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Abstract

Conventional topological insulators support boundary states that have one dimension lower than

the bulk system that hosts them, and these states are topologically protected due to quantized

bulk dipole moments. Recently, higher-order topological insulators have been proposed as a way

of realizing topological states that are two or more dimensions lower than the bulk, due to the

quantization of bulk quadrupole or octupole moments. However, all these proposals as well as ex-

perimental realizations have been restricted to real-space dimensions. Here we construct photonic

higher-order topological insulators (PHOTI) in synthetic dimensions. We show the emergence of a

quadrupole PHOTI supporting topologically protected corner modes in an array of modulated pho-

tonic molecules with a synthetic frequency dimension, where each photonic molecule comprises two

coupled rings. By changing the phase difference of the modulation between adjacently coupled pho-

tonic molecules, we predict a dynamical topological phase transition in the PHOTI. Furthermore,

we show that the concept of synthetic dimensions can be exploited to realize even higher-order

multipole moments such as a 4th order hexadecapole (16-pole) insulator, supporting 0D corner

modes in a 4D hypercubic synthetic lattice that cannot be realized in real-space lattices.
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INTRODUCTION

A conventional topological insulator in 2D and 3D supports gapless edge states and

surface states respectively that are protected against local perturbations by the nontrivial

topology of the bulk. The existence of these gapless states, which have one dimension

lower than the bulk that hosts them, is guaranteed by the bulk-boundary correspondence.

Recently, the concept of higher-order topological insulators (HOTIs) has been proposed to

generalize this bulk-boundary correspondence, revealing the existence of topological states

that are two or more dimensions lower than the bulk. In general, an n-th order topological

insulator in D-dimensions supports (D − n)-dimensional topological boundary modes of

codimension n. The first such prediction was of zero-dimensional zero-energy corner states

in a second-order topological insulator whose edge states are gapped, and the existence of

these zero-energy corner states is guaranteed by a quantized bulk quadrupole moment1.

Following closely on the heels of this theoretical prediction, quadrupole HOTIs have been

experimentally realized in several systems, including bismuth2, mechanical metamaterials3,

acoustics4,5, electrical circuits6, and photonics7. However, both the theoretically proposed

and experimentally demonstrated HOTIs have been restricted to real-space dimensions, that

is, spatially periodic lattices.

In contrast to real-space dimensions, synthetic dimensions are formed by coupling internal

degrees of freedom. These can be, for example, the frequency, arrival time, or orbital angular

momentum of photons, or the spin of ultracold atoms8,9. Introducing coupling between these

degrees of freedom then allows the study of higher-dimensional physics on lower dimensional

structures10–12. A prime focus of research in synthetic dimensions has been the pursuit of

conventional topological phases in simple structures, such as the study of the 2D quantum

Hall effect in a 1D real-space array13–17, or the study of 3D topological physics in a 2D

planar array18,19. Additionally, researchers have studied two or more simultaneous synthetic

dimensions to implement higher-dimensional physics in essentially 0D systems20–24. Since

the concept of synthetic dimensions is well suited to study topological physics in high-

dimensional lattices, a natural question is whether higher-order topological insulators can

be realized in synthetic space.

Here we answer this question in the affirmative by constructing a photonic higher-order

topological insulator (PHOTI) in synthetic dimensions. Our system consists of pairs of ring
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Figure 1. (a) Tight-binding lattice of a quadrupole topological insulator. Blue and red lines

represent positive and negative real values of the coupling strength. Thin and thick lines represent

intra-cell and inter-cell coupling strengths of magnitude γ and λ respectively. Each vertical column

is an SSH strip with the same sign of coupling strength throughout, and adjacent vertical lines

have a phase offset of π in the coupling strength. (b) Implementation of the SSH strip in the

synthetic frequency dimension using modulated coupled rings (photonic molecule), with JA(t) as

in Eq. (1). (c) Mode structure of the system in (b) with sets of frequency modes separated by the

FSR Ω, in the absence of modulation and coupling. (d) Mode spectrum of the coupled ring system

or photonic molecule. Each set is split by a frequency difference equal to the coupling constant

between the rings, 2K. The modulation introduces coupling between the supermodes. (e) Several

of the synthetic SSH strips in (b) can be evanescently coupled with alternate coupling strengths γ

and λ to realize the quadrupole HOTI lattice of (a). We note that the modulation pattern of the

unit cell of four rings has a quadrupole nature.

resonators that are mutually coupled to form an array, realizing a 1D chain of “photonic

molecules”25,26. By antisymmetrically modulating the two rings in a photonic molecule at

the frequency spacing between the modes of the ring, we realize a lattice along the synthetic

frequency dimension. A 1D array of modulated photonic molecules realizes a quadrupole
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PHOTI in the synthetic frequency dimension, in which we show the excitation of topologi-

cally nontrivial corner modes. By switching the phase difference of the modulation between

adjacent photonic molecules, we show a phase transition from the topologically protected

phase with a nonzero quantized quadrupole moment to a phase with zero quadrupole mo-

ment. Additionally, we propose, for the first time, a hexadecapole (16-pole) insulator with

topologically nontrivial corner modes by leveraging synthetic dimensions to create a 4D

hypercubic lattice that cannot be realized in real-space lattices. Our work illustrates the po-

tential of using the concept of synthetic dimensions for exploring exotic new phases including

very-high-order topological insulators in high dimensions.

RESULTS

Quadrupole PHOTI

Consider the lattice in Fig. 1(a) for a quadrupole higher-order topological insulator

(HOTI)1. Each vertical 1D strip in this lattice is a Su-Schrieffer-Heeger (SSH) strip27,

with alternating values of the coupling γ and λ representing the intra-cell and inter-cell

hopping strengths respectively. The signs of the coupling along each vertical strip are the

same, and adjacent lines have a π phase difference between the coupling. All the horizontal

couplings have real positive values. Thus, there is a π magnetic flux through each of the

plaquettes.

We show that the model of Fig. 1(a) can be realized with the use of the concept of a

synthetic dimension. To construct each SSH strip of the quadrupole HOTI, we use a pair of

mutually coupled identical ring resonators A and B, each with an electro-optic modulator,

as shown in Fig. 1(b). Such a pair of photonic cavities, with or without modulation, is often

called a “photonic molecule”25,26,28–31 in analogy with a diatomic molecule. Each individual

ring supports longitudinal cavity resonances at ωn = ω0 +nΩ, separated by the free spectral

range (FSR) Ω/2π = vg/L, where vg is the group velocity of light in the ring, and L is its

length [Fig. 1(c)]. In forming the photonic molecule, the two modes of the two individual

rings at the same frequency ωn hybridize into symmetric and antisymmetric supermodes,

with frequencies ωn− = ωn −K ≡ ω2m and ωn+ = ωn +K ≡ ω2m+1 respectively, where K is

the coupling strength between the rings [Fig. 1(d)]. We neglect dispersion in the ring-to-ring
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coupling strengths. The frequencies of the photonic molecule in the basis of symmetric and

antisymmetric supermodes thus form a strip with alternating spacings 2K and Ω− 2K. By

choosing a modulation of the form,

JA(t, φ) = A0 cos(2Kt+ φ) + A1 cos[(Ω− 2K)t+ φ]; JB(t, φ) = −JA(t, φ) (1)

one can form a synthetic frequency dimension with alternating coupling strengths A0 and A1

(see Supplementary Materials). The antisymmetric modulation JB = −JA is necessitated

by the opposite symmetry of the two supermodes at adjacent frequencies. Throughout the

paper, we assume A0, A1 � K < Ω/2 so that the rotating wave approximation is valid.

Next, to form the full 2D lattice for the quadrupole insulator in Fig. 1(a), we form a

lattice of the pairs of cavities as described above, with alternate coupling strengths γ and λ

determined by the respective coupling gaps between the nearest neighbor cavities along the

horizontal axis [Fig. 1(e)]. This system is described by a two-dimensional synthetic space

with a real space axis and a synthetic frequency axis. The signs of the modulation between

adjacent cavity pairs are switched (φ = 0 and φ = π in Eq. (1)) to implement a flux of π

per plaquette in the two-dimensional lattice13,32. Interestingly, the signs of the modulation

in each unit cell of this array of paired resonators follow a quadrupole pattern, as seen in

Fig. 1(e). The strength of the modulation is chosen to satisfy A0 = 2γ, A1 = 2λ.

Excitation of corner modes

The hallmark of the quadrupole HOTI model as described in Fig. 1(a) is the existence

of fourfold degenerate zero-energy corner modes with codimension 2, while the edge modes

are gapped, for |γ/λ| < 1. In our implementation with an array of modulated photonic

molecules, as shown in Fig. 1(e), these midgap corner modes can be excited by coupling

external waveguides to the array [Fig. 2(a)-(c)]. The demonstration of these corner modes

then serves as an indication that we have indeed constructed a quadrupole photonic HOTI

in synthetic space. Since these corner modes only exist in a finite lattice, we choose Mω =

16 sites (8 pairs of supermodes) along the frequency axis for our calculations. Such a

termination of the frequency axis can be achieved by strongly coupling a ring with a radius

Mω times smaller than the main rings, to induce a strong local change in the FSR every Mω

modes23. Alternatively, one can engineer the dispersion of the ring waveguide to strongly
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Figure 2. Energy eigenspectrum, edge modes and corner modes of the synthetic dimension

quadrupole HOTI. (a)-(c) Schematics for selective excitation of corner, edge and bulk modes in

the photonic molecule array using external waveguides. (d) Intensity |a|2 in the excited rings at

various input frequency detunings ∆ω, for excitations as indicated in (a)-(c). Peaks appear at

input frequency detunings that correspond to the positions of the corner, edge and bulk modes

in (e). (e) Energy eigenspectrum for a finite lattice of the quadrupole HOTI. For |γ/λ| < 1, the

system exhibits topologically protected corner modes pinned to zero energy. For |γ/λ| > 1, the

corner modes cease to exist. (f) Same as (d), but in the topologically trivial regime γ/λ = 1.1. No

peaks are seen in the bandgap as the corner and edge modes cease to exist. Bottom row: cavity

field intensity for exciting the finite lattice at the corner (g), edge (h) and bulk (i) for γ/λ = 0.1.

No such corner or edge localized modes were seen in the trivial phase on the same excitations, for

|γ/λ| > 1. Color scale in the bottom row indicates steady state distribution of the modes in the

lattice. Blue dashed circles denote the lattice site that is excited in each case.

perturb the FSR beyond the Mω modes13, which makes the modulation in Eq. (1) off-

resonant beyond the finite lattice formed by these Mω modes.

Fig. 2(d) shows the results of exciting the photonic molecule array in the topological

phase γ/λ = 0.1. We can observe corner, edge and bulk modes by exciting suitable rings at

the appropriate frequency (ωin = ωm + ∆ω), where m denotes the desired frequency mode

6



and ∆ω maps to the quasi-energy when this time-modulated system is treated as a Floquet

system. Note that selective excitation of a single site in the synthetic lattice requires the

excitation of two rings either in phase (+ mode, m even) or out of phase (− mode, m odd),

as the modes in each photonic molecule are symmetric and antisymmetric combinations of

the isolated ring modes [Fig. 2(a)-(c)]. For corner mode excitation, we choose the leftmost

pair of rings with an excitation frequency ωin = ωm=0 + ∆ω. We observe a peak for ∆ω = 0,

because the midgap corner modes are pinned to zero energy, which is consistent with the

eigenspectrum shown in Fig. 2(e). The corresponding field distribution in the synthetic

lattice for ∆ω = 0 is shown in Fig. 2(g), which exhibits strong localization at the corner.

For edge mode excitation, we choose the same pair of rings but change ωin to ωm=12 + ∆ω,

and observe peaks for ∆ω/λ ≈ ±0.5. Between the peaks there is a lack of output amplitude,

which indicates that the edge modes are gapped. For bulk excitation, we choose a pair of

rings in the center of the array, and observe peaks at ∆ω/λ ≈ ±0.70, in accordance with the

eigenspectrum in Fig. 2(e). The corresponding field distributions in the synthetic lattice for

exciting the edge and bulk modes at their respective detunings ∆ω are shown in Fig. 2(h)

and (i). By contrast, in the trivial regime γ/λ = 1.1, we see no midgap peaks because the

corner modes cease to exist – in fact, there are no modes in the bandgap even for a finite

lattice [Fig. 2(f)].

Topological phase transition

The concept of a synthetic dimension provides great flexibility in dynamically reconfigur-

ing the hopping amplitudes and phases by changing the strengths and phases of the modula-

tion, respectively. We use this flexibility to show a topological phase transition between the

regime with a quantized bulk quadrupole moment and a 2D SSH phase with no quadrupole

moment, which occur for π and 0 flux per plaquette respectively. The lattice with zero flux

(a 2D SSH model) possesses all the symmetries of the quadrupole insulator, namely it is

invariant with respect to the translation, reflection (in x and y) and time-reversal operations.

While this ensures that the bulk quadrupole moment is quantized, its value is zero. In fact,

there is not even a bulk band gap at zero energy in this model, meaning that the bulk is not

insulating. Our photonic molecule array can implement such a change in flux by changing

the relative phase between modulations on adjacent molecules [Fig. 3(a)]. In Fig. 3, we plot
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Figure 3. Topological phase transition in the synthetic PHOTI lattice by tuning the phase of

modulation. (a) Unit cell consisting of two photonic molecules with a phase difference φ between

the modulations [Eq. (1)]. (b) Energy eigenspectrum for a finite lattice with open boundaries in

both real dimension x and synthetic frequency dimension m for various phases φ, with γ/λ = 0.20.

For φ = π, there is a bandgap that hosts topologically protected corner modes pinned to zero

energy. For φ = 0, no such bandgap exists at zero energy, as confirmed by the bulk band structure

in (d). (c) and (d) show the bulk band structures for quadrupole HOTI (φ = π) and the 2D

SSH model (φ = 0), respectively. All energies are in units of λ. In (c), both bands are doubly

degenerate. (e), (f) Energy eigenspectrum of an ideal finite lattice for φ = π and 0 respectively,

without disorder in the couplings. Though corner modes exist in both cases, for φ = 0, they

spectrally overlap with the bulk bands. (g), (h) Energy eigenspectrum with normally distributed

random disorder in the couplings with variance σ2 = 0.04. Since the lattice with φ = π hosts a

quantized bulk quadrupole moment, corner modes are visible in the bandgap in (g), unlike in (h).

(i),(j) Steady-state field distribution in the disordered synthetic lattice sites for an excitation with

zero detuning ∆ω = 0 at the lowest frequency mode m = 0 for the leftmost ring, as indicated by

the arrows. For the quadrupole PHOTI (φ = π) in the top row, the corner modes are still strongly

localized in the presence of disorder. For the 2D SSH phase in the bottom row, disorder in the

couplings makes the corner excitation not well localized, leaking into the bulk. Specifically, the

excitation preferentially propagates at ∼ ±45◦ in the lattice33, because the bands in (d) touch at

zero energy along the kx = ky and kx = −ky lines. In (c)-(j), γ/λ = 0.4.
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the energy eigenspectrum for various φ. The bandgap remains open for intermediate values

of flux 0 < φ < π, but eventually closes for φ→ 0. However, the quadrupole moment is not

quantized for intermediate values of flux φ due to the breaking of reflection symmetry along

the frequency dimension34. The bulk band structures for φ = π and φ = 0 are plotted in

Fig. 3(c) and (d). The 2D SSH model with φ = 0 is not an insulator at zero energy since

the bulk is not gapped for E = 0, and although corner modes exist, they overlap spectrally

with the bulk excitations. To compare the topological protection of corner modes in the

quantized quadrupole phase φ = π and the 2D SSH phase, we introduced disorder in the

couplings. The corresponding eigenspectra [Fig. 3(g), (h)] retain the well-separated midgap

corner modes for the quadrupole phase, but not for the 2D SSH case. On exciting the corner

site in the two cases, strong corner localization of the field distribution is seen for φ = π

[Fig. 3(i)], but significant leakage into the bulk is seen for φ = 0 [Fig. 3(j)]. The leakage into

the bulk preferentially happens along the kx = ky and kx = −ky directions since the central

bulk subbands in (d) touch at zero energy, which is the energy where the corner modes exist

for a finite lattice. This lack of protection of the corner modes for φ = 0 is expected as the

system has zero bulk quadrupole moment and no band gap at zero energy. Recently, this

2D SSH model without magnetic flux has received some attention33,35,36 because it can be

associated with a non-zero 1D Zak phase in both directions. This is in fact what ensures

the existence of the corner modes in the system without disorder. However, as we can see

in Fig. 3(j), these corner states are not as robust as the ones of the bulk quardupole isolator

phase, which is harder to achieve in real-space due to the requirement of negative-valued

couplings but is straightforward using synthetic dimensions.

An alternative way to implement a topological phase transition is to tune the ratio of

intra-cell hopping A0 to the inter-cell hopping A1 in the synthetic frequency dimension by

varying the modulation amplitude. This produces an anisotropic 2D SSH model with π flux

per plaquette, as the hoppings along the real-space axis x are fixed. However, the corner

modes only exist for A0/A1 < 1. As the modulation amplitudes are tuned from A0 < A1

to A0 > A1, the one-dimensional Zak phase along the frequency dimension becomes topo-

logically trivial, and the corner modes disappear. The Zak phase along the real dimension,

however, remains non-trivial, and, upon truncation in the real space, edge modes at the

boundary of real dimension still exist35.
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Figure 4. Hierarchical construction of octupole and hexadecapole insulators using synthetic

dimensions. (a) Unit cell, and (b) tight-binding model of the octupole insulator. Thin lines

have coupling strength γ and thick lines have coupling strength λ. Blue and red lines represent

positive and negative coupling strengths respectively. (c) Dipole insulator (SSH strip) formed

using two polarization modes in a single resonator25. EOM1 introduces a frequency offset between

the resonances of the two polarizations. EOM2 is modulated with a signal similar to Eq. (1) to

form the synthetic frequency dimension spanned by ωm. (d) Unit cell of the quadrupole insulator

formed by coupling two site rings (green) with an auxiliary link ring (grey) with a slightly smaller

length, and asymmetrically placed with respect to the coupling region by an offset η+ = π/2β0
37.

This implements layer 1 of the octupole unit cell in (a). Modulation phases between adjacent site

rings differs by π. (e) Implementation of layer 2 of the octupole unit cell in (a). The red link

ring implements a negative coupling in real space, by having an offset η− = 3π/2β0. Negative-

valued real-space coupling strengths are needed in our construction of octupole and hexadecapole

insulators. (f) 2D lattice of modulated rings with a synthetic frequency dimension forming the

3D octupole insulator of (b). (g) Array of rings implementing the unit cell of the hexadecapole

insulator using two layers of the octupole insulator, vertically coupled. Phases of all synthetic and

real-space couplings alternate between the two layers. The vertical ring couplings are positive-

valued. (h) 4D hypercubic unit cell of the hexadecapole insulator. The inner cube is realized using

the bottom layer in (g), and the outer cube is realized using the top layer.
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Octupole and Hexadecapole insulators

Finally, we show how the concept of synthetic dimensions can be exploited to construct

PHOTIs of even higher order, such as an octupole insulator in a 3D cubic lattice and a

hexadecapole (16-pole) insulator in a 4D hypercubic lattice supporting corner modes with

codimension 4. The unit cell for the octupole insulator’s cubic lattice is shown in Fig. 4(a).

It consists of two layers of the unit cell for the quadrupole insulator connected by positive-

valued couplings γ1. The signs of all couplings are reversed between the two layers [Fig. 4(a)].

The full lattice for the octupole insulator can be created by connecting such unit cells with

coupling strength ±λ, such that a π flux is maintained in each plaquette. An example of a

small finite lattice for this model is shown in Fig. 4(b). Regardless of the multipole order,

multipole HOTIs can be viewed as composed of 1D SSH strips connected in a certain way.

In Fig. 4(b) for example, a 1D strip in any direction is an SSH chain with either a positive

or a negative sign for all of its couplings. The crucial characteristic for each dimension is

then whether the couplings of the SSH chains flip sign when the chains are stacked in that

dimension (as in the x- and ω- dimensions of Fig. 4(b)), or if they are all of the same sign

(as in the y-dimension). The general rule then is that the SSH chains flip sign along all but

one of the dimensions.

In the construction of a quadrupole PHOTI, in connection with the experiments in Ref. 22,

we formed an SSH model using two rings, and utilized only one of the two polarizations that

the ring can support. For constructing octupole and hexadecapole PHOTIs, since we will

be using a much larger number of rings, it is of interest to reduce the numbers of rings

used. Therefore, we instead construct the SSH model using only one ring resonator, but

utilizing the polarization degree of freedom. For this purpose we consider a set up as shown

in Fig. 4(c), where two electro-optic modulators EOM1 and EOM2 are incorporated in a

single ring. This setup was previously used in Ref. 25 for realizing a photonic molecule but

without a synthetic frequency dimension. Here, the two modes forming the SSH unit cell

are the polarizations in-plane with the ring and perpendicular to the ring [Fig. 4(c)]. The

splitting between the resonance frequencies of these two polarizations is proportional to the

voltage applied on EOM1, and can be tuned to be 2K, similar to Fig. 1(d). Next, using

EOM2, these polarizations are coupled to each other and to the modes separated by an

FSR using the modulation in Eq. (1) with frequency components at 2K and Ω − 2K. To
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facilitate this coupling, the principle axes of EOM2 are at an angle of 45◦ with respect to

the principle axes of EOM1.

After realizing the SSH model in a single ring, we implement the unit cell of the

quadrupole insulator using two such rings, as shown in Fig. 4(d). Since layer 2 of the

octupole unit cell requires negative-valued couplings in real-space, we use off-resonant link

rings of a slightly smaller length L − η, similar to the construction of Hafezi et al.37. The

link rings in the second layer are offset from the site rings by η− = π/2β0 to realize this

negative coupling [Fig. 4(e)], where β0 is the propagation constant of a mode at frequency

ω0 in the waveguide forming the ring. We assume L� η to ensure negligible variation of the

coupling phase across the Mω frequency dimension modes. The signs of the modulation also

alternate between each neighboring site ring in the unit cell. Fig. 4(f) shows the entire 2D

square array of modulated rings that realizes the octupole insulator’s 3D cubic tight-binding

lattice. Thus, the 2D lattice of Fig. 4(f) with a synthetic frequency dimension realizes a

quantized octupole insulator supporting midgap corner-localized modes.

Using a similar recipe, we construct a hexadecapole insulator by adding a third spa-

tial dimension to the octupole insulator, and switching the signs of all real-space couplings

between vertical layers. The unit cell for the hexadecapole insulator has eight site rings

with alternating signs of the modulation between adjacent site rings [Fig. 4(g)]. Thus, we

form the 4D hypercubic lattice of Fig. 4(h) in real and synthetic dimensions, supporting 0D

corner modes with codimension 4, signifying a fourth-order topological insulator. Specifi-

cally, the inner cube of the hypercubic lattice in Fig. 4(h) is formed by the bottom layer

of rings in Fig. 4(g), and the outer cube is realized by the top layer of rings. The two

cubes are connected by positive-valued couplings in Fig. 4(h), which are implemented by

the vertical coupling between the site rings in Fig. 4(g). Such vertically coupled rings have

been experimentally realized routinely in silicon photonics and in III-V photonics38–41. We

note that the realization of the hexadecapole insulator is difficult in real space due to the

three-dimensional nature of space.

DISCUSSION

We have introduced the concept of synthetic dimensions for realizing higher-order topo-

logical phases supporting quantized bulk quadrupole, octupole and hexadecapole moments.
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These phases support topologically protected zero-dimensional corner modes which are ro-

bust against disorder in the couplings. We have also shown the excitation of these corner

modes in real and synthetic dimensions, and a dynamical topological phase transition be-

tween a quadrupole insulating phase and a 2D SSH phase. Future work could construct

1D boundary modes of HOTIs, such as chiral hinge states, using similar synthetic-space

concepts. Although we focused on a photonic implementation using a synthetic frequency

dimension, our approach can be generalized to other degrees of freedom such as the spin

or momentum of ultracold atoms and molecules, or the orbital angular momentum of light.

Additional frequency dimensions can also be harnessed for this purpose20,21,24. Lastly, our

proposal is ripe for experimental demonstration using integrated nanophotonic platforms

that can modulate resonators at frequencies approaching their FSR, especially in silicon and

lithium niobate26,42–44.

N ote– While this manuscript was being prepared, we became aware of a related work

using synthetic frequency and orbital angular momentum dimensions45.
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