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Abstract

In this paper we construct time-dependent solutions of three-dimensional gravity in AdS space
dual to systems with boundaries (BCFTs), following the AdS/BCFT prescription. Such solutions
can be discussed in the context of the dynamics of first order phase transitions, or more generally, in
the description of quantum quenches. As an example, we apply the holographic model to calculate
the dynamics of the entanglement entropy of a local quench corresponding to a nucleation of a
Euclidean bubble. As in the known 1+1 CFT examples of local cut and glue quenches, the holographic
entanglement entropy grows logarithmically with time with the correct universal coefficient. However,
in the bubble quench, the behavior is different at late times. The AdS/BCFT model exhibits the
light-cone spreading of correlations and saturation at late times. We also find an analytical formula
for the entropy at finite temperature. In the latter case the initial logarithmic growth is followed by
the linear law at intermediate times.

1 Introduction

Conformal field theories (CFT) [1] often serve as laboratories for interesting phenomena in physics. High
degree of symmetry imposes strong constraints not only on the observables of a given theory, but also
on its self-consistency. Such constraints allow better analytic control and qualitative understanding of
complex phenomena, notably in the strong coupling regime. It is sometimes also possible to generalize
the CFT results and techniques beyond the conformal case.

One particular class of interesting problems successfully tackled by the CFT methods in the last
couple of decades is the problems related to out-of-equilibrium dynamics of quantum systems [2–7].
Quite often one is interested in the quantum evolution of otherwise stationary system after a quench –
a non-adiabatic change of the Hamiltonian. Besides the general importance of such problems the recent
interest was also stimulated by the progress in experimental techniques, such as the control of dynamics
of cold atoms [8–15], which allowed to test various theoretical model predictions.
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CFT methods are particularly powerful in two dimensions. Therefore 1+1 dimensional systems turned
a natural subject of the early studies. For example, it is relatively straightforward to analyze time
dependence of correlation functions in the quenched systems. Some interesting features of such systems,
initially observed in the CFT models, include light-cone spreading of the correlations [16, 17], linear
growth of the entanglement entropy [18] and quantum revivals in finite systems [19].

AdS/CFT correspondence [20–22] provides another powerful tool to analyze complex systems, char-
acterized by strong coupling. In low dimension this correspondence can reproduce some characteristic
features of conformal theories, especially in two dimensions. A famous example is the holographic formula
of Ryu and Takayanagi [23] that expresses the entanglement entropy of a subsystem in terms of the dual
geometry. In 1+1 dimensional theory, the entanglement entropy of an interval of length l has a universal
piece [24–27]

SE =
c

3
log

l

ε
+ . . . , (1)

where c is the CFT central charge, ε is the UV cutoff and dots stand for the non-universal constant
piece. In AdS/CFT the logarithm is a length of the geodesic line in the three-dimensional anti de Sitter
space, connecting the endpoints of the interval. AdS/CFT was also successfully applied to the discussion
of the quenched dynamics. See [28–43] for an incomplete set of references. Behavior of correlators and
characteristic features of the entanglement evolution were reproduced in those studies.

In this work we will be focusing on the discussion of time-dependent dynamics from the point of
view of a specific setup in the AdS/CFT correspondence introduced by Takayanagi [44]. This setup was
dubbed AdS/BCFT as it refers to a gravity dual description of systems with boundaries, which are also
amenable to treatment by means of boundary conformal field theories, or BCFTs [45, 46]. AdS/BCFT
exhibits some characteristic features of BCFTs [44,47,48], although the precise correspondence between
the dynamical elements of two approaches has not been established in general.

In AdS/BCFT the dynamics of the boundary of the CFT is encoded in the dynamics of codimen-
sion one hypersurface ending on that boundary. In what follows we will describe new solutions of the
AdS/BCFT, which are both time and temperature dependent and propose some applications. In par-
ticular, we will demonstrate how these solutions can be discussed in the context of the evolution of the
entanglement entropy after a local quench. The quench protocol we will consider is similar to the so-called
cut and glue quenches. Holographic models of such quenches were perhaps originally considered in [49,50]
and more recently in [43, 51–54]. Holographic models reproduce well the behavior of the entanglement
entropy observed in the CFT calculations [55–60]. In particular, the entanglement entropy grows at initial
times, but decays at later ones.

The quench that we will consider exhibits a different entropy behavior. This is related to the fact the
initial state is prepared differently. It corresponds to a nucleation of a Euclidean bubble at t = 0. For
t > 0 the bubble expands. For this reason we will refer to such a protocol as to a bubble quench.

For early times ε � t � l the behaviour of the entropy is consistent with the cut and glue quench
analysis, as in [55]:

SE(t) ∼ c

3
log

t2

ε
+ k , (2)

where k is a non-universal part equal to k = −(c/3) log(l/2) in our model. At finite temperature the
early time behavior is replaced by

SE(t) ∼ c

3
log

[
2πT

ε

t2

sinh (πT l)

]
, (3)

while at intermediate times, T−1 � t < l, it exhibits linear behavior,

SE ∼
c

3
2πT

(
t− l

2

)
+
c

3
log

1

πεT
, (4)
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usually observed in the case of global quenches.
From the standard holographic considerations we argue that at late times t > ` the entropy should

saturate. This occurs in a non-analytic manner (phase transition) in the present model. Such effect is
also well known in the analysis of global quenches [18]. It is related to the finite speed of the quasiparticle
propagation (light-cone spreading).

This paper is organized as follows. In section 2 we give a very brief introduction to the AdS/BCFT
construction. In section 3 we apply a diffeormphism to construct time-dependent solutions of AdS/BCFT.
In section 4 we discuss applications of the solutions to the description of quantum quenches and derive
formulae for the time-dependent entanglement entropy and discuss some effects of finite temperature.
We summarize our results and observations in section 5.

Note added in the second version. After the first version of the paper came out we learned about
important earlier work on cut and glue quenches, both in the CFT and holographic context. Since our
protocol is different from those conventionally used in the cut and glue protocols, we changed the title of
the paper and referred to the type of quench studied in this paper as to a bubble quench.

2 The model

In this section we are going to briefly define the AdS/BCFT construction of Takayanagi [44]. See [47] for
a more complete review.

The idea of the construction is to provide a holographic dual description of a system that has a
boundary. The boundary can be introduced through boundary conditions imposed on the degrees of
freedom. The dual holographic theory must encode the degrees of freedom of the CFT with a boundary,
so one does not need the whole of anti de Sitter space to encode the smaller system. Instead one extends
the boundary of the CFT into the bulk and introduces additional boundary conditions in the AdS bulk
region, which should be compatible with the boundary conditions imposed on the original CFT.

The setup is illustrated by figure 1. Let the CFT be defined in space M of some dimension d, whose
boundary is ∂M = P . The CFT is complemented with appropriate boundary conditions on P . A dual
gravity theory will reside in space N with dimension d+ 1, whose total boundary ∂N = Q ∪M includes
a hypersurface Q in the bulk of gravity, such that ∂Q = ∂M = P . Such constructions can be realized
in full (top-down) string theory, where the role of hypersurface Q of boundary conditions is played by
appropriate D-branes (see [61–66] for some examples), so in full string theory the hypersurface Q is
dynamically fixed.

In the proposal of [44] the dynamics of branes is replaced by Neumann boundary condition, which is
expected to correctly account for the backreaction of the part of the gravity theory beyond the end-of-
the-world Q:

Kab −Khab = κTab − Σhab . (5)

This is in general a second-order equation for the induced metric hab on Q, which defines the embedding
of Q in the bulk space N (solving it for hab is equivalent to solving it for z(x) which determines the
embedding of Q in terms of figure 1). Kab is the pullback of the extrinsic curvature on Q (K being its
scalar). The right hand side of the equation is the stress-energy tensor of the matter placed on Q with
units set by κ = 8πG, where G being the d+ 1-dimensional Newton’s constant. Part of the stress-energy
tensor corresponding to a constant energy density Σ is separated. Σ may also be referred as to the surface
tension, or equivalently, cosmological constant on Q.

In the next section we will describe some solutions to equation (5) with Tab = 0. Since the Neumann
boundary condition should reflect the choice of the dual boundary condition on P , Σ should have a
meaning in terms of the CFT data. The exact meaning has not been established so far, but some insight
can be obtained by studying the entropy of the defect created by P , as in [44,48,67].

3



z

xθ

N

M

Q

P

Figure 1: In AdS/BCFT construction of [44] gravity theory in d+ 1-dimensional space N with boundary
Q is expected to be dual to a CFT defined in d-dimensional space M , with boundary P = ∂M = ∂Q.

We will restrict our interest to 1+1 CFT examples and to asimptotically AdS3 bulk geometries in the
Poincar patch. We will use xµ = (t, x) as the CFT coordinates and z as the coordinate in the gravity
bulk.

The main player in our game will be the asimptotically anti de Sitter geometry given by the metric

ds2 =
L2

z2

(
−f(z)dt2 + dx2 +

dz2

f(z)

)
. (6)

Pure AdS space is represented by f(z) = 1, while the BTZ black hole geometry is obtained when
f(z) = 1− z2/z2h. The latter geometry is dual to a finite temperature CFT state, with temperature given
by T = 1/(2πzh), where zh is the coordinate of the horizon of the black hole. The two solutions can be
related to each other by a (large) diffeomorphism. We will make use of this fact in the next section.

The simplest static solution of boundary condition (5) is obtained for the half-plane configuration.
We choose boundary P to be parameterized by equation x = 0 (as in figure 1). The embedding of Q can
then be parameterized by x = x(z). For Tab = 0 and empty AdS3 equation (5) is solved by a straight
line embedding [44],

x (z) = z cot θ , where cos θ = LΣ. (7)

Tension Σ defines the angle, at which plane Q intersects the asymptotic AdS boundary. We define θ
as the angle external to region N encoding physics in M . It can be seen that the case 0 ≤ θ < π/2
corresponds to Σ > 0. The tension is negative for π/2 < θ ≤ π. In both cases the tension is bounded:
|Σ| ≤ 1/L.

In the finite temperature geometry the solution is slightly more involved,

x (z) = zharsinh

(
z

zh
cot θ

)
. (8)

Angle θ, again, is the angle at which Q crosses the boundary at z = 0, external to subspace N . In the
z → 0 (f(z)→ 1) limit one recovers the pure AdS result (7).

Some other solutions to boundary conditions (5) were considered in [48, 67–73]. In the next section
we will generate time dependent finite temperature solutions applying a conformal transformation.
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3 Time-dependent AdS/BCFT solutions

Other solutions of equation (5) can be generated by applying isometries to the basic solution (7). The
AdSd+1 metric is invariant under the d-dimensional conformal group. For example, boosts create lines
x = z cot θ(η) moving with constant velocity η in the AdS3 bulk, intercepting the plane z = 0 at an
η-dependent angle [48].

More interesting configurations can be obtained from the special conformal transformations [44]. In
the Euclidean space (t→ itE) the half-plane x > 0 on the boundary can be mapped to the interior of a
disc by a global transformation [74]

x′µ =
xµ + cµx

2

1 + 2 (c · x) + c2x2
, (9)

where cµ is a constant vector and xµ = (x, tE). The map of the half-plane x = 0 to the disc of radius R
corresponds to the choice cµ = (1/2R, 0). The AdS metric is invariant under this transformation provided
the coordinate z is transformed as

z′ =
z

1 + 2 (c · x) + c2x2
. (10)

In the bulk, the transformation maps the two-dimensional Euclidean AdS2 slices, including Q (7) into
spherical domes sitting on M . The new Q is defined by equation

t2E + (x−R)
2

+ (z −R cot θ)
2

= R2 csc2 θ . (11)

As before, θ is the external intersection angle of the spherical surface with the z = 0 boundary. When
tension Σ = 0, or θ = π/2, Q is exactly a hemisphere. One can also consider the analytic continuation of
the spherical solution to the Minkowski space.

− t2 + (x−R)
2

+ (z −R cot θ)
2

= R2 csc2 θ . (12)

The real-time solution describes a compact space with expanding walls.
One possible application of such solutions is in the context of the dynamics of phase transitions, or the

problem of the decay of a false vacuum. Euclidean solution (11) describes an imaginary time nucleation
of a bubble of a new phase, while Minkowskian solution (12) – the expansion of the bubble after the
nucleation (figure 2). In this setup, the anti-de Sitter space represents the true vacuum, while the effect
of the false vacuum is effectively described through the non-zero surface tension. As we shall see, in this
model, temperature effects accelerate the expansion, and there is no finite temperature phase transition.

To generalize the above solutions to the case of finite temperature we are going to apply a bulk diffeo-
morphism, which relates the empty AdS3 geometry with that of the BTZ black hole. Since equation (5)
is a tensor equation, we expect it to transform covariantly under the diffeomorphism. That is, it maps
solutions of the equation to other solutions of the equation.

Let us consider a general transformation of the metric

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (13)

To distinguish between AdS and BTZ coordinates in the above equation, we reserve the original co-
ordinates (t, x, z) for the empty AdS, and use primed coordinates, (t′, x′, z′) for the BTZ. With these

5



Figure 2: Nucleation of a Euclidean bubble of anti-de Sitter space t < 0, creation (t = 0) and evolution
of the real bubble (t > 0).

definitions, we obtain the following coordinate transformation

t = −zh +
z2h cosh (x′/zh) et

′/zh√
z2h − z′2

,

x =
z2h sinh (x′/zh) et

′/zh√
z2h − z′2

, (14)

z =
zhz
′et
′/zh√

z2h − z′2
.

In deriving these formulae, the integration constants were fixed by imposing the condition that in the
limit zh →∞ we must recover t = t′, x = x′ e z = z′.

Transformations (14) can be readily used on equation (11) to obtain a new, temperature and time
dependent solution of the AdS/BCFT boundary condition (5):

t′E = zharccos

{
1

zh
√
f (z′)

[
zh cosh (x′/zh)−R z′

zh
cot θ −R sinh (x′/zh)

]}
. (15)

The analytical continuation to the Minkowski space is performed by doing a Wick rotation t→ itE and
t′ → it′E , so we also find a hyperboloid-like solution

t′ = zharccosh

{
1

zh
√
f (z′)

[
zh cosh (x′/zh)−R z′

zh
cot θ −R sinh (x′/zh)

]}
. (16)

The parameter R in the transformed solutions becomes the height of the profile in the z direction,
0 ≤ R ≤ zh. If one, however, analytically continues to R > zh one would get a class single-boundary
solutions, whose R→∞ limit is static solution (8). We will not consider this branch here.

The characteristic shape of the hypersurface Q is demonstrated by figure 3, where again, the Euclidean
solution is glued with the Minkowskian one at t = 0. In comparison with configuration shown on figure 2,
the new Q is bounded in z dimension by the horizon of the black hole. One can also check that (15) and
(16) recover shapes (11) and (12) respectively, in the zh →∞ limit.
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Figure 3: Nucleation of a Euclidean bubble of the BTZ spacetime t < 0. Creation (t = 0) and evolution
of the real bubble (t > 0), for θ = π/2.

In the finite temperature case the parameter R is related to the spatial radius ρ at time t = 0 through

ρ = zharctanh
R

zh
, (17)

which makes sense only when R ≤ zh, and for zh → ∞ reduces to ρ = R. We also see that the profile
intercepts the horizon at infinite radius ρ→∞, or R→ zh. The profiles of t = 0 configurations is shown
on figure 4.

x

zh
zHxL

R�zh = 0.2 R�zh = 0.6
R�zh = 0.9 R�zh = 1.0

Figure 4: Profiles of Q in the BTZ geometry for different values of R (height of the bubble), at t = 0 and
θ = π/2. As R approaches the horizon, the width of the bubble becomes infinite, l = 2ρ→∞.

It is also interesting to compare the rate of expansion of the bubbles at zero and finite temperature. On
figure 5, we show the trajectories of walls of two bubbles in zero (blue) and non-zero (red) temperature

7



geometries, as well as the velocities of the walls. Both bubbles have the same size at the moment of
creation and their walls are at rest. At late times the walls of either bubble approach the speed of light.
However, at finite temperature the walls have larger acceleration. Although the plots are shown for Σ = 0,
this effect does not depend on the tension. Consequently, in this model one does not observe a critical
(stationary) bubble at any temperature.

2 l
x

t

2 l
x

c=1
vHxL

Figure 5: (Left) trajectories of the T = 0 (12) (blue curve) and T 6= 0 (16) (red curve) bubble walls.
(Right) velocities of the two types of walls as a function of x.

4 Local quantum quench

The time-dependent solutions of the AdS/BCFT problem can also be discussed in a more general context
of the dynamics of quantum systems out of equilibrium. One can apply an abrupt local, or global
perturbation (quench) to the system and study the time behavior of the correlators. Entanglement
entropy is a measure of quantum correlations. For this reason it is an interesting object to study in the
non-equilibrium dynamics.

One distinguishes global and local quenches. In global quenches one perturbs the system as a whole,
for example, by tuning its Hamiltonian. In local quenches, one only perturbs a part of the system. A well-
established result in the case of global quenches is the linear growth of the entanglement entropy [18]. The
linear growth saturates for a finite system and for late times, the entropy is constant. These observations
are true also beyond the conformal case [7].

We would like to compare the AdS/BCFT bubbles constructed in the previous section with local
quenches. In cut and glue quench protocol two complimentary subsystems are prepared unentangled in
their respective ground states. Then the two subsystems are brought together and their joint evolution
is investigated. Alternatively, in such a quench, the global system is disconnected at certain moment of
time and the dynamics of the isolated subsystems is watched. In 1 + 1 CFT this quench protocol can be
treated by appropriate conformal transformations, mapping to a simple BCFT configuration.

From the holographic point of view, our prescription is close to the double quenches considered in [75],
where two slits in the initial state correspond to the walls of our bubble. Here the walls of the bubble
are entangled through the Euclidean nucleation protocol (see a more recent model [76], where the bubble
does not reconnect with the AdS boundary). Also, in our analysis, the exterior of the bubble will always
remain unentangled and disconnected. In such a case the problem is solved without invoking a conformal
map.

In terms of the holographic Ryu-Takayanagi prescription [23], which in our case coincides with the
more general covariant one of Hubeny, Rangamani and Takayanagi [77], either of the two bubbles (11),
or (15) at t = 0, have zero entanglement with the exterior, as in the cut and glue protocol. This is
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because by the prescription, the entanglement entropy is proportional to the area (length in 3D) of the
minimal area spacelike hypersurface (geodesic line in 3D) γmin that connects the endpoints (walls) of the
bubble in the gravity bulk,

SE =
Area[γmin]

4G
. (18)

However, in the presence of the end-of-the-world brane Q the geodesic is allowed to end on Q. Since Q
also ends on the walls of the bubble, the geodesic has zero length and the entanglement entropy is zero.
We will illustrate this argument in an example that follows. See also [48, 49, 69, 70, 78–80] for a similar
discussion.

During the expansion, for t > 0, the bubble will continue having zero entanglement entropy. By
analogy, with quantum quenches, the walls of the bubble follow propagation of the front of the quasi-
particles, and there is no entanglement with anything outside of the bubble. (The walls will eventually
form a light cone, analogous to the lightcone of the quenched systems [16, 17].) Below we will focus on
the entanglement of other subsystems and compute their entropy.

The first configuration we are going to analyze is shown on figure 6: we would like to study the
entanglement of the two halves of the bubble. In the figure, the black curves correspond to boundary Q
in AdS (left) and BTZ (right) spaces, given by equations (12) and (16), respectively. The profiles with
θ = π/2 at t = 0 are shown.

Using equation (18) we compute the entanglement entropy of any of the halves of the bubble as the
length of a geodesic line connecting the walls of the bubble in the gravity bulk. There are two options
in this case (shown as blue and green lines on figure 6): one line connects the endpoints of the interval
representing a half of the bubble, while the other option connects the center of the bubble with the curve
Q. It turns out that the second geodesic (green vertical line on figure 6) is always shorter in either
geometry.

x

z

x

z

Figure 6: (Left) geodesics (blue and green lines) and end-of-the-world surface Q (black) in the empty
AdS geometry, θ = π/2. (Right) same in the BTZ geometry.

In the case of empty AdS (left panel on figure 6) the boundary Q is a circular arc of radius R csc θ
centered at z = R cot θ, equation (12). For the bubble of radius r(t) at time t, r(t)2 = R2+t2. Calculation
then yields the length of the geodesic in geometry (6) connecting the middle of the bubble with Q as

`0 = L

∫ z∗

ε

dz

z
= L log

(z∗
ε

)
= L log

(√
R2 csc2 θ + t2 +R cot θ

ε

)
, (19)

where z∗ is the height of the arc Q. As usual, ε is a UV cut-off introduced to make the length finite.
Meanwhile the length of the geodesic connecting the two endpoints of the interval of length r(t) (blue

circle on figure 6) is given by

` = 2× L
∫ r/2

ε

rdz

z
√
r2 − 4z2

= 2L log

(√
R2 + t2

ε

)
+O(ε2). (20)
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By choosing the cutoff ε sufficiently small one can always make ` > `0. The reason for that is that the
geodesic `0 has only one endpoint on the boundary z = 0, where the distance must be regulated. Therefore
we use `0 in equation (18). The standard conversion between the 3D gravity and CFT parameters is [81]

c =
3L

2G
. (21)

At late times the entanglement entropy of a half of the bubble behaves as

SE ∼
c

6
log

t

ε
. (22)

On figure 7 (left) we plot the behavior of the entropy for different values of the initial bubble size. The
entropy interpolates between the initial value, cf. [48]

c

6
log

(
2R

ε
cot

θ

2

)
(23)

controlled by R and θ and the late time logarithmic growth, independent from those parameters.
A similar calculation can be done in the finite temperature case, as on the right of figure 6. For

the qualitative understanding it is sufficient to consider the case θ = π/2. As for zero temperature, the
geodesic that connects the center of the bubble with Q (green line on figure 6) can always be made shorter
if ε is sufficiently small. The turning-point z∗ (the height) of the Q profile is given by the expression,
cf. (16)

z∗ = sech(t/zh)

√
z2hsech2(t/zh) +R2 . (24)

Therefore, the temporal behavior of geodetic `0 is

`0 = L

∫ z∗

ε

dz

z
√

1− z2

z2h

= L log

2zh
ε

sech (t/zh)
√
R2 + z2h sinh2 (t/zh)

zh +
√
z2h − sech2 (t/zh)

[
R2 + z2h sinh2 (t/zh)

]
 . (25)

For t → ∞, the length `0 tends to an asymptotic value equal to L log(2zh/ε), as can be also seen on
figure 7 (right). The asymptotic value of the entropy is

SE →
c

6
log

(
1

πεT

)
. (26)

As in the T = 0 case, the values of R and θ only affect the early time behavior of the entropy, for example,
the R-dependence at t = 0 is given by

SE ∼
c

6
log

[
1

πεT

sinh 2πT l

1 + cosh 2πT l

]
, (27)

when t � 1/T . Here we used relation (17) between parameter R and the initial radius ρ ≡ l of the
bubble.

A more common configuration to study in the context of local quenches is the evolution of the
entanglement of the interval, corresponding to the t = 0 bubble with the remainder of the system. Recall
that at time t = 0, the bubble is unentangled with the exterior. We will consider θ = π/2 and first treat
the case of zero temperature.

The setup we are going to study is shown on figure 8. The dashed black arc of radius R is the Q-profile
of the initial bubble created at t = 0. The bubble begins to expand, and the profile of Q at some later

10



t

SE

t

c
6
logI 1

ΠΕT
MSE

Figure 7: Plot of the time dependence of the entanglement entropy of the two halves of the expanding
bubble for different initial sizes of the bubble. The left plot corresponds to empty AdS geometry shows
asymptotic logarithmic growth. The right plot, for the finite temperature geometry, shows saturation of
the entropy at a value independent from the initial parameters of the bubble.

time t is shown as a continuous black arc on figure 8. At this time the radius of Q (and the radius of the
bubble) is given by l =

√
t2 +R2.

We would like to know the entanglement of the initial interval of size l = 2R with the rest of the
system. For this we are going to use equation (18) with an appropriate minimal geodesic line. The blue
curves of radius r on figure 8 correspond to the natural choice of the minimal surface at early times, after
the beginning of the expansion. An alternative choice would be a geodesic connecting the endpoints of
the interval, which in this case coincides with the dashed line. Clearly the second geodesic is longer. The
two blue pieces have zero length at t = 0 and the entanglement is zero as claimed in the beginning of this
section.

In order to apply equation (18) we have to calculate the length of the blue curves, which is inside
boundary Q, from the endpoints of the interval until the intersection point z0 with the black curve. The
geodesics must satisfy Dirichlet boundary condition at the endpoints and they must be perpendicular to
the black curve at the intersection point (Neumann boundary conditions). The blue geodesics are also
circular arcs with

r =
l2 −R2

2R
and z0 =

r
√
R(R+ 2r)

R+ r
. (28)

Therefore, the length of the relevant pieces of the geodesics is

` = 2× L
∫ z0

ε

dz

z

r√
r2 − z2

= 2L log

(
t2

ε
√
t2 +R2

)
+O(ε2) . (29)

However, as the continuous black arc expands over time, the blue geodesic also expands in size so that
there will be a certain instant of time that its length ` is greater than the length of the dashed black curve
`0. At this moment we have to switch to `0 in equation (18). In this model the change is non-analytic.
The length of the dashed black circle is given by

`0 = 2× L
∫ R

ε

dz

z

R√
R2 − z2

= 2L log

(
2R

ε

)
+O(ε2) . (30)

The phase transition occurs at tc = R
√

2(1 +
√

2).

At initial times the entropy of the system grows logarithmically,

SE ∼
c

3
log

t2

εR
, t� R . (31)

11



x

z

Figure 8: Calculation of the entanglement entropy of the finite interval bounded by the dashed arc with
the rest of the system after a cut and glue quench.

At later times it saturates at the standard universal value of the entropy of a finite interval. The plot of
the entropy and of the phase transition is shown on figure 9 (left).

tc
t

S0

SE

tc
t

S0

SE

Figure 9: (Left) Evolution of the entanglement entropy of a finite interval in a bubble quench from the
AdS/BCFT calculation (configuration of figure 8). The blue curve shows the logarithmic growth from
equation (29). The growth saturates at S0 (red line), equation (30). The gray line is the behavior
predicted in a local cut and glue quench, equation (36) (Right) Similar plot for T 6= 0. The blue line has
a linear segment described by equation (34). The gray line illustrates the T = 0 curve.

To find the entropy at finite temperature one can apply transformations (14). Consequently, one
derives the following analytical formula

SE =
c

3
log

 2zh (cosh (t/zh)− 1) et/zh

ε
√

2 (cosh (t/zh)− 1) et/zh + sinh2 (l/2zh) e2t/zh

 , (32)

where l is the length (rather than radius) of the initial bubble. For short times the generalization of
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equation (31) is

SE ∼
c

3
log

[
2πT

ε

t2

sinh (πT l)

]
. (33)

It is interesting that at intermediate times, T−1 � t < l, the entropy grows linearly,

SE ∼
c

3
2πT

(
t− l

2

)
+
c

3
log

1

πεT
. (34)

We note that the entropy is twice the value of equation (26) at t = l/2.
For t > l one expects the saturation phase transition to the value of the entropy of an interval at

finite temperature:

S0 =
c

3
log

[
1

πTε
sinh (2πT l)

]
. (35)

This finite temperature behavior is illustrated by the right plot of figure 9.

5 Conclusions

In this paper we obtained new time-dependent solutions to the AdS/BCFT problem of [44]. These new
solutions correspond to expanding walls in anti-de Sitter space and are natural to discuss in the context
of the process of nucleation and expansion of new phases.

We demonstrated that the time-dependent solutions can be suitable for the discussion of quenched
dynamics, in a setup similar to the local cut and glue protocol. This observation is supported by the
behavior of the entanglement entropy, which grows logarithmically at early times. However, our protocol
is slightly different from the conventional cut and glue quench, and the late behavior of the entropy is
different.

In the bubble protocol one can observe other characteristic features of quenched dynamics. The
solutions are compatible with the light-cone expansion of the correlations. The entanglement of a finite
interval saturates at finite time. This effect is typically discussed in the case of the global quench [18],
and since we disregard the exterior of the bubble, it is perhaps not so surprising that the linear behavior
also occurs in the bubble quench.

Some analytical results for local quenches of finite intervals are harder to obtain using the CFT
techniques [17], because the appropriate conformal maps become non-invertible. Similar problems can
occur in the geometric analysis, although we have been able to get some exact analytical results. In
particular, at early times we are able to derive equations (29) and (31) for the entropy. The early time
behavior is compatible with

SE =
c

3
log

(
2t

πε
l sin

πt

l

)
+ k′ . (36)

which is the cut and glue quench result in CFT [55,56] and in the holographic models [43,49,51–54,59,60].
First, the match is up to the factor of the length l. Naively, the argument of the logarithm in equation (36)
is not dimensionless, which means that there is a dimensionful scale hidden in the non-universal part
k′. The holographic derivation automatically gives the correct dimension removing one l factor. The
saturation point in the bubble quench occurs at t ∼ 1.05l, which is very close to the point, where the
argument of the logarithm in (36) vanishes, as can also be seen on figure 9 (left).

Finally we derive equations for the evolution of the entropy of a finite interval at finite temperature.
For early times we derive equation (33), which could be tested by CFT techniques, cf. [82]. As already
mentioned, at finite T , the entropy tends to show linear growth (34) for intermediate times T−1 � t < l,
before the saturation phase transition.

We believe that some of the outstanding issues of the present analysis, as well as other interesting
questions of the quenched dynamics can be further addressed in the AdS/BCFT formalism. We leave

13



this for a future work. One important question, is whether one can make the AdS/BCFT correspondence
more precise by relating θ (or Σ) to CFT quantities, or finding appropriate forms of Tab in equation (5).
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