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Abstract

As the interactions between people increases, the impending menace
of COVID-19 outbreaks materialize, and there is an inclination to apply
lockdowns. In this context, it is essential to have easy-to-use indicators
for people to use as a reference. The effective reproduction number of
confirmed positives, R;, fulfill such a role. This document proposes a
data-driven approach to nowcast R; based on previous observations’
statistical behavior. As more information arrives, the method naturally
becomes more precise about the final count of confirmed positives.
Our method’s strength is that it is based on the self-reported onset of
symptoms, in contrast to other methods that use the daily report’s count
to infer this quantity. We show that our approach may be the foundation
for determining useful epidemy tracking indicators.

Keywords
Effective Reproduction Number, Basic Reproduction Number, Com-
pounded Rate of Change, COVID-19

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

Introduction

After a period of confinement due to the presence of COVID-19 and
facing economic and social pressures, societies start to open up, seeking to
return to productive, sport, and recreational activities. As the interactions
between people increase, the impending menace of outbreaks materializes.
Naturally, there is a tendency to apply once again lockdowns, in what has
been called the hammer and the dance'. In this context, it is essential
to have easy to apply indicators for people to use as a reference. At the
beginning of the infection, when all population members are susceptible,
the average number of illnesses that an infected person originates is called
the basic reproduction number, . Sometime after the beginning of the
infection, and with considerably more practical utility, one may want to
know the effective reproduction number, R;2. When R; is higher than
one, the number of infected people grows exponentially, i.e., their number
will double in a short period. When R; is less than one, the epidemic will
tend to disappear. However, estimating R, accurately at the required level
of geospatial resolution is a complex problem.

Although applicable to any country, let us take the case of Mexico as
an example. The records generated by the epidemiological surveillance
system contain information that includes, among other predictors, the
number of confirmed positives, deaths, and suspects. Daily, the Ministry
of Health informs the public about the status of its records®. However,
the data it discloses updates records of events that occurred in the past,
sometimes as far as 90 days ago. At other times, with a significant
frequency, the records that were previously released are discarded.
Although publishers often drop these erroneous entries overnight, there
have been cases of records eliminated after more than 50 days.

Besides the integrity of the information, there are other difficulties
in tracking the epidemy inherent to the pandemic and interesting for
researchers, decision-makers, and the general public. SARS-CoV-2 is an

airborne virus*, which infects some people without causing symptoms>.
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On a significant number of occasions, people begin to spread COVID-
19 before they start to feel sick®. Also, each infected person reacts
differently and will have, if anything, a different latency and incubation
period’. People will have a different contagious period, manifested with
inequal intensity during that time®. Although the symptoms are known,
one may reveal them differently. People will require different types of
medical attention, which may or may not require hospitalization®. In some
cases, someone ill may need or not a ventilator'?. Eventually, a given
person may recover, possibly with sequels, or will pass away!!. About
the whole process, we begin to have some statistical knowledge on which
we can develop models. In this paper, propose a data-driven approach that
leverage experience to create a simple, yet effective nowcasting method
for R, that can be used by policy-makers as well by the general public.
Our main contribution is an approach to use past observations to generate
plausible sequences of estimates for the number of confirmed positive
cases that could have possibly occurred in the recent days to compute
variations of the effective reproduction number.

We base our method on the statistical behavior of previous observations.
As more information arrives, the estimation naturally becomes more
precise about the final count of confirmed positives. In the next section,
we review the literature about related methods. Then, we proceed to
discuss the intrinsic delay in information flow that exists in the process
of detecting a COVID-19 confirmed positive and detail our approach
to estimate plausible sequences for the number of infected people. This
insight leads us to review the underlying method we employ to calculate
the effective reproduction number using the health reports available. After
showing some results of our implementation of the nowcasting method for
Ry, we conclude our study by discussing and delimiting our findings and
delineating some potential research lines.

Related Literature

Though recent, COVID-19 has kickstarted some novel ideas to track it
reliably. The research effort to nowcast the basic reproduction number can
be classified in either mechanistic approaches, Bayesian approaches, or a
hybrid combination of both.
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Mechanistic Approaches

Wang et al.'? developed a hybrid model to complement the dynamics of
the SIR (Susceptible , Infectious, Recovered) model with spatiotemporal
analysis. The space-time component is modeled, at the start, with a
Poisson distribution to describe rare events. Then, they complemented
it with a negative binomial random model during over-dispersion.
Balabdaoui and Mohr!? propose an age-stratified discrete compartment
model as an alternative to SIR type models. Their approach follows the
trajectory of individuals that includes the exposed, the asymptomatic, the
symptomatic infectious, the symptomatic in self-isolation, the patients
in the intermediate care unit, and the patients in the intensive care unit.
Masjedi et al.'* compares phenomenologic and mechanistic models. The
former based on generalized Richards models !> (an extension of sigmoid
functions) and the latter on a modified SEIR (Susceptible, Exposed,
Infectious, and Recovered) model. They fit the models with observed data
to forecast the next month. They observe that although phenomenologic
models fit the data, they are not reliable for decision-making. In contrast,
SEIR models predicted the phenomena better. Contaldi'® presents
SIRFH, an extension of the SIR model that tracks hospitalizations and
hospital-based fatalities introducing additional differential equations. The
estimation for the basic reproduction number derives from the solution
to this extended model. Finally, Annan and Hargreaves!’ produce a
nowcasting method based on the SEIR model. To calibrate the parameters,
they use observational data and a Bayesian approach. Annan and
Hargreaves’ analysis includes the uncertainties associated with deaths’
stochastic nature, the reporting errors, and the model itself.

Bayesian Approaches

Altmejd et al.'® present a model based on the removal method ', where
one extracts batches of a fixed population. Their models deal with
lags arising from the calendar patterns, where events reported during
the weekends are less. Their Bayesian approach uses a likelihood that
considers the number of reports by day of the week, and priors with
improper uniform distribution. Their model provides better estimates than
seven days averages. Schneble et al.?* present a nowcasting model based
on the number of deaths, as quantifying their correct number is more
reliable than for infected people. Their epidemic spread model considers
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Figure 1. Delays in reporting. The horizontal axes show the day of onset. The vertical axes
indicate the number of patients confirmed positives. In (b), we zoom in on the last 30 days
shown in (a). Each layer is an update to registers in the past.

region and age-specific Poisson distributions, where they consider lag
to report. They model the effect of age, gender, weekday, and location
as a quasi Poisson distribution. Then, they infer a posterior using a
Gaussian prior. For nowcasting, they model the delay as a random variable
which will provide death counts. They distribute these death counts as a
quasi-binomial distribution. Chitwood et al.?! propose to use a Bayesian
framework for nowcasting. They take into account delayed and incomplete
reporting. They assume that one can understand the COVID-19 complex
spread system by examining the individual components. In that model,
they consider the uncertainty that results from available diagnosis and
delays in the estimation of disease progression and reporting systems.
Lastly, Abbot et al.??> employ a quasipoisson regression model to estimate
the spread rate. Interestingly, they base their analysis on the reported dates
for the confirmed positives and infer the symptom onset through statistical
modeling.

Characterizing the Update Pattern

In our approach, we characterize the frequency at which the counting
updates of COVID-19 confirmed positives occur. In this section, we
analyze the origin of such delays and describe the form we model them.
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Figure 2. Confirmed positives. (a) As the days pass, updates eventually level off to a final
count for a given day C:(D). (b) and (c) show the normalized daily number of reported
confirmed positive and the accumulated number of cases. Our method relies on the
assumption that it is possible to model the daily variations with a data distribution.

Delays in the Report of Confirmed Positives

Declaring a person confirmed positive involves a complex process that
may take days, even nowadays, when it is of paramount importance
to achieve certainty for decision-making. Just consider the case of a
person showing symptoms related to COVID-192 that decides to visit the
physician. After an interview to collect some necessary clinic information,
the physician chooses to take either a sample from the nasopharynx using
a long swab?* or a CT (Computer Tomography)?°. In some places, the
sample can be analyzed via the RT-PCR(reverse-transcription polymerase
chain reaction)?® in situ with results on the same day but frequently it
may take a week or longer to be processed. Afterward, the results will be
uploaded in computer systems and summarized for analysis.

In Figure 1, we illustrate the effect of delays in reporting using the data
set made public by the Mexican Health Ministery>. The horizontal and
vertical axes show the day of onset and the number of confirmed positive
cases. Each layer corresponds to the number of cases added to a prior date.
Although the number of updates may be significant for a given day, they
eventually converge to the total number of confirmed positives for that
day, Cy(D), for D large, and where ¢ expresses the day of interest (see
Figure 2(a)). If we divide the daily accumulated of confirmed positives
C4(0), for a given day 9, by Cy(D), the cumulated distribution will tend
to one. We illustrate this in Figure 2(b)-(c), where we show both, the
rate of daily change and the cumulative change. Our approach aims to
characterize the variations we observe in these distributions to develop a
model for nowcasting.
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Compounded Rate of Change

We aim to estimate the number of confirmed positive cases Cy(D) for
the day ¢ using the following o days of reports available. In principle, we
would learn about C;(D) when D is cosiderably large. But in practice, D
can be as short as one month and a half of daily updates. Given the number
of confirmed positives § days after day ¢, C;(9), the number of confirmed
positives on day C;(d + 1) can be expressed as

Ci(0+1) = Cy(6)(1 + pe(0)), (D

where p;(0) is the rate of change from one day 0 to the next § + 1, for
reference day ¢. If we solve the recursion, we will have the expression

D—-1

Ci(D) = Ci(0) [T (1 + p(0)), )

0=0

where one assumes that the daily rate changes over time. In the cases
we are studying, the curves expressing the rate of change of the number
of confirmed positive relative to the day before, for a different starting
day, seem to be somewhat consistent over the samples. We model p; as
a random variable, which follows a probability distribution we may infer
from the experimental samples. Then, on the day ¢ + ¢ , the best-guess
prediction for the number of confirmed positive, C;(d), is

Ci(D) = Cy(8)(1 + p;(9)), 3)

where our newly defined random variable pP(§) expresses the rate of
change from day § + ¢ to day D. In our approach, we model p”(J) as
a random variable with different distribution for each day ¢, for more fine-
grained or longer-term prediction. One may find the relationship between
pP(8) and p;(9) by noting that (2) and (3) solve for Cy(D) as

D-1

C(0) [T (1 +pe(8)) = CL(8)(1 + o7 (6)). 4)

6=0
Expanding C;(§) using the recurrence relationship in (1), we have

D—

,_.

0—1
1+pt =GO [[Q+pl@)A+p76), )

d=0

Oq
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from where, after eliminating for the common factors, solving for p”(4)

results in
D—1

pP(0) =T+ pu(d) — 1. 6)

d=6

Effective Reproduction Number R,

Given a particular sequence of the observed number of infected people
{Co(6),C1(6 — 1) ...,C4(0)}, and the argument of the number of days the
report has been updated, we aim to nowcast the basic reproduction number
Ry, i.e., given the distribution of the rate of change pP(§), we generate
ensembles of sequences aiming to estimate {Cy(D),Cy(D)...,Cy(D)}
before proceeding to calculate 1?;. We first review EpiEstim, a method
proposed by Cori et al.?’, to estimate R, from the observed number of
cases.

Cori et al.”" proposed a Bayesian framework to compute R;, where
the number of infected people observed at day ¢, C;, follows a Poisson
process. In a simplification, they assume that the daily observations of
infected people are independent. Thus, one may express the likelihood of
observing a sequence of infected people between day ¢ — 7 — 1 and day ¢

as 27

L 27

t

P(Ct,.,-+1, o .,Ct | Co, Ce 7Ct717W7Rt,T) = H

s=t—7+1

(Rt,TAS)CS e_Rt,‘rAs
Cy! ’

(7)

where the transmisibility 1, - is assumed to be constant over the period
[t—71+1,t], Ay = 22:1 C,_sw, is the total infectiousness of infected
people at time ¢, and w = (w1, ..., w;)’ is a mass density probability
profile of infectivity profile for an individual. Cori et al.?’ assume that the
effective reproduction number I, ; is a random variable which probability
follows a Gamma distribution as?’

Ra—l
t,7 G_Rt"r/b (8)

p(Rt,T) = F(G)ba )

where a and b are the parameters of shape and scale. Since the Poisson
and Gamma probability distributions are conjugate, one can express the
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posterior in closed form, again as a Gamma distribution, as?’

t
ACs
a—1_R s
P(th”r%*h ct Ct7 Rt,T | COv R Ct7T7 W) X Rt,r € wr/B F?
s=t—74+1 %"
9)
from where the mean « and standard deviation 3 are given by
d 1
a=a+ E Csand g = , ) (10)
s=t—7+1 1
E A+ -
b
s=t—7+1
4 =1 4 5=3 ; 5=
08 08 08
c‘06 1 ':‘05 :06
t0.4 - E04 204
0.2 0.2 02
0‘ 0 0
0 2000 4000 6000 8000 0 20 40 60 80 0.5 1 15 2 25 3
r P P
(a) (b) (©
1 =15 4 § =25 1 §=135
08‘ 08 08
/:06 ':‘06 :‘06
\EOA E04 E104
0.2 0.2 0.2
O‘ 0 0
0 0.1 0.2 0.3 04 0 0.05 0.1 0.15 0 0.02 0.04 0.06 0.08 0.1
P P P
(d) ©) ®

Figure 3. Empirical Distribution Function. Out of the historical observations, we construct
distributions for p Here, we show examples for § = 1, 3,7, 15, 25, 35.

Given Cy(0), the information about the number of infected people ¢
days after the day of interest ¢, and the model for the probability function
for pP(4), we produce N random samples which will correspond to the
number of people infected that day. We then compute R, for each of
the sequences using the model proposed by Cori et al.?’. Finally, we
calculate the mean and standard deviation for R, to provide the most likely
value and uncertainty at one standard deviation. To take into account the
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Figure 4. Qualitative comparison of the model’s output. For the daily confirmed cases (a), we
show Cori’s output er al. algorithm to compute R;. We fed the data to the method provided by
Abbott er al. 2, which seems to follow the reported daily cases. Finally, we illustrate the output
of our approach, including its area of uncertainty.

difference between the accepted values for the average incubation (five
days)’ and latency periods (three days)®, we represent them two days
before t.

Results

We took the data set for COVID-19 cases provided by the Mexican Health
Ministery corresponding to July 11, 2020. The data set contains 723,668
records, out of which 295,268 correspond to confirmed positives. As time
passes by, the number of confirmed positives for a given day ¢ is updated.
In Figure 1, we illustrate how each day the updates stack up a layer
of updated registers toward the past. As we accumulate the number of
confirmed positive updates, we observe that the total quantity levels off
and reaches a maximum at Cy(D) (see Figure 2). About 98% of reports
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Figure 5. Estimation of R; for some states of Mexico and corresponding cumulative
normalized distribution for Mexico City (a)-(b), Mexico State (c)-(d), Tabasco (e)-(f), and
Queretaro (g)-(h).

are filled out by day 33. When we divide the daily updates for the day
t by Cy(D), we obtain the normalized updates by day and accumulated
registers illustrated in Figure 2.

We then proceed to construct empirical distributions describing the
variation of p”(§). We show illustrations of this for § = 1,3, 7,15, 25 and
35 in Figure 3. Note that ) = 0 is not present as generally the number of
reported confirmed positive for C;(0) = 0 causing p;(0) to be undefined.
Once we have the models for p;(9), we may proceed to generate estimates
for the number of confirmed positives for C;(D) using (3). The mean and
standard deviation statistics will provide us with the most likely value and
an estimate for the uncertainty. We use the same set of randomly generated
values to obtain sequences, which we evaluate using the method proposed
by Cori et al.?’ to obtain the instantaneous R,. Our implementation
considers the pre-symptomatic transmission, i.e., the incubation period,
or the time it takes for an infected person to start showing symptoms, is
greater than the latent period, or the time from which an infected person
can spread to others. Following Bar-On et al.?®, we assume that the latent
period lasts for three days and the incubation period for five days.

We compare the performance of our nowcasting with the proposed by
Abbott et al.?? (see Figure 4). In their case, the nowcasting tends to
closely follow the number of reported confirmed positives, which gives
the undesirable effect of resulting in a descending R;, when it is not.
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Our proposal, on the other hand, increases its certainty naturally as more
information is available.

As we increase J in our nowcasting exercise, there is a tendency to
observe fewer cases, because there has not been enough time for the
information to arrive. We set a dynamic threshold to stop the nowcasting
estimation when for a particular day of analysis, J, the number of
confirmed positive cases is less than 30. Also, we have observed that as
the number of confirmed positive is less, the normalized cumulative curves
tend to be noisier. In Figure 5, we illustrate what happens for entities in
Mexico where the number of confirmed positive cases is 59,667 (Mexico
City), 44,114 (State of Mexico), 15,909 (Tabasco), and 2,667 (Querétaro).
We believe that our method works best when the number of positive cases
is beyond 2,600 for the observed interval of 90 days. Using this threshold,
there are still currently 30 States (out of 32) and 32 Municipios (out of
2450) in Mexico subject to our analysis.

To assess our scheme’s performance quantitatively, we analyzed data
in the past, when the uncertainty in the estimation of the effective
reproduction number, R;, is small, and compare it with our predictions
at that date. On November 25, 2020, we observed a period starting
three months before, from August 24 to September 23, and compared
our nowcast prediction R; with R, f01[ each of the 32 states of Mexico
(see Figure 6). Our method outputs R; as a distribution which spread
grows as the prediction approaches the current date. For the performance
assessment, we characterize the distribution of R, with its mean R, and
one standard deviation at each side. To evaluate the performance, we
obtain the root mean squared error, RMSE, between ?; and the prediction
band created by R, and one standard deviation o (see Figure 7(a)) as

1 : —i
RMSE = |- Z (Ri — (R, — 0:))% + Z — (R, +0y))?
Ri<R,—0; R§>Rt+aZ

(11)
where n is the number of points that meet the logical conditions. One
observes that for states such as Guerrero, Jalisco, and Sinaloa, with an
RMSE of 0.0, 0.001, 0.010, the band of uncertainty frequently includes
the value of R;, while for Michoacan de Ocampo, Morelos and Baja
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(a) Full dataset (b) Last 20 days

Figure 7. Nowcasting performance. We computed the RMSE for the values out of the band
defined between the mean R; and one standard deviation o. In (a), we use all the
distributions of cases available for nowcasting. In (b), we use the most recent 20 distributions.

California, with an RMSE of 0.237, 0.366, 0.373, the value of R, is
sometimes outside the band of uncertainty.

An intriguing question is whether one should employ the whole
sequence of reports to construct the frequency distributions for p or select
the more recent ones, under the rationale that the infectious dynamics have
changed or health institutions have implemented new reporting practices.
To study this effect, we repeated the performance evaluation previously
described but used the last 20 available distributions. In Figure 7(b), with
a maximum RMSE above 0.7 and a generally more step curve, we show
that the performance declines when we use the last observations compared
with using the full set.

Discussion and Conclusion

Lack of testing is a significant issue in Mexico. Despite frequent
suggestions by the World Health Organization, the number of tests
performed normalized by its populations is low among the worst-hit
countries?. Thus, a data-driven approach, such as ours, is likely to
underrepresent the phenomenon’s true nature. Also, we need further
studies to assess the effects of novel testing methods with potentially
faster turnaround and the implementation of improved procedures to
generate, process, analyze, and transfer information. However, our
evidence suggests that our method works best, using even the information
developed since the epidemy’s onset.
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In this document, we have presented a nowcasting method to estimate
the number of confirmed positives. We have shown that this may
be the foundation to generate plausible sequences out of which one
may determine useful epidemy tracking indicators, such as the basic
reproduction number. Our method naturally expresses uncertainty due
to the lack of information but eventually gains certainty as more data
accumulates.

Our method’s strength is that it is based on the self-reported onset of
symptoms, in contrast to other methods that use the number of confirmed
positives cases accumulated by the report’s day to infer this quantity. A
potential drawback of our approach is that it relies on a regularity of the
update cycle. As researchers implement more sophisticated systems for
testing and reporting, the statistics may change. To remedy this potential
effect, one may eliminate old observations and update the distributions
for p; regularly. Due to the difference between the incubation and latent
periods, and delays in the detection and reporting cycle, our model
estimates R; up to several days in the past. We decided to take no further
assumptions about the progression of the epidemy. Although potentially
some form of state estimation may be possible to implement to fill the
gap.

We believe that it is crucial to continue developing solutions to quickly,
robustly, and reliably estimate indicators such as the basic reproduction
number. A possible direction for future research may be to determine
the disaggregation level to continue to generate a reliable indicator.
The resulting nowcasting methods should compensate for the delays
inherent in producing and processing information about this critical,
global, and urgent problem. Also, we are planning to study the extend at
which our model can be incorporated into dynamics-based models. This
enhancement could offer improved nowcasting.
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