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Bacteria populate the colon where they replicate and migrate in response to nutrient availability.
Here I model the colon bacterial population as a sandpile model, the colon-pile. Sand addition
mimics bacterial replication and grains toppling represents bacterial migration coupled to high pop-
ulation density. The numerical simulations reveal a behaviour similar to non-conservative sandpile
models, approaching a critical state with system wide avalanches when the death rate becomes neg-
ligible. The critical exponents estimation indicates that the colon-pile belongs to a new universality
class. This work suggest that the colon microbiome is in a self-organised critical state, where small
perturbations can trigger large scale rearrangements, covering an area comparable to the system
size and characterised by a 1/f noise spectra.

The bacterial population of the colon, the micobiome,
is an ecosystem of several species linked through symbi-
otic relationships among themselves and with the host
[1]. The literature on colonic bacterial populations has
focused on how the host and environmental factors af-
fect the diversity of bacterial species. Less attention has
been paid to what is the overall bacterial load in normal
physiological conditions. There are studies investigating
the impact of antibiotics, which can lead to a large re-
duction in the gut bacterial population size [2]. Here I
will instead focus on the natural variations of the number
of colonic bacteria due to bacterial replication, migration
and a small but finite death rate.
I will model the colon as a tube (Fig. 1a). Basically a

two dimensional grid with periodic boundary conditions
along the tube circumference and closed boundary condi-
tions at the tube ends. At each point of this lattice there
will be a certain number of bacteria h(x, y), the local
height of the pile, where x and y are the coordinates on
the tube. The anaerobic nature of the colon environment
together with the complexity of the polysaccharides feed-
ing the colonic bacteria makes their replication very slow.
Based on this evidence I will assume that the bacterial
replication takes place at an infinitesimal small rate.
I will also take into account that bacterial migration is

coupled to nutrient availability [3]. When the local nu-
trient density is high, bacteria will tend to allocate their
metabolic resources to fuel their replication. In contrast,
when nutrients are scarce, bacteria will tend to allocate
their metabolic resources to migrate in search for nutri-
ents. When the bacterial number at a given location is
too high, we expect a depletion of the nutrient concentra-
tion at that location. This local nutrient depletion will
then induce the migration or death of bacteria at the cor-
responding coordinates. I will put all these elements to-
gether into a threshold dependent migration rule. When
the local bacterial count h(x, y) exceeds a threshold hc,
each bacteria at that position dies with probability ǫ or
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otherwise migrates to one of the nearest neighbours lo-
cations. I will refer to this event as a toppling, following
the language of sandpile models.
This model is quite similar to the dissipative sand-

pile models that were investigated in the context of self-
organised criticality [4, 5]. Bacterial replication plays
the role of sand addition and bacterial migration coupled
to population density mimics sand grains toppling. Fol-
lowing the language of sandpile models, the cascade of
toppling events associated with the addition of one grain
is called an avalanche.The number of toppling events is
called the avalanche size and it is denoted by S. Based
on experience from dissipative sandpile models [4, 5], the
system approaches a self-organised critical state when
ǫ → 0. Near the critical state the avalanche size and
other avalanche characteristics follow a power law dis-
tribution, one signature of self-organised criticality [6].
More precisely, the distribution of avalanche sizes and
other avalanche characteristics satisfy the scaling form

P (x) = x−τsf(x/xc) (1)

xc ∼ ǫ−dx (2)

where τx and dx are scaling exponents and x = S or other
avalanche parameter.
Particle addition is however different than in dissipa-

tive sandpile models. In the colon-pile the addition of
new grains is coupled to the local particle density as a
birth process. The addition of the next grain will hap-
pen with higher probability at the coordinates that al-
ready have more particles. The question I address next
is wether that changes the universality class.
I will use numerical simulations to estimate the crit-

ical exponents of the colon-pile model. The dynamics
is divided into particle addition and avalanche dynam-
ics. I create a particle list containing all the particles
(bacteria) in the colon-pile and a two-dimensional array
keeping track of the colon-pile local heights h(x, y). Par-
ticle addition: At each particle addition step, I select a
particle from the list with equal probability, add a du-
plicate of it to the list and update the pile height at the
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FIG. 1. a) Colon-pile geometry. b) Avalanches following
bacterial replication events for a colon-pile of hc = 4 and
ǫ = 10−6.

associated position h(x, y) → h(x, y) + 1. Toppling: If
h(x, y) ≥ hc at any position in the pile, then each particle
at that position is removed with probability ǫ or other-
wise moved to one of the neighbour positions (x − 1, y),
(x, y − 1), (x + 1, y) or (x, y + 1) with equal probability.
This update is done synchronously for all current sites
with h(x, y) ≥ hc.

I have carried on numerical simulations for a tube of
dimension 1024× 1024, dissipation parameter values ǫ =
10−1, · · · , 10−6 and local heigh thresholds hc = 4, 8, 16.
The colon-pile was initialised by assigning a high in
the range [0, . . . , hc) with equal probability. To avoid
the initial transient states, I ran the model for 100,000
avalanches before recording . Then I recorded 100,000
avalanches to carry on the statistics.

Figure 1b illustrates the type of dynamics generated
by the colon-pile, using the number of replication events
as a clock.The number of toppling events after a sin-
gle bacterial replication follows a wide distribution, with
several small and frequent large spikes in the number of
toppling events. The avalanche size distribution P (S)
follows a wide distribution with a cutoff for large sizes
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FIG. 2. a) Avalanche size distribution for hc = 4 and different
values of ǫ, using logarithmic binning. b) After rescaling.

(Fig. 2a). The cutoff shifts to the right with decreasing
ǫ, corroborating the approach to a critical state.
Based on the scaling form (1), the distribution mo-

ments satisfy the scaling

〈xn〉 =

∫
dsP (x)xn ∼ ǫ−qx,n (3)

qx,n = (1− τx)dx + ndx (4)

where x = S. First I estimated qx,n from a linear fit
to the plot of log 〈xn〉 versus log ǫ, for n = 1, 2, 3, 4, 5.
Then I estimated τx and dx from a linear fit to the plot
of qx,n versus n. The results are reported in Table I for
the avalanche size and other properties discussed below.
The rescaling of the avalanche size distribution, using

the scaling exponents in Table I, exhibits an overlap for
intermediate and large values of the horizontal axis. The
overlap breaks down for small sizes, indicating that P (S)
cannot be reduced to the scaling form (1) with one scal-
ing parameter. The scaling deviations for small sizes are
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FIG. 3. a) Avalanche duration distribution for hc = 4 and dif-
ferent values of ǫ, using logarithmic binning. b) After rescal-
ing.

hc τS dS τT dT τB dB

4 1.06 1.32 1.03 0.266 1.30 0.332

8 1.07 1.32 0.948 0.261 1.31 0.326

16 1.07 1.31 0.938 0.271 1.32 0.316

TABLE I. Scaling exponents

related to the power law exponent τS being close to 1. In
such a case the full distribution shifts to lower values in
the vertical axis as the tail shifts to the right (Fig. 2a).
The estimated power law exponent τS = 1.06− 1.07 is

different than the 1.25 reported by Chessa et al [4] and
the 1.1 reported by Vazquez [5] for two different vari-
ants of the dissipative sandpile model. Furthermore, the
avalanche size distributions for those dissipative sandpile
models follow the simple scaling form (1) across the whole
range of avalanche sizes, indicating that this is not just a
matter of the exponents accuracy. Therefore, modelling
the particle addition as a birth process puts the colon-pile
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FIG. 4. a) Avalanche burden distribution for hc = 4 and dif-
ferent values of ǫ, using logarithmic binning. b) After rescal-
ing.

in a new universality class.
There are other interesting properties of the colon-pile

with biological relevance. The statistics of the inter-
avalanche time, here denoted by T , can give us an idea
of whether the colon-pile follows a standard Poisson dy-
namics with an exponential inter-event time distribution,
or punctuated equilibria with a wide distribution of inter-
vent times. The inter-avalanche times follow a wide dis-
tribution P (T ) that behaves similar to the avalanche size
distribution when ǫ → 0 (Fig. 3a). P (T ) can be rescaled
for intermediate and large inter-event times but the scal-
ing breaks down for small inter-event times (Fig. 3b).
The frequency spectrum associated with the avalanche
events is given by [6]

S(ω) =

∫
dT

P (T )T

1 + (ωT )2
∼ ω−2+τT (5)

Since τT ≈ 1 the avalanche time series exhibits a 1/f
noise spectra.
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ent values of ǫ, using logarithmic binning. b) After rescaling.

Another biologically relevant quantity is how many
bacteria die during an avalanche. The number of dis-
sipated particles, the dying bacteria, will be called the
avalanche burden and it will be denoted by B. The bur-
den size follows a broad distribution P (B) with a cutoff
that shifts to the right when ǫ → 0 (Fig. 4a). P (B)
follows the simple scaling form (1) across all values, as
demonstrated in Fig. 4b. The colon-pile is thus char-
acterised by frequent loss of a small number of bacteria
and less frequent but probable events where a large num-
ber of bacteria die. In theory, these large death events

could lead to the extinction of subpopulations of bacterial
species.
Finally, we are also interested in what is the typical

spatial area associated with an avalanche. I will de-
fine the avalanche radius, denoted by R, as the maxi-
mum distance from the first site of replication to any site
perturbed by the avalanche, either along the circumfer-
ence or the longitudinal axes. The estimated distribution
P (R) extends from 1 to the system size already starting
from ǫ = 0.01 (Fig. 5). The shape of the distribution
does not follow the scaling form (1) but it is characterised
by an increase in the frequency of avalanches with large
radius when ǫ → 0.
The colon-pile model indicates that the gut bacterial

population is in a self-organised critical state. This state
is characterised by large-scale rearrangements in the bac-
terial population numbers following the replication of a
single bacteria. The magnitude an non-locality of these
reorganisation of the colon-pile are more extreme the
smaller is the death rate associated with nutrient scarcity.
The validity of these theoretical observations remains to
be determined experimentally.
From the theoretical point of view, the critical state

is a consequence of the coupling between migration and
population density. This coupling is encoded in the top-
ping rule, migration happens when the population den-
sity exceeds a threshold. It is precisely this toppling rule
what brings in the analogy with the sandpile model, the
prototype of self-organised criticality [6]. The key differ-
ence with the canonical sandpile models is the particle
addition. In the colon-pile particle addition is encoded
as a birth process. Based on the numerical estimates this
difference puts the colon-pile in a new universality class.
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