and general renormalizable form of self-interaction. Our immediate purpose will

be the calculation of divergences in the most economic way, as it was done in the original

publication on the renormalization of the Abelian model with Yukawa coupling in curved

spacetime with torsion from long ago [5] (see also the book [6]) .

Similar consideration of the simpler model with a single scalar field was useful in estab-

lishing the constraints on the quantum theory that come from the condition of renormal-

izability of the Abelian theory with massive Dirac field. The form of the self-interaction

potential of a scalar field ensuring the renormalizability of such a theory is an interest-

ing aspect, that was not explored completely in the original work [5]. It was shown and

discussed in details in the recent work [4] that the renormalizable scalar with Yukawa in-

teraction includes self-interactions with odd powers of the scalar fields. These qualitatively

new interactions include linear term, the term with a cubic coupling, and also a linear term

describing the interaction between scalar field and scalar curvature.

In all examples of renormalizable quantum field theories with scalar fields, which were

known until now, it was possible to construct solutions to the renormalization group equa-

tion for the effective action which enable to derive the effective potential in the most

economic way [7], including in curved spacetime [8] (see also the generalization to other

sectors of effective action in [9, 6]). In the model with a single sterile scalar one has to

extend this nicely working scheme to include odd powers of the scalar field, with this

generalization it still works pretty well [4].

The generalization of these considerations to the parity-preserving model with an ad-

ditional axial scalar field is an interesting and challenging problem. Let us start by stating

that this problem makes sense from the viewpoint of physical applications. First of all,

there is an important example of an axial scalar, that is an axion. Regardless axion might

have different form of coupling to gauge and fermion fields compared to an ordinary ax-

ial scalar field, it is interesting to explore the renormalization of such a parity-preserving

model on a simple example. On the other hand, in the recent years there were indica-

tions of the possible violations of parity in the gravitational action as an explanation of

some astrophysical observations [10]. Therefore it may be interesting to have a consistent

description of the models which are capable to explain such a violation, and the study of

renormalization of the model with axial scalar may be a useful step in better understanding

of a possible quantum origin of such terms.

Another interesting aspect of the model under consideration is that such a theory has
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two different scalar masses, that is a usual situation in effective field theory (see e.g. the

book [11]). In the recent work [12] we explored the non-local finite contributions of the

curved-spacetime diagrams with mixed internal lines, e.g. one of a light and another of a

heavy scalar fields. Here we supplement this result by deriving the effective potential in

the two-scalar model. It is worth pointing out that this situation is typical for effective

field theories, especially the ones with different mass scales and diagrams with mixed types

of internal lines. The effective potential involves two independent contributions, one from

the loops of scalar fields and another one from the spinor loop. In what follows we show

that the results for these contributions look somehow unusual. In the scalar sector we meet

a complicated non-polynomial mixing of the scalar masses and couplings, something one

could expect for the two-scalar model.

The paper is organized as follows. In Sec. 2 we describe the model including a real

scalar field and a pseudoscalar field coupled to N -component fermionic field and derive

the corresponding one-loop divergences. The one-loop renormalization relations in this

theory and the derivation of the renormalization group functions are collected in Sec. 3. In

Sec. 4 the renormalized one-loop effective potential is derived by using the local momentum

representation. Finally, our conclusions and the discussion of the results are presented in

Sec. 5.

2 Yukawa model and its renormalization

Consider a Yukawa model including a real scalar field ϕ and a real pseudoscalar (axial

scalar) field χ, coupled to the N copies of a fermionic field Ψi, with the classical action of

the form

S =

∫

d4x
√
−g
{

Ψ̄i

(

i /∇−M − h1ϕ− h2χγ
5
)

δijΨj +
1

2
gµν∂µϕ∂νϕ

+
1

2
gµν∂µχ∂νχ− 1

2
m2

1ϕ
2 − 1

2
m2

2χ
2 +

1

2
ξ1Rϕ2 +

1

2
ξ2Rχ2 − λ1

4!
ϕ4 − λ2

4!
χ4

− λ3

2
ϕ2χ2 − g

3!
ϕ3 − p

2
ϕχ2 − τϕ− fRϕ

}

, (1)

where m1, m2 and M are respectively the masses of scalar, pseudoscalar and spinor fields,

h1 and h2 are the Yukawa coupling constants. Finally, λ1, λ2, λ3, g, p and τ are coupling

constants in the scalar – pseudoscalar sectors, that survive in the flat limit, while ξ1 and

f are the nonminimal parameters of the scalar field and ξ2 the nonminimal parameter of

the interaction between axial scalar field with gravity. It is easy to note that the action

has not only the standard even terms, but also a set of odd terms, with the dimensional

parameters g, p and f . As we shall see in brief, these terms are necessary to achieve
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renormalizability of the theory. The last observation is that term which are linear and

cubic in the pseudoscalar field are excluded by the requirement that the Lagrangian is a

parity-even scalar.

In order to calculate the one-loop divergences, we shall use the heat-kernel method, and

perform the background-quantum splitting of the fields, according to

ϕ → ϕ+ σ, χ → χ + ρ, Ψ̄i → Ψ̄i + η̄i, Ψj → Ψj + ηj , (2)

where ϕ, χ, Ψ̄, Ψ are the classical background fields and σ, ρ, η̄, η their quantum counter-

parts.

The bilinear in quantum fields part of the action is written as follows

S(2) =
1

2

∫

d4x
√
−g

(

σ ρ η̄i

)

Ĥ







σ

ρ

ηj







=
1

2

∫

d4x
√−g

{

σH11σ + ρH21σ + η̄iH31σ + σH12ρ

+ ρH22ρ+ η̄iH32ρ+ σH13ηj + ρH23ηj + η̄iH33ηj

}

, (3)

where the elements of the matrix operator Ĥ have the form

H11 = −✷−m2
1 + ξ1R− gϕ− λ3χ

2 − λ1

2
ϕ2,

H12 = −4ϕχλ3 − 2pχ, H13 = −2h1Ψ̄j , H21 = −4ϕχλ3 − 2pχ,

H22 = −✷−m2
2 + ξ2R− pϕ− λ3ϕ

2 − λ2

2
χ2,

H23 = −2h2Ψ̄jγ
5, H31 = −2h1Ψi , H32 = −2h2γ

5Ψi ,

H33 = 2(i /∇−M − h1ϕ− h2χγ
5)δij. (4)

It proves useful to introduce conjugated matrix operator

Ĥ∗ =







−1 0 0

0 −1 0

0 0 −1
2
(i /∇ +M)






. (5)

The one-loop quantum contribution to effective action is defined by the expression

Tr ln (Ĥ). To calculate the divergences of effective action we will write it as

Tr ln (Ĥ) = Tr ln (ĤĤ∗)− Tr ln (Ĥ∗). (6)

The last term Tr ln Ĥ∗ contributes only to the vacuum divergences that are known for an

arbitrary model [13, 6]. Therefore it is sufficient to calculate the divergences of the product

ĤĤ∗, that has a standard form,

Ĥ = ĤĤ∗ = 1̂✷+ 2ĥµ∇µ + Π̂. (7)
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Hence,

H11 = ✷+m2
1 +

λ1

2
ϕ2 − ξ1R + λ3χ

2 + gϕ,

H12 = 2pχ+ 4λ3ϕχ, H13 = h1Ψ̄j(i /∇+M),

H21 = 2pχ+ 4λ3ϕχ, H22 = ✷+m2
2 +

λ2

2
χ2 − ξ2R + λ3ϕ

2 + pϕ,

H23 = h2Ψ̄jγ
5(i /∇+M), H31 = 2h1Ψi , H32 = 2h2γ

5Ψi ,

H33 = δij
[

✷− 1

4
R +M2 + h1ϕ(i /∇ +M) + h2χγ

5(i /∇+M)
]

. (8)

where we can identify

hµ
13 =

ih1

2
Ψ̄jγ

µ, hµ
23 =

ih2

2
Ψ̄jγ

5γµ, hµ
33 =

i

2
(h1ϕ+ h2χγ

5)γµδij (9)

and

Π11 = m2
1 +

λ1

2
ϕ2 − ξ1R + gϕ+ λ3χ

2, Π12 = 2pχ+ 4λ3ϕχ,

Π13 = h1MΨ̄j , Π21 = 2pχ+ 4λ3ϕχ,

Π22 = m2
2 +

λ2

2
χ2 − ξ2R + pϕ+ λ3ϕ

2,

Π23 = h2MΨ̄jγ
5, Π31 = 2h1Ψi , Π32 = 2h2γ

5Ψi ,

Π33 = δij
[

M2 − 1

4
R + h1Mϕ + h2Mχγ5

]

. (10)

The Schwinger–De-Witt proper-time (heat kernel) technique [14] yields the general

expression for the one-loop divergences in the form

Γ
(1)
div = −µD−4

ε

∫

dDx
√−g sTr

{1

2
P̂ 2 +

1

12
Ŝ2
µν +

1

6
✷P̂ +

1̂

180

(

R2
µναβ − R2

µν +✷R
)

}

, (11)

where ε = (4π)2(D − 4) and

P̂ = Π̂ +
1̂

6
R−∇µĥ

µ − ĥµĥ
µ,

Ŝµν =
[

∇ν ,∇µ

]

1̂ +∇νĥµ −∇µĥν + ĥν ĥµ − ĥµĥν . (12)

The relations (11), (12) lead to the following result for the one-loop divergences in the

model under consideration5,

Γ
(1)
div = Γ

(1)
vac, div + Γ

(1)
m, div, (13)

5We present here only the final result, the intermediate formulas can be found in the Appendix.
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where

Γ
(1)
vac, div = −µD−4

ε

∫

dDx
√
−g

{

1

2

(

m4
1 +m4

2

)

− 2NM4

+
(N

3
M2 −m2

1ξ̃1 −m2
2ξ̃2

)

R +
(N

24
+

1

45

)

R2
µναβ +

8N − 2

180
R2

µν

+
1

2

(

ξ̃21 + ξ̃22 −
N

9

)

R2 +
( 1

45
+

N

9
− 1

6
ξ̃1 −

1

6
ξ̃2

)

✷R

}

(14)

and

Γ
(1)
m, div = −µD−4

ε

∫

dDx
√
−g

{

∑

k

3Ψ̄k

[ i

2
h2
1 /∇− i

2
h2
2 /∇ + h2

1(M + h1ϕ− h2χγ
5)

+ h2
2(M + h1ϕ− h2χγ

5)
]

Ψk + 2Nh2
1(∂µϕ)

2 − 2Nh2
2(∂µχ)

2

+
(1

3
Nh2

1 −
λ1

2
ξ̃1 − λ3ξ̃2

)

Rϕ2 +
(1

8
λ2
1 +

1

2
λ2
3 − 2Nh4

1

)

ϕ4

+
[2

3
Nh1M − gξ̃1 − pξ̃2

]

Rϕ+ (m2
1g +m2

2p− 8Nh1M
3)ϕ

+
1

2

(

g2 + p2 + λ1m
2
1 + 2λ3m

2
2 − 24Nh2

1M
2
)

ϕ2 +
(

λ3p− 8NMh3
1 +

1

2
gλ1

)

ϕ3

+
1

2

(

2λ3m
2
1 + λ2m

2
2 + 8p2 + 8Nh2

2M
2
)

χ2 +
(1

2
λ2
3 +

1

8
λ2
2 − 2Nh4

2

)

χ4

− 1

2

(

λ2ξ̃2 + 2λ3ξ̃1 +
2N

3
h2
2

)

Rχ2 +
1

2

(

λ1λ3 + λ2λ3 + 8Nh2
1h

2
2 + 32λ2

3

)

ϕ2χ2

+
(

gλ3 +
1

2
pλ2 + 16pλ3 + 8Nh1h

2
2M
)

ϕχ2 +
1

6

(

g + p− 8Nh1M
)

✷ϕ

+
1

12

(

λ1 + 2λ3 − 16Nh2
1

)

✷ϕ2 +
1

12

(

λ2 + 2λ3 + 16Nh2
2

)

✷χ2

}

. (15)

For compactness, we have introduced the notations ξ̃1,2 = ξ1,2− 1
6
. The vacuum divergences

are included for the sake of completeness.

The expression (15) shows that the odd terms, which we have included in the classical

action (1), subject to the divergences. Exactly as it is the case in the simpler single-scalar

theory, these terms have no symmetry protection and the structure of divergences is exactly

as should be expected from the symmetry and power-counting arguments.

3 Renormalization

Once the form of the one-loop divergences is known one can easily find the relations between

bare and renormalizable quantities. For the fields we meet

ϕ0 = µ
D−4

2

(

1 +
2Nh2

1

ǫ

)

ϕ, χ0 = µ
D−4

2

(

1− 2Nh2
2

ǫ

)

χ,

Ψk0 = µ
D−4

2

[

1 +
3

4ǫ
(h2

1 − h2
2)
]

Ψk. (16)
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The relations for masses have the form

M0 =
(

1− 9

2ǫ
h2
1 −

3

2ǫ
h2
2

)

M,

m2
10 = m2

1 −
g2 + p2 + 4Nh2

1m
2
1 + λ1m

2
1 + 2λ3m

2
2 − 24Nh2

1M
2

ǫ
,

m2
20 = m2

2 −
8p2 − 4Nh2

2m
2
2 + λ2m

2
2 + 2λ3m

2
1 + 8Nh2

2M
2

ǫ
. (17)

For the even couplings and nonminimal parameters we find

ξ10 = ξ1 −
λ1 + 4Nh2

1

ǫ
ξ̃1 −

2λ3

ǫ
ξ̃2,

ξ20 = ξ2 +
4Nh2

2 − λ2

ǫ
ξ̃2 −

2

ǫ
λ3ξ̃1,

h10 = µ
4−D

2 h1

(

1− 4Nh2
1 + 9h2

1 + 3h2
2

2ǫ

)

,

h20 = µ
4−D

2 h2

(

1 +
4Nh2

2 + 9h2
2 + 3h2

1

2ǫ

)

,

λ10 = µ4−D
(

λ1 +
48Nh4

1 − 8Nλ1h
2
1 − 3λ2

1 − 12λ2
3

ǫ

)

,

λ20 = µ4−D
(

λ2 +
48Nh4

2 + 8Nλ2h
2
2 − 3λ2

2 − 12λ2
3

ǫ

)

,

λ30 = µ4−D
(

λ3 −
λ1λ3 + λ2λ3 + 8Nh2

1h
2
2 + 32λ2

3 + 4Nλ3h
2
1 − 4Nλ3h

2
2

ǫ

)

. (18)

And, finally, for the odd couplings and nonminimal parameters,

g0 = µ
4−D

2

(

g +
48NMh3

1 − 3gλ1 − 6Nh2
1g − 6λ3p

ǫ

)

,

τ0 = µ
4−D

2

(

τ +
8Nh1M

3 − 2Nτh2
1 −m2

1g −m2
2p

ǫ

)

,

p0 = µ
D−4

2

(

p− 1

ǫ

(

2λ3g + λ2p+ 32λ3p+ 16Nh1h
2
2M − 4Nh2

2p+ 2Nh2
1p
)

)

,

f0 = µ
D−4

2

[

f +
g

ǫ
ξ̃1 +

p

ǫ
ξ̃2 −

2Nh1M + 6Nfh2
1

3ǫ

]

. (19)

Note the non-trivial renormalization of the odd coupling parameters and in particular of

the new non-minimal coupling parameter f .

The β- and γ-functions can be calculated from the renormalization relations for the

parameters and fields. For the theories in curved spacetime the procedure [15, 16] is

described in detail in the book [6], so we give only the final results for

βP = lim
D→4

µ
dP

dµ
, (20)

γΦΦ = lim
D→4

µ
dΦ

dµ
, (21)

7



where P =
(

m2
1, m

2
2,M, h1, h2, λ1, λ2, ξ1, ξ2, g, p, τ, f

)

are the renormalized parameters and

Φ = (ϕ, χ, Ψk) are the renormalized fields. Using the relations (16), (17), (18) and (19),

we obtain the following results:

βh1
=

(4Nh3
1 + 9h3

1 + 3h1h
2
2)

2(4π)2
,

βh2
= −(4Nh3

2 + 9h3
2 + 3h2

1h2)

2(4π)2
,

βM =
3M

2(4π)2

(

3h2
1 + h2

2

)

,

βλ1
=

1

(4π)2

(

3λ2
1 + 8Nλ1h

2
1 − 48Nh4

1 + 12λ2
3

)

,

βλ2
=

1

(4π)2

(

3λ2
2 − 8Nλ2h

2
2 − 48Nh4

2 + 12λ2
3

)

,

βλ3
=

1

(4π)2

(

λ1λ3 + λ2λ3 + 32λ2
3 + 8Nh2

1h
2
2 + 4Nλ3h

2
1 − 4Nλ3h

2
2

)

,

βξ1 =
1

(4π)2

[(

λ1 + 4Nh2
1

)(

ξ1 −
1

6

)

+ 2λ3

(

ξ2 −
1

6

)]

,

βξ2 =
1

(4π)2

[(

λ2 − 4Nh2
2

)(

ξ2 −
1

6

)

+ 2λ3

(

ξ1 −
1

6

)]

,

βg =
1

(4π)2

(

3gλ1 + 6Ngh2
1 − 48NMh3

1 + 6pλ3

)

,

βp =
1

(4π)2

(

pλ2 + 32λ3p− 4Nph2
2 + 2Nph2

1 + 2gλ3 + 16NMh1h
2
2

)

,

βm2

1
=

1

(4π)2

[

m2
1λ1 + g2 + p2 +

(

4m2
1 − 24M2

)

Nh2
1 + 2λ3m

2
2

]

,

βm2

2
=

1

(4π)2

[

m2
2λ2 + 8p2 +

(

8M2 − 4m2
2

)

Nh2
2 + 2λ3m

2
1

]

,

βτ =
1

(4π)2

(

2Nτh2
1 + gm2

1 + pm2
2 − 8Nh1M

3
)

,

βf =
1

(4π)2

[

2Nfh2
1 − g

(

ξ1 −
1

6

)

− p
(

ξ2 −
1

6

)

+
2

3
NMh1

]

. (22)

For the γ-functions we have

γϕ = −2Nh2
1

(4π)2
, γχ =

2Nh2
2

(4π)2
, γΨk

=
3

4(4π)2
(h2

2 − h2
1). (23)

A good check is that, if considering the conformal invariant theory, with vanishing masses

and other dimensional constants, g, p, τ and f , and assuming ξ1 = ξ2 =
1
6
, the pole coeffi-

cient in the expression for the divergences (15) is also conformal invariant. Consequently,

the β-functions for ξ1 and ξ2 in this case are linear combinations of ξ̃1 and ξ̃2, defined after

Eq. (14).
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4 Effective potential

In this section we derive the one-loop effective potential in the model under consideration

up to first order in scalar curvature, using the local momentum representation, based

on the Riemann normal coordinates. This method is quite efficient for mass-dependent

calculations of local quantities, such as the effective potential.

The effective potential Veff(ϕ) is defined as the zeroth-order term in the derivative

expansion of the effective action of a background scalar field ϕ(x),

Γ [ϕ, gµν ] =

∫

dDx
√−g

{

− Veff(ϕ) +
1

2
Z(ϕ) gµν∂µϕ∂νϕ+ · · ·

}

, (24)

where D is the spacetime dimension.

Within the loop expansion of the effective action, the corresponding one-loop correction

to the effective potential is given by

∫

dDx
√−g V (ϕ) =

1

2
sTr ln Ĥ

∣

∣

∣

ϕ=const
(25)

where Ĥ is the bilinear operator of action (3).

The curvature expansion of V (ϕ) reads

V = V0 + V1 + · · · , (26)

where V
(1)
0 is the well-known flat-spacetime effective potential, which has been derived

many times and in different ways starting from the work of Coleman and Weinberg [7] and

V1 is the first order in scalar curvature R. In curved spacetime the potential can also be

derived in different ways.

Let us emphasize that in all known examples the effective potential can be obtained

by solving the renormalization group equation for the effective action, in both flat [7] and

curved [8] spacetimes (see e.g. Ref. [6] for detailed introduction and further references.

The generalization to the model with a single sterile scalar proceeds is done in a close

analogy to the standard approach, but with some modification due to the presence of the

odd interaction terms [4].

The renormalization group equation for the the effective action has the form [15, 6]

{

µ
∂

∂µ
+ βP

∂

∂P
+

∫

dDx γΦΦ
δ

δΦ(x)

}

Γ[gαβ,Φ, P,D, µ] = 0, (27)

where we assume the sum over all parameters (couplings and masses) P and the fields

Φ = (ϕ, χ, Ψk). The effective potential satisfies the same equation, due to the separation
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of different terms in (24). Then, the result for, e.g., a single scalar field can be presented

as a general symbolic expression6

Veff = −1

2
m2ϕ2 − 1

2
ξRϕ2 +

λ

4!
ϕ4 +

g

3!
ϕ3 + τϕ + fRϕ

− 1

4
ϕ2(βm2 + 2m2γϕ)

[

ln
(ϕ2

1∗

µ2

)

+ C1

]

− 1

4
Rϕ2(βξ + 2ξγϕ)

[

ln
(ϕ2

2∗

µ2

)

+ C2

]

+
1

12
ϕ3(βg + 3gγϕ)

[

ln
(ϕ2

3∗

µ2

)

+ C3

]

+
1

48
ϕ4(βλ + 4λγϕ)

[

ln
(ϕ2

4∗

µ2

)

+ C4

]

+
1

2
ϕ(βτ + τγϕ)

[

ln
(ϕ2

5∗

µ2

)

+ C5

]

+
1

2
Rϕ(βf + fγϕ)

[

ln
(ϕ2

6∗

µ2

)

+ C6

]

, (28)

where all beta- and gamma-functions are given in Eqs. (22) and (23). The set of the

constants C1 ...6 in the last expression (28) can be found from the initial renormalization

conditions. For instance, the two well-known values, corresponding to the standard choices

in the massless scalar case are C4 = −25
6
obtained in [7] and C2 = −3 obtained in [8, 6].

The symbolic expressions ln
(ϕ2

k∗

µ2

)

with k = 1, 2, ..., 6, in the formula (28) depend on

the theory under consideration. For instance, in the model with a single sterile scalar [4],

these quantities appear as linear combinations of the logarithms

t(0) =
1

2
ln
[m2 + 1

2
λϕ2 + gϕ

µ2

]

(29)

and

t(
1

2
) =

1

2
ln
[(M + hϕ)2

µ2

]

. (30)

for the scalar and fermion contributions to the effective potential, correspondingly. Namely,

the logarithms (29) and (30) are used as an efficient Ansatz to solve the renormalization

group equation for the effective potential.

In the massless case or in the limit of large-scalar limit, one should expect that the

asymptotic behavior of all terms should be

ln
(ϕ2

k∗

µ2

)

∝ ln
(ϕ2

µ2

)

. (31)

In the subsequent subsection we perform direct calculation of the scalar contribution in

the model (1) and show that the result is inconsistent with the expectation based on the

Ansatz that consists in guessing the form of the logarithms, such as (29) and (30).

The calculations presented below were performed in the covariant cut-off regularization

of the Euclidean integrals in the local momentum representation. In the case of effective

6We will not write down similar formula for the theory (1), because it is too long. The interested reader

can easily obtain it by analogy with Eq. (28).
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potential this regularization is the simplest options. On the other hand, the transition

to the covariant cut-off in the proper time integral, and consequently to the dimensional

regularization is automatic, as discussed in [18] (see also earlier general investigation in flat

spacetime [19]).

4.1 Two-scalar sector

Let us start from the bilinear form of the action in the scalar sector of (3) in the form

S
(2)
0 =

1

2

∫

d4x
√−g

(

σ ρ
)

Ĥs

(

σ

ρ

)

, (32)

where the matrix operator has the form

Ĥs = ✷1̂ +

(

M2
11 M2

12

M2
21 M2

22

)

(33)

with 1̂ = diag (1, 1) and

M2
11 = m̃2

1 − ξ1R,

M2
22 = m̃2

2 − ξ2R,

M2
12 = M2

21 = 2pχ+ 4λ3ϕχ , (34)

where

m̃2
1 = m2

1 +
λ1

2
ϕ2 + λ3χ

2 + gϕ , (35)

m̃2
2 = m2

2 +
λ2

2
χ2 + λ3ϕ

2 + pϕ . (36)

In order to simplify the calculations let us diagonalize the matrix in the second term of

relation (33), by making a rotation in the space of the fields,
(

σ

ρ

)

= U

(

φ1

φ2

)

, where U =

(

cosα − sinα

sinα cosα

)

. (37)

After this transformation, Eq. (32) becomes

S
(2)
0 =

1

2

∫

d4x
√
−g

{

φ1✷φ1 + φ2✷φ2

+ φ1

[

cos2(α)M2
11 + sin2(α)M2

22 − sin(2α)M2
12

]

φ1

+ φ2

[

sin2(α)M2
11 + cos2(α)M2

22 + sin(2α)M2
12

]

φ2

+ φ1

[

sin(2α)
(

M2
22 −M2

11

)

+ 2 cos(2α)M2
12

]

φ2

}

. (38)
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Now, we can simply choose

cos(2α) =
M2

22 −M2
11

2M2
12

sin(2α) =⇒ cot(2α) = Θ =
M2

22 −M2
11

2M2
12

, (39)

such that the last term in (38) vanishes and the new diagonal matrix Ĥs = U−1ĤsU has

the form

Ĥs = ✷1̂ +

(

aM2
11 + bM2

22 − cM2
12 0

0 bM2
11 + aM2

22 + cM2
12

)

, (40)

where

a =
1

2
+

Θ

2
√
1 + Θ2

, b =
1

2
− Θ

2
√
1 + Θ2

, c =
1√

1 + Θ2
. (41)

Since we are interested in the O(R)-approximation, it is useful to rewrite (40) as

Ĥs =

(

✷− Π1 − ζ1R + (R2 · · · ) 0

0 ✷− Π2 − ζ2R +O(R2 · · · )

)

, (42)

with

Π1 = −
(

1

2
+

Θ0

2
√

1 + Θ2
0

)

m̃2
1 −

(

1

2
− Θ0

2
√

1 + Θ2
0

)

m̃2
2 +

M2
12

√

1 + Θ2
0

, (43)

Π2 = −
(

1

2
− Θ0

2
√

1 + Θ2
0

)

m̃2
1 −

(

1

2
+

Θ0

2
√

1 + Θ2
0

)

m̃2
2 −

M2
12

√

1 + Θ2
0

, (44)

and

ζ1 =

(

1

2
+

Θ0

2
√

1 + Θ2
0

)

ξ1 +

(

1

2
− Θ0

2
√

1 + Θ2
0

)

ξ2, (45)

ζ2 =

(

1

2
− Θ0

2
√

1 + Θ2
0

)

ξ1 +

(

1

2
+

Θ0

2
√

1 + Θ2
0

)

ξ2, (46)

where we denote Θ0 =
m̃2

2
−m̃2

1

2M2

12

.

As next step, we define

Ĥs =

(

H(1) 0

0 H(2)

)

, (47)

where H(1) = (✷− Π1 − ζ1R) and H(2) = (✷− Π2 − ζ2R), so that

Tr ln Ĥs = ln Det Ĥs = Tr lnH(1) + Tr lnH(2) . (48)
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Let us point out that using the rotation in the fields space to diagonalize Ĥ , we also have to

consider the contribution that comes from the transformation Ĥs = U−1ĤsU . In relation

(48), since DetU = DetU−1 = 1, then there is no contribution. However the Jacobian

of a such transformation in four-dimensional spacetime is proportional to δ4(0), which in

dimensional regularization formally vanishes while in our case via cut-off regularization

scheme this means a cut-off dependent contribution to the cosmological constant.

Another important observation is that rotation (37) and an expansion to the first order

in curvature are not commuting operations. This means that if we extract the O(R)-term

first and after that make a rotation only for a flat-space sector, the result would be different

and not satisfactory from the point of view of our calculations.

Starting from this point, we meet a product of two normal scalar operators (47) and it

is possible to use the technique elaborated in [17] (see also [18, 20, 4]) to find the one-loop

effective potential up to first order in R, using the Riemann normal coordinates formalism.

The equation for the propagator of a scalar field Gc(x, x
′) related to H(1) has the form

(

g
1

4✷g−
1

4 − Π1 − ζ1R
)

Ḡ(x, x′) = − δD(x− x′) . (49)

In Eq. (49) we take into account the expression for the covariant Dirac delta function

δc(x, x
′) = g−1/4 δD(x− x′) g′−1/4 (50)

and the modified propagator Ḡ(x, x′) [17]. Both elements are necessary for the consistency

of the expansion, so that the r.h.s. of the above equation does not depend on the metric

tensor. Thus, one can use the relation Tr ln Ĥ = − Tr ln Ḡ to derive the dependence on

the curvature tensor in Eq. (25).

In the Riemann normal coordinates the expansion of the spacetime metric gαβ up to first

order in the curvature is given by [21] (see also simplified introduction and more references

in [22])

gαβ(x) = ηαβ −
1

3
Rαµβν(x

′) yµyν + · · · , (51)

hence

R(x) = R(x′) + · · · , (52)

� = ∂2 +
1

3
Rµν

αβ(x
′) yαyβ ∂µ∂ν −

2

3
Rα

β (x
′) yβ ∂α + · · · . (53)

Starting from this formula, it is easy to get

g1/4� g−1/4 = ∂2 +
1

6
R +

1

3

(

Rµν
αβ(x

′) yαyβ ∂µ∂ν −Rα
β (x

′) yβ ∂α
)

+ · · · , (54)

13



where the derivatives are ∂α = ∂
∂yα

, ∂2 = ηµν∂µ∂ν and the dots mean higher order terms

in the curvature tensor and its covariant derivatives.

After all, Eq. (49) becomes
[

− ∂2 +Π1 +
(

ζ1 −
1

6

)

R
]

Ḡ(x, x′) = δD(x− x′) . (55)

We can also note that the last term in Eq. (54) does not contribute to the effective potential

due to the Lorentz invariance [17].

The solution up to the first order in the curvature has the form

Ḡ(x, x′) =

∫

dDk

(2π)D
eiky

[

1

k2 +Π1

−
(

ζ1 −
1

6

) R

(k2 + Π1)2

]

. (56)

The results presented above, enable one to find the one-loop effective potential. Taking

into account the expansion of bilinear operator H(1) and the Green’s function Ḡ(x, x′) up

to first order in R, we have

−Tr ln Ḡ = Tr ln (Ĥ
(1)
0 + Ĥ

(1)
1 R) = Tr ln Ĥ

(1)
0 + Tr Ḡ0Ĥ

(1)
1 R. (57)

For the effective potential in flat spacetime we need just the first term in the r.h.s. of

Eq. (57) given by

−
∫

dDx V̄
(1)
0 =

1

2
Tr ln Ĥ

(1)
0 =

1

2
Tr lnS2(ϕ, χ)−

1

2
Tr lnS2(ϕ = χ = 0), (58)

where S2(φ) is the bilinear form of the classical action in the background-field formalism.

The last term in Eq. (58) can be seen as a normalization of the functional integral. This

term arises naturally through the diagrammatic representation of effective potential. From

Eq. (58) we get

V̄
(1)
0 (ϕ, χ) =

1

2

∫

dDk

(2π)D
ln
( k2 +Π1

k2 +m2
1

)

. (59)

Using the Euclidean momentum cut-off Ω, for D = 4 we have

V̄
(1)
0 (ϕ, χ) =

1

2(4π)2

∫ Ω

0

dk2 k2 ln
( k2 +Π1

k2 +m2
1

)

, (60)

and we finally get

V̄
(1)
0 (ϕ, χ) = V̄

(1)
0−div(ϕ, χ) + V̄

(1)
0−fin(ϕ, χ), (61)

where

V̄
(1)
0−div(ϕ, χ) =

1

32π2

{

Ω2
(

Π1 −m2
1

)

− Π2
1

2
ln

Ω2

µ2
+

1

2
m4

1 ln
Ω2

µ2

}

, (62)

V̄
(1)
0−fin(ϕ, χ) =

1

32π2

{

− 1

4

(

Π2
1 −m4

1

)

+
Π2

1

2
ln

Π1

µ2
− 1

2
m4

1 ln
m2

1

µ2

}

. (63)
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The second term in the r.h.s. of Eq. (57) corresponds to the first order in curvature

correction V̄
(1)
1 (ϕ, χ), which can be derived as follows

−
∫

dDx V̄
(1)
1 =

1

2
Tr Ḡ0 Ĥ1R = − 1

2

∫

dDx

∫

dDx′ Ḡ−1
0 (x, x′) Ḡ1(x

′, x)R, (64)

so that

V̄
(1)
1 =

1

2

∫

dDx′

∫

dDk

(2π)D
eik(x−x′)

∫

dDp

(2π)D
eip(x

′
−x) Ḡ−1

0 (k) Ḡ1(p)R

=
1

2

∫

dDk

(2π)D
Ḡ−1

0 (k) Ḡ1(k)R . (65)

For D = 4 and replacing the explicit forms of Ḡ−1
0 (k) and Ḡ1(k) of Eq. (56) in Eq. (65),

one arrives at

V̄
(1)
1 = − 1

2(2π)4

(

ζ1 −
1

6

)

R

∫ Ω

0

k2dk2

k2 +Π1
. (66)

After taking the last integral, the result has the form

V̄
(1)
1 (ϕ, χ) = V̄

(1)
1−div(ϕ, χ) + V̄

(1)
1−fin(ϕ, χ), (67)

where

V̄
(1)
1−div(ϕ, χ) = − 1

32π2

(

ζ1 −
1

6

)

R

[

Ω2 −Π1 ln
Ω2

µ2

]

,

V̄
(1)
1−fin(ϕ, χ) = − 1

32π2

(

ζ1 −
1

6

)

RΠ1 ln
Π1

µ2
. (68)

We have described the calculations for the first contribution due to Ĥ(1). For the second

term Ĥ(2) the calculations are analogous except that in this case we have to use Π2 and ζ2

instead Π1 and ζ1. The final result has the form

V̄ (ϕ, χ) = V̄
(1)
0 (ϕ, χ) + V̄

(2)
0 (ϕ, χ) + V̄

(1)
1 (ϕ, χ) + V̄

(2)
1 (ϕ, χ)

=
1

32π2

{

− 1

4

[

Π2
1 +Π2

2 − (m4
1 +m4

2)
]

+ Ω2
[

Π1 +Π2 − (m2
1 +m2

2)
]

+
1

2
(Π2

1 +Π2
2) ln

Π2

µ2
− 1

2
(Π2

1 +Π2
2) ln

Ω2

µ2

− 1

2
m4

1 ln
m2

1

µ2
− 1

2
m4

2 ln
m2

2

µ2
+

1

2
(m4

1 +m4
2) ln

Ω2

µ2

−
(

ζ1 −
1

6

)

R

[

Π1 ln
Π1

µ2
+ Ω2 −Π1 ln

Ω2

µ2

]

−
(

ζ2 −
1

6

)

R

[

Π2 ln
Π2

µ2
+ Ω2 −Π2 ln

Ω2

µ2

]}

. (69)

15



This is the final result for scalar fields loop to effective potential.

Some observations concerning the expression (69) are in order. First of all, the diver-

gent part is in the perfect correspondence with the corresponding part of the result (15),

obtained on the base of the heat-kernel method. In order to see this it is sufficient to use

the well-known correspondence between covariant cut-off and dimensional regularization

parameter (see, e.g., [24]),

2

4− n
µn−4 ∼ ln

Ω2

µ2
, n −→ 4. (70)

Second, the dependence on the renormalization parameter µ is exactly the standard

one, such that the effective potential is a solution of the standard renormalization group

equation (27).

Thus, the expression (69) indicates that the quantum corrections are given by some

logarithmic terms, similar to the general renormalization group - based form (28). On the

other hand, the logarithmic terms in (69) depend on the unusual arguments representing

the mixture of different scalar fields, their masses and coupling constants. This situation

is in fact typical for the quantum corrections coming from the loops with mixed internal

lines, e.g. of the light and heavy mass fields [11] (see also a recent work [12] for the

extension to curved space). However, it is interesting to point out that this form of the

effective potential does not confirm a naive expectation that the scalar fields contribution

to effective potential can be obtained using the anzatz of the form t(0) from Eq. (29) for

each of the background scalars. This output means that the possibility to derive the full

result (69) from the renormalization group equation is not evident and deserves a further

study.

We can point out that in the limit of large scalar fields, when both |ϕ| → ∞ and

|χ| → ∞, our result (69) reduce to the sum of logarithmic contributions of the scalar

fields. However, in general the effective potential has more complicated form. The origin

of this feature of the two-scalar model is the rotation (37), that mixes different masses,

interactions and non-minimal parameters.

5 Conclusions and Perspectives

We have formulated the Yukawa model of one sterile scalar and one axial scalar (pseu-

doscalar) fields, interacting to themselves and also to the set of fermions through the

Yukawa couplings.

The power counting analysis of the divergences shows that the helps us to identify

the form of the classical potential of scalar and pseudoscalar self-interaction, providing
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renormalizable quantum theory. This potential has all even and odd terms that are allowed

by symmetries (including parity) of the classical theory, without coupling constants with

the inverse-mass dimensions.

The complete analysis of one-loop renormalization, β− and γ-functions was given in

Sec. s̊3. The main results of this part is the importance of the mixed scalar-pseudoscalar

terms, which do not have symmetry protection and, as a result, are indispensable for

renormalizability of the theory. Thus, we have completely described the one-loop renor-

malization structure of the model under consideration.

The effective potential has been calculated up to the linear in scalar curvature terms.

The results is a sum of independent contributions from the scalar fields loop and from the

spinor field loop. The contributions of the scalar sector has been calculated in the explicit

form and demonstrate a nontrivial dependence on the background scalar fields, on masses

and coupling constants. Let us note that the derivation of the fermion contribution to

effective potential in the full massive theory faces serious technical difficulties and we left

it for the future work.

It is interesting that unlike the single scalar field models, the effective potential in the

two-scalar model under discussion contains usual logarithmic terms and also the terms with

the non-logarithmic asymptotic. In the scalar loop sector the model under consideration is

qualitatively similar to the situation with two quantum fields with different masses, that is

well-known from the literature (see, e.g. [11]) and was recently discussed in curved space

[12]. It is remarkable, however, that in our expressions we could observe the effect of masses

even in the local effective potential, without invoking the non-local form factors, as it is

done in the mentioned publications. It is worth mentioning, that the direct calculation of

the scalar loop for effective potential has been performed using rotation in the space of the

scalar fields. This operation turns out to be not commutative with the expansion using

local momentum representation.
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Appendix

The intermediate expressions leading to (15) are

∇µĥ
µ =







0 0 i
2
h1∇µΨ̄jγ

µ

0 0 i
2
h2∇µΨ̄jγ

5γµ

0 0 i
2
(h1∇µϕ+ h2∇µχγ

5)γµδij






,

ĥµĥ
µ =







0 0 −h2
1Ψ̄kϕ + h1h2Ψ̄kχγ

5

0 0 −h1h2Ψ̄kγ
5ϕ+ h2

2Ψ̄kχ

0 0 (−h2
1ϕ

2 + h2
2χ

2)δik







and ĥµĥν =







0 0 −1
4
(h2

1Ψ̄kϕ− h1h2Ψ̄kχγ
5)γµγνδ

ik

0 0 −1
4
(h1h2Ψ̄kϕγ

5 − h2
2Ψ̄kχ)γµγνδ

ik

0 0 −1
4
(h2

1ϕ
2 − h2

2χ
2)γµγν






. (71)

As a result, the elements of the matrices P̂ and Ŝµν in Eq. (12) have the form

P11 = m2
1 +

λ1ϕ
2

2
+ gϕ−

(

ξ1 −
1

6

)

R + λ3χ
2,

P12 = 2pχ+ 4λ3ϕχ, P21 = 2pχ+ 4λ3ϕχ,

P13 = h1Ψ̄k(M + h1ϕ− h2χγ
5)− i

2
h1(∇µΨ̄k)γ

µ,

P22 = m2
2 +

λ2χ
2

2
+ pϕ−

(

ξ2 −
1

6

)

R + λ3ϕ
2,

P23 = h2Ψ̄k(Mγ5 + h1ϕγ
5 − h2χ)−

i

2
h2(∇µΨ̄k)γ

5γµ,

P31 = 2h1Ψi , P32 = 2h2γ
5Ψi ,

P33 =
[

M2 − 1

12
R + h1Mϕ + h2Mχγ5 + h2

1ϕ
2 − h2

2χ
2

− i

2
(h1∇µϕ+ h2∇µχγ

5)γµ
]

δik (72)

and

Sµν 13 = − i

2
h1

[

(∇µΨ̄k)γν − (∇νΨ̄k)γµ
]

+
1

4
(h2

1Ψ̄kϕ− h1h2Ψ̄kχγ
5) [γµ, γν ] ,

Sµν 23 = − i

2
h2

[

(∇µΨ̄k)γ
5γν − (∇νΨ̄k)γ

5γµ
]

+
1

4
(h1h2ϕΨ̄kγ

5 − h2
2Ψ̄kχ) [γµ, γν] ,

Sµν 33 =
[

[∇ν ,∇µ]−
i

2
h1 [(∇µϕ)γν − (∇νϕ)γµ]−

i

2
h2

[

(∇µχ)γ
5γν − (∇νχ)γ

5γµ
]

+
1

4
(h2

1ϕ
2 − h2

2χ
2) [γµ, γν]

]

δik. (73)
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