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ABSTRACT

Spatial interaction effects between charge carriers in ionic systems play a sizable role beyond a classical Maxwellian description.
We develop a nonlocal, two-fluid, hydrodynamic theory of charges and study ionic plasmon effects, i. e. collective charge
oscillations in electrolytes. Ionic spatial dispersion arises from both positive and negative charge dynamics with an impact
in the (far-)infrared. Despite highly classical parameters, nonlocal quenching of up to 90% is observed for particle sizes
spanning orders of magnitude. Notably, the ionic system is widely tunable via ion concentration, mass and charge, in contrast
to solid metal nanoparticles. A nonlocal soft plasmonic theory for ions is relevant for biological and chemical systems bridging
hard and soft matter theory and allowing the investigation of non-classical effects in electrolytes in full analogy to solid metal
particles. The presented semi-classical approach allows studying plasmonic photo-catalysis introducing nonlocal aspects into
electrolyte-metal interactions.

Introduction
The field of plasmonics is widely understood as the investigation of collective oscillations of the electron plasma in metallic
systems induced by an external electromagnetic field. In a broader sense, such plasma oscillations can be found for any system
where charged carriers are induced, such as stretchable1 and amorphous materials2 and charged plasmas in space3, 4, e. g. the
high energy nuclear plasma in the solar core, the ion gas in the ionosphere or intergalactic clouds.

Electrolytes consist of positively and negatively charged ions even in an equilibrium situation. Hence, the question arises, if
plasmon-like behavior can be observed in ionic systems and if interaction effects between the charge carriers play a sizable role
as compared to the quantum effects observed for metal nanoparticles beyond a classical Maxwellian description5–9. Plasmons
of noble metals are studied with respect to applications in sensing and spectroscopy10, optical filters11, plasmonic colors12,
lasers13, and quantum plasmonics14 exploiting the extreme confinement and sensitivity of their electro-optical excitation. The
plasmonic properties of ions in solution, on the other hand, are of interest in biological and chemical systems. Local energy
transfer and communication are central in the signaling and conductivity of nerve cells (axons)15 with great importance to the
functionality of the biological system in question. Another active area potentially benefiting from this study is catalysis where
the interaction of an electrolyte with its environment and in particular with functionalized surfaces is of central interest.

Next to classical nanophotonics used for ionic systems, we are in particular interested in non-classical effects. Soft
plasmonics for spherical ions16 and chains of axons15 have been studied within the RPA (Random Phase Approximation)
method including Lorentz friction, i. e., electron radiation due to the acceleration of charges in the oscillations. Spatial
dispersion phenomena such as charge (Coulomb) interaction and diffusion arise within the hydrodynamic model, where free
charges are described within a linearized Navier-Stokes equation. This was extensively studied for metals17–38, see for instance
the review Ref.39, and more recently in semiconductors40. Core parameters are taken from ab initio methods such as DFT
(Density Functional Theory)41, 42, namely, the charge density distribution n and the pressure p between charges, which defines
the nonlocal interaction strength β .

In an electrolyte, the charge carriers are heavy ions and both charge plasmas need to be considered. Such a two-fluid
model of different charge carriers has been adapted to semiconductors recently43. Here, electrons and holes are described
and their (effective) mass comprise an additional degree of freedom not available in metal systems. There is an imbalance of
masses as for electrons and holes in semiconductors, but the masses of ions can be many orders of magnitude larger than the
electron mass me. Ion concentration can be used to further tune the system similar to doping in semiconductor systems. In
addition, depending on the choice of material, the charge Q itself can be different from the elementary charge e. This adds yet
another degree of freedom in the case of electrolytes. These recent findings offer interesting novel platforms to study nonlocal
effects experimentally. A plasmonic theory for ions in solution can bridge hard and soft matter theory and allow studying these
interaction effects from a photonic perspective in full analogy to solid metal particles, see Fig. 1. The semi-classical approach
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presented here can be fully integrated into standard nano-optic simulation frameworks and is considered to be of great interest
for plasmonic photo-catalysis44 introducing nonlocal aspects into electrolyte-metal interactions possibly avoiding the hardship
of DFT calculations.
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Figure 1. Concept of (localized surface) plasmon resonance (LSPR) in ionic systems compared to metals. Illustration
of charge carrier displacement in (a) a metal solid and (b) an ionic fluid confined by e. g. a lipid cellular membrane. (c), (d)
Field enhancement map of the plasmonic resonance in both systems. (e), (f) Impact of nonlocal charge dynamics (with and
without electron diffusion D) on metals and ions in terms of the extinction cross section (upper panel) and the field
enhancement (lower panel). The particle size is R = 10 nm and a Drude model for gold was used for clarity. The charge density
is n = n+ = n− = 1mol/m3NA.

In this article, we investigate ionic carriers in a finite electrolyte system made of hydronium H3O+ (more abundant than
H+) and hydroxide OH− at room temperature. Together with their masses and charges, this yields the parameters collected in
table 1. These can be created from confined ions within insulating membranes typically in the micrometer scale. In particular,
the large ion mass and low concentration results in an energy and size regime very distinct from metal nanoparticles. However,
we find that these systems, too, are highly tunable with various system parameters, such as the ion charge and mass ratio.
Moreover, a remarkable impact of nonlocal interaction of charge carriers is found, resulting in particular in a reduction of the
classically predicted intensity. Notably, this nonlocal quenching can be pushed to larger particle sizes by decreasing the ionic
concentration, i.e., shifting the plasmon resonance frequency towards lower frequencies.

Results
Plasmons in metals are an excitation of the conduction band electrons via a polarizing electromagnetic field that displaces the
freely moving electrons with respect to the positively charged atomic cores, see Fig. 1(a). In an electrolyte, we find even at
thermal equilibrium a small density n± of ions of different charge Q± and mass m±, see Fig. 1(b). However, in the absence of a
rigid crystal lattice, both types of ions can oscillate with typically different plasmon frequencies ω2

p± = 4πQ2
±n±/m±. The coupled

system yields an effective localized surface plasmon resonance (LSPR) for spherical geometries at ωLSPR =
√

(ω2
p++ω2

p−)/3εb,
where εb is the background permittivity inside the confining membrane. In contrast to metals, where the mass equals the
electron mass m = me and the charge is the elementary charge Q = e, such ion systems become highly tunable through the
choice of materials and their concentration. Assuming self-ionization of water at the thermodynamic equilibrium, we arrive
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Figure 2. Extinction cross section and quenching of field enhancement at different ion concentration levels and for
several orders of magnitude in particle size. (a) Extinction cross section normalized to geometrical cross section of the
membrane. (b), (c) Comparing the maximum intensity at the particle surface for ionic systems with an ion concentration of (b)
n = 1mol/m3NA and (c) n = 10−3mol/m3NA for varying membrane size.

at a concentration nT hermEq = 6.022×1016m−3 for each type of ion. The localized plasmon resonance for this low density
hydroxide and hydronium system, see table 1 for further parameters, results in λLSPR = 6.38m (ωLSPR = 4.7×107Hz).

The plasmons of metals are of great interest due to their ability to capture electromagnetic fields, i. e. their optical cross
section is far greater than their geometrical cross section, and the associated strong local field enhancement in the proximity of
the particle surface as depicted in Figs. 1(c) and (e). Note that we have used a Drude model for gold (ωp,Au = 9 eV, εb,Au = 9,
γp,Au = 0.071 eV), excluding intraband effects, for clarity. This is put in comparison to the considered electrolyte system in
Figs. 1(d) and (f). The aforementioned effective LSPR for the coupled system agrees with the extinction cross section maximum
and given the small membrane size of R = 10 nm considered here the light trapping is several orders of magnitude higher than
for the gold particle of the same size. However, the associated local field enhancement at resonance is much smaller than for
the metal. This can be understood and potentially remedied as follows. We have considered (neutral) water as background
everywhere, while in the metal system a strong refractive index contrast is found at the surface. Due to the commonly known
boundary condition of continuous ε~̂n ·~E this yields an increase in the field on the outside of the spherical nanoparticle. In case
of the ionic system, no such strong contrast is found, however, the lipid membrane used to confine the electrolyte could be filled
with a different medium than water, e. g. a cytoplasm. It should also be noted that the field enhancement increases for even
lower energies until it saturates. This region is most strongly affected by non-classical charge carrier interactions.

Finally, we compare classical electrodynamic results (standard Mie coefficients) with our nonlocal model. For the metal
system, as reported previously, a blueshift of the LSPR is observed and on inclusion of electron diffusion effects the resonance
becomes more strongly broadened and attenuated, see Fig. 1(e). The coupled ionic system also shows an attenuation, see
Fig. 1(f), which we study in depth in this article. The LSPR position is marked by a vertical line.

First, we try to observe a blueshift of the LSPR with respect to the classical picture of the electrolyte in Fig. 2(a). We
consider two different ion concentrations that yield different resonance wavelengths and consider two membrane sizes, one that
behaves classically (R = 50 nm) and one that shows nonlocal response (R = 5 nm). Zooming into the resonances (note the
log-log axis), we indeed note a blueshift, though it is not as dramatic as for the metal system, since the resonances are much
broader.

Hence, we concentrate on the quenching of the field enhancement and study its dependence on particle size for two different
ion concentrations in Figs. 2(b) and (c). The ion concentration determines the LSPR and frequency range of interest for the
system. With this, the impact of nonlocal quenching of the local field can be shifted to larger particle sizes. In general, a large
enough membrane size yields the local limit where nonlocal charge carrier dynamics are no longer sizable. We have once more
included in Fig. 2(b) for an extremely small membrane size, where the blueshift is remarkable. It should be noted, however,
that a water molecule has a diameter of about 0.275 nm. A membrane with radius R = 1 nm (R = 10 nm) could accommodate
approximately 380 (3.8×105) (densely packed) water molecules. Hence, it should be made clear, that the results presented for
subnaometer radii have to be taken with care.
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Figure 3. Quenching of field enhancement as a function of membrane size and charge imbalance. Comparing the ratio
of the maximum intensity between local and nonlocal theories at (a) a 1 nm distance and (b), (c) the membrane surface for ionic
systems with an ion concentration of (a), (b) n− = 1mol/m3NA evaluated at ω = 10 GHz and (c) n− = 10−3mol/m3NA evaluated
at ω = 10−2 GHz as a function of membrane size for varying charge imbalance. Due to total charge balance n+Q+ = n−|Q−|.

We digress from the hydroxide and hydronium system in Fig. 3. Here, we consider the local field quenching for membranes
up to 200 nm in diameter for an imbalance of charges in the ions at a fixed frequency, where the field enhancement is saturated
for the |Q±|= e. This yields an imbalance of ion concentration for the two types, balancing the total charge. Due to the different
masses, it makes a difference which type of ions has the larger charge. Fig. 3(a) shows that even at a distance of 1 nm away
from the membrane surface, a field quenching of up to 30% can be found. Again, results for membrane sizes below R = 1 nm
are purely academical, but the solution to the coupled equations of charge dynamics and electromagnetic wave equation are
well defined. Figs. 3(b) and (c) are evaluated directly at the membrane surface for different ion concentrations and even more
dramatic nonlocal field quenching is observed, where the system with the largest charge imbalance shows the lowest quenching.
This can be explained by noting that the LSPR of the systems is pushed further away from the excitation frequency.

A further imbalance of interest is the mass imbalance. We study the local field quenching due to spatial dispersion in Fig. 4.
Larger membrane radii yield a steady 20% quenching until the nonlocal effects cease and both theories coincide. Tuning thus
the optical properties of the ionic system, the nonlocal response can be made sizable at larger membrane sizes as apparent from
Fig. 3(c). For heavy ions paired with light ions (lower part of the graph) stronger quenching can be expected for a larger range
of membrane sizes. For heavy ions paired with even heavier ions this range of strong attenuation is considerably smaller.

In the next subsections, we summarize to the main aspects of the developed theory which is further detailed in the Methods
section.

Two-fluid model
The optical response of an ionic system with free negative and positive charges in a fluid is based in the hydrodynamic model
on separating the dynamics of both types of ions, assuming ∇~D = ∇εb~E = 4π(ρ−+ρ+). Hereby, ~D is the displacement vector,
~E the electric field vector, εb the dielectric background permittivity of the solution and ρ± are the (external) charge densities.
Ion masses m± and charge Q± may differ for the ions, however, the total charge is balanced, i. e. the charges are mutually
compensated by setting |n+Q+| ≡ |n−Q−|. This yields an equal density n = n+ = n− of charges in our case of hydronium and
hydroxide with equal, but opposite charges. The electromagnetic wave equation then reads

∇×∇×~E− k2
εb~E =

4πik2

ω

(
~j−+~j+

)
. (1)

Hereby, ~j± are the charge current densities of the ions in the electrolyte. The electromagnetic properties are evaluated at
frequency ω = ck connected to the wave vector k via the speed of light c. Together with the hydrodynamic equations for each
type of ion, see Methods section for details, this can be brought into the form30 of

∇
2~E + k2

ε
ions
⊥ ~E = 4π∇(η−ρ−+η+ρ+), (2)
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Figure 4. Quenching of field enhancement as a function of membrane size and mass imbalance. Comparing the ratio of
the maximum intensity between local and nonlocal theories at a 1 nm distance from the membrane surface for ionic systems
with an ion concentration of n− = 1mol/m3NA evaluated at ω = 10 GHz as a function of membrane size and mass. The white
lines mark the masses of H+ and the parametrized OH−. White areas show classical behavior, about 10% to 20% quenching is
given in red ares and black and blue areas are dominated by nonlocal charge dynamics.

where the right hand side vanishes in the local limit, η± comprise of material dependent parameters and we have defined the
permittivity of the coupled ion system as

ε
ions
⊥ = εb−

ω2
p−

ω(ω + iγ−)
−

ω2
p+

ω(ω + iγ+)
. (3)

Note that we obtain the common expressions for the (ionic) bulk plasmon frequencies ω2
p± = 4πQ2

±n±/m± without introducing an
auxiliary jellium in which the ions are contained. The range of the ionic bulk plasmon frequency is investigated in Fig. 5 with
respect to the ion mass and charge which can be selected via the material. The ionic plasmon frequency is far smaller than that
of common metals and lies in the infrared and beyond (> 3µm).

However, in order to study specific geometries of the resulting plasmon oscillations, the electrolyte system has to be
confined in the desired way. This can be achieved experimentally via impermeable membranes. Fig. 1 shows the similarities
between the plasmons in a solid metal nanoparticle (gold in a simplified Drude model) and the electrolyte system at increased
density in terms of both the extinction cross section and field enhancement.

Navier-Stokes equation
In the hydrodynamic model, we determine the induced current density ~j± with the linearized Navier-Stokes equation for a
charged plasma

~j± =
i

ω + iγ±

(
Q2
±n±
m±

~E−∇β
2
GNOR±ρ±

)
. (4)

The pressure term is derived from classical gas theory of a Thomas-Fermi gas30, 35, 45 as p
m = 1

3 v2
F n = β 2n which we adopt

for our present system. Including further quantum mechanical effects, in particular Coulomb interaction, it was shown that
the nonlocal interaction strength41 is rather β 2 ≡ 3

5 v2
F for metals, where vF is the Fermi velocity of the material defined as

h̄~kF = ~p =~vF me. In case of heavy ions, we rely on the thermal velocity of the ions vth =
√

3kBT/m, which is much smaller than
the velocities defined for free charges in solid materials (vF = 1.4×106m/s for Au and Ag) due to the large masses involved
(vth ∼ 103m/s for hydroxide and hydronium, see table 1).

Note that for positive charges β+ =−β−, due to integration over the valence band below the Fermi energy for positive
charges, rather than over the conduction band above the Fermi energy for negative charges.

Finally, the generalized nonlocal optical response (GNOR37, 39) allows a straightforward extension to also include diffusion
effects via a diffusion constant D. This is obtained setting ~j→ ~j−D∇ρ and results in an effectively complex-valued and
wavelength-dependent β 2

GNOR = β 2 +D(ω + iγ). The local limit is obtained for βGNOR→ 0 which suppresses the interaction
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Figure 5. Ionic bulk plasmon frequency values ω2

p = 4πQ2n/m. (a) For different choices of the mass. (b) For different values
of the ion charge. Fixed values are Q = 3e,m = 104me,εb = 1.77,n = 10−2N0, where N0 is the one-molar concentration.

of the charged particles in the fluid. However, the field induced current density remains and yields the ionic plasmon effects
within classical electrodynamics.

For solid particles, nonlocal interaction results in plasmon broadening and quenching. This is also observed for the
electrolyte as depicted in Figs. 1 to 4. The typically observed blueshift of the plasmon resonance with respect to the local result
is also found in the electrolyte system, see Fig. 2(a), but due to much larger wavelengths does not critically alter the classical
resonance position.

The minimum value for the diffusion constant to show an additional effect was found to be D± = 0.5×10−5m2/s (with
γ± ≈ 1011 Hz, hence D±γ± ≈ 5×105m2/s), where in comparison |β±| ≈ 1.5×105(m/s)2.

Coupled nonlocal wave equations
From the continuity equation iωρ± = ∇~j± we find for each type of charge a wave equation. Introducing the transversal
permittivity for the respective charges as ε⊥± = εb−

ωp±
ω(ω+iγ±)

and using ∇E = 4π(ρ−+ρ+)/εb, we obtain coupled hydrodynamic
equations typical for a two-fluid model

ρ− =
εb

ω2
p+

(
∇

2
β

2
GNOR++

ω(ω + iγ+)
εb

ε⊥+

)
ρ+ (5)

and vice versa. The analytic solution yields a wave equation of fourth order

0 = β
2
GNOR+β

2
GNOR−

(
∇

2 +q2
+

)(
∇

2 +q2
−
)

ρ−−
ω2

p+ω2
p−

ε2
b

ρ−, (6)

which can be solved analytically. Note that we introduced the nonlocal wave vectors q± from the single charged plasma result30

q2
± = 1

β 2
GNOR±

ω(ω+iγ±)
εb

ε⊥±.

We show in Fig. 6 the values of |βGNOR±| and q± as functions of the ion masses and the frequency of incoming light. Due
to the change in sign for the positive charges, the nonlocal coupling strength can be compensated by the diffusion term. This is
the local limit βGNOR± −→ 0 ⇒ q± −→ ∞, wich, however, does not change the (local) plasmonic character of the ionic system
under irradiation.

Both the imaginary parts are positive by design, but the real part, responsible for the direction of the oscillation differs
by both its sign and strength as could be expected from the analytic expressions. The positive charges have thus the opposite
oscillation direction and an inherent resonance structure that makes the nonlocal properties vanish faster than what is found for
negative charges.

Finite spherical ionic systems
The practical biological cell organization can be thought of like this: A lipid cellular membrane contains a liquid or a cytoplasm
with the ions embedded in it. The ionic system is thus trapped into a specific geometry and we investigate the model further
to describe the optical response of such geometries. This has many parallels with the theory of a single electron plasma in
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metal nanoparticles30 for which we find Mie parameters extended by a single nonlocal term. This exploits the usual boundary
conditions and additional boundary conditions stemming from the nonlocal wave equations for each type of ion, see Methods
section for details.

The scattering matrix for the two-fluid, spherical ionic system becomes in full, formal analogy

tE
l =
−ε⊥ jl(θ⊥)[θ0 jl(θ0)]

′+ εb jl(θ0)([θ⊥ jl(θ⊥)]′+gions
l )

ε⊥ jl(θ⊥)[θ0h+l (θ0)]′− εbh+l (θ0)([θ⊥ jl(θ⊥)]′+gions
l )

, (7)

with gions
l = gl++gl−

gl± =
l(l +1) jl(Θions)

R
jl(q±R)

qMie
± j′(qMie

± R)

(
ε⊥±
εb
−1
)
. (8)

Note that the nonlocal parameter gions
l vanishes under the assumption of local response fully recovering the original Mie

coefficients46, 47. This allows us to study the electro-optical properties of spherical membranes filled with a nonlocal electrolyte
with only a small correction in available numerical procedures. This is very similar to the single plasma result, where we now
sum nonlocal contributions from two charge plasmas, see Methods section for a comparison.

The main differences lie in the definition of qMie and the fact, that we have two contributions from different type of charge
carriers. Hence, an ionic system where the charge densities, masses and charges can possibly be different may lead to intriguing
results more tunable than . The main difference is also the sign in βGNOR±. Significantly different amplitudes can be expected
when the masses and charges differ, e. g. m−� m+.

Discussion
The presented framework on nonlocal spherical ionic systems is bridging hard and soft matter theory by offering insights
into non-classical effects in electrolytes in terms of plasmonic properties of oscillating charge carriers. We have relied on
classical gas theory, where ionic charge carriers move much slower than free electrons in metals, and low diffusion parameters.
In addition, in the absence of a solid crystal lattice as in metal nanoparticles, the probability of scattering events becomes
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strongly reduced, which is reflected in the small plasmon damping coefficients for the considered electrolyte system, see table 1.
Despite these highly classical parameters resulting in a low nonlocal coupling strength β , we found that nonlocal charge
interaction plays a sizable role in ionic systems mediated by the coupling of their dynamics and interaction with an external
electromagnetic field. In contrast to spatial dispersion in solid metal particles, this is found even at large particle sizes and low
plasmon frequencies. These nonlocal effects arise from both positive and negative charge dynamics and show an impact in the
(far-) infrared depending on the composition of the ionic system being tunable via their charges and masses.

In this article, we have studied hydroxide and hydronium, which have a charge of ±1e and compared to other electrolyte
systems low overall mass ≈ 3×105me. The plasmon frequency of an ionic system is increased drastically with the charge
(ωp ∼ Q) and reduced moderately with the mass (ω2

p ∼ 1/m). Hence, the usage of other electrolytes with view to (photo-)
catalysis allows tuning the LSPR frequency over a broad infrared range, see also Fig. 6 in the Methods section.

Nonlocal soft plasmonics is considered highly relevant for biological systems, e. g. particle chains representing aligned
axons. The inclusion of further non-classical effects such as Lorentz friction15 into the theory developed here is straightforward
thanks to analytic expressions in terms of modified damping terms γ . This has been considered successfully for metal
nanoparticles in Ref.48and awaits further study in the scope of ionic systems.

With view to photocatalytic applications, planar structures are of further interest to investigate plasmonic effects of charged
ions. For electrolytes confined in a planar system, the local limit is additionally given for light at normal incidence. The
vanishing parallel momentum of the incoming light suppresses coupling to longitudinal modes in the ionic system. This will be
discussed elsewhere.

Methods

We use Maxwell’s equations in Gauss units and neglect magnetic material properties, i. e. µ = 1.

We determine the induced current density ~j with the Navier-Stokes equation for a charged plasma

−Qn(∂t +~v∇)~v− γQn~v =
Q2n
m

(
~E +~v×~B

)
+

1
m

∇p. (9)

Note that −Qn = ρ and −Qn~v = ρ~v = ~j, so that Q = e for electrons and Q = −e for positrons. We aim to linearize the
Navier-Stokes equation with respect to the charge density. We can therefore set B≡ 0 and~v∇≡ 0. Furthermore, we assume
all quantities to be first order in their response n = n0 + δn, such that ~j ≡ −Qn0~v and p = p0 + δ p and ~E = ~E0 + δE. We
obtain a zeroth order equation defining how the static pressure p0 is compensated by a static field E0. The remaining first order
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expression (where we neglect the symbol for variation δ for readability) results in eq. (4). We insert this into eq. 1 and obtain

∇×∇×~E− k2
ε

ions
⊥ ~E = 4π

k2

ω
∇

(
β 2

GNOR−
ω + iγ−

ρ−+
β 2

GNOR+

ω + iγ+
ρ+

)
, (10)

∇
2~E + k2

ε
ions
⊥ ~E = 4π∇

((
1
εb
−

k2β 2
GNOR−

ω(ω + iγ−)

)
ρ−+

(
1
εb
−

k2β 2
GNOR+

ω(ω + iγ+)
ρ+

))
, (11)

which defines η± = 1
εb
− k2β 2

GNOR+
ω(ω+iγ+)

.

Spherical membrane
We derive the Mie coefficients46 for a spherical membrane of radius R filled with an electron plasma and positively charged
ions subject to an electromagnetic field using the two-fluid model.

It is convenient to use an expansion of the electric field into scalar functions49 as

~E = (1/k)∇ψ
L +~Lψ

M +
∇×~L

ki
ψ

E , (12)

where ~L = −i~r×∇ is the angular momentum operator, and the superscripts E, M, and L indicate electric, magnetic, and
longitudinal components, respectively. The additional boundary condition in spherical coordinates~̂er~j = 0 yields

β
2
GNOR±

∂

∂ r
ρ± =

Q2
±n±

m±k

(
∂

∂ r
ψ

L +
1
r

l(l +1)ψE
)

(13)

in terms of the scalar functions and the angular momentum number l using the identity −~r · (∇×~L)/i = L2 = l(l +1). The
common boundary conditions for the electric and magnetic field components result in the continuity of ψM , (1+ r ∂

∂ r )ψ
M ,

ψL +(1+ r ∂

∂ r )ψ
E , and εψE for the scalar functions. The magnetic and electric scalar functions ψν (ν = {E,M}) obey a

Helmholtz equation of the form (∇2 + k2ε ions)ψν = 0 and can therefore be expanded in terms of spherical Bessel functions
ψν = ∑L ψν

L jL(kionsr). Similarly, the electron density is expanded into ρ ind(~r,ω) = ∑L(ρl+ jL(qMie
+ r)+ρl− jL(qMie

− r)).

The longitudinal wave vectors qMie
± given by (qMie±)2 =− p̃

2 ±
√(

p̃
2

)2
− q̃ are the solutions to eq. (6) with

p̃ =−
(
q2
++q2

−
)
, q̃ =−

(
1

β 2
GNOR−β 2

GNOR+

ω2
p+ω2

p−

ε2
b

−q2
−q2

+

)
. (14)

We demand ℑ{qMie
± }> 0, i. e. that nonlocal, longitudinal excitations remain absorptive, which reduces the four solutions to

two relevant ones. We study the wave vector of the combined ion system qMie
± in terms of the penetration depths 1/|ℑ{q±}| in

Fig. 7 for a range of (a) photon energies of the incoming light, (b) ion masses and (c) charges. The latter shows almost no effect,
but the former two a yield sizable nonlocal skin effect. Hereby, the wavevector associated to the positive charge carriers can be
suppressed in the same wave as βGNOR+.

The longitudinal scalar function satisfies a different wave equation, namely ∇2ψL = 4πk(ρl−+ρl+)/εb, which we find
from the Coulomb law ∇εb~E = 4π(ρ−+ρ+). From this and the wave equation eq. (2), we deduce

(∇2 + k2
ε

ions)ψL = 4πk (η−ρl−+η+ρl+) , ⇒ ψ
L =− 4πk

ε ions

(
β 2

GNOR−
ω(ω + iγ−)

ρl−+
β 2

GNOR+

ω(ω + iγ+)
ρl+

)
. (15)

Note that the above analysis is valid for the spherical region that contains the ionic system, where the electric (ν = E)
and magnetic (ν = M) field are given by Aν

l jL, with jL = jlm(k⊥r). Outside the particle-like region, the longitudinal scalar
function vanishes since there are no induced charges in the dielectric surrounding. Therefore, the scalar field is given by
jlm(k0r)+ tν

l h+lm(k0r) around the particle. Unknown parameters are the amplitude Aν
l inside and scattering matrix tν

l outside.
Exploiting the boundary conditions stated above, we find a set of linear equations for the magnetic and electric scattering
matrices. Interestingly, the magnetic scattering matrix is unchanged with respect to the local theory, indicating that magnetic
modes are not sensitive to the induced longitudinal modes by neither specimen. The scattering matrix for the electric scalar
function is more complicated than in the local approximation due to the appearance of ψL in the charged region that contains
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information on the nonlocal response. At this point, the only difference to previous results for nonlocal electron dynamics in
metals nanoparticles, where only free electrons are considered, is the more involved expression for the wave vectors.

We want to solve the following set of equations for the electric scalar field.

ε
ionsAE

l jl(Θions) = ε0
(

jl(Θ0)+ tE
l h+l (Θ0)

)
, (16)

− 4πk
ε ions

(
β 2

GNOR−ρl− j′(qMie
− R)

ω(ω + iγ−)
+

β 2
GNOR+ρl+ j′(qMie

+ R)
ω(ω + iγ+)

)
+AE

l

[
Θ

ions jl(Θions)
]′

= [Θ0 jl(Θ0)]
′+ tE

l
[
Θ0h+l (Θ0)

]′
, (17)

where Θµ = kµ R
√

εµ . We use the additional boundary conditions, eq. 13, for the charged plasmas to find expressions allowing
the substitution of ρl± in the above equations.

β
2
GNOR−ρl−qMie

− j′(qMie
− R) =

ω2
p−l(l +1)

4πkR
AE

l jl(Θions)

−
ω2

p−
ε ions

(
β 2

GNOR−qMie
− j′(qMie

− R)
ω(ω + iγ−)

ρl−+
β 2

GNOR+qMie
+ j′(qMie

+ R)
ω(ω + iγ+)

ρl+

)
(18)

and vice versa. From this, we find for the charges

ρl± = AE
l

l(l +1)
4πkR

jl(Θions)

qMie
± j′(qMie

± R)
ε ions

εb

ω2
p±

β 2
GNOR±

. (19)

Next, we insert the charge densities into the equations obtained with the common boundary conditions (16) and (17) and rewrite
after some algebra

AE
l

{[
Θ

ions jl(Θions)
]′
+gions

l

}
= [Θ0 jl(Θ0)]

′+ tE
l
[
Θ0h+l (Θ0)

]′
,

Comparing to an electron plasma in solid metal

The nonlocal contribution to the field via the induced charge density for a single electron plasma results in ρ =AE
l

l(l+1)
4πkR

jl(Θ⊥)
q j′(qR)

ε⊥
εb

ω2
p

β 2

for metals30. The local scattering matrix can then be extended by a single parameter describing nonlocal behavior of the
electron motion in the conduction band

gl =
l(l +1) jl(θ⊥) jl(qa)

qa j′l(qa)

(
ε⊥
εb
−1
)

(20)

and becomes with θ0 = ka
√

ε0 and θ⊥ = ka
√

ε⊥.

tE
l =
−ε⊥ jl(θ⊥)[θ0 jl(θ0)]

′+ ε0 jl(θ0)([θ⊥ jl(θ⊥)]′+gl)

ε⊥ jl(θ⊥)[θ0h+l (θ0)]′− ε0h+l (θ0)([θ⊥ jl(θ⊥)]′+gl)
, (21)

where the primes indicate differentiation with respect to the θ variables.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
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Ion mass (Da) mass (me) thermal velocity vth (m/s) free mean path (nm) damping (meV)
H+ 1.007 1835 2727 0.33 17.22

OH− 17.008 31005 663 1.35 1.02
H3O+ 19.02 34670 627 1.42 0.91

Table 1. Electrolyte parameters for an aqueous solution in thermodynamic equilibrium. The charges are Q± =±1e.
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Figure 1. Concept of (localized surface) plasmon resonance (LSPR) in ionic systems compared to metals. Illustration
of charge carrier displacement in (a) a metal solid and (b) an ionic fluid confined by e. g. a lipid cellular membrane. (c), (d)
Field enhancement map of the plasmonic resonance in both systems. (e), (f) Impact of nonlocal charge dynamics (with and
without electron diffusion D) on metals and ions in terms of the extinction cross section (upper panel) and the field
enhancement (lower panel). The particle size is R = 10 nm and a Drude model for gold was used for clarity.

Figure 2. Extinction cross section and quenching of field enhancement at different ion concentration levels and for
several orders of magnitude in particle size. (a) Extinction cross section normalized to geometrical cross section of the
membrane. (b), (c) Comparing the maximum intensity at the particle surface for ionic systems with an ion concentration of (b)
n = n+ = n− = 1mol/m3NA and (c) n = 10−3mol/m3NA for varying membrane size.

Figure 3. Quenching of field enhancement as a function of membrane size and charge imbalance. Comparing the ratio
of the maximum intensity between local and nonlocal theories at (a) a 1 nm distance and (b), (c) the membrane surface for ionic
systems with an ion concentration of (a), (b) n− = 1mol/m3NA evaluated at ω = 10 GHz and (c) n− = 10−3mol/m3NA evaluated
at ω = 10−2 GHz as a function of membrane size for varying charge imbalance. Due to total charge balance n+Q+ = n−|Q|.

Figure 4. Quenching of field enhancement as a function of membrane size and mass imbalance. Comparing the ratio of
the maximum intensity between local and nonlocal theories at a 1 nm distance from the membrane surface for ionic systems
with an ion concentration of n− = 1mol/m3NA evaluated at ω = 10 GHz as a function of membrane size and mass. The white
lines mark the masses of H+ and the parametrized OH−. White and red areas show classical behavior, while black and blue
areas are dominated by nonlocal charge dynamics.

Figure 5. Ionic bulk plasmon frequency values ω2
p = 4πQ2n/m. (a) For different choices of the mass. (b) For different values

of the ion charge. Fixed values are Q = 3e,m = 104me,εb = 1.77,n = 10−2N0, where N0 is the one-molar concentration.

Figure 6. Nonlocal properties of the ions. (a), (b) The nonlocal strengths |βGNOR±| and (c), (d) the nonlocal wavevectors
q± for positive and negative charges are studied as a function of the (a), (c) ion mass and (b), (d) photon energy.

Figure 7. Penetration depth of nonlocal pressure waves for the coupled ionic system with nonlocal properties. We
compare the inverse of the imaginary part of exact solutions as a function of (a) photon energy, (b) ion mass and (c) ion charge.
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