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The interplay between electron-electron correlations and disorder has been a central theme of
condensed matter physics over the last several decades, with particular interest in the possibility
that interactions might cause delocalization of an Anderson insulator into a metallic state, and the
disrupting effects of randomness on magnetic order and the Mott phase. Here we extend this physics
to explore electron-phonon interactions and show, via exact quantum Monte Carlo simulations, that
the suppression of the charge density wave correlations in the half-filled Holstein model by disorder
can stabilize a superconducting phase. Our simulations thus capture qualitatively the suppression
of charge ordered phases and emergent superconductivity recently seen experimentally.

Introduction. Although the problem of the localizing
effect of randomness on non-interacting electrons is
well understood [1–3], the combined effects of disorder
and electron-electron interactions remain an area of
continued theoretical and experimental interest [4–11].
A traditional focus has been on the possibility of
electron-electron interactions inducing an insulator-to-
metal transition in two dimensions [12], but recent
attention has also turned to understanding the interplay
in the context of modern developments including
Majorana fermions [13], topological bands [14], ultracold
atomic gases [15], and many-body localization [16–
18]. Supplementing analytic calculations, numerical
approaches have attempted to address the issue
with techniques which treat disorder and electronic
correlations non-perturbatively [19, 20]. Unfortunately,
in quantum Monte Carlo (QMC) methodologies, the
combination of randomness and interactions often leads
to the fermion minus-sign problem, a bottleneck which
dramatically limits their effectiveness [21–23].

In this work, we use an exact sign-problem-free
QMC approach to investigate the interplay between
randomness and electron-phonon interactions. This is an
area far less explored with numerical simulations than
that of randomness and electron-electron interactions.
This gives us the opportunity, within the framework
of the disordered Holstein model, to address important
fundamental qualitative issues. Among them, we find
the emergence of a superconducting (SC) phase upon the
suppression of the charge-density wave (CDW) order by
randomness. Further, the absence of the sign problem
allows us to reach low temperatures, and thus use the
full power of QMC calculations which cannot be fully
exploited for electron-electron interactions.

This paper is organized as follows: After describing
our Hamiltonian and methodology in the “Model”
and “Methods” sections, respectively, we show in the

“Results” section the details of the quantum simulations
which lead to a demonstration of the emergence of a
SC phase driven by the interplay of electron-phonon
interaction and randomness. Our final remarks are
in the “Concluding remarks” section. Further results
about the magnitude of SC and CDW correlations in
the full temperature-disorder plane are presented in the
Supplemental Materials.

Model. The Holstein model describes itinerant electrons
whose site density couples to the displacement of a local
phonon mode. Its Hamiltonian reads

H =− t
∑

〈i,j〉,σ

(

d†iσdjσ + h.c.
)

−
∑

i,σ

(µ − ǫi )ni,σ

+ ω0

∑

i

a†i ai + g
∑

i,σ

niσ

(

a†i + ai
)

, (1)

in which the sum over i is on a two-dimensional square

lattice, with 〈i, j〉 denoting nearest-neighbors. d†iσ (diσ)
is the creation (annihilation) operator of electrons with

spin σ at site i, with niσ ≡ d†iσdiσ denoting the number

operator. a†i (ai ) is the phonon creation (annihilation)
operator. The first term on the right hand side of Eq. (1)
corresponds to the hopping of electrons, and the second
term contains the global chemical potential µ. Disorder
effects are introduced in the second term, by means of
random on-site energies ǫi, chosen uniformly in the range
[−∆/2,∆/2], so that ∆/t represents the dimensionless
disorder strength. Local phonon modes, with energy ω0,
are included in the third term. Finally, the last term
describes their coupling to electrons, with strength g.
It is worth noticing that the square lattice dispersion

relation has a number of special features, such as a
perfect nesting and a van-Hove singularity in the density
of states (at half-filling), which lead to CDW order at
weak electron-phonon coupling. For stronger coupling
cases, the occurrence of CDW order is less dependent on
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the Fermi surface features, and its behavior on a square
lattice is generic, e.g. with CDW transition temperatures
being similar to those on other 2D bipartite lattices [24–
27]. In this work, we analyze both weak and strong
coupling regimes at half-filling, 〈niσ〉 = 1/2, which is
obtained by fixing µ = −2g2/ω0, regardless of the lattice
size or temperature, due to an appropriate particle-hole
symmetry. We further set t = 1 to represent the unit
of energy, and use units where ~ = kB = 1. We also
define λD = g2/(ztω0) as the dimensionless electron-
phonon coupling, where z = 4 is the coordination number
for the square lattice. In what follows, we consider two
cases: [i] the adiabatic case, with ω0/t = 1/2 and an
intermediate coupling strength λD = 1/2 (g = 1); and
[ii] the anti-adiabatic case, with ω0/t = 4 and a weak
coupling strength λD = 1/4 (g = 2).

Methods. We employ the determinant quantum
Monte Carlo (DQMC) method [28–31], an unbiased
auxiliary-field approach that provides finite-temperature
properties of interacting fermions. Within this approach,
both equal-time and unequal-time quantities can be
calculated. See [32] for more details.
Charge modulations are probed by analyzing the

density-density correlation functions 〈ninj〉, and their
Fourier transform, the charge structure factor

S(q) =
1

N

∑

i,j

eiq·(ri−rj)〈ninj〉, (2)

whereN = L2 is the number of lattice sites in the system.
Similarly, superconducting properties are examined by
means of the s-wave pairing susceptibility,

χs =
1

N

∫ β

0

dτ 〈∆(τ)∆†(0)〉, (3)

in which β = 1/T is the inverse temperature and ∆(τ) =
∑

i di↓(τ)di↑(τ), with diσ(τ) = eτHdiσe
−τH. Although

the equal-time pairing correlations at large spatial
separation can also be used to probe superconductivity,
the full susceptibility provides a more sensitive measure,
especially in the case of a Kosterlitz-Thouless transition,
as expected to occur in 2D lattices [30, 33, 34].
Finally, we investigate transport properties by

calculating a proxy of the direct current (dc)
conductivity [19, 35]

σdc ≈
β2

π
Λxx(q = 0, τ = β/2), (4)

where Λxx(q, τ) = 〈jx(q, τ)jx(−q, 0)〉 is the current-
current correlation function, and jx(q, τ) is the Fourier

transform of jx(r, τ) = −i t
(

d†r+x̂,σdr,σ − d†r,σdr+x̂,σ

)

(τ).
We carry out the calculations on lattices sizes from 6× 6
to 12 × 12, and average our expectation values over 110
disorder realizations.

Results. We first consider the response of charge
modulations to disorder in the adiabatic case, by fixing
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Figure 1. The (a) charge structure factor, (b) kinetic energy of
electrons (c) dc conductivity and (d) s-wave pair susceptibility
as functions of the inverse temperature, and for different
disorder strength, at fixed L = 10, ω0 = 0.5, and λD = 0.5
(g = 1). Results are shown for the dc conductivity only for
larger ∆, where Eq. 4 is valid[35].

ω0/t = 0.5 and λD = 1/2 (g = 1). When ∆ = 0,
there is a large enhancement of S(π, π) around β ≈ 4, as
presented in Fig. 1 (a), in line with recent studies [36, 37]
that show a CDW transition at βc = 4.1 ± 0.1 (see also
SM). In presence of weak disorder, ∆ . 0.3t, the behavior
of S(π, π) is only slightly changed from that of the clean
system, suggesting the continued existence of long-range
charge correlations over length scales up to the lattice
sizes being simulated, as displayed in Fig. 1 (a). However,
as disorder increases further, S(π, π) has its characteristic
energy scale shifted to larger β (lower temperature), and
its strength reduced. Eventually, for ∆ ≈ t, long-range
correlations seem entirely destroyed, even at very low
temperatures.
At this point, it is convenient to estimate the size of

∆ needed to break charge order. From a second order
perturbation theory [38], the effective attraction between
electrons is given by Ueff = −2g2/ω0, therefore the CDW
scale may be estimated as 4t2/|Ueff | = 2t2ω0/g

2. Given
this, when ∆ exceeds some fraction of this value, one
should expect the charge correlations to be suppressed.
Indeed, this yields ∆c . 1 for ω0 = 0.5, g = 1, in rough
agreement with the vanishing of the CDW correlations
for ∆ & 0.5, displayed in Fig. 1 (a).
Further insight into this crossover is provided by the

behavior of the electronic kinetic energy, exhibited in
Fig. 1 (b). At weak disorder, despite the occurrence
of a Peierls-like charge gap, the alternation of empty
and doubly occupied sites associated with strong CDW
correlations promotes charge fluctuations, and hence
the magnitude of the kinetic energy increases as the
temperature is lowered. By contrast, in the strong
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Figure 2. The (a) density of states as a function of energy, (b)
electron density, ρ, as a function of shifted chemical potential,
µ̃ = µ + 2g2/ω0, and the electron distribution at half-filling
(Left) and (Right) away from half-filling at fixed (c) ∆ = 0.2
and (d) ∆ = 0.6. L = 10, ω = 0.5 and λD = 0.5 (g = 1).

disordered case, the pairs are localized randomly, with
some doublons at adjacent sites, precluding virtual
hopping. As a consequence, the kinetic energy decreases
in magnitude as T → 0. Despite the suppression of
the CDW order, Fig. 1 (c) shows that the conductivity
decreases as T is lowered, with dσdc/dT > 0, indicating
an insulating behavior for all values of ∆. In line
with this, the pairing susceptibility, shown in Fig. 1 (d),
remains small for all ∆, suggesting that local electron
pairs are not correlated.

We now characterize in more detail the large ∆
behavior. Figure 2 (a) shows the spectral function A(ω),
obtained via the analytic continuation of G(q, τ) =

〈T d(q, τ)d†(q, 0)〉 =
∫∞

−∞
dω e−τω

1+e−βω A(q, ω), where T is

the imaginary time ordering operator, and A(ω) sums
over all momenta; see, e.g., the SM. The spectral weight
at the Fermi level is suppressed at low T , with an
opening of a single-particle gap. This occurs for both
clean and disordered cases, even for large disorder, where
the CDW has been completely destroyed, suggesting an
insulating behavior for any disorder strength. Typically,
the opening of such gaps in A(ω) is associated with a
vanishing compressibility κ = dρ/dµ. This happens,
e.g., in the half-filled fermionic Hubbard model, both
in the weak-coupling Slater and strong-coupling Mott
regimes. Similarly, in our disordered Holstein model the
compressibility also vanishes at weak disorder, as shown
in Fig. 2 (b). However, at large ∆, the gap in A(ω) is not
accompanied by κ = 0. As displayed in Fig. 2 (b), the
plateau in ρ(µ) is substantially smeared at ∆/t ∼ 0.4,
and completely destroyed at ∆/t ∼ 0.6.

In both band and Mott insulators, A(ω) = 0 and κ = 0
go hand-in-hand. The unusual behavior whereby A(ω =
0) = 0 but κ 6= 0 derives from the fact that the effective
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Figure 3. The (a) charge structure factor S(π, π), (b) s-wave
pairing susceptibility χs as a function of disorder strength ∆,
at fixed β = 30, ω0 = 4, and λD = 1/4 (g = 2). Inset: The
normalized pairing susceptibility χs/L

2 as a function of 1/L
at ∆ = 0.7.

local attractive interaction, due to phonon modes, favors
the addition of pairs of fermions to the system, while
resisting the addition of individual ones. This picture is
supported by analyzing the electron distribution on the
lattice during the Monte Carlo simulations. In Figs. 2 (c)-
(d), histograms of the local density nr are sharply peaked
around 0 and 2 but not 1 for all disorder strengths,
indicating that we mostly have doubly occupied or empty
sites. Similar distributions are also observed away from
half-filling. For instance, fixing µ̃ = µ + 2g2/ω0 = 0.28,
and comparing the electron distribution at ∆/t = 0.2
with ∆/t = 0.6, the same chemical potential adds
more pairs of electrons into the system and causes a
more distinguished imbalance between empty and doubly
occupied sites at larger disorder. This supports the
picture that adding pairs of electrons is the mechanism
by which the system responds to increasing µ. Unlike
the repulsive Hubbard model, where the electron-electron
interaction U favors moment formation (singly occupied
sites) and the random site energies favor pairs, here
the electron-phonon interaction, g, and ∆ both promote
binding. Together, the properties shown in Fig. 2 point
to an insulating phase characterized by a gapless fermion
pair excitation, but a gapped spectrum for single particle
ones.

We now discuss the anti-adiabatic regime, fixing
ω0/t = 4 and λD = 1/4 (g = 2). Figure 3 (a) shows
the evolution of S(π, π) with disorder, at a fixed low
temperature T/t = 1/30. As in the adiabatic regime,
increasing ∆ strongly suppresses the charge response,
destroying the CDW phase. However, in stark contrast
with the former case, here the behavior of the pair



4

susceptibility is dramatically different: χs is two orders of
magnitude larger, and exhibits a peak around ∆/t = 0.7,
as displayed in Fig. 3 (b). The magnitude of these charge
structure factors and superconducting susceptibilities
are consistent with those of their magnetic and pairing
analogs indicating long range order in the repulsive [39]
and attractive Hubbard models [34, 40, 41]. Although
these large values of χs are suggestive, finite size scaling
(FSS) is required to establish the nature of the phase.
One approach to this FSS is to take data at very low
temperatures, such as T/t = 1/30 in Fig. 3 so that one is
essentially at T = 0, on the simulated lattice size for that
value of randomness. The inset of Fig. 3 (b) shows that
χs/L

2, at ∆/t = 0.7, has a finite value when extrapolated
to L → ∞, corresponding to long-range order and a
divergence of χpairing in the thermodynamic limit. The
qualitative picture is that, for these parameters, disorder
drives a SC state at commensurate filling as charge
correlations are suppressed, and new energy states are
created near the Fermi surface for pairing. Given this,
the results of these QMC simulations is a crossover from
a phase consisting of CDW-puddles to a SC ordered one.

A more refined FSS analysis proceeds as follows: We
expect the 2D superconducting transition suggested by
the data of Fig. 3 to be in the Kosterlitz-Thouless
universality class. Thus the pair susceptibility χs ∼
L2−η(T ) with a temperature-dependent exponent η(T ).
At the KT transition point η(Tc) = 1/4 and η(T ) →
0 in the ground state. Meanwhile, for T > TKT ,
the pair correlations decay exponentially on sufficiently
large lattices, therefore χs ∼ L0 according to Eq. (3),
i.e. η = 2. Figure 4 shows the results for such FSS
analysis, in which we have used plots of ln(χs) versus
ln(L) to extract ηeff at the fixed temperatures T/t =
1/20, 1/30 of the simulations, as displayed in the inset.
We refer to this as an ‘effective’ η to acknowledge finite
size effects. The main panel of Figure 4 shows ηeff at
these two temperatures as a function of disorder ∆. At
small ∆, deep in the CDW phase, pairing correlations
decay rapidly and we see the expected ηeff = 2. For
T/t = 1/20, ηeff comes down rapidly as disorder strength
is increased, indicative of pairing correlations that are
approaching the size of the lattice. However, ηeff still
exceeds the universal KT value ηeff(Tc) = 1/4 for all ∆.
There is no superconductivity at this temperature. For
T/t = 1/30, on the other hand, ηeff < 1/4 in a range
of intermediate ∆. In this window, T = 1/30 < Tc

and the system is in a superconducting phase. The
error bars are conservatively estimated, and represent
a complex combination of statistical uncertainty for
individual disorder realizations, the disorder averaging,
and uncertainty associated with the FSS fit to extract η.

The overall picture which emerges from Figs. 3 and
4 is that substantial charge correlations are present at
T/t . 1/10 in the weak disorder region, ∆/t . 0.5,
while a SC dome emerges for stronger disorder values at
T/t . 1/20. The issue of how the CDW and SC phases
meet at temperatures below T = 0.033 is beyond the
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Figure 4. The effective KT power law ηeff(T ) is shown as
a function of disorder ∆ for two fixed low temperatures.
ηeff(T ) < 1/4 for T/t = 1/30 in a range of intermediate ∆,
suggesting a superconducting state.

scope of the present set of simulations. The heat maps of
Fig. S1 of the SM suggest that there is a narrow region
where both S(π, π) and χs are large. However, while
we are able to perform definitive FSS analysis within
the individual CDW and SC phases, the corresponding
data at the interface between them do not provide an
unambiguous conclusion. Furthermore, the coupling of
random fields to the CDW order parameter prevents
the occurrence of true diagonal long-range order [11].
Notwithstanding, the emergence of SC is allowed in the
ground state, as indicated by our FSS analysis, and also
emphasized in the heat map presented in the SM.

Concluding Remarks. Although the two parameter
regimes for which we have presented results are
distinguished by the value of ω0/t, we believe the
qualitative explanation for the difference in behavior,
i.e. the presence of an intermediate SC phase, lies in the
fact that the former corresponds to an intermediate and
the latter to a weak dimensionless coupling. For strong
and intermediate couplings, the composite electron-
phonon polarons are small, and hence easily localized by
disorder. At weak dimensionless coupling, the polarons
are much larger, and the disorder potential is therefore to
some extent averaged out over their volume. Thus, after
∆ destroys the CDW, it does not yet localize the pairs,
which remain mobile and condense into a SC phase.
Tuning between CDW and paired phases can

be accomplished via pressure or doping, and is a
phenomenon which also has been extensively explored
experimentally. Analogies between antiferromagnetic-SC
and CDW-SC phases have also been remarked [29, 42].
However, the latter transition has received much less
attention from the QMC community. Early work on
the doping-driven CDW-SC transition in the Holstein
model [43, 44] has been extended to transitions at
commensurate filling caused by the introduction of
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band dispersion [45], and a comparison with Migdal-
Eliashberg theory [46]. Additional QMC literature has
also considered the interplay between electron-electron
and electron-phonon interactions, as in the Hubbard-
Holstein model [47–52].
This paper has described a detailed QMC study of the

effect of disorder on the CDW transition, and shown that,
in certain parameter regimes, randomness can give rise to
a SC state. Earlier work has suggested that the electron-
phonon coupling can renormalize the disorder potentials,
leading to a ground state that may not exhibit Anderson
localization [53–56]. The present study suggests an
even more subtle consequence of the disorder-interaction
interplay, the emergence of a off-diagonal ordered phases
from diagonal disorder at commensurate filling.
We expect our results to apply quite generally to the

Holstein model on other bipartite geometries (e.g. 3D
cubic) where CDW order is dominant at half-filling [25,
26, 52]. The honeycomb lattice might be particularly
interesting to investigate, since it has a quantum critical
point for couplings below which CDW order is absent.

SC might still emerge with added disorder in this semi-
metallic regime from the filling up of the density of states,
which vanishes linearly in the clean limit. We also expect
our results to apply generally to different choices of λ, ω0

which have the same λD [57]. In the clean case, the CDW
transition temperature has recently been found as as a
function of λD [24–26], a feature whose behavior with
randomness would be interesting to examine in future
work.
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These Supplemental Materials provide additional details
concerning the CDW-SC competition in the anti-
adiabatic limit, the Determinant Quantum Monte Carlo
method, CDW transition in the clean limit, specific heat,
temperature dependence in the anti-adiabatic limit, and
disorder dependence in the adiabatic limit.

A: CDW and SC competition in the anti-adiabatic

regime- In Fig. S1 we plot the heat maps of charge
structure factor S(π, π) and χs for the anti-adiabatic case
(ω0 = 4), with weak effective electron-phonon coupling
(λD = 0.25). These show the nature of the dominant
correlations in the disorder strength-temperature plane.
Therefore, the combination of S(π, π) and χs serves as
the phase diagram at finite temperature. The issue
of how the CDW and SC phase meet at temperature
below T = 0.03 is beyond the scope of the present
set of simulations. At low enough temperature, charge
order dominates. Increasing the strength of disorder
suppresses the CDW. Instead, SC emerges as the disorder
strength increases at T < t/20. Further increase of
disorder strength ultimately suppresses the SC phase.
These data suggest there might be a narrow region where
CDW and SC exist simultaneously. However, conclusive
evidence for this would require a simultaneous finite size
extrapolation of S(π, π) and χs which is beyond the
capability of the simulations at present.

B: Determinant Quantum Monte Carlo- The
Holstein Hamiltonian is quadratic in the fermion degrees
of freedom. Hence they can be traced out analytically,
leaving an expression for the partition function which
depends on the space-imaginary time configuration xi(τ)
of the quantum oscillator degrees of freedom [28–31]. The
explicit results of the trace operation are determinants,
one for each of the two spin species. Because the coupling
is symmetric in the spin index, these two determinants
are identical. Their product is a square, and there is
no sign problem in the simulations, for any value of the
parameters in the Hamiltonian, filling, temperature, or
lattice size. All equal imaginary time observables can
be expressed in terms of elements (or products thereof)
of the inverse of the matrix whose determinant is being
sampled. Hence such measurements are very inexpensive
computationally. Unequal time measurements, including
those of the pair susceptibility and conductivity, require
a separate computation of the un-equal time Greens
function, and add considerably to the simulation time.

C: CDW transition in the clean limit- In the
absence of randomness, ∆ = 0, the half-filled square
lattice Holstein model is believed to undergo a CDW
transition for all values of λ and ω0 as a consequence of
the nesting[58] of the Fermi surface and the divergence
of the density of states. Fig. S2(a) gives raw data
for the CDW structure factor as a function of inverse
temperature β for four lattice sizes at g = 1 and ω0 =
0.5. At high temperatures (small β) the density-density

correlation function is short ranged, only a few local
terms contribute to the sum in Eq. 2 and S(π, π) is
independent of lattice size. At low temperatures (large β)
the density correlations extend over the entire lattice and
S(π, π) grows linearly with volume N = L×L. Fig. S2(b)
presents the same data scaled with the 2D Ising critical
exponents, yielding a value for the transition temperature
Tc ∼ 0.24 = 1/βc.

D: Relation to Attractive Hubbard Model- In
light of the known mapping between the Holstein and
Hubbard models in the anti-adiabatic (large ω0) limit,
it is important to emphasize how our work is distinct
from the previous body of work on the disordered
attractive Hubbard model [41]. Figure S4 addresses this
issue. It compares the Hubbard and Holstein values
for the nearest neighbor density-density and pair-pair
correlations on a dimer. The clean case is shown in
panel (a) and with a site energy difference in panel (b).
We have chosen an interaction strength U = −2 for
the attractive Hubbard Hamiltonian, and vary g and ω0

together in such a way as to keep Ueff = −2g2/ω0 = −2
fixed for the Holstein model. While it is true that for
ω0/t → ∞ the two models yield the same correlation
functions, it is seen that this limit is only attained for
ω0/t & 102. Even though the frequencies reported
here, 1 < ω0/t < 4 are already high compared to
typical phonon frequencies in real materials, it is clear
we are still very far from the Hubbard limit. Not
only are the correlation function values different (by an
order of magnitude in the case of the pairing), but the
CDW-pairing degeneracy of the Hubbard model limit is
dramatically broken. These results demonstrate that the
interplay of disorder and interactions presented here for
the Holstein model are expected to be quite different from
the attractive Hubbard model.
Another perspective on the similarities and differences

is offered by considering the interaction between electron
mediated by the exchange of a phonon propagator,

D(ω) =
2g2ω0

ω2 − ω2
0

. (5)

From this expression it is clear that in the limit ω0 >>
ω one recovers an instantaneous attractive interaction
whose value matches that of Ueff . Conversely, as one
moves away from this anti-adiabatic limit the electron-
phonon interaction will contain frequency dependence
not present in the attractive Hubbard coupling.
In discussing the relation between the two

Hamiltonians, it is worth noting that at low density the
Holstein model describes phenomena such as polaron
formation, where a single electron moving on the lattice
has a larger effective mass due to the phonon distortions
it carries. This sort of physics is not captured by
the attractive Hubbard model. Even though polaron
formation tends to be studied in the dilute limit, the
larger effective mass due to electron phonon coupling
is likely to affect the physics of CDW and SC order at
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Figure S1. (a) Heat map of the charge structure factor at q = (π, π), and (b) the pairing susceptibility in the disorder strength-
temperature space. Colors correspond to the magnitudes of S(π, π) and χs after interpolation. Here L = 10, ω0 = 4 and
λD = 0.25 (g = 2). To connect this raw heat map data to the onset of superconducting order, we show in the lower panel a
symbol representing the transition temperature inferred from finite size scaling of χs for different L.

higher density. Indeed, this is one of the reasons the
transition temperatures can be quite different in the
Hubbard and Holstein cases (especially at smaller ω0).

E: Specific Heat- The effect of disorder on the CDW
phase can also be monitored using thermodynamic
responses, most significantly, the specific heat C(T ). To
this end, we fit the DQMC data for the energy per site
to the following ansatz [59, 60]

E(T ) = ω0

( 1

eβω0 − 1
+

1

2

)

+

M
∑

n=1

cne
−nβδ , (6)

in which the parameters cn and δ are adjusted to

minimize the deviation of the fitted curve to the data
points. The first term is the bare energy of the quantum
oscillators in the Holstein Hamiltonian, and the second
term captures the electronic contributions. We then
obtain C(T ) by differentiating the fitted expression, in
which we typically set M = 6 to 8.

Results for the specific heat are shown in Fig. S3.
In the clean limit, ∆ = 0, C(T ) has a broad peak at
T/t ∼ 0.8 corresponding to the temperature scale of pair
formation [60], and a sharp peak at T/t = 0.24 ± 0.01
which aligns well with the critical temperature for the
CDW transition determined by the scaling of S(π, π) (see
Fig. S2 in the Appendix B). Similar two-peak structures
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L = 8 and λD = 0.5 (g = 1). Inset: Raw data for the energy
E(T ) and the fit given by Eq. 6 at ∆ = 0.2 and ∆ = 0.9.

are observed in the Hubbard model [60], and correspond
in that case to the distinct energy scales of moment
formation and antiferromagnetic ordering. At weak
disorder, ∆/t = 0.2, a sharp low temperature peak
indicative of CDW formation persists. In fact, the peak
is first shifted to slightly higher temperatures. Such an
enhancement of Tc by disorder has been established in
DQMC [61] and dynamical mean field theory [62] of the
Anderson-Hubbard model. The effect arises from the
initial growth of the exchange energy J = 2t2/(U +
∆) + 2t2/(U − ∆) > 4t2/U with random site energy.
Precisely the same phenomenon might be expected here,
since quantum fluctuations in the CDW phase have a
similar form, with the pair binding energy 4g2/ω0 playing
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Figure S4. Nearest neighbor pairing and CDW correlations
for the half-filled Holstein (solid curves) and attractive
Hubbard (horizontal dashed lines at large ω0) dimers.
Panel a: Clean case where the two sites have identical site
energies. Here the pairing and charge correlations are
degenerate in the Hubbard limit. Panel b: ‘Disordered’ case
with site energy difference (ǫ1 − ǫ2)/t = 0.50, of the same
scale as the disorder studied in this paper. The effect of the
site energy is to break the CDW-Pairing degeneracy (which
is already broken in the clean Holstein model) also in the
Hubbard limit. In both cases, the Hubbard limit is not
reached until ω0/t & 102.
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Figure S5. The (a) charge structure factor S(π, π), and (b)
s-wave pairing susceptibility χs as functions of the inverse
temperature β, at fixed ∆ = 0.7. Here ω = 4 and λD = 0.25
(g = 2).

the role of U . Further increase of ∆ reduces the peak of
the specific heat, in line with the suppression of the CDW
order.

F: Temperature dependence in the anti-adiabatic

regime- Fig. S5 shows results at ∆ = 0.7, near the
optimal disorder, where the pairing susceptibility χs is
largest in Fig. 3. Unlike Fig. S2, S(π, π) no longer
grows with N at low temperature, as seen in Fig. S5(a).
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However, as shown in Fig. S5(b), χs grows with lattice
size, indicating the presence of robust superconducting
correlations in an intermediate disorder window. The
result of the scaling analysis of these data is presented in
the inset of Fig. 3.
The combination of the destruction of CDW order

and the rise in SC order illustrated in the temperature
evolution of Fig. S5, together with the suppression
of S(π, π) and the onset of χs of Fig. 3 indicates a
competition between the two types of order [29]. The
possibility of a cooperation, in which CDW fluctuations
mediate pairing, has been discussed in [63].

G: Disorder dependence in the adiabatic regime-

In Fig. S6 we re-plot the data in the adiabatic regime
from Fig. 1 emphasizing the evolution with disorder. The
sharp drop in S(π, π) at ∆ ∼ 0.5 corresponds to the
destruction of CDW order, with no SC phase. A further
signal of the transition is seen in the kinetic energy, which
becomes smaller in magnitude upon exiting the CDW
phase since virtual hopping is reduced when sites with
electron pairs are no longer surrounded exclusively by
empty sites.

H: Analytic Continuation Method- We perform the
calculation of A(ω) using the maximum entropy approach
[64–66]. This method determines the spectral function by
a weighting which combines a Gaussian piece measuring
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Figure S6. Disorder dependence of charge structure factor
S(π, π), the electron kinetic energy KEelectron, dc conductivity
σdc and s-wave pairing susceptibility, panels a-d, respectively
at fixed L = 10. Here ω0 = 0.5 and λD = 0.5 (g = 1).

the deviation of a computed G(τ) from the QMC values
for a given A(ω), and an entropic piece, with a relative
coefficient determined by Bayesian logic. We use the
most straightforward implementation with a flat default
model (the A(ω) which would result in the absence of
data), and only the diagonal elements of the covariance
matrix associated with measuring G at two different
imaginary time values.

I: Susceptibility Histograms- More detail concerning
the enhancement of pairing by disorder is given by the
histograms of the susceptibility of Fig. S7. The figure also
gives a sense for the realization-to-realization fluctuations
in χs.
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Figure S7. Histograms of distinct realizations of the pairing susceptibility for different disorder strengths ∆. For small ∆, a single
narrow peak occurs at small χs. As ∆ increases, the distribution broadens and shifts to large values. This is the intermediate
superconducting phase. At the largest ∆, the distribution begins returning to smaller values of pairing; superconductivity is
suppressed.


