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Abstract The aim of this paper is to study a one dimensional model system
of equations for ionized gas dynamics at high temperature where the gas is
a mixture of two kinds of monatomic gas. In addition to the mass density,
pressure, temperature and particle velocity, degrees of ionization of both gases
are also involved. By assuming that the local thermal equilibrium is attained,
Saha’s ionization equations are added. Thus the equations are supplemented
by the first and second law of thermodynamics, a single equation of state and,
in addition, a set of thermodynamic equations.

The equations constitute a strictly hyperbolic system, which guarantees
that the initial value problem is well-posed locally in time for sufficiently
smooth initial data. However the geometric properties of the system are rather
complicated: in particular, we prove the existence of a region where convex-
ity (genuine nonlinearity) fails for forward and backward characteristic fields.
Also we study thermodynamic properties of shock waves by a detailed analysis
of the Hugoniot locus, which is used in a mathematical study of existence and
uniqueness of solutions to the shock tube problem.
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1 Introduction

A shock wave is a propagating discontinuity of density, pressure, temperature
and etc., which is supersonic with respect to the gaseous medium ahead of it
and subsonic with respect to that behind it. Behind a shock wave, not only
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pressure but also temperature increases abruptly and the gas is heated to high
temperatures. Strong shock waves are obtained and replicated by shock tube
operations under ordinary circumstances. Hence the shock tube is a convenient
and widely used device for obtaining high temperature gases in the laboratory.
The shock front and the state behind it in the shock tube are determined by
the state ahead of it and the speed of driving gas, which is a mathematical
problem called the shock tube problem in this paper.

When the gas behind the shock front is heated to a high temperature, al-
most all molecules become dissociated and finally its atoms become partially
ionized: X ⇄ X+ + e−. Numerous spectroscopic measurements of atomic pa-
rameters and thermodynamic equilibrium of plasma thus generated have been
done, for example, in various Helium-Hydrogen mixtures ([9],[10]). The model
system of mixed ionized gas dynamics that we discuss in this paper is proposed
by Fukuda-Okasaka-Fujimoto in [8]1 for the purpose of providing a theoretical
basis for their observations. The system consists of equations of macroscopic
motion for 1-d mixed gas dynamics. Its particular nature is: degree of ioniza-
tion of each gas is considered to be a thermodynamic variable.

The present paper is a continuation of [1], [2], [3] and our aim is to perform
mathematical analysis for the model system and show its basic thermodynamic
properties. To the best of our knowledge such a study has never been done
previously while the system of gas dynamics attracted the interest of several
researchers in the last decade, however mostly for ideal gases [15]; we quote
[13] for the case of real gases. For a single monatomic ionized gas, studies have
been done in [1], [2], [3].

Basic thermodynamic variables are denoted in this paper by T : temper-
ature, p : pressure, ρ : mass density, v = 1/ρ : specific volume, e : specific
internal energy and S : specific entropy. The flow velocity is denoted by u
and the (specific) total energy by E = 1

2u
2 + e. The system of equations of

one-dimensional motion for gas dynamics consists of the following three con-
servation laws: conservation of mass, momentum and energy











ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE)t + (ρEu+ pu)x = 0,

(1)

which are supplemented by the first and second law of thermodynamics

de = TdS − pdv, (2)

a single equation of state and a set of thermodynamic equations. For brevity we
will refer to S, e and E as the entropy, internal and total energy, respectively.

For a partially ionized single monatomic gas, let na, ni and ne denote,
respectively, the concentration (number per unit volume) of atoms, ions and

1 An English translation of [8] is available upon request to F. Asakura.



A Model System of Mixed Ionized Gas Dynamics 3

electrons. The equation of state depends on the degree of ionization α = ne

na+ni

having the form

p =
R

M
ρT (1 + α) (3)

where R denotes the universal gas constant and M the molar mass of the
monatomic gas ([8]). This model system is similar to the system of an ideal
dissociating diatomic gas studied by Lighthill in [12].

It is found that, at any given high temperature T and volume V, these
ionization reactions reach a state of equilibrium which is analogous to the
chemical equilibrium for usual chemical reactions whose equilibrium condition
is the law of mass action: the ratio nine

na
depends only on the temperature T .

An actual formula was derived by M. Saha in [14], namely,

nine

na
=

2Gi

Ga

(2πmekT )
3
2

h3
e−

Ti
T , (4)

see also [5],[7],[16],[18]. Here we denote the partition functions of the neutral
state and of the 1-ionized state by Ga and Gi, respectively; me is the electron
mass, k the Boltzmann constant, h the Planck constant and Ti =

χ
k
the ion-

ization energy measured by the temperature, where χ is the first ionization
potential [16, §5, (4.8)]. On the other hand, Saha’s law (4) is written as

α2

1− α2
=

2Gi

Ga

(2πme)
3
2 (kT )

5
2

ph3
e−

Ti
T , (5)

(see [7, (209)], [16, §V.4, (4.9)]), showing that α can be regarded as a thermo-
dynamic variable.

Since the electric intermolecular process of ionization occurs much faster
then the fluid-dynamic phenomenon of shock formation, see for instance [18,
VII, §11] and [18, VII, §10, Table 7.3], we may assume that a local ther-
modynamic equilibrium is everywhere attained: that is, Saha’s law (5) holds
everywhere even in presence of shock waves, which is one of the postulates of
the present model system of ionized gas dynamics. Thus the equatios (3) and
(5) constitute the equation of state and a thermodynamic equation.

Now let us consider one mole mixture of monatomic gases A and B. The
ionization reactions are represented as A ⇄ A+ + e−, B ⇄ B+ + e−. We
denote the number of atoms and ions for each gas by NA

a , NB
a and NA

i , NB
i ,

respectively. The number of electrons are denoted by Ne. Note that

NA
a +NA

i +NB
a +NB

i = N0 : Avogadro Number, Ne = NA
i +NB

i .

The concentration of atoms, ions and electrons are defined by nA
a =

NA
a

V
, nB

a =
NB

a

V
, nA

i =
NA

i

V
, nB

i =
NB

i

V
, ne =

Ne

V
, respectively.

By denoting GA
a , G

B
a : the partition functions of the neutral state, GA

i , G
B
i :

same for the 1-ionized state, and χA, χB : first ionization potentials, the cou-
pled Saha’s laws for mixed monatomic gas are presented as the following.

nA
i ne

nA
a

=
2GA

i

GA
a

(

2πmekT

h2

)
3
2

e−
χA

kT ,
nB
i ne

nB
a

=
2GB

i

GB
a

(

2πmekT

h2

)
3
2

e−
χB

kT (6)
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For A: hydrogen atom A, we have χA = 13.59844 eV and for B: helium atom
B, χB = 24.58741 eV. First ionization temperatures are

TA =
χA

k
= 1.5780× 105, TB =

χB

k
= 2.8532× 105.

Note that TA < TB < 2TA. We have also
2GA

i

GA
a

= 1,
2GB

i

GB
a

= 4. We will assume

that a local thermodynamic equilibrium is everywhere attained: that is the
coupled Saha’s laws (6) hold everywhere even in presence of shock waves.

The present model system is constructed on the basis of several postulates
that we now expose in detail. By denoting the Debye radius [18, III-2-§11] by
λD, the plasma parameter: Λ = 4

3πneλ
3
D is a dimensionless number defined by

the number of electrons in a Debye sphere. We recall that the ratio between
the potential energy and the kinetic energy is of order Λ−

2
3 . We first assume

that:

– Gas is a mixture of monatomic gases A and B satisfying TA < TB ≤ 2TA

– All collisions are perfectly elastic (or effects of collisions among the particles
can be neglected)

– Gravitational effects, viscosity and thermal conductivities are disregarded
– Λ ≫ 1, which means that the interaction potential energies of the charged

particles are negligible with respect to the kinetic energies, and electrostatic
interactions are relatively rare

– Local thermodynamic equilibrium is everywhere attained

The fourth postulate above is motivated by the high temperatures considered
in [8], see [11, §78], [18, (3.77)] for further details.

The degree of ionization and fraction for each gas is defined by

αA =
nA
i

nA
a +nA

i

, αB =
nB
i

nB
a +nB

i

,

β =
NA

a +NA
i

N0
=

nA
a +nA

i

n0
, 1− β =

NB
a +NB

i

N0
=

nB
a +nB

i

n0
.

The density and molar mass of each gas are denoted by ρA, ρB and MA, MB,
respectively. The pressure is a sum of partial pressures with respect to atoms,
ions and electrons:

p = pa + pi + pe = pa + 2pi, pj = knjT (j = a, i, e).

Then by setting α = βαA + (1− β)αB

p = pAa + 2pAi + pBa + 2pBi = k
(

nA
a + 2nA

i + nB
a + 2nB

i

)

T

= k
[(

nA
a + nA

i

)

(1 + αA) +
(

nB
a + nB

i

)

(1 + αB)
]

T = kn0 (1 + α) T.

By noticing 1 +
nA
a

nA
i

= 1
αA , 1 +

nB
a

nB
i

= 1
αB , Saha’s laws take the forms

nA
i ne

nA
a

=

(

αA

1− αA

)

(

nA
i + nB

i

)

=
n0αAα

1− αA
=

2GA
i

GA
a

(

2πmekT

h2

)
3
2

e−
TA
T ,

nB
i ne

nB
a

=

(

αB

1− αB

)

(

nA
i + nB

i

)

=
n0αBα

1− αB
=

2GB
i

GB
a

(

2πmekT

h2

)
3
2

e−
TB
T .
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Thus we conclude that thermodynamic equations have the forms

p =
(1− αA)(1 + α)

αAα

2GA
i

GA
a

(2πme)
3
2 (kT )

5
2

h3
e−

TA
T

=
(1− αB)(1 + α)

αBα

2GB
i

GB
a

(2πme)
3
2 (kT )

5
2

h3
e−

TB
T . (7)

Also we have a compatibility condition

2GA
i

GA
a

1− αA

αA
e−

TA
T =

2GB
i

GB
a

1− αB

αB
e−

TB
T . (8)

We next assume that:

– Gases are well mixed so that: ρ = βρA + (1 − β)ρB;
– Pressure of each gas takes the form

pA =
RρA
MA

T (1 + αA), pB =
RρB
MB

T (1 + αB)

– Specific enthalpies are defined by

hA =
5R

2MA
T (1 + αA) +

RTA

MA
αA, hB =

5R

2MB
T (1 + αB) +

RTB

MB
αB

– Macroscopic motion of the gas flow is one-dimensional

We deduce from the above assumptions that the total pressure is

p = βpA + (1− β)pB = β
RρA
MA

T (1 + αA) + (1− β)
RρB
MB

T (1 + αB).

Thus

p

ρ
=

β R
V
T (1 + αA) + (1− β)R

V
T (1 + αB)

βMA

V
+ (1− β)MB

V

=
RT [1 + βαA + (1− β)αB]

βMA + (1− β)MB
.

Denoting α = βαA + (1− β)αB and M = βMA + (1 − β)MB, we obtain

p =
R

M
ρT (1 + α) (9)

which is the equation of state. The total specific enthalpy is

h =
βMAhA + (1− β)MBhB

βMA + (1− β)MB
=

5RT

2M
(1 + α) +

R

M
[βTAαA + (1− β)TBαB]

(10)
After a short review of basic thermodynamics, we show some basic calculus

lemmas in Section 2. The physical entropy functions are constructed in Section
3. We show that system (1) is strictly hyperbolic and compute characteristic
fields in Section 4. However, unlike the ideal polytropic case, the forward and
backward characteristic fields of the system are not genuinely nonlinear and
we study the set where this happens in Section 5. We refer to [6], [15] for more
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information on systems of conservation laws. We study in Section 6 the relation
between αA and αB. A detailed study of the Hugoniot locus of the system is
carried out in Section 7. Though Hugoniot loci are monotone in (T, α)-plane in
a single monatomic case, they are not always monotone in the present mixed
monatomic case: If β is sufficiently small, then they lose monotonicity at some
base state. Thus the degree of ionization does not always increase across the
shock front, even if the temperature increases. However we prove that the
pressure actually increases as the temperature increases. In order to fit the
mathematical data to ordinary circumstances, we propose an approximation
of Hugoniot locus in Section 8. We apply our results to the shock tube problem
in Section 9. Basic results: existence and uniqueness are established, which
provides a rigorous mathematical basis to the physical phenomena observed
in [8]. Behaviour of isentropes and detailed computations for the proof of
uniqueness are shown in appendices.

2 Basic Thermodynamics and Calculus Lemmas

First we adopt p and T as a set of independent thermodynamic state variables.
By introducing the enthalpy h = e+pv, the first and second law 1-(2) becomes

dh = T dS + v dp = T

(

∂S

∂T

)

p

dT + T
[

(

∂S

∂p

)

T

+ v
]

dp

As usual, a subscript as T or p above means that the derivative is computed by
holding the subscripted variable fixed. We also introduce the Gibbs function
g = h− TS, see [7, (111)], and we have

dg = v dp− S dT =

(

∂g

∂p

)

T

dp+

(

∂g

∂T

)

p

dT. (1)

Maxwell’s Relations: We deduce by (1) the compatibility condition

(

∂v

∂T

)

p

= −
(

∂S

∂p

)

T

, (2)

which is one of so-called Maxwell relations. In turn, by (1) and (2) we obtain

(

∂h

∂p

)

T

= T

(

∂S

∂p

)

T

+ v = −T

(

∂v

∂T

)

p

+ v,

(

∂h

∂T

)

p

= T

(

∂S

∂T

)

p

.

Thus we have the following proposition.

Proposition 1 (p, T : set of independent variables)

(

∂S

∂p

)

T

= −
(

∂v

∂T

)

p

,

(

∂S

∂T

)

p

=
1

T

(

∂h

∂T

)

p
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The specific volume v is expressed by 1-(9) as v = RT
Mp

(1+α) and the enthalpy

is 1-(10). The dimensionless entropy η is defined by η = M
R
S. Consequently

we have by Proposition 1

Lemma 1
(

∂η

∂p

)

T

= −1

p

[

1 + α+ T

(

∂α

∂T

)

p

]

(3)

(

∂η

∂T

)

p

=
5

2T
(1 + α) + β

(

5

2
+

TA

T

)(

∂αA

∂T

)

p

+ (1− β)

(

5

2
+

TA

T

)(

∂αB

∂T

)

p

(4)

Saha Equations: Setting

TA =
χA

k
, TB =

χB

k
, µ−1

A =
2GA

i

GA
a

(2πme)
3
2 k

5
2

h3
, µ−1

B =
2GB

i

GB
a

(2πme)
3
2 k

5
2

h3
,

we have from 1-(7) and 1-(8)

Lemma 2 Saha’s equations take the forms

(

1

αA
− 1

)(

1

α
− 1

)

=
µApe

TA
T

T
5
2

,

(

1

αB
− 1

)(

1

α
− 1

)

=
µBpe

TB
T

T
5
2

(5)

and the compatibility condition

(

1

αA
− 1

)

e−
TA
T

µA
=

(

1

αB
− 1

)

e−
TB
T

µB
. (6)

Computation of

(

∂αA

∂p

)

T

,

(

∂αA

∂T

)

p

,

(

∂αB

∂p

)

T

,

(

∂αB

∂T

)

p

: For the sake

of brevity, we set

qA = αA(1− αA), qB = αB(1 − αB), q = βqA + (1− β)qB.

Differentiating Saha’s equations, we have a system of Pfaff equations

α(1 + α) + βqA
α2
Aα

2
dαA +

(1 − αA)(1− β)

αAα2
dαB

= −µApe
TA
T

T
5
2

[

dp

p
−
(

5

2
+

TA

T

)

dT

T

]

, (7)

(1− αB)β

αBα2
dαA +

α(1 + α) + (1 − β)qB
α2
Bα

2
dαB

= −µBpe
TB
T

T
5
2

[

dp

p
−
(

5

2
+

TB

T

)

dT

T

]

(8)

which constitutes a system of linear equation of dαA and dαB. By the inverse
function theorem, we obtain
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Lemma 3
(

∂αA

∂p

)

T

= − α(1 + α)qA
p [α(1 + α) + q]

,

(

∂αB

∂p

)

T

= − α(1 + α)qB
p [α(1 + α) + q]

(9)

(

∂αA

∂T

)

p

=
α(1 + α)qA

T [α(1 + α) + q]

(

5

2
+

TA

T

)

+
(1− β)qAqB(TA − TB)

T 2 [α(1 + α) + q]
(10)

(

∂αB

∂T

)

p

=
α(1 + α)qB

T [α(1 + α) + q]

(

5

2
+

TB

T

)

+
βqAqB(TB − TA)

T 2 [α(1 + α) + q]
(11)

We deduce from this lemma
(

∂αA

∂T

)

p

= − p

T

(

5

2
+

TA

T

)(

∂αA

∂p

)

T

+
(1− β)qAqB(TA − TB)

T 2 [α(1 + α) + q]
(

∂αB

∂T

)

p

= − p

T

(

5

2
+

TB

T

)(

∂αB

∂p

)

T

+
βqAqB(TB − TA)

T 2 [α(1 + α) + q]
.

Thus we obtain useful lemmas:

Lemma 4

−T

p

(

∂α

∂T

)

p

=
5

2

(

∂α

∂p

)

T

+
βTA

T

(

∂αA

∂p

)

T

+
(1− β)TB

T

(

∂αB

∂p

)

T

Lemma 5
(

∂η

∂p

)

T

= −1 + α

p
+ β

(

5

2
+

TA

T

)(

∂αA

∂p

)

T

+ (1− β)

(

5

2
+

TB

T

)(

∂αB

∂p

)

T

(12)

3 Construction of Entropy Function

We will construct the physical entropy function for the present model system.
First we prove:

Lemma 6 The dimensionless entropy η = M
R
S takes the form

η(p, T ) = logα

+ β logαA + (1− β) logαB − 2β log(1− αA)− 2(1− β) log(1− αB)

+ β

(

5

2
+

TA

T

)

αA + (1− β)

(

5

2
+

TB

T

)

αB +H(T ). (13)

where H is an arbitrary function of T.

Proof Integrating (12) with respect to p, we have

η(p, T ) = −
∫

1 + α

p
dp+ β

(

5

2
+

TA

T

)

αA + (1− β)

(

5

2
+

TB

T

)

αB.
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We notice that: if dT = 0, then it follows from (7) and Saha’s equation (5)

− 1 + α

p
dp =

1 + α

qA
dαA+

1

α
dα =

1 + βαA

qA
dαA+

(1 − β)αB

qA
dαA+

1

α
dα. (14)

It follows from the compatibility condition (6)

log

(

1

αA
− 1

)

− TA

T
− logµA = log

(

1

αB
− 1

)

− TB

T
− logµB.

Hence
dαA

qA
− TA

T 2
dT =

dαB

qB
− TB

T 2
dT.

If dT = 0, then dαA

qA
= dαB

qB
and (14) is found to be

−1 + α

p
dp =

1 + βαA

qA
dαA +

(1− β)αB

qB
dαB +

1

α
dα.

By integrating the above expression

−
∫

1 + α

p
dp = logαA−(1+β) log(1−αA)−(1−β) log(1−αB)+logα+H(T )

In a similar manner

−1 + α

p
dp =

1 + (1− β)αB

qB
dαB +

βαA

qB
dαB +

1

α
dα

=
1 + (1− β)αB

qB
dαB +

βαA

qA
dαA +

1

α
dα

and hence

−
∫

1 + α

p
dp = logαB − (2 − β) log(1 − αB)− β log(1− αA) + logα+H(T ).

For symmetry, we have (13).

Next we will determine the form of H(T ), and then obtain the entropy
function up to constant.

Theorem 1 The dimensionless entropy function η(p, T ) takes the form

log [βαA + (1− β)αB]

+ β

[

logαA − 2 log(1 − αA) +
TA

T

]

+ (1− β)

[

logαB − 2 log(1− αB) +
TB

T

]

+ β

(

5

2
+

TA

T

)

αA + (1− β)

(

5

2
+

TB

T

)

αB + const.
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Proof Differentiating η with respect to T, we have

(

∂η

∂T

)

p

=
1

α

(

∂α

∂T

)

p

− β

αA

(

∂αA

∂T

)

p

− 1− β

αB

(

∂αB

∂T

)

p

+
2β

qA

(

∂αA

∂T

)

p

+
2(1− β)

qB

(

∂αB

∂T

)

p

− βαATA

T 2
− (1− β)αBTB

T 2

+ β

(

5

2
+

TA

T

)(

∂αA

∂T

)

p

+ (1− β)

(

5

2
+

TB

T

)(

∂αB

∂T

)

p

+H
′(T ).

Using the formulas in Lemma 3 and 4 and setting Σ = α(1 + α) + q, we find
that

1

α

(

∂α

∂T

)

p

−
[

β

αA

(

∂αA

∂T

)

p

1− β

αB

(

∂αB

∂T

)

p

]

+
2β

qA

(

∂αA

∂T

)

p

+
2(1− β)

qB

(

∂αB

∂T

)

p

=
(1 + α)β(1 − β)

ΣT

[

(1 − αA)

(

5

2
+

TA

T

)

− (1 − αB)

(

5

2
+

TB

T

)]

(αA − αB)

+
β(1 − β)(1 + α)(1 − αA)(1 − αB)(αA − αB)(TA − TB)

ΣT 2

+
2α(1 + α)

ΣT

[

5

2
+

βTA

T
+

(1− β)TB

T

]

− 2β(1 − β)(1 + α) [qA − qB] (TA − TB)

ΣT 2
.

The terms involving neither TA nor TB are

5

2

{

(1 + α)β(1 − β)

ΣT
[(1− αA)− (1− αB)] (αA − αB) +

2α(1 + α)

ΣT

}

=
5(1 + α)

2T

and the terms involving TA and TB are

βTA

T 2
+

(1− β)TB

T 2
+

βαATA

T 2
+

(1− β)αBTA

T 2

Consequently, we have

(

∂η

∂T

)

p

=
5(1 + α)

2T
+

βTA

T 2
+

(1 − β)TB

T 2

+ β

(

5

2
+

TA

T

)(

∂αA

∂T

)

p

+ (1 − β)

(

5

2
+

TB

T

)(

∂αB

∂T

)

p

+H
′(T )

which has to be equal to (4). Hence H′(T ) = −βTA

T 2 − (1−β)TB

T 2 and we obtain

H =
βTA

T
+

(1 − β)TB

T
.
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4 Equations of Ionized Gas Dynamics

For studying thermodynamic properties of the system (1), the Lagrangian
equations [15] are convenient







vt − uξ = 0,
ut + pξ = 0,
(

e+ 1
2u

2
)

t
+ (pu)ξ = 0

(15)

where p : pressure, v : specific volume, e : specific internal energy and u : flow
velocity. For C1 solutions, equation (15)3 can be written as 2 ηt = 0.

Characteristic speeds and vector fields: For the set of state variables (p, u, η) we
have vt = vppt and equation (15) becomes pt − 1

vp
uξ = 0, ut + pξ = 0, ηt = 0.

The Lagrangian characteristic speeds are λ± = ± 1√
−vp

and λ0 = 0, with

corresponding characteristic vectors r± =





±1√−vp
0



 and r0 =





0
0
1



. We note

that characteristic speeds and characteristic vectors are all thermodynamic
quantities.

For further computation, we adopt (p, u, T ) as a set of state variables. Since
vt − uξ = vppt + vTTt −uξ = 0 and ηt = ηppt + ηTTt = 0, we can write system
(15) in the form







pt − ηT

vpηT−vT ηp
uξ = 0,

ut + pξ = 0,
Tt +

ηp

vpηT−vT ηp
uξ = 0.

(16)

Characteristic speeds and vector fields are computed as the following.

Lemma 7 The characteristic speeds and the corresponding characteristic vec-
tor fields of system (16) are

λ± = ±
√

− ηT
vpηT − vT ηp

, λ0 = 0, r± =







±1
1

√

−
ηT

vpηT −vT ηp

∓ ηp

ηT






, r0 =





0
0
1





The eigenvalue λ0 is linearly degenerate; a pair of Riemann invariants for λ0

is {u, p}. A Riemann invariant for both λ± is η. The characteristic speeds of
system 1-(1) are then u+ 1

ρ
λ± and u.

2 We notice that equation ηt = 0 is equivalent to (ρS)t + (ρuS)x = 0 in Eulerian
coordinates.
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Computation of ηp, ηT , vp, vT : Fore the sake of brevity, let us introduce the
quantities: q = βqA + (1− β)qB,

Σ = α(1 + α) + βqA + (1− β)qB = α(1 + α) + q

Φ = βqA

(

5

2
+

TA

T

)2

+ (1 − β)qB

(

5

2
+

TB

T

)2

,

Ψ = βqA

(

15

4
+

3TA

T
+

T 2
A

T 2

)

+ (1− β)qB

(

15

4
+

3TB

T
+

T 2
B

T 2

)

,

Ω = β(1− β)qAqB

(

TA

T
− TB

T

)2

.

Substituting (9), (10), (11) into (4) and (12), we obtain

(

∂η

∂p

)

T

= −1 + α

p
− α(1 + α)

[

β
(

5
2 + TA

T

)

qA + (1− β)
(

5
2 + TB

T

)

qB
]

pΣ
(17)

(

∂η

∂T

)

p

=
5

2T
(1 + α) +

α(1 + α)Φ +Ω

TΣ
. (18)

Since v = a2

p
T (1 + α) (a2 = R

M̄
), we have by applying Lemma 3

a−2

(

∂v

∂p

)

T

= −T (1 + α)

p2
− Tα(1 + α)q

p2Σ
, a−2

(

∂v

∂T

)

p

= −
(

∂η

∂p

)

T

.

Computation of λ± : Let us first compute 1
a2 (vpηT − vT ηp). That is:

(

1+α
p

)2

times of

−
(

1 +
αq

Σ

)

[

5

2
+

αΦ

Σ
+

Ω

(1 + α)Σ

]

+

{

1 +
α
[

βqA
(

5
2 + TA

T

)

+ (1− β)qB
(

5
2 + TB

T

)]

Σ

}2

= −
(

3

2
+

αΨ +Ω

Σ

)

.

Thus we have together with (18)

Theorem 2 The characteristic speeds λ± take the forms λ± = ±λ where

λ =
p

a
√
T (1 + α)

√

5
2 (1 + α)Σ + α(1 + α)Φ +Ω

3
2Σ + αΨ +Ω

. (19)

Remark 1 (Isentropes) In (p, u, T ) coordinates, an integral curve of a charac-

teristic vector field r is a solution to the system of equations
d

ds





p
u
T



 = r

where r stands for r± or r0. For r±, we have

dη

ds
=

∂η

∂p

dp

ds
+

∂η

∂T

dT

ds
= ±

(

∂η

∂p
− ∂η

∂T

ηp
ηT

)

= 0



A Model System of Mixed Ionized Gas Dynamics 13

and for r0, p = const. and u = const. Thus, the thermodynamic part of an
integral curve is η = const. for 1, 2-characteristic directions and p = const. for

0-characteristic field. A curve η = const. is called an isentrope. Since
(

∂η
∂αA

)

T
>

0 (see Appendix B), an isentrope is the graph of a differentiable function
αA = αA(T ) defined on T ∈ (0,∞).

5 Genuine Nonlinearity (convexity) and Inflection Loci

Now, we investigate the convexity of the forward and backward fields; each
characteristic direction having the eigenvalue λ± is called genuinely nonlinear
if r±∇λ± 6= 0. We have chosen characteristic vectors r± so that

r±∇λ± =
vpp

2(−vp)
3
2

=
∂λ

∂p
− ηp

ηT

∂λ

∂T
. (20)

Hence, genuine nonlinearity implies strict convexity (or concavity) of v as a
function of p for fixed S. We refer to [13] for more insight about the failure of
this condition and we will see in Remark 2 that the entropy increases across the
shock front if r±∇λ± > 0. It is convenient to consider a differential operator

R = Σ

[

ηT

(

∂

∂p

)

T

− ηp

(

∂

∂T

)

p

]

which is proportional to r±∇.
Computation of Rλ is simple but tedious. First we note that Lemma 1, 3

and 5 yield

Lemma 8

RαA =
(1 + α)qA

pT

{

α(1 + α)TA

T

+ qB(1− β)

[

1 + α

(

5

2
+

TB

T

)](

TA

T
− TB

T

)}

,

RαB =
(1 + α)qB

pT

{

α(1 + α)TB

T
+ qAβ

[

1 + α

(

5

2
+

TA

T

)](

TB

T
− TA

T

)}

,

Rα =
α(1 + α)

pT

{

(1 + α)

[

βqA
TA

T
+ (1− β)qB

TB

T

]

−Ω

}

.

The above lemma give the forms of Rq,RΣ,RΨ and RΩ. Employing these
formulas, after a long and tedious computation, we finally find that R logλ
is the summation of the following three expressions: for brevity we denote
QT = βqA

TA

T
+ (1− β)qB

TB

T
.

(1) 1+α
pT

{

2Σ +Ω + 1
2α

[

10q + βqA

(

7TA

T
+

2T 2
A

T 2

)

+ (1− β)qB

(

7TB

T
+

2T 2
B

T 2

)]}
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(2)
1 + α

2
[

5
2 (1 + α)Σ + α(1 + α)Φ +Ω

]

pT
times of

α
[

5
2Σ + 5

2 (1 + α)(1 + 2α) + (1 + 2α)Φ
]

[2(1 + α)QT −Ω]

+ (1− 2αA)
{

α(1 + α)TA

T
+ (1 − β)qB

[

1 + α
(

5
2 + TB

T

)] (

TA

T
− TB

T

)}

×
{

(1 + α)βqA

[

5
2 + α

(

5
2 + TA

T

)2
]

+Ω
}

+ (1− 2αB)
{

α(1 + α)TB

T
+ 2βqA

[

1 + α
(

5
2 + TA

T

)] (

TB

T
− TA

T

)}

×
{

(1 + α)(1 − β)qB

[

5
2 + α

(

5
2 + TB

T

)2
]

+Ω
}

+ 5
2α(1 + α)2

[

β(1 − 2αA)qA
TA

T
+ (1− β)(1 − 2αB)qB

TB

T

]

− 2
{

α(1 + α)
[

βqA
(

5
2 + TA

T

)

TA

T
+ (1− β)qB

(

5
2 + TB

T

)

TB

T

]

+Ω
}

×
{

α(1 + α) + βqA
[

1 + α
(

5
2 + TA

T

)]

+ (1− β)qB
[

1 + α
(

5
2 + TB

T

)]}

(3)− 1 + α

2
[

3
2Σ + αΨ +Ω

]

pT
times of α

[

3(1+2α)
2 + Ψ

]

[2(1 + α)QT −Ω]

+ (1− 2αA)
{

α(1 + α)TA

T
+ (1 − β)qB

[

1 + α
(

5
2 + TB

T

)] (

TA

T
− TB

T

)}

×
{

βqA

[

3
2 + α

(

15
4 + 3TA

T
+

T 2
A

T 2

)]

+Ω
}

+ (1− 2αB)
{

α(1 + α)TB

T
+ βqA

[

1 + α
(

5
2 + TA

T

)] (

TB

T
− TA

T

)}

×
{

(1− β)qB

[

3
2 + α

(

15
4 + 3TB

T
+

T 2
B

T 2

)]

+Ω
}

+ 3
2α(1 + α)

[

β(1− 2αA)qA
TA

T
+ (1− β)(1 − 2αB)qB

TB

T

]

− 2
{

α
[

βqA
(

3
2 + TA

T

)

TA

T
+ (1 − β)qB

(

3
2 + TB

T

)

TB

T

]

+Ω
}

×
{

α(1 + α) + βqA
[

1 + α
(

5
2 + TA

T

)]

+ (1− β)qB
[

1 + α
(

5
2 + TB

T

)]}

Now, we study the inflection locus which is the point set

I = {(T, αA); r±∇λ± = 0, T > 0, 0 < αA < 1} .

Since r+∇λ+ = r−∇λ−, both cases lead to the same result. Obviously,
r±∇λ± > 0 for sufficiently large T and we observe that I is located in a
finite region. However it is difficult to get a sketch of I by purely mathemati-
cal reasoning and Fig. 1 shows results of numerical computations.

On the other hand, it is possible to extract from the above heavy expres-
sions asymptotics of the inflection locus for T → 0. Since αB is negligible
compared with αA, we observe that there are two branches such that

αA

T 2
→ 0 or

αA

T 2
→ ∞.

Following theorem is a generalisation of [1] Proposition 4.2.
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Fig. 1 TA = 1576.0, TB = 2853.2 left: β = 1(monatomic), right: β = 0.05.

Theorem 3 For T → 0, the inflection locus has two branches

(1) αA ∼ 60
β

(

T
TA

)3

, αB ∼ 60µA

βµB

(

T
TA

)3

e−
TB−TA

T

(2) αA ∼ 1
β

(

T
TA

)
3
2

, αB ∼ µA

βµB

(

T
TA

)
3
2

e−
TB−TA

T

and we conclude that the characteristic directions of λ± are not genuinely
nonlinear in a neighbourhood of (T, αA) = (0, 0).

6 Compatibility Condition

The compatibility condition (6) constitutes a thermodynamic state space.

Lemma 9 The compatibility condition takes the form

αB =
µAαAe

−
TB−TA

T

µAαAe−
TB−TA

T + µB(1− αA)
. (21)

If αA → 0, then αB → 0 and we have

αB =
µA

µB
αAe

−
TB−TA

T [1 +O(1)αA] . (22)

For A: hydrogen atom and B: helium atom, µA

µB
= 4.

Incidentally, we find

αB(1− αB) =
µAµBαA(1− αA)e

−
TB−TA

T

[

µAαAe−
TB−TA

T + µB(1 − αA)
]2

and thus derivatives of αB take the forms

(

∂αB

∂T

)

αA

=
(TB − TA)αB(1 − αB)

T 2
,

(

∂αB

∂αA

)

T

=
αB(1 − αB)

αA(1 − αA)
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Fig. 2 State space TA = 15, TB = 28, left: 0 < αA < 1, 0 < T < 12, right: 0 < αA <

0.5, 0 < T < 12

showing that
(

∂αB

∂T

)

αA
,
(

∂αB

∂αA

)

T
> 0. By setting for brevity

q = βqA + (1 − β)qB, QBA =
(1 − β)(TB − TA)qB

T
,

derivatives of α take the forms

Lemma 10
(

∂α

∂T

)

αA

=
QBA

T
,

(

∂α

∂αA

)

T

=
q

qA
. (23)

In the following sections, we shall adopt T and αA as a set of independent
thermodynamic state variables.

7 Thermodynamic Hugoniot Loci

In the one-dimensional gas dynamics, the Rankine-Hugoniot conditions for a
single discontinuity of constant speed s are







s[ρ] = [ρu],
s[ρu] = [ρu2 + p],
s[ρE] = [ρuE + pu].

(24)

Here we denote [ρ] = ρ+ − ρ−, where ρ± denote the right and left limits,
respectively, of ρ with respect to x at x = st; the same notation is used for
the other variables. If [ρ] = 0 then [u] = 0 by (24)1 and [p] = 0 by (24)2; in
this case, s = u± : the speed is equal to the flow velocity and the discontinuity
is called a contact discontinuity. From now on we focus on the discontinuity
corresponding to eigenvalues λ± and assume [ρ] 6= 0. In this case s can be
eliminated from the first equation and by substituting it into the other two
equations, the conditions (24) are reduced to

{

(u+ − u−)
2 + (p+ − p−)(v+ − v−) = 0 : kinetic condition,

e+ − e− + 1
2 (p+ + p−)(v+ − v−) = 0 : thermodynamic condition.

(25)
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In the following, we consider a single forward shock front; we fix a constant
state (p+, u+, T+) and consider (p, u, T ) = (p−, u−, T−) as a set of state vari-
ables. Under this notation, (25) is a set of equations for Hugoniot locus of
(p+, u+, T+). For brevity, we call solutions to (25)1 and (25)2, respectively,
the kinetic and thermodynamic Hugoniot loci.

In this section we will give a precise description of thermodynamic Hugo-
niot loci for the present model system and evaluate, in particular, change of
the thermodynamic variables along them; this analysis is fundamental for the
study of shock waves (see [2]).

The right thermodynamic state is denoted by (p+, T+) and the left state
(p−, T−). The thermodynamic Rankine-Hugoniot condition is written as3

T−

(

1 + α−
)

(

4 +
p+
p−

)

+ 2
[

βTAα
−

A + (1− β)TBα
−

B

]

= T+

(

1 + α+
)

(

4 +
p−
p+

)

+ 2
[

βTAα
+
A + (1− β)TBα

+
B

]

The pressure is expressed as

p =
(1− αA)(1 + α)

µAαAα
T

5
2 e−

TA
T =

(1 − αB)(1 + α)

µBαBα
T

5
2 e−

TB
T .

and thus

p−
p+

=
(1− α−

A)(1 + α−)α+
Aα

+

(1− α+
A)(1 + α+)α−

Aα
−

(

T−

T+

)
5
2

e
−

TA
T
−

+
TA
T+ ,

v−
v+

=
p+T−(1 + α−)

p−T+(1 + α+)
.

(26)
Consequently we have by setting T = T−, α = α−, αA = α−

A and αB = α−

B

T

T+

{

(1 + α)

[

4 +
(1− α+

A)(1 + α+)αAα

(1− αA)(1 + α)α+
Aα

+

(

T+

T

)
5
2

e
−

TA
T+

+
TA
T

]

+2

[

βαA
TA

T
+ (1− β)αB

TB

T

]

}

=
(

1 + α+
)

[

4 +
(1− αA)(1 + α)α+

Aα
+

(1− α+
A)(1 + α+)αAα

(

T

T+

)
5
2

e
−

TA
T

+
TA
T+

]

+ 2

[

βα+
A

TA

T+
+ (1 − β)α+

B

TB

T+

]

. (27)

Asymptotics: We have the following asymptotic formulas.

Theorem 4 (Asymptotics) On the thermodynamic Hugoniot locus (27), if
T → 0, then αA, αB → 0 and by setting

A =

√

√

√

√

α
+
Aα+

{

4(1+α+)+2
[

βα
+
A

TA
T+

+(1−β)α+
B

TB
T+

]}

e

TA
T+

[

β+
µA
µB

(1−β)
]

(1−α
+
A)(1+α+)

,

3 For the sake of convenience, we adopt the notation α±
A instead of αA±.
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we have

αA ∼ A

(

T

T+

)
3
4

e−
TA
2T , αB ∼ AµA

µB

(

T

T+

)
3
4

e−
2TB−TA

2T . (28)

On the other hand, if T → ∞, then αA, αB → 1 and

1− αA ∼ 4(1− α+
A)

α+
Aα

+

(

T

T+

)−
3
2

e
−

TA
T+ , 1− αB ∼ 4µA(1− α+

A)

µBα
+
Aα

+

(

T

T+

)−
3
2

e
−

TA
T+

(29)

Proof First we let T → 0. If αA ≥ α0 > 0, then the first expression of (27)
tends to ∞ and the second remains bounded, which is contradiction. Hence

αA, αB → 0. By (22), we have αB ∼ µA

µB
αAe

−
TB−TA

T for αA, αB → 0 and

hence α ∼
[

β + µA

µB
(1− β)

]

αA. Suppose that α2
AT

−
5
2 e

TA
T = O(1). Then the

first expression tends to 0 and the second remains bounded, which is also
contradiction.

We set αA ∼ A
(

T
T+

)κ

e−
TA
2T for some A > 0. Then

T

T+







4 +
(1− α+

A)(1 + α+)
[

β + µA

µB
(1− β)

]

A2

α+
Aα

+

(

T

T+

)2κ− 5
2

e
−

TA
T+







∼
(

1 + α+
)







4 +
α+
Aα

+

(1− α+
A)(1 + α+)

[

β + µA

µB
(1− β)

]

A2

(

T

T+

)−2κ+ 5
2

e
TA
T+







+2

[

βα+
A

TA

T+
+ (1− β)α+

B

TB

T+

]

.

If 2κ − 5
2 = 0, then κ = 5

4 , which is impossible by the above observation. If
2κ− 3

2 = −2κ+ 5
2 , then κ = 1 and 2κ− 3

2 = 1
2 > 0, which is also contradiction.

Thus we conclude that 2κ − 3
2 = 0 and hence κ = 3

4 , which implies αA ∼

A
(

T
T+

)
3
4

e−
TA
2T , αB ∼ µA

µB
αAe

−
TB−TA

T ∼ AµA

µB

(

T
T+

)
3
4

e−
2TB−TA

2T . Since −2κ +
5
2 = 1, A is determined by the equation

(1− α+
A)(1 + α+)

[

β + µA

µB
(1− β)

]

A2e
−

TA
T+

α+
Aα

+

= 4
(

1 + α+
)

+ 2

[

βα+
A

TA

T+
+ (1 − β)α+

B

TB

T+

]

.

Next we let T → ∞. If αA ≤ 1−δ0 (δ0 > 0), then the first expression of (27)
goes to 0 and the second ∞, which is contradiction. Thus αA → 1 as T → ∞
which implies αB → 1 and hence α → 1. Suppose that (1 − αA)T

5
2 = O(1).
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Then the first expression is O(1)T and secondO(1), which is also contradiction.

We may set 1− αA = B
(

T
T+

)−κ

. Then

2T

T+

[

4 +
(1− α+

A)(1 + α+)

2Bα+
Aα

+

(

T

T+

)κ− 5
2

e
−

TA
T+

]

∼ 2
(

1 + α+
)

[

2 +
Bα+

Aα
+

(1− α+
A)(1 + α+)

(

T

T+

)−κ+ 5
2

e
TA
T+

]

+2

[

βα+
A

TA

T+
+ (1 − β)α+

B

TB

T+

]

.

If κ − 5
2 = 0, then the first expression is O(1)T and second O(1), which is

impossible. If κ− 3
2 = −κ+ 5

2 , then κ = 2. In this case, the first expression is
O(1)T and second O(1), which is also impossible. Thus we find −κ + 5

2 = 1

and hence κ = 3
2 . We have 4 =

Bα
+
Aα+e

TA
T+

1−α
+
A

and thus obtain the asymptotic

form of αA. Formula for αB is derived from

1− αB =
µB(1− αA)

µAαAe−
TB−TA

T + µB(1− αA)

Loss of Monotonicity: For single monatomic gases, Hugoniot loci are graphs
of strictly increasing functions in (T, α) plane ([1], [2]). We will show in this
subsection that it is not always the case for mixed monatomic gases. Let us
denote

Θ+ =

(

T+

T

)
5
2

e
−

TA
T+

+
TA
T , Θ+ =

(

T

T+

)
5
2

e
−

TA
T

+
TA
T+

and

K+ =
(1− α+

A)(1 + α+)αAα

(1− αA)(1 + α)α+
Aα

+
, K+ =

(1− αA)(1 + α)α+
Aα

+

(1− α+
A)(1 + α+)αAα

.

Note that K+ → 0, K+ → ∞ as αA → 0 and K+ → ∞, K+ → 0 as αA → 1.
Obviously

p+
p

= K+Θ+,
p

p+
= K+Θ+

and
dΘ+

dT
= − 1

T

(

5

2
+

TA

T

)

Θ+,
dΘ+

dT
=

1

T

(

5

2
+

TA

T

)

Θ+. (30)

It follows from (23) that
(

∂K+

∂αA

)

T

=
K+

qA

[

1 +
q

α(1 + α)

]

,

(

∂K+

∂αA

)

T

= −K+

qA

[

1

qA
+

q

α(1 + α)

]

(31)
(

∂K+

∂T

)

αA

=
K+QBA

α(1 + α)T
,

(

∂K+

∂T

)

αA

= − K+QBA

α(1 + α)T 2
. (32)
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By defining

H(T, αA) = T (1 + α)
(

4 +K+Θ+
)

+ 2 [βαATA + (1− β)αBTB]

− T+

(

1 + α+
)

(4 +K+Θ+)− 2
[

βα+
ATA + (1− β)α+

BTB

]

, (33)

the Rankine-Hugoniot condition (27) is equivalent to H(T, αA) = 0.
Using (23) and (31), we have

(

∂H

∂αA

)

T

=
T (1 + α)

qA

[

1 +
q

α(1 + α)

]

p+
p

+
T+ (1 + α+)

qA

[

1 +
q

α(1 + α)

]

p

p+

+
Tq

qA

(

4 +
p+
p

)

+
2

qA
[βqATA + (1− β)qBTB] , (34)

showing that
(

∂H
∂αA

)

T
> 0. In the same way

(

∂H

∂T

)

αA

= 4(1 + α)

[

1 +
QBA

1 + α

(

1 +
TB

2T

)]

− (1 + α)

(

3

2
+

TA

T
− QBA

α

)

p+
p

− (1 + α+)
T+

T

[

5

2
+

TA

T
− QBA

α(1 + α)

]

p

p+
.

(35)

Theorem 5 For every T > 0, there is a unique 0 < αA < 1 such that
H(T, αA) = 0 and the function αA = αA(T ) is differentiable.

Proof For every fixed T > 0, H(T, αA) → −∞ as αA → 0, and H(T, αA) → ∞
as αA → 1. Thus there is at least one αA such that H(T, αA) = 0. Since
(

∂H
∂αA

)

T
> 0, such αA is uniquely determined and the correspondence T → αA

is differentiable. Thus the theorem follows.

Let us study the sign of
(

∂H
∂T

)

αA
at (T+, α

+
A).

Theorem 6 If β is sufficiently close to 0, then

dαA

dT
(T+) = −

(

∂H
∂αA

)

T
(T+, α

+
A)

(

∂H
∂T

)

αA
(T+, α

+
A)

< 0,

showing that αA is a decreasing function of T in a neighbourhood of T = T+,

Proof We find by the above expression that
(

∂H
∂T

)

αA
> 0 if and only if the

following F (T, αA) is negative.

F (T, αA) =
1

4

(

3

2
+

TA

T
− QBA

α

)

p+
p

+
T+(1 + α+)

4T (1 + α)

[

5

2
+

TA

T
− QBA

α(1 + α)

]

p

p+
−
[

1 +
QBA

1 + α

(

1 +
TB

2T

)]
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We set T = T+ and αA = α+
A. Since

p+

p
= T+

T
= α+

α
= 1, we have

F (T, αA) = 1 +
TA

2T
− (2 + α)QBA

4α(1 + α)
−
[

1 +
QBA

1 + α

(

1 +
TB

2T

)]

=
TA

2T
−
[

(1− β)(2 + 5α)qB
2α(1 + α)

+
(1 − β)TBqB
(1 + α)T

]

TB − TA

2T

Let us consider the case: β = 0.

F (T, αA) = 1 +
TA

2T
− (2 + αB)(TB − TA)qB

4αB(1 + αB)T
−
[

1 +
(TB − TA)qB
(1 + αB)T

(

1 +
TB

2T

)]

=
TA

2T

[

1− 1− αB

1 + αB

(

2 + 5αB

2
+

TBαB

T

)

TB − TA

TA

]

.

Obviously for any αB > 0, there is some T > 0 so that the above expression
is negative. Recall that αB is a continuous function of αA and T, satisfying
(

∂αB

∂αA

)

T
> 0. Moreover αB(0, T ) = 0 and αB(1, T ) = 1 for any T > 0.

Thus we find that: for any T+ > 0 and 0 < α+
B < 1, there is a unique α+

A

such that αB(T+, α
+
A) = α+

B which implies F (T+, α
+
A) < 0. Since F (T, αA) is

continuous function of β, the theorem follows.

Fig. 3 TA = 1576.0, TB = 2853.2, T = 800, α+
A = 0.3 left: β = 1(single monatomic), right:

β = 0.05

Pressure Change: Though the degree of ionization does not always increase
across the shock front, even if the temperature increases, we will prove in this
subsection:

Theorem 7 The pressure p strictly increases along the Hugoniot locus as the
temperature T increases.
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Proof First we notice that: by setting

QT =
βqATA + (1− β)qBTB

T
, QBA =

(1− β)(TB − TA)qB
T

, (36)

(34) and (35) together with (26) yield

(

∂H
∂T

)

αA
= 4(1 + α)

[

1 + QBA

1+α

(

1 + TB

2T

)

]

− T+(1+α+)
T

{[

5
2 + TA

T
+ QBA

α(1+α)

]

p
p+

+
(

3
2 + TA

T
− QBA

α

)

v
v+

}

(37)
(

∂H
∂αA

)

T
= 4

qA

(

q + QT

2

)

+
T+(1+α+)

qA

{[

1 + q
α(1+α)

]

p
p+

+
(

1 + q
α

)

v
v+

}

(38)

We now compute dp
dT

by differentiating both sides of

log p = log(1− αA)− logαA + log(1 + α) − logα+
5

2
logT − TA

T
+ const.

Using (23) and (36), we have

dα

dT
= β

dαA

dT
+ (1− β)

(

∂αB

∂T
+

∂αB

∂αA

dαA

dT

)

=
1

qA

(

q
dαA

dT
+

QBAqA
T

)

.

Thus we get

1

p

dp

dT
= − 1

αA(1− αA)

dαA

dT
− 1

α(1 + α)

(

q

qA

dαA

dT
+

QBA

T

)

+
1

T

(

5

2
+

TA

T

)

=

[

1 + q
α(1+α)

]

(

∂H
∂T

)

αA
+ qA

T

[

5
2 + TA

T
− QBA

α(1+α)

] (

∂H
∂αA

)

T

qA

(

∂H
∂αA

)

T

.

Since qA
T

(

∂H
∂αA

)

T
> 0, we examine the numerator, which is computed as

T+(1+α+)
T

{

(

1 + q
α

)

[

5
2 + TA

T
− QBA

α(1+α)

]

−
(

3
2 + TA

T
− QBA

α

)[

1 + q
α(1+α)

]}

v
v+

+4(1+α)
[

1 + QBA

1+α

(

1 + TB

2T

)

][

1 + q
α(1+α)

]

+4
(

q + QT

2

)[

5
2 + TA

T
− QBA

α(1+α)

]

.

Note that

5

2

(

1 +
q

α

)

− 3

2

[

1 +
q

α(1 + α)

]

= 1 +
1 + 5

2α

α(1 + α)
,

TA

T

[

1 +
q

α
− 1− q

α(1 + α)

]

=
qTA

T (1 + α)

and

−
(

1+
q

α

) QBA

α(1 + α)
+
QBA

α

[

1+
q

α(1 + α)

]

= − QBA

α(1 + α)
+
QBA

α
=

QBA

1 + α
.
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Then we find that
(

1 +
q

α

)

[

5

2
+

TA

T
− QBA

α(1 + α)

]

−
(

3

2
+

TA

T
− QBA

α

)[

1 +
q

α(1 + α)

]

= 1 +
1 + 5

2α

α(1 + α)
+

qTA

T (1 + α)
+

QBA

1 + α
> 0.

Moreover

4QBA

(

1 +
TB

2T

)[

1 +
q

α(1 + α)

]

− 4

(

q +
QT

2

)

QBA

α(1 + α)

> 2QBA

[

TB

T
− QT

α(1 + α)

]

> 2QBA

[

TB

T
− QT

α

]

and noticing

TB

T
− QT

α
=

1

T

[

TB − βqATA + (1− β)qBTB

α

]

>
TB

T

(

1− q

α

)

≥ 0,

we conclude that the numerator is strictly positive and hence the theorem is
proved.

Remark 2 It is well known that ([11, §86] ): if (p0, u0, S0) and (p1, u1, S1) are
connected by a shock front, then

S1 − S0 =
1

12T0

(

∂2v

∂p20

)

S
(p1 − p0)

3 +O(1)(p1 − p0)
4. (39)

This formula, first obtained by H. Bethe in [4], is notable, because it depends
on neither the particular equation of state nor the form of internal structure.
In particular, it is true for present mixed ionized system of equations.

Suppose that vpp(p, S) > 0. Then the entropy increases as the pressure in-
creases. It follows from (20) that this condition implies that this characteristic
direction is genuinely nonlinear. Consequently, if |p1 − p0| is sufficiently small,
the Lax condition (see [6], [15]) holds in this case. Thus we can call the above
discontinuity a shock wave as long as p1 > p0 and |p1−p0| is sufficiently small.

For discontinuities with arbitrary amplitude

Theorem 8 (Bethe-Weyl) The thermodynamic Hugoniot locus of the state
(v0, S0) intersects each isentrope at least once. Moreover, if pvv > 0 along an
isentrope, then the locus intersects it exactly once; in this case, |u− σ| < c, if
v1 < v0. while the opposite inequalities hold if v1 > v0.

Hence the Lax condition holds even for large |p1 − p0| as long as p1 > p0.
Proof is found in [4], [17] and [13, (3.44)]. We may also call this “shock wave”,
however the physical entropy does not necessarily increase.

The following theorem in [4] guarantees increase of the physical entropy.
Let us introduce the Grüneisen coeficient Γ defined by

Γ = − v

T

∂2e

∂S∂v
=

v

T

(

∂p

∂S

)

v

= v

(

∂p

∂e

)

v

.
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Theorem 9 (Bethe) Suppose that pvv > 0 and Γ ≥ −2. Then the thermo-
dynamic Hugoniot locus of the state (v0, S0) intersects each isentrope exactly
once and S1 > S0 if v1 < v0, while S1 < S0 if v1 > v0.

In our case, a set of independent thermodynamic variables are αA and T. The
Grüneisen coefficient is expressed as

Γ =
v
(

∂p
∂αA

∂v
∂T

− ∂v
∂αA

∂p
∂T

)

T
(

∂S
∂αA

∂v
∂T

− ∂v
∂αA

∂S
∂T

) ,

where S = R
M
η. After simple but tedious computations like in Appendix A,

we prove finally Γ > 0.

8 Approximation of Thermodynamic Hugoniot Loci

Next section, we consider a forward shock front having the right state (p+, T+)
in ordinary circumstances: the pressure p+ and the temperature T+ have
proper finite values and α+

A , α
+
B are supposed to be 0. However, we find by

(26) that p
p+

→ 0 as α+
A , α

+
B → 0, which is contradictory. Notice that

p =
(1− αA)(1 + α)

µAαAα
T

5
2 e−

TA
T .

Then we observe that

α+
Aα

+ =
(1− α+

A)(1 + α+)

µAp+
T

5
2
+ e

−
TA
T+ ∼ T

5
2
+ e

−
TA
T+

µAp+
, as α+

A , α
+
B → 0.

Setting L̂2
+ =

T
5
2
+

µAp+
, we obtain α+

Aα
+ ∼ L̂2

+e
−

TA
T+ and an approximate formula

p+
p

=
αAα

(1− αA)(1 + α)L̂2
+

.

(

T+

T

)
5
2

e
TA
T

By letting α+
A → 0, the thermodynamic Rankine-Hugoniot condition takes the

form

T

T+
(1 + α)

(

4 +
p+
p

)

+
2 [βTAαA + (1− β)TBαB]

T+
= 4 +

p

p+

whose solution is called the approximate thermodynamic Hugoniot locus of a
laboratory state (p+, T+).

Theorem 10 Let σ be a positive constant satisfying σ < 60. If T and T+ are
sufficiently small, so that

√

βT+T
3
2
A

µAp+

(

T
TA

)−
9
4

e−
TA
2T ≤ σ,

then the approximate thermodynamic Hugoniot locus is located in a genuinely
nonlinear region for sufficiently small αA, αB.
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Proof Let us denote Π = p+

p
. Then the thermodynamic Rankine-Hugoniot

condition is found to be a quadratic equation of Π :

(1 + α)
T

T+
Π2 + 2

[

2 (1 + α)
T

T+
+

βTAαA + (1 − β)TBαB

T+
− 2

]

Π − 1 = 0

Let Γ (Π) denote the left side of the above expression. Clearly Γ (0) = −1 < 0.
Since T+ ≤ T,

2 (1 + α)
T

T+
+

βTAαA + (1− β)TBαB

T+
− 2 ≥ 2

(

T

T+
− 1

)

≥ 0,

which implies

Γ

(

T+

T

)

≥ (1 + α)
T+

T
+ 4

(

T

T+
− 1

)

T+

T
− 1 > 3

(

1− T+

T

)

≥ 0.

Thus we conclude that 0 < Π = p+

p
< T+

T
, which is

µAp+αAα

(1− αA)(1 + α)T
5
2

e
TA
T <

T+

T
.

Since we may assume αA > αB, we find that

(1− αA)(1 + α)

= 1 + α− αA − αAα = 1− (1− β)(αA − αB)− αAα < 1.

Thus
βµAp+ (αA)

2

T
5
2

e
TA
T <

µAp+αAα

T
5
2

e
TA
T <

T+

T
.

and we have

0 < αA <

√

T+T
3
2

βµAp+
e−

TA
2T =

√

T+T
3
2
A

βµAp+

(

T
TA

)
3
4

e−
TA
2T

By virtue of Theorem 3, we have the theorem.

9 Shock Tube Problem

The shock tube problem consists in finding the state (α−

A , T−), for given
(α+

A , T+) and u±, satisfying Rankine-Hugoniot conditions

{

(u− − u+)
2 = −(p− − p+)(v− − v+) : kinetic part,

h− − h+ = 1
2 (v− + v+)(p− − p+) : thermodynamic part.

(40)

The kinetic part takes a form

(u− − u+)
2 = −p+v+

(

p−
p+

− 1

)(

v−
v+

− 1

)

. (41)
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Denoting αA = α−

A , T = T− and uA = u−, we define G to be

G(αA, T ) = − (uA − u+)
2

p+v+
−
(

p

p+
− 1

)(

v

v+
− 1

)

= −M(uA − u+)
2

RT+(1 + α+)
+

p

p+
+

v

v+
− T (1 + α)

T+(1 + α+)
− 1.

Then the kinetic condition (41) is equivalent to G(αA, T ) = 0. Substituting
(26) into the above expression, we have actually

G(αA, T ) = −M(uA − u+)
2

RT+(1 + α+)
+

(1− αA)(1 + α)α+
Aα

+

(1− α+
A)(1 + α+)αAα

(

T

T+

)
5
2

e
−

TA
T

+
TA
T+

+
(1 − α+

A)αAα

(1− αA)α
+
Aα

+

(

T

T+

)−
3
2

e
−

TA
T+

+
TA
T − T (1 + α)

T+(1 + α+)
− 1. (42)

By denoting Λ+ =
(1−α

+
A)αAα

(1−αA)α+
Aα+

, we have v
v+

= Λ+
(

T
T+

)−
3
2

e
−

TA
T+

+
TA
T and

G(αA, T ) = K+

(

T

T+

)
5
2

e
−

TA
T

+
TA
T+ + Λ+

(

T

T+

)−
3
2

e
−

TA
T+

+
TA
T

− T (1 + α)

T+(1 + α+)
− M(uA − u+)

2

RT+(1 + α+)
− 1.

Since
(

∂Λ+

∂T

)

αA

=
Λ+QBA

αT
,

(

∂Λ+

∂αA

)

T

=
Λ+

qA

(

1 +
q

α

)

, (43)

we find together with (31) that

qA

(

∂G

∂αA

)

T

= −
[

1 +
q

α(1 + α)

](

p

p+

)

+
(

1 +
q

α

)

(

v

v+

)

− Tq

T+(1 + α+)
,

(44)

T
∂G

∂T
(αA, T ) =

p

p+

[

5

2
+

TA

T
− QBA

α(1 + α)

]

− v

v+

(

3

2
+

TA

T
− QBA

α

)

− T (1 + α)

T+(1 + α+)
− TQBA

T+(1 + α+)
(45)

=

(

p

p+
− v

v+

)(

3

2
+

TA

T
− QBA

α

)

+

[

p

p+
− T (1 + α)

T+(1 + α+)

](

1 +
QBA

1 + α

)

,

(46)

where the identity 1
α
− 1

α(1+α) = 1
1+α

is used.

Proposition 2 For every αA, there are at least two values T (±) = T (±)(αA),
with T (−) < T (+), such that G

(

αA, T
(±)

)

= 0. Moreover, p(+) > p+ > p(−).
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Proof By virtue of the assumption: TA < TB ≤ 2TA, we find that

TA

T
− QBA

α
=

TA

T
− (1− β)(TB − TA)qB

αT
≥ 2TA

T
− TB

T
≥ 0. (47)

Hence
[

∂

∂T

(

p

p+

)]

αA

=
p

p+T

[

5

2
+

TA

T
− (1− β)(TB − TA)qB

α(1 + α)T

]

≥ 5p

2p+T

which shows that the function T 7→ p
p+

is strictly increasing and valued in

[0,∞). Then, for every αA > 0 there exists a unique T∗ = T∗(αA) (T∗(α
+) =

T+) such that, by (26),

p∗
p+

=
(1− αA)(1 + α)α+

Aα
+

(1− α+
A)(1 + α+)αAα

(

T∗

T+

)
5
2

e
−

TA
T∗

+
TA
T+ = 1,

for p∗ = p (αA, T∗(αA)) . Thus G (αA, T∗(αA)) = − (u−u0)
2

a2T0(1+α0)
< 0.

For every fixed αA we have that G(αA, T ) → ∞ for both T → 0 and
T → ∞. We conclude that there are at least two values T (±) = T (±)(αA),

with T− < T∗ < T+, such that G
(

αA, T
(±)

)

= 0. Note that p(+)

p+
> p∗

p+
= 1

and p(−)

p+
< p∗

p+
= 1.

We call the set of (αA, T
(+)) the compressive part of G (αA, T ) = 0 and the

set of (αA, T
(−)) its expansive part .

Asymptotics and Monotonicity: First we shall show the asymptotic behavior
of the set G(αA, T

(±)) = 0 for αA close to 1.

Proposition 3 Suppose that 0 < α+
A < 1. Then we have

1− αA ∼ 1− α+
A

α+
Aα

+
e
−

TA
T+

(

T

T+

)−
3
2

for T → ∞ (48)

for the compressive part and

1− αA ∼ (1− α+
A)(1 + α+)

2α+
Aα

+
e
−

TA
T+

(

T

T+

)−
5
2

for T → ∞ (49)

for the expansive part. Hence, for αA close to 1, both parts of G(αA, T ) = 0
constitute strictly increasing curves in (T, αA) plane.

Proof It is easy to see from (42) and compatibility condition that: if αA → 1

on G(αA, T ) = 0, then αB → 1 and T → ∞. We set 1−αA ∼ K
(

T
T+

)−µ

with

µ > 0. By (42)

2α+
Aα

+K

(1− α+
A)(1 + α+)

(

T

T+

)
5
2−µ

e
TA
T+ +

1− α+
A

α+
Aα

+K

(

T0

T

)
3
2−µ

e
−

TA
T+

∼ 2T

T+(1 + α+)
+ 1 +

M(uA − u+)
2

RT+(1 + α+)
.
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If T
5
2−µ and T µ− 3

2 are equally large as T → ∞, we have µ = 2. Then both
terms are O(1)T

1
2 , which is a contradiction. In the case 5

2 − µ = 1, we have

µ = 3
2 and K =

1−α
+
A

α
+
Aα+

e
−

TA
T+ , which is the compressive part, and obtain (48).

Otherwise, if µ− 3
2 = 1, we have µ = 5

2 and K =
(1−α

+
A)(1+α+)

2α+
Aα+

e
−

TA
T+ , which

is the expansive part. In both cases monotonicity with respect to αA close to
1 is obvious.

Smoothness of the Comressive Part:

Theorem 11 For any fixed (α+
A , T+), the compressive part of G(αA, T ) = 0,

constitutes a single differentiable curve.

Proof Since G(αA, T ) = 0 is written as p
p+

− T (1+α)
T+(1+α+) = 1− v

v+
+ M(uA−u+)2

RT+(1+α+)

then it follows from (46) and (47) that

T
∂G

∂T
(αA, T ) =

(

p

p+
− v

v+

)(

3

2
+

TA

T
− QBA

α

)

+

(

1 +
QBA

1 + α

)[(

1− v

v+

)

+
M(uA − u+)

2

RT+(1 + α+)

]

> 0 (50)

on the compressive part p > p+, v < v+. Thus we have proved that: in a
neighbourhood of every state (αA, T

(+)), the compressive part of G(αA, T ) = 0
is a graph of a differentiable function of αA. Consequently, the compressive
part constitutes a differentiable curve.

Solution to the Shock Tube Problem:

Theorem 12 (Intersection with Hugoniot loci) Fix (T+, α
+
A) and u+ 6=

uA. Then, in the region α+
A < αA < 1, there is at least one intersection point of

the compressive part of G(αA, T ) = 0 and the thermodynamic Hugoniot locus
(25) of (T+, α

+
A).

Proof Let αA = αA(T ) denote thermodynamic Hugoniot locus of (T+, α
+
A) in

(αA, T )-plane. Clearly, G(α+
A , T+) = −M(uA−u+)2

RT+(1+α+) < 0 by (42), while α+
A =

αA(T+). Through the proof of Proposition 2, we have found that the graph of
T = T (+)(αA) is located above the thermodynamic part the Hugoniot locus
of (T+, α

+
A) near αA = α+

A.
On the other hand, by (29) the Hugoniot locus of (αB, TB) takes an aymp-

totic form 1 − αA ∼ 4(1−α+)

α
+
Aα+

(

T
T+

)−
3
2

e
−

TA
T+ and by (48) T+(α) has 1 − αA ∼

1−α
+
A

α
+
Aα+

e
−

TA
T+

(

T
T+

)−
3
2

. as αA → 1. Thus we conclude that the graph of T =

T (+)(αA) is located under the Hugoniot locus as αA → 1, which proves the
assertion.
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Uniqueness of the Solution: The aim of this subsection is to prove that the
solution obtained in Theorem 12 is unique.

Theorem 13 (Uniqueness of the intersection point) Fix (α+
A, T+) and

u+ 6= uA. Then, in the region α+
A < αA < 1 the intersection point of the

compressive part of G(αA, T ) = 0 and the thermodynamic Hugoniot locus (25)
of (T+, α

+
A) is unique.

Proof Since the thermodynamic Hugoniot locus is the graph of αA = αA(T ),
the solution is a zero of G(αA(T ), T ) (denoted by T = T∗) and proof will be
completed by showing

dG

dT
(αA(T∗), T∗) =

[

(

∂G
∂T

)

A

(

∂H
∂αA

)

T
−
(

∂G
∂αA

)

T

(

∂H
∂T

)

A

]

(αA(T∗),T∗)
(

∂H
∂αA

)

T
(αA(T∗), T∗)

> 0.

Recall that
(

∂H
∂αA

)

T
> 0. By substituting the expressions (37), (38), (44), (45)

into the above, the numerator is written as
T+(1+α+)
qAT (1+α) times of

∣

∣

∣

∣

∣

∣

[

5
2 + TA

T
− QBA

α(1+α)

]

p
p+

−
(

3
2 + TA

T
− QBA

α

)

v
v+

− T (1+α)
T+(1+α+) −

TQBA

T+(1+α+)

−(1 + α)
[

1 + q
α(1+α)

]

p
p+

+ (1 + α)
(

1 + q
α

)

v
v+

− qT (1+α)
T+(1+α+)

−
[

5
2+

TA

T
− QBA

α(1+α)

]

p
p+

−
(

3
2+

TA

T
−QBA

α

)

v
v+

+ 4T (1+α)
T+(1+α+)

[

1+QBA

1+α

(

1+ TB

2T

)

]

(1 + α)
[

1 + q
α(1+α)

]

p
p+

+ (1 + α)
(

1 + q
α

)

v
v+

+ 4T (1+α)
T+(1+α+)

(

q + QT

2

)

∣

∣

∣

∣

∣

∣

.

As shown in section A, its final form will be

3(1 + α)
[

1 + q
α(1+α)

] (

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1− v
v+

)

+ 8
{

q
[(

3
2 + TA

T

) (

5
2 + TA

T

)

− TA

4T

]

+
[

q(TB−TA)
T

−QBA

]

QBA

α(1+α)

+
(

15
4 + TA+TB

T

)

QBA

}[

T (1+α)
T+(1+α+) − 1

]

+ 6(1 + α)
[

1 + q
α(1+α)

] (

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1− v
v+

)

+ 2
{

q
(

3
2 + TA

T

) (

5
2 + TA

T

)

+
[

q(TB−TA)
T

−QBA

]

QBA

α(1+α)

+
(

4 + TA+TB

T

)

QBA

} [βTA(αA−α
+
A)+(1−β)TB(αB−α

+
B )]

T+(1+α+)

+ 2
(

v
v+

) [

q(TB−TA)
T

−QBA

] (

p
p+

− 1
)

QBA

1+α
. (51)

Notice that
q (TB − TA)

T
−QBA =

β (TB − TA) qA
T

> 0, (52)

which shows that the expession (51) is positive and the theorem follows.
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10 Conclusions and Discussions

In this paper, we have studied a model system for macroscopic motion of an
ionized gas which is a mixture of two monatomic gas A and B; the mixture
ratio is β : 1 − β. This model system is proposed by [8] and consists of three
conservation laws in one space dimension together with the first and second
law of thermodynamics which are supplemented by an equation of state and
two more thermodynamic equations called Saha’s laws. We have assumed that
the interaction potential energies and effects of collisions between charged
particles are negligible and the local thermodynamic equilibrium is attained.
We further assume that TB : the first ionization temperature of the gas B is
higher than TA : that of the gas A and 2TA ≥ TB. Note that A: hydrogen and
B: helium satisfy these assumptions.

The physical entropy functions are constructed and it is remarkable that
they are expressed in terms of elementary functions. Saha’s two equations
bring about a compatibility condition involving αA, αB and T. It is shown
that αB is a differentiable function of αA and T whose graph constitutes the
thermodynamic state space. We propose that (T, αA) is a suitable pair of
independent thermodynamic state variables.

The system of conservation laws is shown to constitute a strictly hyperbolic
system, which implies that the initial-value problem is well-posed locally in
time for sufficiently smooth initial data. Characteristic fields are computed and
geometric properties are studied: unlike the polytropic (non-ionized) case, the
convexity (genuine nonlinearity) of the forward and backward characteristic
fields of the system is lost and the set where this happens is determined in
a neighbourhood of T = αA = 0. Whole set is located in a finite region in
(T, αA) plane but it is difficult to get its full picture by purely mathematical
reasoning; only pictures by numerical computation are presented.

A detailed study of the thermodynamic Hugoniot locus is performed. For
every T > 0, there is a unique 0 < αA < 1 satisfying the thermodynamic
Rankine-Hugoniot condition and αA is a smooth function of T. Hence the
Hugoniot locus is a smooth graph in the (T, αA) plane. While the thermody-
namic Hugoniot locus is monotone in (T, α) plane in a single monatomic case,
for the mixed monatomic case it is shown that: if β is sufficiently small, then it
loses monotonicity at some base state. Thus the degree of ionization does not
always increase across the shock front, even if the temperature increases. How-
ever the pressure is actually proved to increase as the temperature increases
which ensures that T > T+ is the admissible branch.

In order to fit the mathematical data to ordinary circumstances, an ap-
proximation of thermodynamic Hugoniot loci is proposed and proved that, for
small T, it is limited in a “classical” region where the forward and backward
characteristic fields are convex (genuinely nonlinear) and the physical entropy
increases along the admissible branch. We expect that actual experiments are
usually performed in such a classical region.

These results are applied to the mathematical analysis of the shock tube
problem: existence and uniqueness of the solution are established, which pro-
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vides a rigorous mathematical basis to the physical phenomena observed and
reported in [8], [9], [10].

A Computation of (51)

Substitution of (37), (38), (44), (45) into qA

[

(

∂G
∂T

)

αA

(

∂H
∂αA

)

T
−

(

∂G
∂αA

)

T

(

∂H
∂T

)

αA

]

gives

∣

∣

∣

∣

∣

∣

−

(

3 + 2TA
T

−
2QBA

α

)

−

[

5 + 2TA
T

−
2QBA
α(1+α)

]

(1 + α)
(

1 + q
α

)

(1 + α)
[

1 + q
α(1+α)

]

∣

∣

∣

∣

∣

∣

+ p
p+

∣

∣

∣

∣

∣

∣

5
2
+ TA

T
−

QBA
α(1+α)

3 + 3QBA
1+α

+ 2TBQBA
T (1+α)

−(1 + α)
[

1 + q
α(1+α)

]

(3q + 2QT )

∣

∣

∣

∣

∣

∣

− v
v+

∣

∣

∣

∣

∣

3
2
+ TA

T
−

QBA
α

5 + 5QBA
1+α

+ 2TBQBA
T (1+α)

−(1 + α)
(

1 + q
α

)

(5q + 2QT )

∣

∣

∣

∣

∣

−
T (1 + α)

T+(1 + α+)

∣

∣

∣

∣

∣

∣

1 + QBA
1+α

4
[

1 + QBA
1+α

(

1 + TB
2T

)]

q 4
(

q + QT
2

)

∣

∣

∣

∣

∣

∣

= −(1 + α)
[

1 + q
α(1+α)

] (

3 + 2TA
T

−
2QBA

α

)

+ (1 + α)
(

1 + q
α

)

[

5 + 2TA
T

−
2QBA
α(1+α)

]

+ 2
(

p
p+

)

(

3
2
q +QT

)

[

5
2
+ TA

T
−

QBA
α(1+α)

]

+ (1 + α)
(

p
p+

) [

1 + q
α(1+α)

] [

3 + 2
(

3
2
+ TB

T

)

QBA
1+α

]

− 2

(

v

v+

)(

5

2
q +QT

)[

3

2
+

TA

T
−

QBA

α

]

− (1 + α)
(

v
v+

)

(

1 + q
α

)

[

5 + 2
(

5
2
+ TB

T

)

QBA
1+α

]

−
T (1 + α)

T+(1 + α+)

[

2QT

(

1 +
QBA

1 + α

)

−
2qTBQBA

T (1 + α)

]

.

Notice that

qQT −
qTA

T
=

βqATA + (1− β)qBTB

T
−

TA

T
=

(1 − β)qB(TB − TA)

T
= QBA.

Hence we have qQT = qTA
T

+QBA. By this formula, the above expression is found to be

3(1 + α)
[

1 + q
α(1+α)

](

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1− v
v+

)

+ 2
[

q
(

3
2
+ TA

T

)(

5
2
+ TA

T

)

+ q
(

TB−TA
T

)

QBA
α

+
(

4 + TA+TB
T

−
QBA
α

)

QBA

](

p
p+

− v
v+

)

− 2q
(

p
p+

)(

TB−TA
T

)

QBA
1+α

+ 2
(

p
p+

)

Q2
BA

1+α

− 2q
(

TA
T

+ QBA
q

) [

T (1+α)

T+(1+α+)

(

1 + QBA
1+α

)

− 1
]

+
[

T (1+α)

T+(1+α+)

]

2qTBQBA
T (1+α)

= 3(1 + α)
[

1 + q
α(1+α)

](

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1− v
v+

)

+ 2
[

q
(

3
2
+ TA

T

)(

5
2
+ TA

T

)

+q
(

TB−TA
T

)

QBA
α(1+α)

+
(

4+ TA+TB
T

−
QBA

α(1+α)

)

QBA

](

p
p+

− v
v+

)

− 2q
(

v
v+

)(

TB−TA
T

)

QBA
1+α

+ 2
(

v
v+

)

Q2
BA

1+α

− 2q
(

TA
T

+ QBA
q

) [

T (1+α)

T+(1+α+)
− 1

]

−
2T (1+α)

T+(1+α+)

Q2
BA

1+α
+

[

T (1+α)

T+(1+α+)

]

2q(TB−TA)QBA
T (1+α)

.
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Note that pv
p+v+

= T (1+α)

T+(1+α+)
. Then

2q
[

T (1+α)

T+(1+α+)

]

TB−TA
T

QBA
1+α

− 2q
(

v
v+

)

TB−TA
T

QBA
1+α

= 2q
(

v
v+

)

(TB−TA)QBA
T (1+α)

(

p
p+

− 1
)

≥ 0,

−
2T (1+α)

T+(1+α+)

Q2
BA

1+α
+ 2

(

v
v+

)

Q2
BA

1+α
= −2

(

v
v+

)(

p
p+

− 1
)

Q2
BA

1+α
,

and we conclude that the above expression is equal to

3(1 + α)
[

1 + q
α(1+α)

](

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1− v
v+

)

+ 2
[

q
(

3
2
+ TA

T

)(

5
2
+ TA

T

)

+q
(

TB−TA
T

)

QBA
α(1+α)

+
(

4+ TA+TB
T

−
QBA

α(1+α)

)

QBA

](

p
p+

− v
v+

)

− 2q
(

TA
T

+ QBA
q

) [

T (1+α)

T+(1+α+)
− 1

]

+ 2
(

v
v+

) [

q(TB−TA)
T

−QBA

] (

p
p+

− 1
)

QBA
1+α

.

Recall that the thermodynamic Rankine-Hugoniot condition is equivalent to

p

p+
−

v

v+
=

4T (1 + α)

T+(1 + α+)
− 4 +

2
[

βTA(αA − α+
A) + (1− β)TB(αB − α+

B )
]

T+(1 + α+)
.

Thus qA

[

(

∂G
∂T

)

αA

(

∂H
∂αA

)

T
−

(

∂G
∂αA

)

T

(

∂H
∂T

)

αA

]

is:

3(1 + α)
[

1 + q
α(1+α)

] (

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1− v
v+

)

+ 8
[

q
(

3
2
+ TA

T

)(

5
2
+ TA

T

)

+ q
(

TB−TA
T

)

QBA
α(1+α)

+
(

4 + TA+TB
T

−
QBA

α(1+α)

)

QBA − 1
4

(

qTA
T

+QBA

)] [

T (1+α)

T+(1+α+)
− 1

]

+ 6(1 + α)
[

1 + q
α(1+α)

] (

p
p+

− 1
)

+ 5(1 + α)
(

1 + q
α

)

(

1−
v
v+

)

+ 2
[

q
(

3
2
+ TA

T

)(

5
2
+ TA

T

)

+ q
(

TB−TA
T

)

QBA
α(1+α)

+
(

4 + TA+TB
T

−
QBA

α(1+α)

)

QBA

]

[

βTA(αA−α
+
A
)+(1−β)TB(αB−α

+
B
)
]

T+(1+α+)

+ 2
(

v
v+

) [

q(TB−TA)
T

−QBA

] (

p
p+

− 1
)

QBA
1+α

which implies (51).

B Isentropes

In (p, u, T ) coordinates, we have observed by Remark 1 that: the thermodynamic part of an
integral curve is η = const. for 1, 2-characteristic directions and p = const. for 0-characeristic
field. A curve η = const. in (T, αA) plane is called an isentrope.

Theorem 14 An isentrope η = η0 is the graph of a differentiable function αA = αA(T )
defined on T ∈ (0,∞).

Proof Derivative of η with respect to αA takes a form

(

∂η

∂αA

)

T

= β

[

1

βαA + (1− β)αB
+

1 + αA

qA
+

(

5

2
+

TA

T

)]

+ (1 − β)

[

1

βαA + (1− β)αB
+

1 + αB

qB
+

(

5

2
+

TB

T

)](

∂αB

∂αA

)

T

. (53)



A Model System of Mixed Ionized Gas Dynamics 33

By (23) we find
(

∂η
∂αA

)

T
> 0. We have also

(

∂η

∂T

)

αA

= −
TA

T 2
(1 + α) + (1− β)

[

1

α
+

(

5

2
+

TB

T

)]

(TB − TA)qB

T 2
.

First we shall prove that αA is a function of T defined on (0,∞). Let us fix any T in

(0,∞). It follows from (22) αB ∼
µA
µB

αAe−
TB−TA

T as αA → 0. Hence

logαB ∼ logαA + O(1), log [βαA + (1 − β)αB] ∼ logαA +O(1).

Thus we find η(αA, αB, T ) ∼ 2 logαA + O(1) → −∞. for αA → 0.
On the othe hand, when αA → 1, obviously αB → 1 and

η(αA, αB, T ) ∼ −2β log(1−αA)−2(1−β) log(1−αB)+β

(

5

2
+

TA

T

)

+(1−β)

(

5

2
+

TB

T

)

→ ∞.

Consequently, since
(

∂η
∂αA

)

T
> 0, we conclude that there is a unique sigle root αA(T ) such

that
η(αA(T ), αB(T ), T ) = η0 and 0 < αA(T ) < 1.

Next we consider the behaviour as T → 0.

Proposition 4 If T → 0, then αA → 0 and αA ∼ 1√
β

(

µA
µB

)− 1
2
(1−β)

e−
TA
2T

+
η0
2 .

Proof If αA ≥ c > 0 or αB ≥ c > 0, then η → ∞ which is contradiction. Hence αA, αB < c.

By compatibility condition, we have

1− αB

αB
=

µB(1− αA)

µAαA
e

1
T

(TB−TA).

If αA ≤ c < 1, then by setting T → 0 in the above equation, we have αB → 0. Suppose that
αA ≥ c′ (c > c′ > 0). Since logαB = log(1−αB)− log 1−αA

αA
− 1

T
(TB −TA)+O(1), we have

by substituting the above into the expression of the entropy

η = log [βαA + (1− β)αB] + logαA − (1 + β) log(1− αA)− (1 − β) log(1− αB)

+
TA

T
+ β

(

5

2
+

TA

T

)

αA + (1 − β)

(

5

2
+

TB

T

)

αB +O(1).

Clearly log(1 − αA) < 0, log(1 − αB) < 0, and log [βαA + (1 − β)αB] ≥ −c for some c > 0.
Thus we find η → ∞ as T → 0, which is also contradictory. Thus αA → 0 and the first part
of proposition is proved.

It follows from (22) logαB ∼ log µA
µB

+ logαA −
TB−TB

T
as αA → 0 and

η ∼ log β + logαA + β

(

logαA +
TA

T

)

+ (1− β)

(

log
µA

µB
+ logαA −

TB − TA

T
+

TB

T

)

∼ log β + (1 − β) log
µA

µB
+ 2 logαA +

TA

T
∼ η0.

Thus αA ∼ Ce−
TA
T with a certain constant C satisfying logC + log β+(1− β) log µA

µB
= η0

and we obtain the asymptotic formula.
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