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First-principles calculations of charged defects have become a cornerstone of research in 

semiconductors and insulators by providing insights into their fundamental physical properties. 

But current standard approach using the so-called “jellium model” has encountered both 

conceptual ambiguity and computational difficulty, especially for low-dimensional 

semiconducting materials. In this Communication, we propose a physical, straightforward, and 

dimension-independent universal model to calculate the formation energies of charged defects 

in both three-dimensional (3D) bulk and low-dimensional semiconductors. Within this model, 

the ionized electrons or holes are placed on the realistic host band-edge states instead of the 

virtual jellium state, therefore, rendering it not only naturally keeps the supercell charge 

neutral, but also has clear physical meaning. This realistic model reproduces the same 

accuracy as the traditional jellium model for most of the 3D semiconducting materials, and 
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remarkably, for the low-dimensional structures, it is able to cure the divergence caused by the 

artificial long-range electrostatic energy introduced in the jellium model, and hence gives 

meaningful formation energies of defects in charged state and transition energy levels of the 

corresponding defects. Our realistic method, therefore, will have significant impact for the 

study of defect physics in all low-dimensional systems including quantum dots, nanowires, 

surfaces, interfaces, and 2D materials. 

 

 

1 Introduction 

Doping semiconductors by introducing defects or impurity atoms is fundamental to controlling 

the properties of semiconductors and is the basis of all functionality in modern electronic and 

optoelectronic devices1-5. Physically, the doping efficiency of a semiconductor is characterized by 

the defect transition energy level, which can be defined as the Fermi energy 𝜀$ at which the 

formation energy ∆H'(q) of the dopant in charge state 𝑞 is equal to the formation energy ∆H'(𝑞′) 

in charge state 𝑞′6-8. Over the last three decades, first-principles defect calculations have made 

tremendous advances in accurately predicting defect transition energies and formation energies of 

bulk semiconductors, thus providing key insights in the fundamental processes of defect formation 

and charge carrier generation that are not otherwise easily accessible through experiment8,9. In 

modern first-principles density functional theory (DFT) defect calculations, a supercell approach is 

often used in which the defect is put at the center of the supercell of the host materials and a periodic 

boundary condition is applied10. As long as the supercell size is sufficiently large to shield the 

coupling of defects with their periodic images, this approach can accurately predict the formation 
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energy of neutral defect11. For charged defects, q electrons are removed (added) from (to) the defects 

and added (removed) to (from) the host states with Fermi energy level 𝜀$ and the charge neutrality 

condition is satisfied12. For example, for a donor defect D with its donor transition energy level 𝐸. 

referenced to the host conduction band minimum (CBM) with energy 𝜀/, at T=0, the electron can be 

removed from the defect and placed at the host CBM with 𝜀$=𝜀/. At finite temperature, the removed 

electron can occupy more states with energy levels 𝜀0  above the CBM with the occupation 

probabilities determine by the Fermi-Dirac distribution 𝑓(𝜀i) =
4

45678	[(𝜀i;<=) >?⁄ ]
 for a given 𝜀$ (Fig. 

1a). In most practical calculations of charged defects in bulk semiconductors, the charge distribution 

of the removed or added electrons in the host band edge states are approximated by a virtual “jellium” 

charge (i.e., uniform charge distribution over the whole supercell) with energy level equals 𝜀B. This 

jellium model approximation is justified for most semiconductors because their host band edge states 

are indeed delocalized, yielding a similar charge distribution as that in the jellium model (Fig. 

1b)13-16. 

However, the failure of this standard jellium model has been reported in two-dimensional (2D) 

semiconductors17-19. 2D materials, such as transition metal dichalcogenides, boron nitride, and 

phosphorene possess some intriguing physical and chemical properties, rendering them as promising 

candidates for future electronic and optoelectronic applications2,4,20-22. Like bulk semiconductors, 

doping is a key process in these 2D materials for their device applications. Therefore, it is quite 

natural to extend the defect calculation approaches from 3D bulk materials to these 2D materials to 

gain fundamental understanding of their doping and defect properties. However, a direct 

employment of the bulk defect calculation methods to 2D or other low dimensional systems 

(quantum dots, wires, etc.) encounters a serious problem manifested as the divergence of formation 
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energies of the charged defects, which can be understood as follows. Adopting supercell approach 

under periodic boundary conditions in all three dimensions, an unavoidable “vacuum” region is 

added in the DFT calculations to separate the 2D material from its periodic images. Such “vacuum” 

region leads to a remarkable dissimilarity between a real charge put on host band-edge states and a 

virtual jellium charge. Specifically, when the jellium model is used, a virtual charge is uniformly 

filled in the whole supercell, including the vacuum region. This leads to a divergent Coulomb 

interaction between the jellium charge and the charge left on the 2D slab17. In this case, the jellium 

model also becomes unphysical because the jellium is very different from the real charge distribution 

when electrons are excited to the band edge states with their charge distribution confined within or 

near the 2D slab (Fig.1c). Therefore, unlike for the 3D case, for the low dimensional system, the 

jellium charge is not a good approximation of the real band edge states in a supercell calculation. 

Over the years, some models have been proposed to overcome the above discussed problems, 

including artificially constraining the background charge into a given region23-27, or carrying out a 

posteriori correction28-36. However, all of these charged defect calculation methods for the 

low-dimensional systems are of some conceptual issues and computationally difficult to converge37. 

So far, there is no straightforward and rigorous theory to calculate the charged defects of 

low-dimensional structures. The lack of a universal method for both 3D and low-dimensional 

semiconducting materials has hindered the progress of first-principles defect studies. 

In this paper, we develop a physical and unified approach to calculate the formation energy and 

transition energy levels of charged defects in both 3D bulk and low-dimensional semiconductors. For 

the 3D semiconducting materials, we find this method reproduces the same accuracy as the current 

widely-used jellium model. However, for the low-dimensional structures, it remarkably avoids the 
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divergence induced by the artificial long-range Coulomb energy of the jellium model. Specifically, 

in our method, the ionized electron is represented by the real host CBM or valence band maximum 

(VBM) state (it can be easily extended to other states which have a statistically average energy 𝜀$ at 

finite temperature). Unlike in some of the previous pseudopotential calculations, in which the added 

jellium charge is treat artificially, thus, it is used only as compensating charge to prevent the 

divergence of electrostatic energy but not included in the calculation of exchange-correlation 

energy38,39, in our case, the ionized electrons is treated in the same footing as other occupied 

electronic states and is included in all the total energy calculations. This is justified by noticing that 

if the removed electron is added back to the same states where it is removed, no change in total 

energy should occur. Our method is applicable for charged defect calculations of bulk and 

low-dimensional systems, including quantum dots, nanowires, surfaces and interfaces, and 2D 

materials, and the convergence of the calculated results with respect to the supercell size is similar in 

all dimensions. 

 

 

2 Results 

Real state model by transferring charge from defect to real host band edge states 

Our approach is based on the following concept of defect ionization that is applicable for both 

bulk or low-dimensional semiconductors, that is, during the defect ionization, the carriers from the 

defect states are excited to the unperturbed host band edge states in the limit of infinite supercell size. 

Inspired by this concept, we represent the charge density of the ionized carrier by unperturbed host 

band edge state, e.g., CBM or VBM state, and treat it in the same footing as all the other occupied 
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states in the self-consistent total energy calculation, thus realize the real process of carriers exciting 

to host band edge states from the defect level in the same supercell (denoted as transfer to real state 

model or TRSM for convenience). Apparently, in this treatment, the whole system is charge neutral 

because the charged defect and the excited carrier(s) are kept in the same supercell. To implement 

this TRSM process, we will revise the standard formula given in previous literatures for defect 

formation energy17,37, that is, for a defect 𝛼 in a charge state 𝑞, the formation energy is described as 

∆𝐻E(𝑞, 𝛼) = Δ𝐻' G𝑞<H→<J,KL , 𝛼M + 𝑞O𝜀B−𝜀Q,RS T.                                         (1) 

Here, 

Δ𝐻' G𝑞<H→<J,KL , 𝛼M = 𝐸UVUO𝑞<H→<J,K, 𝛼T − 𝐸UVU(host) + ∑ 𝑛](𝐸] + 𝜇])] ,                       (2) 

where	𝑞 is the number of electrons taken from the defect state 𝜀_ and placed on the host CBM (𝑞 >

0	) or VBM (𝑞 < 0	) in the same defect supercell. 𝐸UVUO𝑞<H→<J,K, 𝛼T is the total energy of the 

supercell containing dopant 𝛼 in which	𝑞	electrons are taken from the defect state 𝜀_ and placed 

on the host CBM 𝜀QS or VBM 𝜀RS state. 𝐸UVU(host) is the total energy of a supercell for perfect 

host crystal. 𝜇] is the chemical potential of constituent i referenced to elemental solid/gas with 

energy 𝐸]. 𝑛] is the number of elements removed from the host in creating the defect 𝛼. The 

eigenvalues between different cells should be aligned with respect to same reference level. More 

detailed description of the calculation methods can be found later in the Method Section. 

 

Real state model for the three-dimensional charged defect calculations 

To check the validity of the jellium charge model with respect to the TRSM, we first compare 

the calculated formation energies and transition energies of defects in some prototype 3D 
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semiconductors Si, BN, ZnO, and MoS2 using both models. Figure 2 shows our calculated results 

using the standard jellium background charge and real host CBM or VBM charge (i.e. the TRSM), 

respectively. We see that the results calculated utilizing both approaches are in excellent agreement 

for various defects in 3D materials with the difference less than a few meV. Such good agreement is 

due to the fact that for sufficiently large supercells, the added jellium state is a good approximation 

for the host delocalized states like the conduction and valence band edge states in conventional 

semiconductors. It's worth noting that, in our TRSM model, the ionized electrons represented by the 

unperturbed host CBM or VBM states are treated in the same footing as other occupied electronic 

states and are included in all the total energy calculations, and thus it is more realistic and accurate. It 

is also worth noting that in the TRSM, the ionized charge is represented by the unperturbed host 

VBM or CBM states, not the lowest unoccupied state or highest occupied state in a defect supercell 

as carried out in some previous calculations37, which can introduce large error if the cell size is not 

extremely large16. 

 

Real state model for the low-dimensional charged defect calculations 

 Next, we apply both models to 2D materials. Figure 3 shows the formation energies calculated 

by jellium model and our TRSM for the 𝐶d45 and 𝐶e4; charged defects in the 2D monolayer BN. It 

is clear that for both donor 𝐶d45 or acceptor 𝐶e4;, the formation energies based on jellium model 

diverge as the vacuum layer thickness Lz increases (Figs. 3a and 3b) because the poor screening of 

the JM introduces the artificial long range electrostatic interaction between the periodic images and 

the jellium compensating background charge that non-physically extends into the vacuum region17. 

However, in our TRSM, it has an excellent convergence with respect to Lz when the lateral area S 
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(i.e., Lx×Ly) is sufficiently large. For example, for the 𝐶e4;, the calculated formation energy has 

almost converged when Lz=10 Å. This means the electrostatic interaction error of the JM is 

eliminated in our more realistic TRSM approach. This is because in the TRSM, the real host CBM or 

VBM state is occupied. Unlike the nonphysical jellium state, it is localized in the 2D BN itself 

(Fig.1c) and independent of the Lz, thus, it increases the screening in the Lz direction, and meanwhile 

eliminates the divergence of the electrostatic energy caused by uniform jellium background charge in 

the whole supercell in the jellium model. For the in-plane region, because the ionized charges are 

located in the 2D slab, its convergence is like the case in the 3D bulk system, so the in-plane 

convergence of the TRSM for the 2D systems is also excellent. Consequently, we confirm that the 

TRSM model is more physical and reliable. Figure 3c shows that using the TRSM, the calculated 

(+/0) transition energy of donor 𝐶d and (0/-) transition energy of acceptor 𝐶e	in monolayer BN is 

1.72 eV below the CBM and 1.60 eV above the VBM, respectively. This is in reasonably good 

agreement with the previous calculation in which the donor 𝐶d  (+/0) and acceptor 𝐶e	(0/-) 

transition is at about 2.0 eV below the CBM and 1.8 eV above the VBM17. The difference can be 

understood as follows: in Ref. 17, the unphysical JM is still used and the results are conditionally 

converged which still underestimate the Coulomb interaction between defect charge and ionized 

charge. In our TRSM method, the more physical and realistic ionized charge is used, which lowers 

the energy of the charged states, so the transition energy levels are more shallow compares to the 

previous JM calculations. This indicates that in 2D charged state calculations, the JM should be fully 

avoided. 
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3 Conclusions 

In summary, we developed a realistic dimension-independent approach for charged defect 

calculations in semiconductors, that is especially useful for low-dimensional materials such as 

quantum dots, nanowires, surfaces and interfaces, which suffers both conceptually and 

computationally in previous jellium model calculations. For the 3D semiconductor systems, this 

method produces similar results as the current widely-used jellium model, but for the 

low-dimensional structures, it is able to eliminate the divergence caused by the artificial electrostatic 

energy faced in the jellium model, and has an excellent convergence for the formation energy and 

transition energy calculations of charged defects. Our method can be applied to charged defect 

calculations for all low-dimensional systems and can be easily extended to including more occupied 

states and calculate the exciton binding energy if the supercell size is comparable to the exciton 

radius. 

 

 

Computational methods 

Our calculations are performed within first-principles density function theory (DFT) as implemented 

in quantum-espresso package40,41. The Perdew-Burke-Ernzerhof (PBE) functional42 is used for 

exchange and correlation potential, and only the Γ point for the Brillouin zone integration. The size 

of supercell is chosen to ensure the results are converged unless mentioned otherwise. The 

norm-conserving pseudopotentials43,44 for treating the valence electrons are used. The kinetic energy 

cut off for the plane wave basis set is 65 Rydberg, and the total energy threshold for convergence 

is 10-12 Rydberg. All atoms are fully relaxed until the Hellman-Feynman forces acting on each atom 
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are less than 10-10 Rydberg/Bohr. Figure 4(a) and (b) show the self-consistent calculation flow for 

donor and acceptor charged defect total-energy calculations, respectively, in TRSM. 𝜓_, 𝜓Qdg
Shij , and  

𝜓Rdg
Shij  are the wave functions of defect state, host CBM and host VBM, respectively. 𝑞 is the 

number of electrons that are excited from the defect state 𝐸_ to the host CBM for donor (𝑞 > 0	) or 

from the host VBM to the defect state 𝐸_ for acceptor (𝑞 < 0	). 𝑁 is the total number of electrons 

in the system. In practice, we first calculate the host CBM (or VBM) charge distributions 

|𝜓Qdg
Shij|m	(or |𝜓Rdg

Shij |m) in pure host systems. Then, for the total energy calculations in the charged 

defect systems, we remove (add) the defect charge distribution |𝜓_|
m with integral charge 𝑞 and 

add (remove) the fixed host CBM (VBM) charge distributions 𝜓Qdg
Shij  	(𝜓Rdg

Shij ) with same total charge 

𝑞 in each self-consistent step until the total energy converges. Therefore, in the TRSM model, the 

ionized electrons are treated in the same footing as other occupied electronic states in the total 

energy calculations. 
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Figure 1. (a) Schematic plot of occupations of the ionized electronic states above the CBM with a 

statistical distribution for a given EF at the finite temperature from the donor level. (b) and (c) 

Schematic plots of charge distributions of jellium charge distribution (Jellium-CD) and real state 

with a certain statistical charge distributions (Real-CD) in the 3D and 2D semiconductors, 

respectively. 
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Figure 2: Comparisons of the formation energies of charged defect as a function of Fermi energy 𝜀B 

in 3D system calculated by jellium model (JM) and TRSM model. (a) The formation energies of Si 

vacancy (𝑉o]) in bulk Si. (b) N and B vacancy (𝑉e and	𝑉d) and C atom substituting at B site (𝐶d) or 

at N site (𝐶e) in cubic BN (c-BN). (c) Comparisons of the calculated formation energies of charged 

defects using the JM and TRSM in bulk Si, BN, ZnO, and MoS2. Here all the calculations are 

converged with respect to the supercell size and in the conditions 𝜇] = 0 and 𝜀B = 𝜀Qdg or 𝜀Rdg 

for 𝑞 > 0	or 𝑞 < 0	 defects, respectively. 
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Figure 3: Formation energies of charged defect in 2D system calculated by jellium model (JM) and 

our TRSM model. (a) and (b) are the formation energies of 	𝐶d45 and 𝐶e4;	in monolayer BN sheet 

as a function of layer-layer separation Lz with large lateral supercell area S (9×9) and 𝜀B = 𝜀Rdg, 

respectively. (c) The calculated formation energies and transition energy levels of 𝐶d and 𝐶e in 

monolayer BN using our TRSM model as a function of Fermi energy 𝜀B. As a compassion, we also 

show the (+/0) transition energy of acceptor for 𝐶d (empty diamond dot) and the (0/-) transition 

energy of acceptor for 𝐶e (empty square dot) in monolayer BN calculated by D. Wang et al.17. Here 

all the calculations are in the conditions 𝜇] = 0. 
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Figure 4. The sketch of self-consistent calculation flow for (a) donor and (b) acceptor charged 

defect total-energy calculations, respectively, in TRSM approach. 

 


