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5d metals are used in electronic architectures because of their high spin-orbit coupling (SOC) leading 

to efficient spin ↔ electric conversion and strong magnetic interactions. When C60 is grown on a 

metal, the electronic structure is altered due to hybridisation and charge transfer. The spin Hall 

magnetoresistance for Pt/C60 and Ta/C60 at room temperature are up to a factor 6 higher than for 

the pristine metals, with the spin Hall angle increased by 20-60%. At low fields of 1-30 mT, there is 

an anisotropic magnetoresistance, increased up to 700% at room temperature by C60. This is 

correlated with non-collinear Density Functional Theory simulations showing changes in the 

acquired magnetic moment of transport electrons via SOC. Given the dielectric properties of 

molecules, this opens the possibility of gating the effective SOC of metals, with applications for spin 

transfer torque memories and pure spin current dynamic circuits. 
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The spin-orbit interaction is perhaps the most crucial mechanism in the design of magnetic 

structures and metal device physics. It determines the magnetocrystalline anisotropy, is key to the 

propagation and electrical conversion of spin currents, determines the magnitude of interfacial 

mechanisms such as the Dzyaloshinskii–Moriya interaction and guides new paths of research, such 

as the generation of Majorana fermions and energy band engineering of topological insulators[1-5]. 

The SOC also controls the efficiency of spin - charge conversion in the spin Hall, spin torque and spin 

Seebeck effects. All of these are key to reducing the power consumption and energy dissipation of 

computing and electronic devices, an issue that is quickly coming to the forefront of technology. 

However, currently we can only tune the SOC by static means, such as doping, preventing the design 

of architectures where spin, charge and magnetic interactions can be reversibly modified to enhance 

device performance or to acquire new functionalities. 

The Spin Hall magnetoresistance (SHMR) can quantify the SOC in thin (~nm) heavy metal layers 

deposited on a magnetic insulator such as the yttrium iron garnet Y3Fe5O12 (YIG) [6-8]. When an 

electric current Jc flows in the metal, the spin Hall effect (SHE) induces a perpendicular spin current 

Js, with the spin polarization s parallel to the film surface. If the YIG magnetization M is parallel to s, 

Js cannot flow into the magnet and a spin accumulation forms. The resistance is the same as a bare 

Pt wire. When M is not parallel to s, the transverse component exerts a torque on the YIG magnetic 

moments, injecting spin current into the magnet. This opens a channel of dissipation for the spin 

current, reducing the inverse SHE contribution to Jc so that the resistance of Pt appears to have 

increased [5,9]. The largest dissipation takes place when M is perpendicular to s and the maximum 

SHMR should occur. The SHMR is measured by rotating the angle  in Fig. 1a, with the applied H field 

(and therefore M) always orthogonal to the electrical current, but varying from in-plane to out-of-
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plane, and therefore from parallel (Rmin) to perpendicular to the spin polarization (Rmax) [5,10,11]. 

The ratio of the spin to charge current is known as the spin Hall angle: 𝜃ௌு = |𝑱𝒔|/|𝑱𝑪| [12-14]. 𝛩ௌு  

has technological relevance, as it is correlated with the torque exerted on ferromagnets in spin 

transfer torque memories [15]. A larger SHMR and therefore increased 𝜃ௌு can result in lower power 

or smaller switching currents for such devices. By tuning the SOC in conventional magnetic 

insulator/metal structures with a molecular layer, we can also differentiate spin transport effects 

based on their physical origins [16,17]. 

At metallo-molecular interfaces, the electronic and magnetic properties of both materials change 

due to charge transfer and hybridisation [18-21]. This can lead to the emergence of spin ordering 

and spin filtering [22-25], or change the magnetic anisotropy [21,26,27]. Even though composed of 

light carbon, fullerenes with large curvature can produce a large spin-electrical conversion [2,28-30]. 

Here, we study the effect of metal/C60 interfaces on the SHMR and anisotropic magnetoresistance 

(AMR) of YIG/Pt and YIG/Ta. We aim to: investigate the mechanisms behind spin orbit scattering at 

hybrid metal/C60 interfaces, maximise technologically-relevant parameters, and open new paths of 

research towards tunable SOC.  

Using shadow mask deposition, we grew two metal wires simultaneously on the same YIG 

substrate and, without breaking vacuum, covered one wire with 50 nm of C60 –modifying the density 

of states (DOS) and transport properties of the metal. According to our density functional theory 

(DFT) calculations for Pt/C60, 0.18-0.24electrons per C60 molecule are transferred [31], and the first 

molecular layer is metallised. This reduces the electron surface scattering, improving the residual 

resistance ratio (RRR) –Figs. 1b and SI [31]. Our Ta wires have a resistivity (~1-2 ·m) and a negative 
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temperature coefficient (~-500·10-6 K-1), consistent with a sputtered -Ta phase [32]. Opposite to Pt, 

C60 increases the resistivity of Ta –see Fig. 1b.  

The change in resistivity as the magnetic field is rotated is fitted to a cosଶ(𝛽) function, and the 

amplitude is taken to be the SHMR [31]. The SHMR saturates once the applied field saturates the 

magnetisation out-of-plane, at 0.1-0.15 T for a YIG film 170 nm thick at 290 K, and no higher than 

0.5 T for any measured condition. However, above this field range, other contributions such as 

Koehler MR, localisation and the Hanle effect can result in significant linear and parabolic 

contributions to the MR that would artificially enhance the SHMR ratio and SH (Fig 1c)[31,33]. For a 

YIG/Pt(2nm) sample, the C60 layer increases the MR due to spin accumulation by about a factor 3, 

but reduces the polynomial contributions because of the increased effective (conducting) thickness 

of the Pt/C60 bilayer. In YIG/Ta(4nm), where C60 increases the resistance rather than reducing it, both 

the SHMR up to 0.15 T and the polynomial MR at higher fields are enhanced (Fig. 1d). 
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FIG. 1 (a) Schematic of the experiment. There are three possible orientations of the magnetic field 

(H) w.r.t. the electrical current and the YIG film. To measure only the SHMR without AMR effects, we 

rotate H from perpendicular to transverse (change in ). (b) Typical resistivity of thin Pt (3 nm) and 

Ta (4 nm) wires on YIG. With C60 on top, the Pt resistivity is about 40% lower, the RRR factor increases 

and the upturn at low T is absent. With Ta, we observe the opposite effect, an increase in the 

resistivity with the molecular interface. Inset: Resistance with different applied fields as a function 

of the angle . The data is fitted to a cos2( function. We take the amplitude at the lowest field of 

0.5 T, when the YIG substrate is saturated but the polynomial contributions are small, as the SHMR 

value. (c) MR in a Pt wire with Hperpendicular. The spin Hall contribution to the MR at 300 K reaches a 

maximum at ~0.1-0.15 T, where the YIG film is saturated out of plane. (d) MR in a Ta wire with 

Hperpendicular at 75 K. The maximum in the spin Hall contribution at this temperature is reached at ~0.2 

T.  
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The SHMR values at 0.5 T for Pt and Pt/C60 are plotted in Fig. 2a, and the ratios with and without a 

molecular overlayer in Fig. 2b.  The temperature dependence of the SHMR reproduces observations 

in RF-sputtered YIG/sputtered Pt wires [33]. For Pt grown by evaporation on thicker, liquid epitaxy 

or pulsed laser deposition YIG, the SHMR has a gentler drop at high temperatures. This is attributed 

to a smaller temperature dependence of the spin diffusion length [34,35], which could be due to a 

different resistivity of Pt and different magnetic behaviour of YIG films depending on the growth 

method. It is possible that the larger SHMR observed in metallo-molecular wires could be due to a 

change in the spin mixing conductance (G↑↓) induced by C60 [6,36]. However, G↑↓ is related to the 

spin transparency of the YIG/Pt interface, where the effect of the molecular interface is small [31]. 

Also, we do not observe an increase in the ferromagnetic resonant damping , proportional to G↑↓, 

of YIG/Pt with C60 interfaces (Fig. 2c) [31,37]. Furthermore, the SHMR versus temperature results 

cannot be fitted by changing G↑↓ without also changing 𝛩ௌு  [31]. Fig. 2d shows the 𝛩ௌு  values 

taking G↑↓=4×1014 -1m-2 [8]; see the SI for other fitting values [34,38]. For Pt wires of ≤5 nm, there 

is an increase in 𝛩ௌு with C60. This effect disappears for thick wires (> 10nm), where the molecular 

interface does not significantly change the spin Hall angle. A similar molecular enhancement of the 

SHMR and 𝛩ௌு is observed for Ta wires [31]. Molecules may affect the Rashba effect and spin texture 

of the metal, leading to changes in the effective SOC of the hybrid wire [39-41]. In our simulations, 

we consider the perpendicular dipole formed due to charge transfer at the Pt/C60 interface and its 

associated potential step breaking symmetry [42]. However, this dipole is maximum at 2.5 nm, 

where the experiments show a local minimum. Our calculations point rather towards a mechanism 

mediated by the magnetic moment acquired by the transport electrons, resulting in spin-dependent 

charge flow [31].  
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FIG. 2 (a) SHMR for Pt and equivalent Pt/C60 wires of different thicknesses on GGG/YIG(170 nm) 

films. (b) SHMR Ratios between Pt/C60 and Pt. The maximum effect of the molecular layer (factor 4 

to 7 change) take place for thin films (1.5 nm) at low temperatures or thick films (5 nm) at room 

temperature. (c) The magnetic resonance damping  is not increased by the C60 interface; here a 

comparison of YIG/Pt/Al/C60 and YIG/Pt/C60 shows similar or even higher damping values for the 

decoupled Pt/Al/C60 sample. (d) For wires ≤5 nm, SH obtained from the SHMR data fits is significantly 

higher with the molecular overlayer. Inset: Top view of the optimized C60/Pt(111)-(2√3x2√3)R30° 

interface DFT model. The C60 molecules are adsorbed on top of one Pt-vacancy. The black polygon 

marks the in-plane periodicity of the system. Pt: silver, C: cyan.  (e) DFT simulations of the electrical 

current-induced, in-plane magnetic moments (|mxy|) and experimental SHMR, normalized to the 

largest calculated (|mxy|) or measured value (SHMR) as a function of the Pt thickness.  
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Non-collinear band structure calculations enable analysis of the atom Projected (energy-

dependent) Magnetization Density (PMD) for different Pt and Pt/C60 film thicknesses. In all cases, we 

find the PMD for the in-plane (x,y) magnetic moment components (mx,y) to be larger than for the 

out of plane one (mz). It is also possible to observe an enhancement of the PMD oscillation 

magnitudes due to the adsorption of C60. The effect becomes smaller as the Pt thickness increases 

from 1.1 nm to 2.5 nm and 3.9 nm, correlated with the SHMR values in Pt/C60 (Fig. 2e). The 

differences in PMD between the C60/Pt and Pt systems document the role of the Pt/C60 interfacial 

re-hybridization, and ensuing changes in the electronic structure, for enhancing SOC-related 

anisotropies and spin transport in Pt-based systems. 

The fabrication of YIG films can lead to elemental diffusion and defects that change the magnetic 

properties of the ferrimagnet and the interpretation of transport measurements [43]. Figs. 3a-b 

show atomic-resolution aberration corrected cross-sectional scanning transmission electron 

microscopy (STEM) images and electron energy loss spectroscopy (EELS) chemical maps. It is possible 

to observe, in addition to a certain level of surface roughness of the YIG film, an area close to the 

YIG surface and below the sputtered Pt wire into which some Pt metal may have diffused and formed 

a low density of nm-sized clusters (see also Fig. S4 in [31]). This diffusion can affect the magnetization 

and anisotropy direction at the surface of the YIG layer, originating the minor loops we observe in 

the perpendicular field direction in some YIG films [31,43].  

For Pt grown on YIG, an additional change in resistance is observed at low magnetic fields <5-20 

mT when the direction of an applied magnetic field is changed with respect to the electrical current. 

The origin of this AMR is controversial. It has been attributed to a proximity-induced magnetization 

of Pt, which is close to the Stoner criterion, but it is also claimed that there is no evidence for this 
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induced magnetization [16,17]. The same effect is also seen in YIG/Ta. This low field AMR (LF-AMR) 

is characterized by the presence of peaks, positive or negative depending on the field direction, 

resembling the AMR observed in magnetic films with domain wall scattering [44,45]. Due to the SOC, 

in most magnetic materials domain walls reduce the resistance for in-plane fields, and increase it for 

out of plane fields. This domain wall AMR peaks at the coercive field Hc of the magnet, for the 

greatest magnetic disorder and domain wall density. In YIG/Pt, the position of out-of-plane LF-AMR 

peaks coincides with the coercivity of the perpendicular minor YIG loops (Fig. 3c and [31]), which 

could point to a YIG surface layer with an out-of-plane easy axis. We find that the LF-AMR has the 

same shape and peak position with or without a molecular overlayer. However, the magnitude of 

the LF-AMR is larger when C60 is present. This molecular effect is stronger for the perpendicular 

configuration (Fig. 3d), which may be due a larger perpendicular magnetic anisotropy induced by C60, 

as reported for Co [21]. A larger LF-AMR is also observed in YIG/Ta when C60 is deposited on top [40]. 

For YIG films grown on YAG substrates, the in-plane coercivity is increased by 1-2 orders of 

magnitude, and the LF-AMR peaks appear at higher fields, supporting the correlation between the 

AMR in Pt and the surface YIG magnetisation (Figs. S5-S7 in [31]).  
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FIG. 3 (a) Cross-sectional high angle annular dark field (HAADF) image of the YIG/Pt interface 

obtained using a scanning transmission electron microscope (see methods for details). (b) Elemental 

chemical analysis of the interface using EELS: the relative intensity maps of the Y, Fe and Pt ionization 

edges are presented with a simultaneously acquired HAADF image of the region, indicated by a white 

box in (a). Bright clusters immediately below the YIG surface, indicated by white arrows in the Pt 

map and the overview HAADF image, contain a higher Pt concentration and may be due to Pt 

diffusion into the YIG. (c) Low field MR and minor hysteresis loop with the field in the perpendicular 

orientation at 200 K. The full loop uncorrected and other examples can be found in [31]. (d) Room 

temperature LF-AMR comparison between YIG/Pt and YIG/Pt/C60.  The curves are qualitatively the 

same, but the magnitude of the effect is enhanced by the molecules. 
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 The LF-AMR peak position (coercivity of the YIG surface) and peak width (saturation field of the 

YIG surface), increase as the temperature is lowered (Figs. 4a-b). Typically, the AMR of YIG/Pt 

measured at high fields is reported to vanish above 100-150 K. If measuring at 3 T, where quantum 

localisation and other effects are strong, we observe this same decay with temperature. However, 

the LF-AMR can be observed up to room temperature. C60 not only increases the LF-AMR value, but 

it also makes it less temperature dependent, so that the LF-AMR ratio can be up to 700% higher for 

Pt/C60 at 290 K. This supports our suggestion from DFT simulations of a mechanism based on C60-

induced re-hybridization enhancing the magnetic moment acquired by transport electrons via SOC 

(Fig. 4c). 

The LF-AMR depends on the Pt thickness, 𝑡, as (𝑡 − 𝑥)ିଵ (Fig. 4d). We identify the value of 𝑥, 

approximately 1 nm, as the magnetised Pt region contributing to the AMR. This relationship is not 

affected by the C60 layer, although the magnitude is uniformly higher with molecules.  
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FIG. 4 (a) Perpendicular LF-AMR for GGG/YIG(170)/Pt(2)/C60(50). (b)  As the sample is cooled, the 

perpendicular LF-AMR peak position and width are increased in steps, rather than monotonic 

fashion.  (c) Temperature dependence of the maximum LF-AMR, calculated as the change in 

resistance from the peak in the perpendicular orientation to the minima in the longitudinal. There is 

a faster temperature drop in the MR values for Pt when compared with Pt/C60. This may be due to 

the acquired magnetic moment in Pt/C60 leading to a more stable induced magnetisation up to 

higher temperatures. (d) The LF-AMR for Pt and Pt/C60 can be fitted to a (𝑡 − 𝑥)ିଵ function, where 

𝑡  is the Pt wire thickness and x is a constant of 1 nm that we identify with the magnetically active Pt 

region.    
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Our results show that molecular overlayers can enhance the spin orbit coupling of heavy metals, 

as observed in SHMR and AMR measurements. Additionally, the molecular layers aid in 

distinguishing the origin of spin scattering mechanisms, such as the coupling with YIG surface 

magnetisation and a LF-AMR measurable at high temperatures. The enhancement of the effective 

SOC with molecular interfaces has a wide range of applications, e.g. to reduce the current densities 

in spin transfer torque memories. Given the dependence on surface hybridisation and charge 

transfer, the effect could be controlled via an applied electrical potential. This is an important 

development, as nearly all other methods to alter the spin-orbit coupling of a material are static. The 

inverse SHE can be modified by gating with ionic liquids, but changes to the SOC are undetermined 

and the electrical conversion may only be quenched [46]. Materials can be doped during fabrication 

to increase the spin-orbit effect, but that becomes fixed in a circuit, i.e. static.  Using UHV grown 

nanoscale molecular films that can be gated offers a dynamic response – the transport properties of 

an active circuit, e.g. to control the direction and magnitude of pure spin currents. 
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