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Abstract

A key requirement for graph neural networks is that they must process a graph in
a way that does not depend on how the graph is described. Traditionally this has
been taken to mean that a graph network must be equivariant to node permutations.
Here we show that instead of equivariance, the more general concept of naturality
is sufficient for a graph network to be well-defined, opening up a larger class of
graph networks. We define global and local natural graph networks, the latter of
which are as scalable as conventional message passing graph neural networks while
being more flexible. We give one practical instantiation of a natural network on
graphs which uses an equivariant message network parameterization, yielding good
performance on several benchmarks.

1 Introduction

Graph-structured data is among the most ubiquitous forms of structured data used in machine learning
and efficient practical neural network algorithms for processing such data have recently received
much attention [Wu et al., 2020]. Because of their scalability to large graphs, graph convolutional
neural networks or message passing networks are widely used. However, it has been shown [Xu et al.,
2018] that such networks, which pass messages along the edges of the graph and aggregate them in a
permutation invariant manner, are fundamentally limited in their expressivity.

(a) A global isomorphism. (b) Induced local isomorphisms.

Figure 1: A global graph isomorphism corresponds for each edge to a local isomorphism on its neighbourhood,
shown for three example edges - denoted with arrows. Hence, when a message passing kernel satisfies the
naturality condition for local isomorphisms of the edge neighbourhood (Eq. 4), it also satisfies the global
naturality condition (Eq. 2).
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More expressive equivariant graph networks exist [Maron et al., 2018], but these treat the entire
graph as a monolithic linear structure (e.g. adjacency matrix) and as a result their computational cost
scales superlinearly with the size of the graph. In this paper we ask the question: how can we design
maximally expressive graph networks that are equivariant to global node permutations while using
only local computations?

If we restrict a global node relabeling / permutation to a local neighbourhood, we obtain a graph
isomorphism between local neighbourhoods (see Figure 1). If a locally connected network is
to be equivariant to global node relabelings, the message passing scheme should thus process
isomorphic neighbourhoods in an identical manner. Concretely, this means that weights must be
shared between isomorphic neighbourhoods. Moreover, when a neighbourhood is symmetrical
(Figure 1), it is isomorphic to itself in a non-trivial manner, and so the convolution kernel has to
satisfy an equivariance constraint with respect to the symmetry group of the neighbourhood.

Local equivariance has previously been used in gauge equivariant neural networks [Cohen et al.,
2019]. However, as the local symmetries of a graph are different on different edges, we do not have a
single gauge group here. Instead, we have more general structures that can be captured by elementary
category theory. We thus present a categorical framework we call natural graph networks that can be
used describe maximally flexible global and local graph networks. In this framework, an equivariant
kernel is “just” a natural transformation between two functors. We will not assume knowledge of
category theory in this paper, and explicit category theory is limited to Section 5.

When natural graph networks (NGNs) are applied to graphs that are regular lattices, such as a 2D
square grid, or to a highly symmetrical grid on the icosahedron, one recovers conventional equivariant
convolutional neural networks [Cohen and Welling, 2016, Cohen et al., 2019]. However, when applied
to irregular grids, like knowledge graphs, which generally have few symmetries, the derived kernel
constraints themselves lead to impractically little weight sharing. We address this by parameterizing
the kernel with a message network, an equivariant graph network which takes as input the local graph
structure. We show that our kernel constraints coincide with the constraints on the message network
being equivariant to node relabelings, making this construction universal whenever the network that
parameterizes the kernel is universal.

2 Global Natural Graph Networks

As mentioned before, there are many equivalent ways to encode (directed or undirected) graphs.
The most common encoding used in the graph neural networks literature is to encode a graph as
a (node-node) adjacency matrix A, whose rows and columns correspond to the nodes and whose
pi, jq-th entry signals the presence (Aij “ 1) or absence (Aij “ 0) of an edge between node i and j.
There are many other options, but here we will adopt the following definition:
Definition 2.1. A Concrete Graph G is a finite set of nodes2 VpGq Ă N and a set of edges EpGq Ă
VpGq ˆ VpGq.

The natural number labels of the nodes of a concrete graph are essential for representing a graph
in a computer, but contain no actual information about the underlying graph. Hence, different
concrete graphs that are related by a relabelling, encode the graphs that are essentially the same. Such
relabellings are called graph isomorphisms.
Definition 2.2 (Graph isomorphism and automorphism). Let G and G1 be two graphs. An isomor-
phism φ : GÑ G1 is a mapping (denoted by the same symbol) φ : VpGq Ñ VpG1q that is bijective
and preserves edges, i.e. satisfies for all pi, jq P VpGq ˆ VpGq:

pi, jq P EpGq ðñ pφpiq, φpjqq P EpG1q. (1)

If there exists an isomorphism between G and G1, we say they are isomorphic. An isomorphism from
a graph to itself is also known as an automorphism or simply symmetry.

In order to define graph networks, we must first define the vector space of features on a graph.
Additionally, we need to define how the feature spaces of isomorphic graphs are related, so we can
express a feature on one concrete graph on other isomorphic concrete graphs.

2Note that the set of node ids may be non-contiguous. This is useful because a graph may arise as a subgraph
of another one, in which case we wish to preserve the node ids.
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Figure 2: A graph feature ρ assigns to each graph G a vector space ρpGq (here ρpGq “ ρpG1q “ R4, ρ “ ρ1)
and to each graph isomorphism φ : G Ñ G1 a linear map ρpφq : ρpGq Ñ ρpG1q (here swapping the first
and fourth row). Global Natural Graph Network layer K between features ρ and ρ1 has for each graph G a
map KG : ρpGq Ñ ρ1pGq, such that for each graph isomorphism φ : G Ñ G1 the above naturality diagram
commutes.

Definition 2.3 (Graph feature space). A graph feature space, or graph representation, ρ associates to
each graph G a vector space VG “ ρpGq, and to each graph isomorphism φ : GÑ G1 an invertible
linear map ρpφq : VG Ñ VG1 , such that the linear maps respect composition of graph isomorphisms:
ρpφ ˝ φ1q “ ρpφq ˝ ρpφ1q. 3

As the nodes in a concrete graph have a unique natural number as a label, the nodes can be ordered.
A graph isomorphism φ : GÑ G1 induces a permutation of that ordering. This gives a convenient
way of constructing graph feature spaces. For example, for the vector representation, we associate
with graph G the vector space ρpGq “ R|VpGq| and associate to graph isomorphisms the permutation
matrix of the corresponding permutation. Similarly, for the matrix representation, we associate to
graph G feature matrix vector space ρpGq “ R|VpGq|ˆ|VpGq| and to graph isomorphism φ : GÑ G1,
linear map ρpφqpvq “ PvPT , where P is the permutation matrix corresponding to φ.

A neural network operating on such graph features can, in general, operate differently on different
graphs. Its (linear) layers, mapping from graph feature space ρ to feature space ρ1, thus has for each
possible graph G, a (linear) map KG : ρpGq Ñ ρ1pGq. However, as isomorphic graphs G and G1 are
essentially the same, we will want KG and KG1 to process the feature space in an equivalent manner.
Definition 2.4 (Global Natural Graph Network Layer). A layer (or linear layer) in a global natural
graph network (GNGN) is for each concrete G a map (resp. linear map) KG : ρpGq Ñ ρ1pGq
between the input and output feature spaces such that for every graph isomorphism φ : GÑ G1, the
following condition (“naturality”) holds:

ρ1pφq ˝KG “ KG1 ˝ ρpφq. (2)

Equivalently, the following diagram should commute:

ρpGq ρ1pGq

ρpG1q ρ1pG1q

KG

ρpφq ρ1
pφq

KG1

The constraint on the layer (Eq. 2) says that if we first transition from the input feature space ρpGq to
the equivalent input feature space ρpG1q via ρpφq and then apply KG1 we get the same thing as first
applying KG and then transitioning from the output feature space ρ1pGq to ρ1pG1q via ρ1pφq. Since
ρpφq is invertible, if we choose KG for some G then we have determined KG1 for any isomorphic G1
by KG1 “ ρ1pφq ˝KG ˝ρpφq

´1. Moreover, for any automorphism φ : GÑ G, we get a equivariance
constraint ρ1pφq ˝KG “ KG ˝ ρpφq. Thus, to choose a layer we must choose for each isomorphism
class of graphs one map KG that is equivariant to automorphisms. For linear layers, these can in
principle be learned by first finding a complete solution basis to the automorphism equivariance
constraint, then linearly combining the solutions with learnable parameters.

3As is common in the category theory literature for functors (see Sec. 5), we overload the ρ symbol. ρpGq
denotes a vector space, while ρpφq denotes a linear map.
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The construction of the graph isomorphisms, the graph feature space and the natural graph network
layer resemble mathematical formalization that are used widely in machine learning: groups, group
representations and equivariant maps between group representations. However, the fact that the
natural graph network layer can be different for each graph, suggests a different formalism is needed,
namely the much more general concepts of a category, a functor and a natural transformation. How
natural transformations generalize over equivariant maps is described in section 5.

2.1 Relation to Equivariant Graph Networks

The GNGN is a generalization of equivariant graph networks (EGN) [Maron et al., 2018, 2019], as
an EGN can be viewed as a GNGN with a particular choice of graph feature spaces and layers. The
feature space of an EGN for a graph of n nodes is defined by picking a group representation of the
permutation group Sn over n symbols. Such a representation consists of a vector space Vn and an
invertible linear map ρpσq : Vn Ñ Vn for each permutation σ P Sn, such that ρpσσ1q “ ρpσq ˝ ρpσ1q.
A typical example is Vn “ Rnˆn, with ρpσq acting by permuting the rows and columns. The (linear)
layers of an EGN between features ρ and ρ1 are (linear) maps Kn : Vn Ñ V 1n, for each n, such that
the map is equivariant: ρ1pσq ˝Kn “ Kn ˝ ρpσq for each permutation σ P Sn.

Comparing the definitions of EGN features and layers to GNGN features and layers, we note the
former are instances of the latter, but with the restriction that an EGN picks a single representation
vector space Vn and single equivariant map Kn for all graphs of n nodes, while in a general GNGN,
the representation vector space and equivariant map can arbitrarily differ between non-isomorphic
graphs. In an EGN, the graph structure must be encoded as a graph feature. For example, the adjacency
matrix can be encoded as a matrix representation of the permutation group. Such constructions
are shown to be universal [Keriven and Peyré, 2019], but impose considerable constraints on the
parameterization. For example, one may want to use a GNGN with completely separate sets of
parameters for non-isomorphic graphs, which is impossible to express as an EGN.

3 Local Graph Networks

Global NGNs provide a general framework of specifying graph networks that process isomorphic
graphs equivalently. However, in general, its layers perform global computations on entire graph
features, which has high computational complexity for large graphs.

3.1 Local Invariant Graph Networks

Figure 3: Two regular
graphs.

An entirely different strategy to building neural networks on graphs is using
graph convolutional neural networks or message passing networks [Kipf and
Welling, 2016, Gilmer et al., 2017]. We will refer to this class of methods as
local invariant graph networks (LIGNs). Such convolutional architectures are
generally more computationally efficient compared to the global methods, as
the computation cost of computing one linear transformation scales linearly
with the number of edges.

LIGNs are instances of GNGNs, where the feature space for a graph consists of a copy of the same
vector space VN at each node, and graph isomorphisms permute these node vector spaces. In their
simplest form, the linear layers of an LIGN pass messages along edges of the graph:

KGpvqp “
ÿ

pp,qqPE

Wvq, (3)

where vp P VN is a feature vector at node p and W : VN Ñ V 1N is a single matrix used on each edge
of any graph. This model can be generalized into using different aggregation functions than the sum
and having the messages also depend on vp instead of just vq [Gilmer et al., 2017]. It is easy to see
that these constructions satisfy the GNGN constraint (Eq. 2), but also result in the output KGpvqp
being invariant under a permutation of its neighbours, which is the reason for the limited expressivity
noted by [Xu et al., 2018]. For example, no invariant message passing network can discriminate
between the two regular graphs in figure 3. Furthermore, if applied to the rectangular pixel grid graph
of an image, it corresponds to applying a convolution with isotropic filters.
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Figure 4: A node feature ρ assigns to each node neighbourhood Gp (here the dark colored nodes around node
p) a vector space ρpGpq (here ρpGpq “ R5) and to each local node isomorphism ψ : Gp Ñ G1p1 a linear map
ρpψq : ρpGq Ñ ρpG1q (here swapping the third and fifth row).

3.2 Local Natural Graph Networks

The idea of a Local Natural Graph Network (LNGN) is to implement a scalable GNGN layer that
consists of passing messages along edges with a message passing kernel and then aggregating the
incoming messages. It generalises over local invariant graph networks by making the node features
transform under isomorphisms of the neighbourhood of the node and by allowing different message
passing kernels on non-isomorphic edges.
Definition 3.1 (Neighbourhoods and local isomorphisms). A node neighbourhood4 Gp is a subgraph
Gp of a concrete graph G in which one node p P VpGpq is marked. Subgraph Gp inherits the node
labels from G, making Gp a concrete graph itself. A local node isomorphism is a map between
node neighbourhoods ψ : Gp Ñ G1p1 , consisting of a graph isomorphism ψ : Gp Ñ G1p1 such that
ψppq “ p1. Similarly, an edge neighbourhood is a concrete graph Gpq with a marked edge pp, qq
and a local edge isomorphism that maps between edge neighbourhoods such that the marked edge is
mapped to the marked edge.

Given a graph G, we can assign to node p P VpGq a node neighbourhood Gp in several ways. In our
experiments, we choose Gp to contain all nodes in G that are at most k edges removed from p, for
some natural number k, and all edges between these nodes. Similarly, we pick for edge pp, qq P EpGq
neighbourhood Gpq containing all nodes at most k edges removed from p or q and all edges between
these nodes. In all experiments, we chose k “ 1, unless otherwise noted. General criteria for the
selection of neighbourhoods are given in App. C. Neighbourhood selections satisfying these criteria
have that any global graph isomorphism φ : G Ñ G1, when restricted to a node neighbourhood
Gp equals a node isomorphism φp : Gp Ñ G1p1 and when restricted to an edge neighbourhood Gpq
equals a local edge isomorphism φpq : Gpq Ñ G1p1q1 . Furthermore, it has as a property that any local
edge isomorphism ψ : Gpq Ñ G1p1q1 can be restricted to node isomorphisms ψp : Gp Ñ G1p1 and
ψq : Gq Ñ G1q1 of the start and tail node of the edge.

Next, we choose a feature space for the local NGN by picking a node feature space ρ, which is
a graph feature space (Def. 2.4) for node neighbourhoods in complete analogy with the previous
section on global NGNs. Node feature space ρ consists of selecting for any node neighbourhood
Gp a vector space ρpGpq and for any local node isomorphism φ : Gp Ñ G1p1 , a linear bijection
ρpφq : ρpGpq Ñ ρpG1p1q, respecting composition: ρpφq ˝ ρpφ1q “ ρpφ ˝ φ1q.

A node neighbourhood feature space ρ defines a graph feature space ρ̂ on global graphs by concatenat-
ing (taking the direct sum of) the node vector spaces: ρ̂pGq “

À

pPVpGq ρpGpq. For a global feature
vector v P ρ̂pGq, we denote for node p P VpGq the feature vector as vp P ρpGpq. The global graph
feature space assigns to global graph isomorphism φ : GÑ G1 a linear map ρ̂pφq : ρ̂pGq Ñ ρ̂pG1q,
which permutes the nodes and applies ρ to the individual node features:

ρ̂pφqpvqφppq “ ρpφpqpvpq

Given two such node feature spaces ρ and ρ1, we can define a (linear) local NGN message passing ker-
nel k by choosing for each possible edge neighbourhood Gpq a (linear) map kpq : ρpGpq Ñ ρ1pGqq,

4In the graph literature, such graphs are also called node/edge rooted graphs.
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Figure 5: Local Natural Graph Network kernel k between node features ρ and ρ1 consists of a map kpq :
ρpGpq Ñ ρ1pGqq for each edge pp, qq, satisfying the above commuting diagrams for each edge isomorphism
ψ : Gpq Ñ G1p1q1 and automorphism χ : Gpq Ñ Gpq . In this example, the node neighbourhoods of p, p1, q and
q1 are colored dark. Edge isomorphism ψ, which swaps nodes 1 and 5, restricts to node isomorphisms ψp and ψq

on input and output node neighbourhoods. The associated linear maps ρpψpq and ρ1pψqq swap second and third
row and first and second row respectively - corresponding to the reordering of the nodes in the neighbourhood by
the node isomorphism. Similarly, the automorphism χ swaps nodes 3 and 5. The isomorphism leads to weight
sharing between kpq and kp1q1 and the automorphism to a kernel constraint on kpq .

which takes the role of W in Eq. 3. These maps should satisfy that for any edge neighbourhood
isomorphism ψ : Gpq Ñ G1p1q1 , we have that

ρ1pψqq ˝ kpq “ kp1q1 ˝ ρpψpq. (4)

In words, this “local naturality” criterion states that passing the message along an edge from p to q,
then transporting with a local isomorphism to q1 yields the same result as first transporting from p to
p1, then passing the message along the edge to q1. In analogy to the global NGN layer, we have that
isomorphisms between different edge neighbourhoods bring about weight sharing - with a change of
basis given by Eq. 4, while automorphisms create constraints on the kernel k.

Using the local NGN kernel k between node feature spaces ρ and ρ1, we can define a global NGN
layer between graph feature spaces ρ̂ and ρ̂1 as:

KGpvqq “
ÿ

pp,qqPEpGq

kpqpvpq (5)

The following main result, proven in Appendix D, shows that this gives a global NGN layer.

Theorem 1. Let k be a local NGN kernel between node feature spaces ρ and ρ1. Then the layer in
equation 5 defines a global NGN layer between the global graph feature spaces ρ̂ and ρ̂1, satisfying
the global NGN naturality condition (Eq. 2).

In appendix F, we show when a local NGN is applied to a regular lattice, which is a graph with a
global transitive symmetry, the NGN is equivalent to a group equivariant convolutional neural network
[Cohen and Welling, 2016], when the feature spaces and neighbourhoods are chosen appropriately.
In particular, when the graph is a square grid with edges on the diagonals, we recover an equivariant
planar CNN with 3x3 kernels. Bigger kernels are achieved by adding more edges. When the graph
is a grid on a locally flat manifold, such as a icosahedron or another platonic solid, and the grid is
a regular lattice, except at some corner points, the NGN is equivalent to a gauge equivariant CNN
[Cohen et al., 2019], except around the corners.
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Figure 6: Local NGN message passing with an equivariant graph network kernel. The node feature vp at p
can be embedded into a graph feature vpÑq of the edge neighbourhood, to which any equivariant graph neural
network can be applied. The output graph feature v1pÑq can be projected to obtain the message from p to q, v1pq .
The messages to q are invariantly aggregated to form output feature v1q .

4 Graph Neural Network Message Parameterization

Local naturality requires weight sharing only between edges with isomorphic neighbourhoods, so,
in theory, one can use separate parameters for each isomorphism class of edge neighbourhoods
to parameterize the space of natural kernels. In practice, graphs such as social graphs are quite
heterogeneous, so that that few edges are isomorphic and few weights need to be shared, making
learning and generalization difficult. This can be addressed by re-interpreting the message from
p to q, kpqvp, as a function kpGpq, vpq of the edge neighbourhood Gpq and feature value vp at
p, potentially generalized to being non-linear in vp, and then letting k be a neural network-based
“message network”.

Local naturality (Eq. 4) can be guaranteed, even without explicitly solving kernel constraints for each
edge in the following way. By construction of the neighbourhoods, the node feature vp can always be
embedded into an edge feature, a graph feature vpÑq of the edge neighbourhood Gpq . The resulting
graph feature can then be processed by an appropriate equivariant graph neural network operating on
Gpq, in which nodes p and q have been distinctly marked, e.g. by a additional feature. The output
graph feature v1pÑq can be restricted to create a node feature v1pq at q, which is the message output. The
messages are then aggregated using e.g. summing to create the convolution output v1q “

ř

pp,qqPE v
1p
q .

This is illustrated in figure 6. It is proven in appendix E that the graph equivariance constraint on the
message network ensures that the resulting message satisfies the local naturality constraint (Eq. 4).

The selection of the type of graph feature and message network forms a large design space of natural
graph networks. If, as in the example above, the node feature vp is a vector representation of the
permutation of the node neighbourhood, the feature can be embedded into an invariant scalar feature
of the edge neighbourhood graph by assigning an arbitrary node ordering to the edge neighbourhood
and transporting from the node neighbourhood to the edge neighbourhood, setting a 0 for nodes
outside the node neighbourhood. Any graph neural network with invariant features can subsequently
be used to process the edge neighbourhood graph feature, whose output we restrict to obtain the
message output at q. As a simplest example, we propose GCN2, which uses an invariant message
passing algorithm, or Graph Convolutional Neural Network [Kipf and Welling, 2016], on graph Gpq
as message network.

5 Naturality as Generalization of Equivariance

As explained in Section 2.1, the difference between a global natural graph network and an equivariant
graph network is that the GNGN does not require that non-isomorphic graphs are processed similarly,
while the EGN requires all graphs to be processed the same. EGNs can be understood in terms of
groups, representations and equivariant maps, but the more general GNGN requires the more general
framework category theory, originally developed in algebraic topology, but recently also used as a
modelling tool for more applied problems [Fong and Spivak, 2018]. Its constructions give rise to
an elegant framework for building equivariant message passing networks, which we call “Natural
Networks”, potentially applicable beyond graph networks. In this section, we will outline the key
ingredients of natural networks. We refer a reader interested in learning more about category theory
to Leinster [2016] and Fong and Spivak [2018].

A (small) category C consists of a set of objects ObpCq and for each two objects, X,Y P ObpCq, a set
of abstract (homo)morphisms, or arrows, f P HomCpX,Y q, f : X Ñ Y between them. The arrows
can be composed associatively into new arrows and each object has an identity arrow idX : X Ñ X
with the obvious composition behaviour. When arrow f : X Ñ Y, g : Y Ñ X compose to identities
on X and Y , they are isomorphisms (with f´1 “ g).

7



A map between two categories C and D is a functor F : C Ñ D, when it maps each object
X P ObpCq to an object F pXq P ObpDq and to each morphism f : X Ñ Y in C, a morphism
F pfq : F pXq Ñ F pY q in D, such that F pg ˝ fq “ F pgq ˝F pfq. Given two functors F,G : C Ñ D,
a natural transformation η : F ñ G consists of, for each object X P ObpCq, a morphism ηX :
F pXq Ñ F pY q, such that for each morphism f : X Ñ Y in C, the following diagram commutes,
meaning that the two compositions ηY ˝ F pfq, Gpfq ˝ ηX : F pXq Ñ GpY q are the same:

F pXq GpXq

F pY q GpY q

ηX

F pfq Gpfq

ηY

(6)

A group is an example of a category with one object and in which all arrows, corresponding to group
elements, are isomorphisms. Group representations are functors from this category to the category
of vector spaces, mapping the single object to a vector space and morphisms to linear bijections of
this space. The functor axioms specialise exactly to the axioms of a group representation. A natural
transformation between such functors is exactly an equivariant map. As the group category has only
one object, the natural transformation consists of a single morphism (linear map). Equivariant Graph
Networks on graphs with N nodes are examples of these, in which the group is the permutation group
SN , the representation space are N ˆ N matrices, whose columns and rows are permuted by the
group action, and the layer is a single equivariant map.

To study global NGNs, we define a category of graphs, whose objects are concrete graphs and
morphisms are graph isomorphisms. The graph feature spaces (Def. 2.4) are functors from this graph
category to the category Vec of vector spaces. The GNGN layer is a natural transformation between
such functors, consisting of a different map for each graph, but with a naturality constraint (Eq. 6) for
each graph isomorphism (including automorphisms).

Similarly, for local NGNs, we define a category C of node neighbourhoods and local node iso-
morphisms and a category D of edge neighbourhoods and local edge isomorphisms. A functor
F0 : D Ñ C maps an edge neighbourhood to the node neighbourhood of the start node and an edge
isomorphisms to the node isomorphism of the start node – which is well defined by the construction
of the neighbourhoods. Similarly, functor F1 : D Ñ C maps to the neighbourhood of the tail node of
the edge. Node feature spaces are functors ρ, ρ1 : C Ñ Vec. Composition of functors leads to two
functors ρ ˝ F0, ρ

1 ˝ F1 : D Ñ Vec, mapping an edge neighbourhood to the input feature at the start
node or the output feature at the end node. A local NGN kernel k is a natural transformation between
these functors.

6 Related Work

As discussed above, prior graph neural networks can be broadly classified into local (message passing)
and global equivariant networks. The former in particular has received a lot of attention, with early
work by [Gori et al., 2005, Kipf and Welling, 2016]. Many variants have been proposed, with some
influential ones including [Gilmer et al., 2017, Veličković et al., 2018, Li et al., 2017]. Global methods
include [Hartford et al., 2018, Maron et al., 2018, 2019, Albooyeh et al., 2019]. We note that in
addition to these methods, there are graph convolutional methods based on spectral rather than spatial
techniques [Bruna et al., 2014, Defferrard et al., 2016, Perraudin et al., 2018].

Covariant Compositional Networks (CCN) Kondor et al. [2018] are most closely related to NGNs, as
this is also a local equivariant message passing network. CCN also uses node neighbourhoods and
node features that are a representation of the group of permutations of the neighbourhood. CCNs
are a special case of NGNs. When in a NGN (1) the node neighbourhood is chosen to be the
receptive field of the node, so that the node neighbourhood grows in each layer, and (2) when the
edge neighbourhood Gpq is chosen to be the node neighbourhood of q, and (3) when the kernel is
additionally restricted by the permutation group, rather just its subgroup the automorphism group of
the edge neighbourhood, a CCN is recovered. These specific choices make that the feature dimensions
grow as the network gets deeper, which can be problematic for large graphs. Furthermore, as the
kernel is more restricted, only a subspace of equivariant kernels is used by CCNs.
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Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

size 188 344 113 4110 4127 1000 1500
classes 2 2 2 2 2 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 19.7 14

DGCNN [Zhang et al., 2018] 85.83˘1.7 58.59˘2.5 75.54˘0.9 74.44˘0.5 NA 70.03˘0.9 47.83˘0.9
PSCN [Niepert et al., 2016](k=10) 88.95˘4.4 62.29˘5.7 75˘2.5 76.34˘1.7 NA 71˘2.3 45.23˘2.8
DCNN [Atwood and Towsley, 2016] NA NA 61.29˘1.6 56.61˘ 1.0 NA 49.06˘1.4 33.49˘1.4
ECC [Simonovsky and Komodakis, 2017] 76.11 NA NA 76.82 75.03 NA NA
DGK [Yanardag and Vishwanathan, 2015] 87.44˘2.7 60.08˘2.6 75.68˘0.5 80.31˘0.5 80.32˘0.3 66.96˘0.6 44.55˘0.5
DiffPool [Ying et al., 2018] NA NA 78.1 NA NA NA NA
CCN [Kondor et al., 2018] 91.64˘7.2 70.62˘7.0 NA 76.27˘4.1 75.54˘3.4 NA NA
Invariant Graph Networks [Maron et al., 2018] 83.89˘12.95 58.53˘6.86 76.58˘5.49 74.33˘2.71 72.82˘1.45 72.0˘5.54 48.73˘3.41
GIN [Xu et al., 2018] 89.4˘5.6 64.6˘7.0 76.2˘2.8 82.7˘1.7 NA 75.1˘5.1 52.3˘2.8
1-2-3 GNN [Morris et al., 2019] 86.1 60.9 75.5 76.2 NA 74.2 49.5
PPGN v1 [Maron et al., 2019] 90.55˘8.7 66.17˘6.54 77.2˘4.73 83.19˘1.11 81.84˘1.85 72.6˘4.9 50˘3.15
PPGN v2 [Maron et al., 2019] 88.88˘7.4 64.7˘7.46 76.39˘5.03 81.21˘2.14 81.77˘1.26 72.2˘4.26 44.73˘7.89
PPGN v2 [Maron et al., 2019] 89.44˘8.05 62.94˘6.96 76.66˘5.59 80.97˘1.91 82.23˘1.42 73˘5.77 50.46˘3.59
Ours (GCN2) 89.39˘1.60 66.84˘1.79 71.71˘1.04 82.74˘1.35 83.00 ˘ 1.89 74.80˘2.01 51.27˘1.50
Rank 5th 2nd 11th 2nd 1st 2nd 2nd

Table 2: Results on the Graph Classification dataset comparing to other deep learning methods from Yanardag
and Vishwanathan [2015].

7 Experiments

Method Fixed Sym

GCN 96.17 96.17
Ours 98.82 98.82

Table 1: IcoMNIST results.

Icosahedral MNIST In order to experimentally show that our
method is equivariant to global symmetries, and increases expressive-
ness over an invariant message passing network (GCN), we classify
MNIST on projected to the icosahedron, as is done in Cohen et al.
[2019]. In first column of table 1, we show accuracy when trained
and tested on one fixed projection, while in the second column we
test the same model on projections that are transformed by a random
icosahedral symmetry. NGN outperforms the GCN and the equality of
the accuracies shows the model is exactly equivariant. Experimental
details can be found in Appendix A.

Graph Classification We evaluate our model with GCN2 message parametrization on a standard
set of 8 graph classification benchmarks from Yanardag and Vishwanathan [2015], containing five
bioinformatics data sets and three social graphs5. We use the 10-fold cross validation method as
described by Zhang et al. [2018] and report the best averaged accuracy across the 10-folds, as
described by Xu et al. [2018], in table 2. Results from prior work is from Maron et al. [2019]. On
most data sets, our local equivariant method performs competitively with global equiviarant methods
[Maron et al., 2018, 2019].

In appendix B, we empirically show the expressiveness of our model, as well as the runtime cost.

8 Conclusion

In this paper, we have developed a new framework for building neural networks that operate on
graphs, which pass messages with kernels that depend on the local graph structure and have features
that are sensitive to the direction of flow of information over the graph. We define “natural networks”
as neural networks that process data irrespective of how the data is encoded - critically important for
graphs, whose typical encoding is highly non-unique - using naturality, a concept from elementary
category theory. Local natural graph networks satisfy the naturality constraint with a message passing
algorithm, making them scalable. We evaluate one instance of local natural graph networks using a
message network on several benchmarks and find competitive results.

5These experiments were run on QUVA machines.
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9 Broader Impact

The broader impact of this work can be analyzed in at least two different ways. Firstly, graph neural
networks in general are particularly suited for analyzing human generated data. This makes that
powerful graph neural nets can provide tremendous benefit automating common business tasks. On
the flip side, much human generated data is privacy sensitive. Therefore, as a research community,
we should not solely focus on developing better ways of analyzing such data, but also invest in
technologies that help protect the privacy of those generating the data.

Secondly, in this work we used some elementary applied category theory to precisely specify our
problem of local equivariant message passing. We believe that applied category theory can and
should be used more widely in the machine learning community. Formulating problems in a more
general mathematical language makes it easier to connect disparate problem domains and solutions,
as well as to communicate more precisely and thus efficiently, accelerating the research process. In
the further future, we have hopes that having a better language with which to talk about machine
learning problems and to specify models, may make machine learning systems more safe.
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A Experimental details

Icosahedral MNIST We use node and edge neighbourhoods with k “ 1. We find the edge
neighbourhood isomorphism classes and for each class, the generators of the automorphism group
using software package Nauty. The MNIST digit input is a trivial feature, each subsequent feature is
a vector feature of the permutation group, except for the last layer, which is again trivial. We find a
basis for the kernels statisfying the kernel contstraint using SVD. The parameters linearly combine
these basis kernels into the kernel used for the convolution. The trivial baseline uses trivial features
throughout, with is equivalent to a simple Graph Convolutional Network. The baseline uses 6 times
wider channels, to compensate for the smaller representations.

We did not optimize hyperparameters and have copied the architecture from Cohen et al. [2019]. We
use 6 convolutional layers with output multiplicities 8, 16, 16, 23, 23 ,32, 64, with stride 1 at each
second layer. After each convolution, we use batchnorm. Subsequently, we average pool over the
nodes and use 3 MLP layers with output channels 64, 32 and 10. We use the Adam optimizer with
learning rate 1E-3 for 200 epochs. Each training is on one NvidiaV100 GPU with 32GB memory and
lasts about 2 hours.

Different from the results in the IcoCNN paper, we are equivariant to full icosahedral symmetry,
including mirrors. This harms performance in our task. Further differnt is that we use an icosahedron
with 647 nodes, instead of 2.5k nodes, and do not reduce the structure group, so for all non-corner
nodes, we use a 7 dimensional representation of S7, rather than a regular 6D representation of D6.

Graph Classification For the graph classification experiments, we again use node and edge neigh-
bourhoods with k “ 1. This time, we use a GCN message network. At each input of the message
network, we add two one-hot vectors indicating p and q. The bioinformatics data sets have as initial
feature a one-hot encoding of a node class. The others use the vertex degree as initial feature.

We use the 10-fold cross validation method as described by Zhang et al. [2018]. On the second fold,
we optimize the hyperparameters. Then for the best hyperparams, we report the averaged accuracy
and standard deviation across the 10-folds, as described by Xu et al. [2018]. We train with the Adam
optimizer for 1000 epochs on one Nvidia V100 GPU with 32GB memory. The slowest benchmark
took 8 hours to train.

We use 6 layers and each message network has two GCN layers. All dimensions in the hidden layers
of the message network and between the message networks are either 64 or 256. The learning rate is
either 1E-3 or 1E-4. The best model for MUTAG en PTC used 64 channels, for the other datasets we
selected 256 channels. For IMDB-BINARY and IMDB-MULTI we selected learning rate 1E-3, for
the others 1E-4.

B Additional Experiments Model Random Regular Str. Regular Isom.

GCN 1 6E-8 0 0
PPGN 1 0.97 0 6E-8
GCN2 1 1 1 6E-8

Table 3: Rate of pairs of graphs in set found dissimilar in
expressiveness experiment. An ideal method finds only iso-
morphic graphs not dissimilar.

Expressiveness Similar to Bourit-
sas et al [2020], we empirically evalu-
ate the expressiveness of our method.
We use a neural network with ran-
dom weights on a graph and compute
a graph embedding by mean-pooling.
Then we say that the neural network
finds two graphs in a set of graphs to
be different if the graph embeddings differ by an L2 norm of more then a multiple of ε “ 10´3 of the
mean L2 norms of the embeddings of the graphs in the set. The networks is most expressive if it only
finds isomorphic graphs to be not different. We test this on (A) a set 100 of random non-isomorphic,
non-regular graphs, (B) a set of 100 non-isomorphic regular graphs, (C) a set 15 of non-isomorphic
strongly regular graphs (see http://users.cecs.anu.edu.au/~bdm/data/graphs.html) and
(D) a set of 100 isomorphic graphs, where all graphs have 25 nodes and average of degree 6. We
measure average difference rate between pairs of graphs in the sets over 100 different weight ini-
tialisations. We compare the simple invariant message passing (GCN), PPGN [Maron et al., 2019],
and our GCN2. We see that only our GCN2 can disambiguate between the strongly regular graphs,
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showing the expressivity of GCN2. A version of PPGN that uses higher order tensors should also be
able to discriminate strongly regular graphs, but at even higher computational cost.
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Figure 7: Runtime cost of one forward-
pass on square lattices.

Runtime Cost As an additional experiment we show the
runtime cost of one forward-pass of GCN, PPGN and our
GCN2. The models have three layers and 32 dimensional
activations. For simplicity, we use a square lattice as graph,
in which the number of edges is proportional to the number
of nodes. In the results below, we observe that GCN2 has
indeed a linear scaling and a multiplicative constant about
2x compared to GCN. If the average degree of the graph
is higher, this constant may be higher. The global PPGN
methods scales superlinearly. Experiments are run on a
NVidia GeForce RTX 2080 GPU.

C Neighbourhood Selection

Definition C.1. A neighbourhood assignment N , consists
of

• a mapping from a graph G and a node p P VpGq to node neighbourhood NppGq Ď G

• a mapping from a graph G and an edge pp, qq P VpGq to edge neighbourhood NpqpGq Ď G

such that

1. any graph isomorphism φ : GÑ G1 restricts to a local node isomorphisms for each node
p P VpGq: φp :“ φ|NppGq : NppGq Ñ NφppqpG

1q and to a local edge isomorphism for each
edge pp, qq P EpGq: φpq :“ φ|NpqpGq : NpqpGq Ñ NφppqφpqqpG

1q

2. for any graph G and edge pp, qq P EpGq we have that NppGq Ď NpqpGq Ě NqpGq

3. any local edge isomorphism ψ : NpqpGq Ñ Np1q1pG1q restricts to local node isomorphisms:
ψ0 :“ ψ|NppGq : NppGq Ñ Np1pG1q, ψ1 :“ ψ|NqpGq : NqpGq Ñ Nq1pG1q.

The first criterion ensures that global graph isomorphisms translate to local isomorphisms, so that
that local naturality implies global naturality. The second and third criteria guarantee that local edge
isomorphisms translate into local node isomorphisms, which is necessary for the local naturality
criterion to be well-defined. For notational simplicity, we write Gp :“ NppGq and Gpq :“ NpqpGq.

D Proof of global naturality of local NGN kernel

Theorem 2. Let k be a local NGN kernel between node representations ρ and ρ1, consisting of
for each node neighbourhood Gpq a map kpq : ρpGpq Ñ ρ1pGqq satisfying for any local edge
isomorphism ψ : Gpq Ñ G1p1q1 that

ρ1pψqq ˝ kpq “ kp1q1 ˝ ρpψpq. (7)

Denote by ρ̂ and ρ̂1 the global graph representations induced by local node representations ρ and ρ1.
Then the layer

KGpvqq “
ÿ

pp,qqPEpGq

kpqpvpq (8)

satisfies the global NGN naturality condition, for any global graph isomorphism φ : GÑ G1

ρ̂1pφq ˝KG “ KG1 ˝ ρ̂pφq. (9)

Proof. We need to show that for any feature v P ρ̂pGq, that ρ̂1pφqpKGpvqq “ KG1pρ̂pφqpvqq P ρ̂1pG1q,
which we do by showing the node features are equal at each q1 P VpG1q. Denote φp and φq as
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the restriction of graph isomorphism φ : G Ñ G1 to the node neighbourhoods of p and q. Let
p1 “ φppq, q1 “ φpqq. Then we have that

ρ̂1pφqpKGpvqqq1 “ ρ1pφqqpKGpvqqq

“ ρ1pφqq

¨

˝

ÿ

pp,qqPEpGq

kpqpvpq

˛

‚

“
ÿ

pp,qqPEpGq

ρ1pφqqpkpqpvpqq

“
ÿ

pp,qqPEpGq

kp1q1pρpφpqpvpqq

“
ÿ

pp,qqPEpGq

kp1q1pρ̂pφqpvqp1q

“
ÿ

pp1,q1qPEpG1q

kp1q1pρ̂pφqpvqp1q

“ KG1pρ̂pφqpvqqq1 .

where in the third line we use linearity of ρ1, in the fourth line we recognise that φ restricts to local
edge isomorphism φpq and apply the constraint on the local NGN kernel and in the fifth line we use
the bijection between EpGq and EpG1q.

E Message Network gives Local NGN Kernel

To define the message network, we first need to define node features ρ, ρ1 and edge features τ, τ 1,
completely analog to how node features are defined. Furthermore, we need for each edge pp, qq
embedding map αpq : ρpGpq Ñ τpGpqq and projection map βpq : τ 1pGpqq Ñ ρ1pGqq. These
should satisfy that for any edge isomorphism ψ : Gpq Ñ G1p1q1 , αp1q1 ˝ ρpψpq “ τpψq ˝ αpq
and βp1q1 ˝ τ 1pψq “ ρ1pψqq ˝ βpq, meaning that isomorphisms commute with embeddings and
projections. For each edge pp, qq the adjacency matrix can be encoded as an edge feature τ as matrix
Apq P τApGpqq.

When all representations are tensor products of the standard representation of the permutation group,
we can use a single message network Ψ taking as input the embedding of the input node feature
αpqpvpq and the adjacency matrix Apq and outputting an output edge feature τ 1pGpqq. When Ψ
is an equivariant graph network, we have that σΨpv,Aq “ Ψpσv, σAq for any permutation σ in
the appropriate permutation representation. The local NGN kernel is then defined as kpqpvpq “
βpqpΨpαpqpvpq, Apqqq.

Then this kernel satisfies the local NGN naturality for any edge isomorphism ψ : Gpq Ñ G1p1q1 (Eq.
4):

kp1q1pρpψpqpvqq “ βp1q1pΨpαp1q1pρpψpqpvpqq, Ap1q1qq

“ βp1q1pΨpτpψqpαpqpvpqq, Ap1q1qq

“ βp1q1pΨpτpψqpαpqpvpqq, τpψqpApqqqq

“ βp1q1pτ 1pψqpΨpαpqpvpq, pApqqqqq

“ ρ1pψqqβpqpΨpαpqpvpq, pApqqqqq

“ ρ1pψqqpkpqpvpqq

where in the second line we used the commutation of α, in the third line we use that Ap1q1 “

τpψqpApqq as an immediate consequence of the fact that ψ is an edge neighbourhood isomorphism,
in the fourth line the equivariance of Ψ, in the fifth line the commutation of β,
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Figure 8: Node and edge neighbourhood on a triangular tiling.

F Reduction to Group & Manifold Gauge Equivariance

The two dimensional plane has several regular tilings. These are graphs with a global symmetry
that maps transitively between all faces, edges and nodes of the graph. For such a tiling with
symmetry group G¸ T , for some point group G and translation group T , we can show that when
the neighbourhood sizes and representations are chosen appropriately, the natural graph network is
equivalent to a Group Equivariant CNN of group G Cohen and Welling [2016].

For sufficiently large node neighbourhoods, the node automorphisms equal the point group G of the
lattice, thus, from any representation ρG ofGwith representation space V , we can build a node feature
ρ with for each node p, ρpGpq “ V and in which all node isomorphisms ψ have ρpψq “ ρGpgq for
some group element g P G. The way to construct this, is to pick one reference node p, make an
identification of the automorphism group AutpGpq with G and then for all isomorphic nodes p1 pick
one isomorphism ψ : Gp Ñ G1p1 with ρpψq “ idV . The functor axioms then fully specify ρ.

Now, as an example consider one of the tilings of the plane, the triangular tiling. As shown in figure 8,
the node neighbourhood has as automorphism group the dihedral group of order 6, D6, so we can use
features with reduced structure group D6. The kernel kpq is constrained by one automorphism, which
mirrors along the edge. A Natural Graph Network on these reduced features is exactly equivalent
to HexaConv [Hoogeboom et al., 2018]. Furthermore, the convolution is exactly equivalent to the
Icosahedral gauge equivariant CNN [Cohen et al., 2019] on all edges that do not contain a corner
of the icosahedron. A similar equivalence can be made for the square tiling and a conventional D4

planar group equivariant CNN [Cohen and Welling, 2016] and a gauge equivariant CNN on the
surface of a cube.
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