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Summary: 

First we shortly review the different kinds of network modelling methods for systems biology with an emphasis on the 

different subtypes of logical models, which we review in more detail. Then we show the advantages of Boolean 

networks models over more mechanistic modelling types like differential equation techniques. Then follows an 

overlook about connections between different kinds of models and how they can be converted to each other. We also 

give a short overview about the mathematical frameworks for modelling of logical networks and list available software 

packages for logical modelling. Then we give an overview about the available standards and ontologies for storing 

such logical systems biology models and their results. In the end we give a short review about the difference between 

quantitative and qualitative models and describe the mathematics that specifically deals with qualitative modelling. 
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1. Introduction 

There are plenty modelling techniques from system biology available, which can be applied for modelling the different 

kinds of biomolecular networks. For newcomers it’s not easy to select the appropriate model type. Therefore we review 

the different network modelling approaches with an emphasis on logical network modelling, what distinguishes this 

review from others like e.g. [1]. We also introduce the different kinds of mathematical frameworks, which can be used 

for logical network modelling and computation of system theoretical characteristics and the simulation of network 

control approaches. These are the semi-tensor product (STP) of matrices [2], Zhegalkin polynomials [3] and the 

algebraic methods of polynomial dynamical systems (PDS) [3] and model checking [4]. In the end we will mention the 

various standard formats available for describing, exchanging and archiving systems biological network models data. 

 

2. Modelling approaches in systems biology 

Systems biology and adequate mathematical modelling of genome-wide resp. proteome-wide biomolecular networks 

in order to simulate processes in cell biology is still a big challenge and has diverse applications like for instance for 

network-based biomarker discovery or drug target identification. Molecular interaction networks can be subdivided 



into metabolic networks, genetic regulatory networks (GRN’s) and (small) protein signaling networks [1], whereas the 

network modelling and analysis of proteome-wide expression data is still in its infancy. 

Roughly spoken one can distinguish in a 2x2 scheme discrete from continuous and deterministic from 

non-deterministic modelling techniques. Each of these 4 subtypes can be further divided according to the update 

scheme into synchronous vs asynchronous methods. An overview about the main modelling methods in systems 

biology is given elsewhere in the literature [1,5-10] and summarized in Table 1. It should be noted that there are also 

plenty methods described in the literature, which combine two or even more of these pure modelling methods into 

hybrid modelling schemes. One example are the Stochastic Discrete Dynamical Systems (SDDS) [11] combining the 

Polynomial Dynamical Systems (PDS) with the stochastic Gillespie models or the ANIMO (Analysis of Networks with 

Interactive Modeling) method, which lies between ODE’s and fuzzy logic models [12]. 

 

Table 1: Overview about modelling approaches in systems biology. The logical models are reviewed in more detail in 

section 2.1 and Table 2. 

Modelling approach Short description References 

Logical models (Boolean 

networks) 

The (virtual) interactions between the proteins leading to the observed 

co-expression are expressed as Boolean functions [13]. 

See Table 2 for a detailed classification of logical network modelling 

approaches. 

[14,15] 

Petri nets (PN) A special kind of bipartite graph with two kinds of nodes: places and 

transitions. If a transition fires a token is moved from the input places to the 

output places; asynchronous and non-deterministic. 

[16,17] 

Polynomial dynamical 

systems (PDS) 

An algebraic based method which is a special kind of a sequential FDS (Finite 

Dynamical System) over a finite field. Each transition function is an element 

of a polynomial ring over the finite field. Uses enhanced fast methods from 

computer algebra and computational algebraic geometry (rooting in 

Buchberger algorithm) to calculate the Gröbner bases of ideals in such rings 

[18] and an ideal is a set of polynomials, which is closed under polynomial 

[20] 



combination [19]. 

Differential equation 

models (ODE and PDE) 

ODEs (Ordinal Differential Equations) typically are used to model the (time) 

dynamics behavior of networks, whereas PDEs (Partial Differential Equations) 

are used to model the behavior in space and time, so that pattern formation 

can be modelled. Such spatiotemporal Diffusion-Reaction Systems exhibit 

self-organizing pattern formation, generally described by the general local 

activity principle [21], which explains the cause of complexity and 

self-organization in nature. 

[22,23] 

(Dynamic) Bayesian 

models 

Probabilistic method allowing to incorporation of prior information by using 

Bayes Theorem. Problematic can be the derivation of the direction of an 

interaction. 

[24,25] 

Process calculi Models the network interactions as a sequence of stochastically occurring 

communication events instead of states. Different kinds of process calculi are 

e.g. the pi-calculus and Beta-binders. Scalability to larger models is bad. 

Process calculi can be seen as a subgroup of the rule-based approaches. 

[26] 

(Dynamic) Cellular 

automata 

A grid of cells with a finite number of states which change according to rules 

in discrete steps. The rules determine the new state of a cell in dependence 

of the cells current state and the state of the neighboring cells. Mainly used 

for simulation of aspects of spatial dynamics, e.g. diffusion processes and 

pattern formation [27]. 

[28] 

Interacting state 

machines 

Qualitative high-level hierarchical modelling of objects (e.g. cells) by its parts 

(e.g. genes and proteins) at different levels. Therefore allows compositional 

multiscale models with synchronous or asynchronous state changes and 

visualization by state charts. One advantage of these models is that they 

allow the application of model checking techniques [29]. 

[5] 

Finite State Linear 

Model (FSML) 

Combines continuous (e.g. protein concentration) with discrete (e.g. 

promoter regions with a finite number of states) modelling aspects. 

[30] 



Agent-based models 

(ABM) 

Originally developed in the social sciences and economics. Simulates the 

micro-behavior and the interactions of autonomous agents (e.g. genes, 

mRNAs (siRNA, miRNA, lncRNA), proteins, transcription factors) and studies 

their effects on the macro level, i.e. the whole system (e.g. the cell). 

[10,31] 

Rule – based models Here the molecular interactions are modelled with local rules, which can be 

applied even if there is no explicit network structure available, i.e. the 

network inference step is not necessary, so that these network-free 

approaches bypass the combinatorial burden of network inference. 

[32] 

Piecewise-linear 

differential equation 

models (PLDE) 

Model consists of a piecewise-linear approximation of differential equations 

by means of step functions together with a set of inequality constraints for 

the parameter values. 

[33] 

Stochastic models Models based on the Gillespie algorithm for solving the chemical master 

equation, which gives the probability that a molecular species will have a 

specified molecular population resp. concentration at a given future time 

[34]. The Gillespie method is the computationally most expensive approach. 

If one has a low number of molecules or one wants to model molecular 

crowding effects, then the stochastic approach is the method of choice [35]. 

[36,37] 

State Space Model 

(SSM) 

Linear [38] or non-linear [39] modelling approach using an abstract space of 

states in combination with a diverse set of algorithms, among them are 

Bayesian or other statistical based methods, autoregressive models and 

Kalman filtering. 

[38,39] 

MP-Systems Metabolic P-systems, for modeling the dynamics of metabolism and signal 

transduction based on the membrane computing model, which was shown to 

be capable of solving NP-complete problems in polynomial time [40]. 

[41] 

 

Each of the listed models has its advantages and disadvantages. The decision for a model type depends on several 

factors, e.g. the size of the model, the availability of data for the identification of the model or on the intended level of 

insight (qualitative or quantitative) one wants to gain, as well as on the maturity of the underlying mathematical 



framework. For Boolean networks, for polynomial dynamical systems, for differential equation models and for 

piecewise-linear differential equation models a rigid mathematical framework exists. Whereas for Petri nets, cellular 

automata, interacting state machines, agent-based and rule-based methods some arbitrary degrees of freedom are 

introduced by the rules, how to model exact the interaction between the molecular species resp. when to fire a 

transition. If one wants to simulate spatial aspects, then one should use PDE or cellular automata models are the right 

choice, whereas for multiscale modelling interacting state machines are a suitable choice. Process calculi are only 

valuable for application to reasonable small models. Other models need the availability of some special data, e.g. some 

prior knowledge is required for Bayesian models and kinetic data are required to apply stochastic models based on the 

Gillespie algorithm.  

The use of ODE/PDE for complex models has serious drawbacks rooting in non-identifiable parameter sets [42] 

because of incomplete and noisy data. There are often experimental constraints, which do not allow measuring all the 

needed parameter values [43] necessary for calibration of the ODE/PDE models. As a consequence, at least some of 

these parameters must be estimated, which often leads to model overfitting. Also very detailed ODE/PDE models often 

comprise differential equations, where no analytical solution is available. As a consequence application of numerical 

solution methods is indispensable [44], which frequently leads to oscillating model behavior and/or to long calculation 

runtimes. Often one has to resort to integer arithmetic [45], which slows down the algorithm performance, since 

rounding errors in floating point arithmetic leads to wrong numerical values. Another drawback is that differential 

equation based models are sloppy, i.e. they can be tuned to reality by adjusting one key parameter per stiff direction, 

independently of how reliably the other parameters are estimated [46]. In addition, the calibration of such models 

requires time series data, which usually are not measured in Proteomics studies. The biggest drawback is that 

quantitative data in Proteomics are mostly given in relative terms and not in absolute quantities like amount or 

concentration. Therefore it seems that the theoretically attainable precision of a model should be adapted to the 

accurateness of the noisy measurements. Such logical based models [47] allow one to simulate reliably at least the 

qualitative network dynamics. In [48] it was shown that Boolean models can be seen as coarse-grained limit case of 

differential equation models and that they are able to reproduce the results of them despite that simplification. In 

summary, it is not feasible to apply such exhaustive differential equation based techniques for modeling of more 

complex biological systems like proteome-wide data sets on the molecular level. The reason is that the number of 

parameters for differential equation models is larger than for Boolean models, since they need additional parameters 



for the reaction kinetics [49]. In addition the Boolean models are much easier to interpret, since they are more 

intuitively understandable [50]. 

 

2.1 Logical network modelling approaches 

Because of the advantages of logical models in comparison to differential equation models [47], we will in the 

following give a detailed classification of the different kinds of logical modelling approaches (Table 2). 

 

Table 2: Overview about systems biological logical network modeling approaches. 

Logical modelling 

approach 

Short description References 

Random Boolean 

Networks (RBN) 

The most general type of Boolean Network is an exemplar drawn from the 

set of all possible Boolean networks without any restrictions, whereas the 

networks occurring in biology, called simply Boolean Networks, differing 

from RBNs by preferring network structures with a small amount of attractors 

and large basins of attraction [51]. Gershenson [52] gives a detailed 

classification of random Boolean networks according to the update schemes 

(deterministic, random, synchronous or asynchronous). The non-deterministic 

asynchronous RBNs are also called contextual RBNs [53].RBNs differ from 

naturally occurring Boolean networks also by some topologically aspects 

[54], even if the scale-freeness and power law distribution of the node 

connectivity cannot always be confirmed [55]. 

[50] 

Boolean networks (BN) The nodes correspond to proteins and the edges to (virtual) regulatory 

relationship between them. Networks with N nodes and an in-degree of K 

(K<=N) for every node are called N-K-nets. For modelling of biological 

networks often K is restricted to a small number (2<=K<=10) [56], whereas 

for RBNs K can be equal to N. Special subtypes of BNs are the temporal BNs 

[57], which take into account regulatory delays and master-slave Boolean 

[61,62] 



networks [58,59]. A variant of temporal BNs are time-delay and 

diffusion-reaction BNs [60]. 

One big advantage is that the Boolean networks are easy to interpret. 

Extended Boolean 

Networks (EBN) 

Extended Boolean networks are one possibility to integrate known 

post-transcriptional regulation processes exerted for instance by miRNA. 

Here the set of nodes is extended to include more than one type of 

biomolecules, namely beside the gene nodes there are also nodes for 

mRNA-protein pairs and nodes for miRNA. In addition there are 4 possible 

edge types: gene–gene, protein–gene, gene–miRNA and miRNA-protein. 

[63] 

Biological Function 

Network (BFN) 

Two-step reverse engineering method based on a Hidden Markov Model 

(HMM) with a worst-case time-complexity of O(n3). 

[64] 

Fuzzy and Multi-Valued 

Boolean Networks, 

Generalized Logical 

Networks (GLN), 

Quantitative Logic 

Models (QLM), 

constrained fuzzy logic 

models (cFL) 

Finer-grained version of a Boolean network. Overcomes the Boolean 

limitation that a protein is either expressed or not expressed. In the fuzzy 

version every continuous value from between the interval 0 to 1 is allowed 

for the influence strength of a protein to the expression of the other. In the 

multi-valued version k equally distributed discrete expression values in the 

range from 0 to 1 are allowed. A variant of these multi-valued networks are 

the GLNs [65]. 

QLM and cFL are prior knowledge networks described by graded values of 

protein activation. 

[66,67] 

AND-NOT networks AND-NOT (or conjunctive) Boolean networks are simplifications. It was 

shown that every finite dynamical system and thereby Boolean network can 

be rewritten as AND-NOT network with similar dynamic properties and the 

same number of steady states by introducing some additional nodes. Note 

that AND-NOT functions are a particular case of nested canalizing functions 

[68]. The advantage is that AND-NOT networks can be handled with up to 1 

million nodes. 

[69,70] 



Probabilistic Boolean 

Networks (PBN) 

Probabilistic Boolean network introduce a stochastic element. They can be 

seen as a set of Boolean networks models, where a probability distribution 

governs the switching between them. The rationale behind is that one tries to 

model the uncertainty resulting from the network inference process, because 

one typically has only a limited number of samples (examples) relative to the 

number of genes [71]. In practice one infers a number of good simple 

predictors from the experimental data for each target gene and 

probabilistically synthesize a real predictor such that each predictor’s 

contribution is proportional to its determinative potential, as measured by 

the Coefficient of Determination (CoD) [71]. Namelythe state transitions 

between the genes are represented by a list of Boolean functions instead of 

only one Boolean function. The master-slave PBNs [59] are a subtype of the 

PBNs. 

[72] 

Stochastic Boolean 

Networks (SBN) 

SBNs are an improved version of PBN’s, which allow to more efficiently 

compute the state transition matrix in O(nL2n) compared with O(nN22n) in the 

general resp. O(nN2n) in the sparse matrix case for PBN’s, where n is the 

number of genes, N the number of Boolean networks and L a factor 

determined by the stochastic sequence length. L increases polynomial with n 

and therefore is typically smaller than N, which increases exponentially with 

then number of genes n. 

[73] 

Restricted Boolean 

Networks (RBN) 

As explained for the PBN method, there are due to noise and the small 

amount of samples several networks, which can explain a given data set. 

Analyzing the similarities between these networks one can derive confidence 

measures for the relationship between nodes. RBN’s are restricted Boolean 

networks derived from time series data, where by constraints only a subset of 

all possible Boolean functions between the nodes is considered, based also 

on assumptions derived from pairs, double pairs or triples of states in the 

[74] 



time series data set. For instance only an active gene at time t can regulate 

other genes at time t+1. 

Threshold Boolean 

networks (TBN) 

In TBN’s the expression value of a protein is computed by the sum of 

influences from all other proteins in the network. If this sum is above a 

threshold, the target protein is activated and if the sum is below the 

threshold, the target protein is deactivated; otherwise the expression of the 

target protein remains in its current state. The advantage is that compared 

with traditional BN’s specified by the truth tables of the Boolean functions, 

much fewer parameters are required for TBN’s: The truth table for a N-K net 

has ∑ 2𝐾𝐾𝑁𝑁
𝑖𝑖=1  parameters, whereas a TBN requires only ∑ 𝐾𝐾𝑁𝑁

𝑖𝑖=1  parameters. 

This makes them excellent candidates for exploratory studies, where one 

don’t want to include prior information, required to make the inference of 

large networks computational feasible. 

[75] 

Markov logic networks 

(MLN) 

This type of models is a probabilistic graphical model in combination with 

first-order logic. 

[76] 

Zhegalkin Polynomials, 

Reed Muller Forms 

Zhegalkin polynomials, also called Reed-Muller Forms are algebraic normal 

forms of Boolean functions and allow a continuous representation them. The 

computation of these normal forms is based on list-decoding [77] or tensor 

decomposition techniques [78]. Recently also a Gröbner-free method for 

computing these normal forms was developed [79]. 

[80] 

 

RBNs are mainly used for studying the physical properties of general network and are therefore not relevant for 

biological applications. The other types logical models can all be used to model protein signaling pathways, which are 

rather small networks. For bigger proteome-wide networks the network inference process can be computationally 

quite expensive, especially, when the in-degree K is bigger. For larger networks one should guide the inference 

process by prior knowledge, from literature or from protein interaction of transcription factor databases, which can be 

done e.g. by regularization approaches [81] or by introducing constraints to restrict the search space. Other 

possibilities are the use of AND-NOT networks, or threshold Boolean networks, which work very well even for larger 



networks or one confines the inference to networks with a low in-degree K. This is possible since it was shown that for 

the yeast proteome net an in-degree of K=5 is sufficient [82], since 93% of the genes were regulated by only 1-4 

proteins [83]. Such conjunctive Boolean networks make sense, since the AND functions correspond to the synergistic 

regulation of a molecule by several factors [84]. 

 

 

3. Dependencies between the different modelling methods 

There are many connections and interdependencies between the different modelling approaches, so that there are 

several methods for conversion between different model types [1]. An overview about such model conversions and 

equivalencies gives table 3. 

 

Table 3: Overview about model type conversion approaches resp. model type equivalencies. 

(Source) model type (Target) model type Reference 

Ordinary Differential Equations Boolean networks [48] 

Boolean networks Petri nets [16,85] 

Boolean networks Constraint-based models [86] 

Boolean networks Ordinary Differential Equations [87] 

Constraint-based models Ordinary Differential equations [88] 

Petri nets Ordinary Differential Equations [89] 

Petri nets State-transition automaton [90] 

Process algebra Ordinary Differential Equations [91] 

Rule-based models Ordinary Differential Equations [92] 

Process calculus Colored Petri nets, Ordinary Differential 

Equations, continuous time Markov chains 

[93] 

Discrete model Piecewise linear model [94] 

Probabilistic Boolean network Dynamic Bayesian networks [95] 

Boolean Networks Polynomial Dynamical Systems [96] 



Probabilistic Boolean Networks Polynomial Dynamical Systems [97] 

Petri nets Polynomial Dynamical Systems [98] 

MP systems Hybrid Functional Petri Nets [99] 

 

Such conversions can alleviate the human interpretability of results or can be used for modelling some orthogonal 

concepts, which cannot be modelled adequately by one model type. For instance the interpretability of Boolean 

functions in their polynomial form can be difficult to interpret and Petri nets can be used for asynchronous modelling, 

which is not possible in polynomial dynamical systems. The PDS are namely subtypes of Sequential Dynamical Systems 

(SDS’s) [96], which in turn are a class of Graph Dynamical Systems (GDS), which are the most general framework for 

discrete logical graph models. They consist of a finite graph, where each node can be in a finite set of states. These 

states are updated by update functions following an update scheme, which specifies the selection of the next update 

function. When one expresses the update functions by a polynomial function over a finite field one speaks of 

polynomial dynamical systems (PDS) [97]. Therefore the algebraic method of polynomial dynamical systems can also 

be seen as a logical modelling method, since a Boolean network can easily be converted into a PDS by representing 

the Boolean functions as square-free polynomials with coefficients in the finite field /2 =  [96], where AND is 

replaced by multiplication, OR by addition and NOT by the addition of 1, since the arithmetic is over the Boolean field: 

 AND(X, Y) = X ˄ Y := XY 

 OR(X, Y) = X ˅ Y := X + Y + XY 

 NOT(X)  := X + 1 

These PDS’s allow not only the modelling of Boolean Networks and Probabilistic Boolean Networks [97], but are a very 

general framework under which most of the discrete modelling techniques like e.g. finite state machines, interacting 

state machines, dynamic Bayesian networks, agent-based approaches and Petri nets [98] can be subsumed. It’s also 

clear that the PDS’s have close relationship to the Zhegalkin polynomial based method and the methods based on the 

semi-tensor product (STP) of matrices [2]. Whereas in the normal matrix product, describing linear transformations,, 

the elements of the result matrix are calculated as a sum of element-to-element products, and the elements of a 

tensor product result tensor are the product of one element with a whole matrix, for the semi-tensor product the 

elements of the resulting matrix are calculated by the product of one element times a block of the other matrix [100]. 

 



 

4. Mathematical frameworks for modelling of Boolean networks 

There exits mainly four mathematical frameworks, all of them based on a sound mathematical basis, for modelling of 

Boolean networks and for calculating their system theoretic descriptors. The most general framework for logical 

models is the PDS (see section 2). Two other closely related frameworks are the STP and Zhegalkin polynomials. Which 

framework performs best for a given task is still an open question, even if the STP method is currently the most used 

method for solving Boolean network control problems. Therefore we shortly introduce here the application of all four 

frameworks to problems of logical network modelling. 

 

4.1 Computation with STP 

The STP is a generalization of the conventional matrix product requiring no dimension matching condition [2,101]. In 

[102] it was shown that it can be used for the modelling of Boolean networks. A big advantage of the STP approach is 

that it can also be used for multi-valued, mix-valued and fuzzy versions of the Boolean network model [103]. Also 

asynchronous networks can be modelled with the STP method [104]. The STP approach allows the analytical 

computation of typical system-theoretic descriptors as the number of cycles and fixed points, the basin of each 

attractor and the transient period for all points to enter these attractors [102,105]. The identification of a Boolean 

network from experimental data via the STP method is possible [106] and algorithms for the optimal control using the 

STP were developed [107]. A transformation of Boolean control networks into the Kalman decomposition - a standard 

form making clear the observables and controllables of the network – is given in [108] and also the control of 

multi-value logical networks is possible with the STP method [109]. 

 

4.2 Computation with PDS 

The PDS framework is based on polynomial algebra and is the most general framework for the logical modeling of 

networks. Fast efficient algorithms for solving such polynomial systems, based on Gröbner basis computation [18,110] 

as well as a Gröbner-free method [79] were developed. There are network inference procedures using the PDS 

approach available [97,103], and also PDS-based methods for the steady state analysis and derivation of 

system-theoretic characteristics of Boolean networks [70,84,111] were developed. 

 



4.3. Zhegalkin polynomials 

The use of Zhegalkin polynomials (Reed-Muller forms) was originally developed in electrical engineering and adapted 

in [112] to gene expression modelling. These Zhegalkin polynomials are a polynomial on a finite field and are therefore 

a subclass of the PDSs. They are also related to the STP approach and as shown in [78] the Zhegalkin polynomials are 

equivalent to Boolean Kruskal tensors and to orthogonal ternary vector lists (OTVL), an approach which is very efficient 

and widespread used in digital logic design. The inference of the Zhegalkin polynomials using a mixed integer 

quadratic program (MIQP) allows the incorporation of prior knowledge [80]. An efficient algorithm for the polynomial 

interpolation using a Boolean tree-based data structure is described in [113]. 

 

4.4 Model checking 

Model checking [116] is a method originally developed for verifying the correctness of electronic circuit designs, which 

can also be used to model biomolecular networks [4]. The technique does an exhaustive exploration of the networks 

state-space and verifies that it always adheres to a set of requirements and the model consistency is checked with 

respect to the experimental data [114]. The model implementations make use of BDD’s as efficient data structure [115]. 

There are model checking algorithms available for computing steady states [116], for finding attractors [117] and for 

the control of Boolean networks [118] and PBNs [119]. 

 

 

5. Available software tools for logical modelling, standards and ontologies for logical systems biology models 

and simulations 

Some software packages available for logical modelling and analysis of systems biology networks are summarized in 

the supplementary table 1. Many of them are also linked on the ColoMoTo web site 

http://www.colomoto.org/software/index.html. A list of proprietary formats for storing Boolean models can be found 

at http://colomoto.org/biolqm/doc/formats.html. 

 

Standards are very important for data exchange and the interoperability of models as well as for the documentation 

and reproducibility of simulation results. Thereby standards are helpful in fulfilling the FAIR guiding principles [120] for 

data management. Table 5 lists minimum information guidelines, standards, ontologies and converters relevant for 

http://www.colomoto.org/software/index.html
http://colomoto.org/biolqm/doc/formats.html


logical systems biology models. A comprehensive overview about systems biology and corresponding visualization 

standards is given in detail in [121]. The common basis for these standards are the minimum information guidelines 

documented by MIRIAM (Minimum Information Requested In the Annotation of Models) [122], MIASE (Minimum 

Information About Simulation Experiments) [123] describing the minimal information required for describing a systems 

biology model resp. simulation. MIMIP (Minimal Information for Model inference and Parametrization) is a further 

guideline, currently under development by the COmputational Modelling in BIology NEtwork (COMBINE) [124] 

(http://co.mbine.org), an initiative defining and promoting computational modelling standards and protocols for 

systems biology. They defined amongst others the Identifiers.org and MIRIAM Registry [125], allowing the permanent, 

unique and unambiguous access to models stored on the web via the use of URIs (Uniform Resource Identifiers). Their 

central format is the COMBINE archive format OMEX (Open Modeling EXchange) [126], which allows the storage of all 

relevant standardized data files belonging to one model, together with a describing metadata file in RDF (Resource 

Description Framework) format in one compressed .zip file. This .zip file contains a XML-based manifest file describing 

the content of the whole .zip file. 

CoLoMoTo (Consortium for Logical Models and Tools, http://www.colomoto.org) [127] is an initiative which amongst 

others is active in defining standards and providing tools relevant especially for logical modelling approaches. They 

defined the SBML qual format [128], allowing the representation of multivalued logical models. 

Terms from ontologies are used to semantically annotate biological and biomedical [129] and proteomics data 

[130,131]. Important ontologies for systems biology are for example KiSAO (Kinetic Simulation Algorithm Ontology) 

for describing the simulation algorithms and their parameters, TEDDY (TErminology for the Description of DYnamics), 

which allows the annotation of the output of simulation runs and the dynamical system behavior. SBO (Systems 

Biology Ontology) [132] is suited for describing the entities, their role and the model parameters together with 

metadata describing a systems biology model. MAMO (MAthematical Modelling Ontology) allows specifying the type 

and characteristics of the used modelling framework (e.g. logical or continuous) and variables. A controlled vocabulary 

especially for describing logical models is currently under development by the CoLoMoTo consortium [127]. 

 

Table 5: Minimum information guidelines, standards, ontologies and converters relevant for logical systems biology 

models and simulations 

http://co.mbine.org/
http://www.colomoto.org/


Standard / Ontology  Short description / URL (Last accessed 29th February 2020) Reference 

Minimum information guidelines: 

MIDAS Minimum Information for Data Analysis in Systems Biology; also an Excel-based 

format 

[133] 

MIASE Minimum Information About a Simulation Experiment, guidelines for 

reproducibly documenting the results of simulation experiments. 

http://biomodels.net/miase/ 

[123] 

MIMIP Minimal Information for Model Identification and Parametrization. [124] 

MIRIAM Minimum Information Required In the Annotation of Models, a set of guidelines 

for the consistent annotation of systems biology models.  

http://co.mbine.org/standards/miriam 

[122] 

Standard formats: 

SBML Systems Biology Markup Language, a XML-based interchange format for 

quantitative computer models of biological processes. 

http://sbml.org/Main_Page 

[134] 

SBML qual SBML extension package for qualitative network models based on regulatory or 

influence graphs; well suited for the representation of logical models. 

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/qual 

[128] 

CellML Cell Markup Language, a XML-based language for storing and exchange of 

computer-based quantitative mathematical cell models enabling easy reuse of 

model components; better suited for continuous models including kinetic 

details and for higher-level models. 

https://www.cellml.org 

[135] 

BCML Biological Connection Markup Language, a data format to represent biological 

pathways in consideration of the organism, tissue and cell type as well as on the 

physiological, pathological and experimental conditions. 

http://www.compbiotoolbox.fmach.it/BCMLdocs/index.html 

[136] 

http://biomodels.net/miase/
http://co.mbine.org/standards/miriam
http://sbml.org/Main_Page
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/qual
https://www.cellml.org/
http://www.compbiotoolbox.fmach.it/BCMLdocs/index.html


BDML Biological Dynamics Markup Language, an open format for representing 

quantitative data of biological dynamics. 

http://ssbd.qbic.riken.jp/bdml/ 

[137] 

BiSDL Biology System Description Language, Nets-within-Nets formalism (NWN) [138] 

SED-ML Simulation Experiment Description Markup Language is an encoding of 

simulation setups in order to ensure exchangeability and reproducibility of time 

course and steady state simulation experiments. 

http://sed-ml.org 

[139] 

SBRML Systems Biology Results Markup Language, a markup language for storing the 

quantitative results of simulations runs of SBML models. 

http://www.comp-sys-bio.org/SBRML.html 

[140] 

SBtab SBtab is a set of conventions about data tables and spreadsheet files, for use in 

Systems Biology data exchange. 

http://www.sbtab.net/index.html 

--- 

OMEX Open Modeling Exchange, a COMBINE archive format containing all files 

belonging to a model together with a manifest files describing the content in a 

single .zip file. 

http://co.mbine.org/standards/omex 

[126] 

OpenBEL Open Biological Expression Language. Uses a triple-based modelling language 

(subject-predicate-object); suitable especially for causal network models. Fits 

well for logical models, since BEL allows representing qualitative causal and 

correlative relationships [141]. 

http://www.openbel.org 

[142] 

Graphical standards: 

GPML Graphical Pathway Markup Language 

http://www.pathvisio.org/gpml/ 

[143] 

BioPAX BIOlogical PAthways eXchange, a language for the integration, exchange, [144] 

http://ssbd.qbic.riken.jp/bdml/
http://sed-ml.org/
http://www.comp-sys-bio.org/SBRML.html
http://www.sbtab.net/index.html
http://co.mbine.org/standards/omex
http://www.openbel.org/
http://www.pathvisio.org/gpml/


visualization and analysis of biological pathway data defined in OWL (Web 

Ontology Language) / DL [164]. The interactions can be biochemical reactions, 

binding interactions or regulatory relationships. BioPAX is subdivided into 

several levels: 

• Level 1: metabolic pathways 

• Level 2: molecular interaction networks 

• Level 3: signal transduction network and gene expression regulation 

• Level 4: genetic networks / pathways 

• Level 5+: networks of abstract relationships, e.g. cell–level interactions, 

environment 

BioPAX is suited especially for data exchange between software and databases. 

http://www.biopax.org 

SBGN Systems Biology Graphical Notation, a graphical notation for biological process 

maps. It consists of three different languages for different use cases: 

• Process Descriptions (PD): a bipartite graph for the detailed description of 

biological processes like e.g. metabolic pathways including the kinetics. 

• Entity Relationship (ER) diagrams for describing the biological entities linked 

by relations, i.e. fits best for rule-based models. 

• Activity flowcharts (AF) describing the activity flow in a biological system. 

Fits well for logical models, since the detailed mechanistic knowledge is not 

required. 

For implementing a SBGN diagram one can use either the SBGN-ML markup 

language [145] or one can resort to SBML layout extension [146]. 

http://www.sbgn.org/Main_Page 

http://www.sbgn.org/LibSBGN/Exchange_Format 

http://otto.bioquant.uni-heidelberg.de/sbml/ 

[147] 

Ontologies: 

http://www.biopax.org/
http://www.sbgn.org/Main_Page
http://otto.bioquant.uni-heidelberg.de/sbml/


EFO Experimental Factor Ontology: describes experimental variables like e.g. disease, 

cell line, organism parts, developmental stage, species, chemical compounds … 

http://www.ebi.ac.uk/efo/ 

[148] 

KiSAO Kinetic Simulation Algorithm Ontology for the description of existing algorithms 

and their interrelationships through their characteristics and parameters. 

http://co.mbine.org/standards/kisao 

[132] 

MAMO MAthematical Modelling Ontology is an ontology describing and classifying 

mathematical models used in the life sciences. 

http://sourceforge.net/p/mamo-ontology/wiki/Home/ 

--- 

SBO Systems Biology Ontology, a set of controlled vocabularies of terms for use in 

Systems Biology. 

http://www.ebi.ac.uk/sbo/main/ 

[132] 

SBPAX Systems Biology Pathway Exchange, an extension to BioPAX to include systems 

biology information into BioPAX models. 

http://www.biopax.org/mediawiki/index.php/SBPAX3 

[149] 

TEDDY TErminology for the Description of Dynamics is an ontology describing the 

dynamical behaviors, observable dynamical phenomena, and control elements 

of bio-models in Systems Biology and Synthetic Biology. 

http://co.mbine.org/specifications/teddy 

[132] 

Converters: http://sbml.org/Software/Converters 

SBFC Systems Biology Format Converter, a generic framework for Systems Biology 

model format conversions. 

https://www.ebi.ac.uk/biomodels/tools/converters/ 

http://sbfc.sourceforge.net/mediawiki/index.php/Main_Page 

--- 

 

A big advantage of such standards is that one can develop dedicated software packages that can run simulations of 

models stored in a proper standard format, e.g. the systems biology core algorithm [150] can execute models in SBML 

format. Also programming libraries for accessing and writing SBML files [151] and for simulation of SBML models [152] 

http://www.ebi.ac.uk/efo/
http://co.mbine.org/standards/kisao
http://sourceforge.net/p/mamo-ontology/wiki/Home/
http://www.ebi.ac.uk/sbo/main/
http://www.biopax.org/mediawiki/index.php/SBPAX3
http://co.mbine.org/specifications/teddy
http://sbml.org/Software/Converters
https://www.ebi.ac.uk/biomodels/tools/converters/
http://sbfc.sourceforge.net/mediawiki/index.php/Main_Page


are available. What is missing until now is an engine for simulations of logical models stored in SBML qual or OpenBEL. 

As shown, PDSs and STP are ideal candidates for such an execution framework for logical models. 

What is missing until now is a quality standard for documenting network validation results, what is urgently required 

for translating network-based medicine towards the clinics. Applying logical modelling in the clinical practice would in 

addition require the adherence to regulations like GCLP (Good Clinical Laboratory Practice) [153], and raises also a lot 

of other questions similar to the ones reviewed in [154] for genomic medicine. It would also require the authentication 

of all generated files by certificates like for instance X.509. A specialized model repository of all relevant reference 

networks in human would also be very important. 

For the input data for biological network inference one can either use proprietary files like e.g. from MaxQuant [155], 

or standard data formats for protein quantification data like mzTab-P [156], which is already supported by the PRIDE 

repository [157]. Another quantitative format is mzQuantML [158], for which it’s also expected that it is in future 

supported by ProteomeXchange [159] and PRIDE for complete quantitative submissions. 

 

The use of the logical modelling techniques for applications in systems biology and systems medicine are discussed in 

detail in [56] together with the proper inference methods, the validation of the inferred networks, the derivation and 

meaning of system theoretic descriptors and the application of control approaches for network-based biomarkers, 

drug target discovery and personalized therapy planning simulations. 

 

6. Network inference, validation and control 

The inference of the Boolean networks is still very challenging due to the high computational complexity and 

enormous amount of experimental data for finding an exact solution [56] based on expression values alone. Therefore 

for the inference of Boolean networks one can either restrict the type of the Boolean network, e.g. to AND-NOT 

(conjunctive) or disjunctive networks [69], use PAC (Probably Approximately Correct) machine learning methods [160] 

for the inference. By this restriction of the allowed Boolean functions to conjunctive resp. disjunctive normal forms, 

which can be learned by PAC learning algorithms, the data requirements are bounded by a polynomial example set 

size [161]. 

Or one uses heuristics to simplify and/or prior information to guide the inference process. For instance one can restrict 

the complete set of multivariate comparisons by setting a threshold for the in-degree of the network nodes [56]. Then 



the inference procedure uses the expression values to determine the similarity between the expression profiles of two 

stable network states based e.g. on correlation or information theoretic measures like the CoD or mutual information 

[56]. Other methods use nonlinear [162] or integer linear programming [163] with constraints, which are either derived 

from experimental data, from literature [164], from sparsity assumptions [165] or from regulatory constraints [166]. A 

typical sparse network assumption would be to take into account only the k strongest of the n possible input 

connections, where k << n and n is the number of network nodes, i.e. to derive functions f:[0,1]n->[0,1], which are 

called a k-juntas, if they depend on at most k of the input coordinates. Another method is to include prior knowledge 

for restricting the state space, e.g. using information about molecular interactions and/or pathways, from which one 

can derive constraints regarding the direct protein connectivity stored in general pathway or molecular interaction 

databases as reviewed in [167-170]. Or one can utilize information from specialized disease databases like e.g. 

NeuroDNet for neurodegenerative networks [171] or CancerNet for cancer [172]. Other useful prior knowledge are 

compartmental information or restraints on the network edge types as in extended Boolean networks [63]. 

After the inference, the network should be checked for validity, e.g. by iterative pruning to predict missing expression 

values [173] caused by experimentally noisy and incomplete data. Another pruning approach is PRUNET, which 

iteratively optimizes the match between the predicted attractors of the inferred network with Boolean representations 

of two stable phenotypic steady states [174]. A further method for assessing the biological validity uses an interaction 

relevance distance measure matching the inferred network against the a priori given pathway information, which is 

even capable of taking into account weak links [175]. 

Control methods in general are excellently reviewed by Liu and Barabási [176] and an overview about control 

strategies for Boolean networks is already given in the review of Mayer et.al. [56]. One goal of network modelling and 

control is to simulate the effect of external control perturbations, e.g. therapeutic measures on the network behavior, 

especially on the switching to other phenotypic states, which correspond to attractors and which can be visualized by 

Derrida plots [56]. Schwab and Kestler described a tool, by one can iteratively screen for perturbations, which change 

the attractor structure of the network [177] in a desired way. 

 

7. Open problems and outlook 

Boolean models are intuitively easy to understand, but many computational aspects in their reconstruction, analysis 

and control are NP-complete [178]. Therefore even the use of reconfigurable or special hardware like FPGA’s (Field 



Programmable Gate Arrays) [179], ASIC’s (Application Specific Integrated Circuits) or GPU’s (Graphical Processing 

Units) does not help for an exact simulation of Boolean networks. Therefore the use of approximations, sparsity 

assumptions and a priori knowledge is inevitable. In case that the weak link hypothesis [180] that many weak links are 

crucial for a correct network modelling is true, then even the use of sparsity assumptions in the reconstruction of the 

networks are at least questionable. Therefore methods for a reliable verification of the reconstructed networks are 

highly desired. 

Another possibility in the future would be to use hypercomputation methods [181], which are based on the principal 

of least action [21] and therefore are able to solve NP-complete problems in polynomial time. It’s assumed that the 

cell is somehow exactly doing this inherently. 

Since there are already quantum algorithm for learning of Boolean juntas available [182], it’s also possible to use 

quantum computers for the network inference as soon as efficient and generally programmable quantum computers 

are available. 

Last but not least, it should be mentioned that the simulation of biomolecular networks is also important in synthetic 

biology, where the goal is to engineer and optimize organisms for the industrial biological-based production of 

materials like e.g. bio-fuel, biopharmaceuticals. Nguyen et.al. for instance describe a converter, which can convert 

SBML models into Synthetic Biology Open Language (SBOL) [183] and Kobayashi and Hiraishi describe the design of 

Boolean networks with a desired attractor structure [184]. 
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Supplementary table 1: Overview about software packages and libraries supporting the logical modelling and analysis approaches. 

Name Short description URL (Last accessed 29th February 2020)  Reference 

ADAM Analysis of Dynamic Algebraic Models. http://adam.plantsimlab.org/adam.html [1] 

ASSA-PBN Modelling, simulation and analysis of Probabilistic Boolean 

Networks. 

http://satoss.uni.lu/software/ASSA-PBN/ [2] 

ASP-G Answer Set Programming method for finding attractors in 

Boolean networks. 

http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_Info
rmation_Musthofa_2014/asp-g.zip 

[3] 

ATLANTIS Attractor Landscape Analysis Toolbox for Cell Fate Discovery and 

Reprogramming. 

https://github.com/BIRL/ATLANTIS [4] 

bioLQM Java library for Logical Qualitative Models of biological networks. https://github.com/colomoto/bioLQM 
 

[5] 

BiTrinA R package for the binarization and trinarization of expression 

profile data. 

https://cran.r-project.org/web/packages/BiTrinA/index.html [6] 

BN++ (BNPP) 

/ BiNA 

C++ Library for modelling and analyzing biochemical networks. https://sourceforge.net/projects/bnpp/ [7] 

BMA Bio Model Analyzer, a visual tool for modelling and analyzing 

biological networks. 

http://biomodelanalyzer.research.microsoft.com/tool.html [8] 

B-NEM R package for Boolean Nested Effect Models (B-NEM). https://github.com/MartinFXP/B-NEM [9,10] 

BNS An analysis tool for the computation of attractors in Boolean 

network models with synchronous update. 

https://people.kth.se/~dubrova/bns.html [11] 

http://adam.plantsimlab.org/adam.html
http://satoss.uni.lu/software/ASSA-PBN/
http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_Information_Musthofa_2014/asp-g.zip
http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_Information_Musthofa_2014/asp-g.zip
https://github.com/BIRL/ATLANTIS
https://github.com/colomoto/bioLQM
https://cran.r-project.org/web/packages/BiTrinA/index.html
https://sourceforge.net/projects/bnpp/
http://biomodelanalyzer.research.microsoft.com/tool.html
https://github.com/MartinFXP/B-NEM
https://people.kth.se/%7Edubrova/bns.html


BNT / EBNT (Extended) Boolean Network Toolkit: A C++ toolkit for the 

computing the attractors and the state space of Boolean network 

models. 

http://www.sysbio.polito.it/index.php/tools-and-downloads/item/

208-boolean-regulatory-network-simulator 

--- 

BooleanDyna

micModeling 

Java library for the dynamic modeling of Boolean networks. https://github.com/jgtz/BooleanDynamicModeling/ [12] 

BooleanNet Python program for simulation of biological regulatory networks 

as Boolean networks. 

https://github.com/ialbert/booleannet 

http://atlas.bx.psu.edu/booleannet/booleannet.html 

[13] 

Boolean 

Network 

Toolkit 

C++ library for simulation, attractor sampling and Derrida plot 

computation of large Boolean networks. 

http://sourceforge.net/projects/booleannetwork/ [14] 

BooleSim BooleSim is a simulation program for Boolean networks, running 

in a browser. 

http://rumo.biologie.hu-berlin.de/boolesim/ 

https://github.com/matthiasbock/BooleSim 

[15] 

BoolFilter R package for state estimation as well as network inference of 

Partially-Observed Boolean Dynamical Systems. 

https://CRAN.R-project.org/package=BoolFilter [16] 

BoolNet R package for the construction, simulation and analysis of Boolean 

network models. 

https://cran.r-project.org/web/packages/BoolNet/ [17] 

BTR Tools for inference and analysis of asynchronous Boolean nets https://rdrr.io/cran/BTR/ [18] 

CABeRNET A Cytoscape [19] plugin for the simulation and analysis of Boolean 

models. 

http://bimib.disco.unimib.it/index.php/CABERNET [20,21] 

http://www.sysbio.polito.it/index.php/tools-and-downloads/item/208-boolean-regulatory-network-simulator
http://www.sysbio.polito.it/index.php/tools-and-downloads/item/208-boolean-regulatory-network-simulator
https://github.com/jgtz/BooleanDynamicModeling/
https://github.com/ialbert/booleannet
http://atlas.bx.psu.edu/booleannet/booleannet.html
http://sourceforge.net/projects/booleannetwork/
http://rumo.biologie.hu-berlin.de/boolesim/
https://github.com/matthiasbock/BooleSim
https://cran.r-project.org/package=BoolFilter
https://cran.r-project.org/web/packages/BoolNet/
https://rdrr.io/cran/BTR/
http://bimib.disco.unimib.it/index.php/CABERNET


CANA Python package for control and canalyzing in Boolean networks. https://pypi.org/project/cana/ [22] 

caspo Reasoning on the response of logical signaling networks with 

Answer Set Programming 

http://bioasp.github.io/caspo/ [23,24] 

Cell Collective A web-based platform for the construction, simulation, and 

analysis of Boolean-based models. 

http://www.thecellcollective.org [25] 

CellNetAnalyz

er 

Matlab® toolbox for exploring metabolic, signaling and regulatory 

networks. Uses Boolean and multivalued logical models and 

logic-based ODEs derived from Boolean models. Supports logical 

steady state analysis and computation of minimal intervention 

sets. 

https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html [26] 

CellNOpt(R) / 

CytoCoptR 

CellNetOptimizer (CNO): A Matlab® / R package for building 

logical models by training signaling networks derived from prior 

knowledge. 

http://www.cellnopt.org 

https://github.com/cellnopt/CellNOptR 

http://www.cellnopt.org/cytocopter/ 

[27,28] 

CNORdt CellNOpt add-on for training of a Boolean model from 

time-course data 

https://bioconductor.org/packages/release/bioc/vignettes/CNOR

dt/inst/doc/CNORdt-vignette.pdf 

--- 

ChemChains Cell Collective enables the construction, storage, as well as 

simulations of Boolean models. 

http://www.bioinformatics.org/chemchains/wiki/ [29] 

CoLoMoTo Diverse software tools developed by ColoMoto consortium 

members. 

http://www.colomoto.org/software/ [30] 

https://pypi.org/project/cana/
http://bioasp.github.io/caspo/
http://www.thecellcollective.org/
https://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html
http://www.cellnopt.org/
https://github.com/cellnopt/CellNOptR
http://www.cellnopt.org/cytocopter/
https://bioconductor.org/packages/release/bioc/vignettes/CNORdt/inst/doc/CNORdt-vignette.pdf
https://bioconductor.org/packages/release/bioc/vignettes/CNORdt/inst/doc/CNORdt-vignette.pdf
http://www.bioinformatics.org/chemchains/wiki/
http://www.colomoto.org/software/


CoLoMoTo 

Interactive 

Notebook 

Workflow environment for the analysis of Boolean networks. https://github.com/colomoto/colomoto-docker 

https://colomoto.github.io/colomoto-docker/ 

[31,32] 

DDLab Discrete Dynamics Laboratory, a tool for researching cellular 

automata and random Boolean networks. 

http://www.ddlab.com [33] 

EpiLog Boolean models for epithelial pattern formation http://epilog-tool.org [34] 

FALCON Toolbox for the Fast Contextualization of Logical Networks. https://github.com/sysbiolux/FALCON [35] 

GDSCalc Graph Dynamical Systems Calculator: A web-based application for 

Discrete Graph Dynamical Systems. 

http://taos.vbi.vt.edu/gdscalc/ [36] 

GeneFAtt C++ program for computing all attractors in synchronous and 

asynchronous Boolean networks. 

https://sites.google.com/site/desheng619/download [37] 

GINSim Gene Interaction Network simulation. Allows analyzing the 

qualitative dynamic behavior of GRN’s based on a discrete, logical 

formalism. 

http://ginsim.org [38,39] 

Jimena Simulation framework for polynomial interpolation of Boolean 

networks using Boolean-tree-based data structures. 

http://stefan-karl.de/jimena/ [40] 

JSBML Java library for accessing SBML-qual models http://sbml.org/Software/JSBML [41] 

kali Calculates attrators of Boolean networks https://github.com/arnaudporet/kali [42,43] 

Logical Pipeline of computational methods for logical modelling of https://github.com/sysbio-curie/Logical_modelling_pipeline [44] 

https://github.com/colomoto/colomoto-docker
https://colomoto.github.io/colomoto-docker/
http://www.ddlab.com/
http://epilog-tool.org/
https://github.com/sysbiolux/FALCON
http://taos.vbi.vt.edu/gdscalc/
https://sites.google.com/site/desheng619/download
http://ginsim.org/
http://stefan-karl.de/jimena/
http://sbml.org/Software/JSBML
https://github.com/arnaudporet/kali
https://github.com/sysbio-curie/Logical_modelling_pipeline


Modelling 

Pipeline 

biological networks deregulated in diseases 

MaBoSS 2 Stochastic Boolean Markov modelling environment https://maboss.curie.fr [45] 

NetBuilder A graphical representation and simulation tool for logical models. http://homepages.stca.herts.ac.uk/~erdqmjs/NetBuilder%20home

/NetBuilder/ 

[46] 

NeuroDNet – 

Boolean 

Analysis 

Converting a Boolean network into matrices for computation. http://bioschool.iitd.ac.in/NeuroDNet/boolean.php [47] 

odefy Transformation of Boolean models into ODEs. https://www.helmholtz-muenchen.de/icb/software/odefy/index.ht

ml 

[48] 

optPBN Matlab® optimization toolbox for probabilistic Boolean networks, 

an extension to the BN/PBN toolbox. 

http://sourceforge.net/projects/optpbn/ [49] 

BN/PBN Boolean and Probabilistic Boolean network Matlab® toolbox. https://code.google.com/p/pbn-matlab-toolbox/downloads/list --- 

PATHLOGIC-S Boolean framework for modelling of signaling networks. https://sourceforge.net/projects/pathlogic/ [50] 

PDIC Partial Information Decomposition and Context, an efficient 

network inference algorithm. 

https://github.com/Tchanders/NetworkInference.jl [51] 

PHONEMeS 

(PHOsphorylat

ion NEtworks 

Modeling of Boolean signaling networks based on 

phosphoproteomics MS data 

https://saezlab.github.io/PHONEMeS/ [52] 

https://maboss.curie.fr/
http://homepages.stca.herts.ac.uk/%7Eerdqmjs/NetBuilder%20home/NetBuilder/
http://homepages.stca.herts.ac.uk/%7Eerdqmjs/NetBuilder%20home/NetBuilder/
http://bioschool.iitd.ac.in/NeuroDNet/boolean.php
https://www.helmholtz-muenchen.de/icb/software/odefy/index.html
https://www.helmholtz-muenchen.de/icb/software/odefy/index.html
http://sourceforge.net/projects/optpbn/
https://code.google.com/p/pbn-matlab-toolbox/downloads/list
https://sourceforge.net/projects/pathlogic/
https://github.com/Tchanders/NetworkInference.jl
https://saezlab.github.io/PHONEMeS/


for MS) 

Pint Analysis tool for the dynamics of Boolean and multi-valued 

networks 

https://hal.archives-ouvertes.fr/hal-01589248/document [53] 

Polynome Construction of Boolean network models based on experimental 

time course data. 

http://polymath.vbi.vt.edu/polynome/ 

https://github.com/jsjohnst/polynomevt 

[54] 

PolyBoRi POLYnomials over BOolean Rings. http://polybori.sourceforge.net [55] 

PROFILE Personalization of patient-specific logical models https://github.com/sysbio-curie/PROFILE [56] 

ProMoT PROcess Modeling Tool for the construction of logical 

biochemical networks. 

http://www2.mpi-magdeburg.mpg.de/projects/promot [57] 

PRUNET Iterative network pruning based of a prior knowledge network 

(PKN) and Boolean expression profiles of stable phenotypes to 

deliver pruned contextualied networks. 

http://prunet.sourceforge.net [58] 

pybool Python package for inferring Boolean networks given a set of 

constraints. 

https://pypi.python.org/pypi/pybool 

https://github.com/JohnReid/pybool 

[59] 

PyBoolNet Python package for the generation, modification and analysis of 

Boolean networks. Formerly known as BoolNetFixPoints. Uses 

BoolNet to compute all maximal symbolic steady states. 

http://sourceforge.net/projects/boolnetfixpoints/ [60,61] 

RBN Random Boolean network toolbox for Matlab® for simulation and 

visualization of RBNs. 

http://www.mathworks.com/matlabcentral/fileexchange/3231-ran

dom-boolean-network-toolbox 

--- 

https://hal.archives-ouvertes.fr/hal-01589248/document
http://polymath.vbi.vt.edu/polynome/
https://github.com/jsjohnst/polynomevt
http://polybori.sourceforge.net/
https://github.com/sysbio-curie/PROFILE
http://www2.mpi-magdeburg.mpg.de/projects/promot
http://prunet.sourceforge.net/
https://pypi.python.org/pypi/pybool
https://github.com/JohnReid/pybool
http://sourceforge.net/projects/boolnetfixpoints/
http://www.mathworks.com/matlabcentral/fileexchange/3231-random-boolean-network-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/3231-random-boolean-network-toolbox


http://fias.uni-frankfurt.de/~willadsen/RBN 

http://www.teuscher.ch/rbntoolbox/ 

RBNLab Software for studying the properties of different types of random 

Boolean networks. 

http://rbn.sourceforge.net 

http://turing.iimas.unam.mx/~cgg/rbn/ 

[62] 

REACT Reverse Engineering with Evolutionary Computational Tools. https://github.com/veralicona/REACT [63] 

rxncon A framework for visualizing and modelling of cellular networks 

derived from experimental data. 

www.rxncon.org [64,65] 

SCNS Single Cell Network Synthesis toolkit for the synthesis of Boolean 

GRNs. 

http://scns.stemcells.cam.ac.uk [66] 

SELDOM enSEmbLe of Dynamic lOgic-based Models, a R package for 

reverse engineering of signaling pathways 

http://doi.org/10.5281/zenodo.250558 [67] 

SimBoolNet Cytoscape plugin for Boolean simulation of signal transduction 

dynamics. 

http://apps.cytoscape.org/apps/simboolnet [68] 

SMBioNet Modelling of GRNs with multivalued logical functions combined 

with temporal logic. 

http://www.i3s.unice.fr/~richard/smbionet/ [140] 

SQUAD Derives continuous dynamical models from logical models and 

allows their simulation. 

http://www.colomoto.org/software/squad.html [69] 

StableMotifs Java library for attractor finding and control of Boolean networks. https://github.com/jgtz/StableMotifs/ [12,70] 

STP Matlab® toolbox for the Semi-Tensor Product of matrices, which http://lsc.amss.ac.cn/~dcheng/stp/ --- 

http://fias.uni-frankfurt.de/%7Ewilladsen/RBN/
http://www.teuscher.ch/rbntoolbox/
http://rbn.sourceforge.net/
http://turing.iimas.unam.mx/%7Ecgg/rbn/
https://github.com/veralicona/REACT
http://www.rxncon.org/
http://scns.stemcells.cam.ac.uk/
http://doi.org/10.5281/zenodo.250558
http://apps.cytoscape.org/apps/simboolnet
http://www.i3s.unice.fr/%7Erichard/smbionet/
http://www.colomoto.org/software/squad.html
https://github.com/jgtz/StableMotifs/
http://lsc.amss.ac.cn/%7Edcheng/stp/


can be used to model Boolean networks [98].  

UpdateLabel Algorithm enumerating all deterministic update schemes in 

Boolean Networks. 

http://www.inf.udec.cl/~lilian/UDE/ [52,71] 

VisiBool A tool for modelling, simulation and visualization of Boolean 

networks. 

http://sysbio.uni-ulm.de/?Software:ViSiBooL [72] 

XBOOLE Library for Boolean matrices. Useful for implementing Zhegalkin 

polynomial based models. 

http://www.informatik.tu-freiberg.de/xboole/index.php [73] 

 

  

http://www.inf.udec.cl/%7Elilian/UDE/
http://sysbio.uni-ulm.de/?Software:ViSiBooL
http://www.informatik.tu-freiberg.de/xboole/index.php
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