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The cell nucleus houses the chromosomes, which are linked to a soft shell of lamin protein fila-
ments. Experiments indicate that correlated chromosome dynamics and nuclear shape fluctuations
arise from motor activity. To identify the physical mechanisms, we develop a model of an active,
crosslinked Rouse chain bound to a polymeric shell. System-sized correlated motions occur but
require both motor activity and crosslinks. Contractile motors, in particular, enhance chromosome
dynamics by driving anomalous density fluctuations. Nuclear shape fluctuations depend on motor
strength, crosslinking, and chromosome-lamina binding. Therefore, complex chromatin dynamics
and nuclear shape emerge from a minimal, active chromosome-lamina system.

The cell nucleus houses the genome, or the material
containing instructions for building the proteins that a
cell needs to function. This material is ∼ 1 meter of
DNA with proteins, forming chromatin, and it is pack-
aged across multiple spatial scales to fit inside a ∼ 10 µm
nucleus [1]. Chromatin is highly dynamic; for instance,
correlated motion of micron-scale genomic regions over
timescales of tens of seconds has been observed in mam-
malian cell nuclei [2, 3, 5–7]. This correlated motion di-
minishes both in the absence of ATP and by inhibition
of the transcription motor RNA polymerase II, suggest-
ing that motor activity plays a key role [2, 3]. These
dynamics occur within the confinement of the cell nu-
cleus, which is enclosed by a double membrane and 10-
30-nm thick filamentous layer of lamin intermediate fila-
ments, the lamina [1, 8, 9]. Chromatin and the lamina
interact through various proteins [10–12] and form struc-
tures such as lamina-associated domains (LADs) [13, 14].
Given the complex spatiotemporal properties of a cell nu-
cleus, how do correlated chromatin dynamics emerge and
what is their interplay with nuclear shape?

Numerical studies suggest several explanations for cor-
related chromatin motions. Individual unconfined ac-
tive semiflexible polymer chains with exponentially cor-
related noise exhibit enhanced displacement correlations
[15]. With confinement, a Rouse chain with long-range
hydrodynamic interactions that is driven by extensile
dipolar motors can exhibit correlated motion over long
length and timescales [7]. Correlations arise due to the
emergence of local nematic ordering within the confined
globule. However, such local nematic ordering has yet to
be observed. In the absence of activity, a confined het-
eropolymer may exhibit correlated motion, with anoma-
lous diffusion of small loci [16, 17]. However, in marked
contrast with experimental results [2, 3], introducing ac-
tivity in such a model does not alter the correlation
length at short timescales and decreases it at longer
timescales.

Through interactions or linkages with the lamina, chro-
matin dynamics may influence the shape of the nuclear
lamina. Experiments have begun to investigate this no-
tion by measuring nuclear shape fluctuations [18–20].

Depletion of ATP, the fuel for many molecular motors,
diminishes the magnitude of the shape fluctuations, as
does the inhibition of RNA polymerase II transcription
activity by α-amanitin [20]. Other studies have found
that depleting linkages between chromatin and the nu-
clear lamina results in more deformable nuclei [21, 22],
enhanced curvature fluctuations [23], and/or abnormal
nuclear shapes [24]. Interestingly, depletion of lamin A
in several human cell lines leads to increased diffusion of
chromatin, suggesting that chromatin dynamics is also
affected by linkages to the lamina [25]. Together, these
experiments demonstrate the critical role of chromatin
and its interplay with the nuclear lamina in determining
nuclear structure.

To understand these results mechanistically, we con-
struct a chromatin-lamina system with the chromatin
modeled as an active Rouse chain and the lamina as an
elastic, polymeric shell with linkages between the chain
and the shell. Unlike previous chain and shell mod-
els [2, 3, 23], our model has motor activity. We implement
a generic and simple type of motor, namely extensile
and contractile monopoles, representative of the scalar
events considered in a two-fluid model of chromatin [28].
We also include chromatin crosslinks, which may be a
consequence of motors forming droplets [29] and/or com-
plexes [30], as well as chromatin binding by proteins, such
as heterochromatin protein I (HP1) [31, 32]. Recent rheo-
logical measurements of the nucleus support the notion of
chromatin crosslinks [2, 3, 32], as does indirect evidence
from chromosome conformation capture (Hi-C) [33]. In
addition, we explore how the nuclear shape and chro-
matin dynamics mutually affect each other by comparing
results for an elastic, polymeric shell with those of a stiff,
undeformable one.

Model: Interphase chromatin is modeled as a Rouse
chain consisting of 5000 monomers (each representing
. 1 Mb of chromatin) with radius rc connected by
Hookean springs with spring constant K. We include
excluded volume interactions with a repulsive, soft-core
potential between any two monomers, ij, and a dis-
tance, |~rij |, between their centers, through the poten-
tial Uex = 1

2Kex(|~rij | − σij)
2 for |~rij | < σij , where
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FIG. 1. Left: Two-dimensional schematic of the model. Cen-
ter: Schematic of the two types of motors. Right: Simulation
snapshot. The chromatin polymer is composed of linearly
connected monomers, shown in gray. Active chromatin sub-
units are shown in purple. The lamina is composed of lamin
subunits, shown in blue.

σij = rci + rcj , and zero otherwise. Previous mechanical
experiments and modeling suggest extensive crosslinking
[2, 3, 32], so we include NC ≤ 2500 crosslinks between
chromatin monomers by introducing a spring between
different parts of the chain with the same spring constant
as along the chain.

In addition to (passive) thermal fluctuations, we also
allow for explicit motor activity along the chain. In
simulations with motors, we assign Nm = 400 chain
monomers to be active. An active monomer has mo-
tor strength M and exerts sub-pN force Fa = ±Mr̂ij
on monomers within a fixed range. Active monomers
do not experience a reciprocal force, −Fa, so the system
is out of equilibrium (see SM, which includes Refs. [4–
6, 8]). Motor forces may be attractive or “contractile,”
drawing in chain monomers, or alternatively, repulsive or
“extensile,” pushing them away (Fig. 1), similar to other
explicit models of motor activity [7, 28, 38]. Since motors
in vivo are dynamic, unbinding or turning off after some
characteristic time, we include a turnover timescale, τm,
for the motor monomers, after which a motor moves to
another position on the chromatin. We study τm = 20,
corresponding to ∼ 10 s, i.e., comparable to the timescale
of experimentally observed chromatin motions [2, 3], but
shorter than the turnover time RNA polymerase [9].

The lamina is modeled as a layer of 5000 identical
monomers connected by springs with the same radii and
spring constants as the chain monomers and an average
coordination number z ≈ 4.5, as supported by previous
modeling [2, 3, 23] and imaging experiments [1, 8, 9].
Shell monomers also have a repulsive soft core. We
model the chromatin-lamina linkages as NL permanent
springs with stiffness K between shell monomers and
chain monomers (Fig. 1).

The system evolves via Brownian dynamics, obeying
the overdamped equation of motion: ξṙi = (Fbr +Fsp +
Fex + Fa), where Fbr denotes the (Brownian) thermal
force, Fsp denotes the harmonic forces due to chain
springs, chromatin crosslink springs, and chromatin-
lamina linkage springs, and Fex denotes the force due
to excluded volume. We use Euler updating, a time step

of dτ = 10−4, and a total simulation time of τ = 500.
For the passive system, Fa = 0. In addition to the de-
formable shell, we also simulate a hard shell by freezing
out the motion of the shell monomers. To assess the
structural properties in steady state, we measure both
the radial globule, Rg, of the chain and the self-contact
probability. After these measures do not appreciably
change with time, we consider the system to be in steady
state. See SM for these measurements, simulation pa-
rameters, and other simulation details.

Results: We first look for correlated chromatin mo-
tion in both hard shell and deformable shell sys-
tems. We do so by quantifying the correlations be-
tween the displacement fields at two different points
in time. Specifically, we compute the normalized spa-
tial autocorrelation function defined as Cr(∆r,∆τ) =

1
N(∆r)

∑
N(∆r)

<di(r,∆τ)·dj(r+∆r,∆τ)>
<d2(r,∆τ)> , where ∆τ is the

time window, ∆r is the distance between the centers of
the two chain monomers at the beginning of the time
window, N(∆r) is the number of ij pairs of monomers
within distance ∆r of each other at the beginning of the
time window, and di is the displacement of the ith chain
monomer during the time window, defined with respect
to the origin of the system. Two chain monomers mov-
ing in the same direction are positively correlated, while
monomers moving in opposite directions are negatively
correlated.

Fig. 2 shows Cr(∆r,∆τ) for passive and active samples
in both hard shell (Figs. 2 (a) and (b)) and soft shell
cases for NC = 2500, NL = 50, M = 5, and τm =
20 (Figs. 2 (e) and (f)) (see SM for results with other
parameters). Both the passive and active samples exhibit
short-range correlated motion when the time window is
small, i.e., ∆τ < 5. However, for longer time windows,
both the extensile and contractile active samples exhibit
more long-range correlated motion than the passive case.
Correlations are also stronger for longer τm (see SM),
similar to findings for individual active polymers [15].
These correlations are visible in quasi-2d spatial maps
of instantaneous chromatin velocities, which show large
regions of coordinated motion in the active, soft shell case
(Figs. 2 (c) and (g)).

To extract a correlation length to study the corre-
lations as a function of both NC and NL, we use a
Whittel-Marten (WM) model fitting function, Cr(r) =
21−ν

Γ(ν)

(
r
rcl

)ν
Kν

(
r
rcl

)
, for each time window (Fig. 2

(f)) [3]. The parameter ν is approximately 0.2 for all
cases studied. For the hard shell, the correlation length
decreases with number of linkages (Fig. 2 (d)). This trend
is opposite in deformable shell case with activity and long
time lags (Fig. 2 (h)). For the hard shell, linkages effec-
tively break up the chain into uncorrelated regions. For
the soft shell, the shell deforms in response to active fluc-
tuations in the chain. For both types of shells, the cor-
relation length increases with the number of crosslinks
(Figs. 2 (d) and (h)), with a more significant increase in
the soft shell active case. It is also interesting to note
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. (a) The spatial autocorrelation function Cr(∆r,∆τ) for passive and extensile cases at different time lags, ∆τ , for the
hard shell, while (b) shows the contractile and passive case. (c) Two-dimensional vector fields for ∆τ = 5 (left), 50 (right) for
the passive case (top) and the contractile case (bottom). (d) The correlation length as a function of NL and NC for the two
time lags in (c). (e∼h): The bottom row shows the same as the top row, but with a soft shell. Lengths shown in units of the
hard-shell radius, Rs = 10. See SM for representative fits to obtain the correlation length.

that the lengthscale for the contractile case is typically
larger than that of the extensile case, at least for smaller
numbers of linkages.

Given the differences in correlation lengths between
the hard and soft shell systems, we looked for enhanced
motion of the system in the soft shell case. Enhanced mo-
tion has been predicted for active polymers [14, 15, 41]
and observed in active particle systems confined by a
deformable shell [42]. Similarly, we observe the active
chain system moving faster than diffusively (see SM). In
the shell’s center-of-mass frame, the correlation length is
decreased, but still larger than in the hard shell simula-
tions (see SM). Interestingly, experiments demonstrating
large-scale correlated motion measure chromatin motion
with an Eulerian specification (e.g., by particle image
velocimetry) and do not subtract off the global center
of mass [2, 3, 6]. However, one experiment noted that
they observed drift of the nucleus on a frame-to-frame
basis, but considered it negligible over the relevant time
scales [3]. Additionally, global rotations, which we have
not considered, could yield large-scale correlations.

We also study the mean-squared displacement of the
chromatin chain to determine if the experimental feature
of anomalous diffusion is present. Figs. 3 (a) and (c)
show the mean-squared displacement of the chain with
NL = 50 and NC = 2500 as measured with reference to
the center-of-mass of the shell for both the hard shell
and soft shell cases, respectively. For the hard shell,
the passive chain initially moves subdiffusively with an
exponent of α ≈ 0.5, which is consistent with an un-

(a) (b)

(c) (d)

FIG. 3. (a) MSD for the hard shell case with NC = 2500,
NL = 50, and M = 5. For the inset, NC = 0. (b) Density
fluctuations for the same parameters as in (a). Figures (c)
and (d) show the soft shell equivalent to (a) and (b).

crosslinked Rouse chain with excluded volume interac-
tions [43]. However, the passive system crosses over to
potentially glassy behavior after a few tens of simula-
tion time units. We present NC = 0 case in the inset to
Fig. 3 (a) for comparison to demonstrate that crosslinks
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FIG. 4. Power spectrum of the shape fluctuations with
NL = 50 and NC = 2500 for the passive and both active
cases. Different motor strengths are shown. The inset shows
experimental data from mouse embryonic fibroblasts with an
image of a nucleus with lamin A/C stained.

potentially drive a gel-sol transition, as observed in prior
experiments [44]. The active hard shell samples exhibit
larger displacements than passive samples, with α ∼ 0.6
initially before crossing over to a smaller exponent at
longer times.

Additionally, the contractile system exhibits larger dis-
placements than the extensile system. We found that a
broader spectrum of steady-state density fluctuations for
the contractile system drive this behavior (Fig. 3 (b)).
This generates regions of lower density into which the
chain can move, leading to increased motility. The ac-
tive cases exhibit anomalous density fluctuations, with
the variance in the density falling off more slowly than
inverse length cubed (in 3D). Finally, the MSD in the
hard shell case is suppressed by more boundary linkages
or crosslinks (see SM). For the soft shell case, we observe
similar trends as the hard shell.

Next, we examine nuclear shape. In Fig. 4, we plot the
power spectrum of the shape fluctuations of the shell for
a central cross-section as a function of wavenumber q for
different motor strengths. Shape fluctuations are less sig-
nificant for both the passive and extensile systems than
for the contractile systems. This difference could be due
to more anomalous density fluctuations in the contrac-
tile case, demonstrating that chromatin spatiotemporal
dynamics directly impacts nuclear shape. The fluctua-
tion spectrum is dominated by an approximate q−3 de-
cay, which is characteristic of bending-dominated fluc-
tuations in a cross-section of a fluctuating shell [45–49].
Bending fluctuations are consistent with previous experi-
mental observations [20] and simulations [3] of cell nuclei,
theoretical predictions for membranes embedded with ac-

tive particles [50, 51], and our experiments measuring
nuclear shape fluctuations in mouse embryonic fibrob-
lasts (MEFs) (inset to Fig. 4 and see SM for materials
and methods). For the passive case, we also observe a
narrow regime of approximate q−1 scaling at small q,
which is characteristic of membrane tension, and satura-
tion at large q due to the discretization of the system.
For the active cases, we only clearly observe the latter
trend. Additionally, the amplitude of the shape fluctu-
ations increases with motor strength, NC , and NL (see
SM).

Discussion: We have studied a composite chromatin-
lamina system in the presence of activity, crosslinking,
and linkages between chromatin and the lamina. Our
model captures correlated chromatin motion on the scale
of the nucleus in the presence of both activity and
crosslinks (Fig. 2). The deformability of the shell also
plays a role. We find that global translations of the com-
posite soft shell system contribute to the correlations. We
observe anomalous diffusion for the chromatin (Figs. 3
(a) and (c)), as has been observed experimentally [25],
with a crossover to a smaller anomalous exponent driven
by the crosslinking [44]. Interestingly, the contractile
system exhibits a larger MSD than the extensile one,
which is potentially related to the more anomalous den-
sity fluctuations in the contractile case (Figs. 3 (b) and
(d)). Finally, nuclear shape fluctuations depend on motor
strength and on amounts of crosslinking and chromatin-
lamina linkages (Fig. 4). Notably, the contractile case
exhibits more dramatic changes in the shape fluctuations
as a function of wavenumber as compared to the extensile
case.

Our short-range, overdamped model contrasts with an
earlier confined, active Rouse chain interacting with a
solvent via long-range hydrodynamics [7]. While both
models generate correlated chromatin dynamics, with the
earlier model, such correlations are generated only with
extensile motors that drive local nematic ordering of the
chromatin chain [7]. Moreover, correlation lengths in our
model are significantly larger than those obtained in a
previous confined active, heteropolymer simulation [16].
Activity in this earlier model is modeled as extra-strong
thermal noise such that the correlation length decreases
at longer time windows as compared to the passive case.
This decrease contrasts with our results (Figs. 2 (d) and
(h)) and experiments [3]. In addition, our model takes
into account deformability of the shell and the chromatin-
lamina linkages. Future experiments could potentially
distinguish these mechanisms by looking for prominent
features of our model, such as a dependence on chromatin
bridging proteins and linkages to the lamina and effects
of whole-nucleus motions.

Further spatiotemporal studies of nuclear shape could
investigate the role of the cytoskeleton. Particularly in-
teresting would be in vivo studies with vimentin-null
cells, which have minimal mechanical coupling between
the cytoskeleton and the nucleus. Vimentin is a cy-
toskeletal intermediate filament that forms a protective
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cage on the outside of the nucleus and helps regulate
the nucleus-cytoplasm coupling and, thus, affects nu-
clear shape [16]. The amplitudes of the nuclear shape
fluctuations in vimentin-null cells may increase due to a
softer perinuclear shell; alternatively, they may decrease
due to fewer linkages between the nucleus and the me-
chanically active cytoskeleton, which may impact nuclear
shape fluctuations [18, 19, 53].

There are intriguing parallels between cell shape [54–
56] and nuclear shape with cell shape being driven by
an underlying cytoskeletal network—an active, filamen-
tous system driven by polymerization/depolymerization,
crosslinking, and motors, both individually and in clus-
ters, that can remodel, bundle and even crosslink fila-
ments. Given the emerging picture of chromatin mo-
tors acting collectively [29, 30], just as myosin motors
do [57], the parallels are strengthened. Moreover, the
more anomalous density fluctuations for the contractile
motors as compared to the extensile motors could poten-
tially be relevant in random actin-myosin systems typi-
cally exhibiting contractile behavior, even though either
is allowed by a statistical symmetry [58]. On the other
hand, distinct physical mechanisms may govern nuclear
shape since the chromatin fiber is generally more flexible
than cytoskeletal filaments and the lamina is stiffer than
the cell membrane.

We now have a minimal chromatin-lamina model that

can be augmented with additional factors, such as dif-
ferent types of motors—dipolar, quadrupolar, and even
chiral, such as torque dipoles. Chiral motors may readily
condense chromatin just as twirling a fork “condenses”
spaghetti. Finally, there is now compelling evidence that
nuclear actin exists in the cell nucleus [59], but its form
and function are under investigation. Following reports
that nuclear actin filaments may alter chromatin dynam-
ics and nuclear shape [60–62], we propose that short, but
stiff, actin filaments acting as stir bars could potentially
increase the correlation length of micron-scale chromatin
dynamics, while chromatin motors such as RNA poly-
merase II drive the dynamics. Including such factors
will help us further quantify nuclear dynamics to de-
termine, for example, mechanisms for extreme nuclear
shape deformations, such as nuclear blebs [63, 64], and
ultimately how nuclear spatiotemporal structure affects
nuclear function.
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Appendix A: Model

1. System and initialization

We use a Rouse chain with soft-core repulsion between each monomer capturing excluded volume effects to represent
the chromatin. Since the chromatin is contained within the lamina, modeled as a polymeric shell, we present the
protocol to obtain the initial configuration for the composite system. As shown in Fig. S1(left), we first implement a
three-dimensional self-avoiding random walk in an FCC lattice for 5000 steps to generate the chain. We then surround
the chain in a large polymeric, but hard, shell. To create the shell, we generate a Fibonacci sphere with 5000 nodes
and identify 5000 identical monomers with these nodes. The springs between the shell monomers form a mesh and
each shell monomer is connected to 4.5 other shell monomers on average, which models observations of the lamina
in imaging experiments [1] and follows previous mechanical modeling [2, 3]. These monomers have same physical
properties as the chain monomers in terms of size and spring strength.

We then shrink the shell (Fig. S1(center)) by moving the shell monomers inwards by the same amount. During
the shrinking process, chain monomers interact with the shell monomers via the soft-core repulsion and, therefore,
also move inwards. In addition, every chain monomer experiences thermal fluctuations and is constrained by elastic
forces and soft-core repulsion forces. Once the shell radius reaches its destination radius after some time, we then
thermalize the positions of the shell monomers and adjust rest length of springs respectively to make the mesh less
lattice-like. We, thus, arrive at the initial configuration of the system Fig. S1(right). We obtain 100 such initialized
samples to obtain an ensemble average for each measurement. The destination radius Rs is 10. We set the monomer
radius to be rc = 0.43089 so that the packing fraction φ is approximately 0.4 in the hard shell limit comparable
to electron microscopy tomography experiments [4], simulations of chromatin confined within the nucleus [5], and
theoretical estimates [6], while φ is smaller in soft-shell cases due to expansion as the shell monomers undergo thermal
fluctuations.

2. Parameters

In our simulations, we use the set of parameters shown in Table S1. We now address how the simulation parameters
map to biological values. One simulation length unit corresponds to 1µm, one simulation time unit corresponds to
0.5 seconds, and one simulation energy scale corresponds to approximately 10−21 J = kBT , T = 300 K. With this
mapping, the spring constant corresponds to approximately 1.4 × 10−4 nN

µm with a Young’s modulus for the chain of

0.28 Pa.
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FIG. S1. Left: The chain is initially generated via a self-avoiding random walk on an FCC lattice. Center: The chain is then
enclosed in a Fibonacci sphere. Right: Composite system at time τ = 0.

Diffusion constant D 1
Thermal energy kBT 1
Simulation timestep dτ 10−4

Number of chain monomers N 5000
Radii of chain monomers rc 0.43089
Number of shell monomers Ns 5000
Radii of shell monomers rs 0.43089
Radius of hard shell Rs 10
Packing fraction φ 0.400
Spring constant K 140
Soft-core repulsion strength Kex 140
Number of motors Nm 400
Motor strength M 5/25
Turnover time for motors τm 20
Number of crosslinks NC 0/100/500/1000/2000/2500
Number of linkages NL 0/50/200/400/600
Damping ξ 1

TABLE I. Table of the parameters used in the simulations.

Motors are characterized by three parameters: the total number of motors, Nm; the motor strength, M ; and the
turnover time, τm. We focus on systems with Nm = 400 motors, which is comparable to, but less than Nm ≈ 833
motors used in a previous active chromatin model [7]. To assess the dependence of the effects on the prevalence of the
motors, we also considered smaller numbers, Nm, of motors (see Figs. S12 and S17). The motor strength, M spans
the range 0.02 < M < 0.2 pN, consistent with a previous model for nonequilibrium molecular forces acting within
chromatin and DNA [7]. Importantly, this is also smaller than typical forces exerted by molecular motors within the
genome [8], so molecular motor strength inside living cells is not a limiting factor for achieving the nonequilibrium
effects in our model. The turnover time τm = 20 corresponds to an “on” time or residence time of 10 s. This is
shorter than the typical lifetime of RNA polymerase which is of order 100−1000 s [9] (the same is true of many other
molecular motors acting on chromatin, such as cohesin [10]). Results for longer (and shorter) residence times are also
explored (Figs. S10 and S16).

Appendix B: Simulation results

1. Radius of gyration and radial distribution of monomers

For a polymer, the radius of gyration is defined as Rg =
∑

(ri − rcm)2/N , where N = 5000 is total chain monomer
number. In the hard shell case, we fix the radius of the shell to Rs = 10. In the soft-shell case, the shell expands
due to the thermal fluctuations and due to the activity of the chain inside. Fig. S2 (top row) shows the radius of
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FIG. S2. First row: Radius of gyration of the chain (solid lines) and average radius of the shell (dashed lines) as function of
simulation time for NC = 2500 and NL = 50 (middle figure). For contrast, Rg for NL = 0, 600 and Nc = 0, 2500 are also
plotted. Only the soft shell case are shown. Second row: corresponding radial density distributions of monomers, up to a
distance Rs from the center of the shell (note that overall density depends on measured soft shell radius in the top row). All
lengths are shown in units of the hard-shell radius Rs = 10.

gyration of the chain (solid lines) and the average radius of shell (dashed lines) in the soft shell case as function of
time. After a short-time initial expansion, both the chain’s and the shell’s respective radii reach a plateau by 100 τ
for most parameters, indicating that the system is reaching steady state. Only for the zero crosslinks with contractile
activity, does the radius of gyration continue to increase slightly over the duration of the simulation of 500 τ . Fig. S2
(bottom row) shows the steady-state radial distribution of monomers within the soft shell.

2. Self-contact probability

Since the globule radius is an averaged quantity, we also look for steady state signatures in the self-contact probabil-
ity, which yields information about the chromatin spatial structure. More specifically, Hi-C allows one to quantify the
local chromatin interaction domains at the megabase scale [11]. Such domains are stable across different eukaryotic
cell types and species [12]. To quantify such interactions in the simulations, one determines the number of monomers
in the vicinity of the ith chain monomer. In other words, one creates an adjacency matrix. This adjacency matrix
is shown Fig. S3 for two examples. To compute the self-contact probability, one sets a threshold distance that a
pair of monomers within that range is considered to be in contact. Then the fraction of contacted pairs for each
polymeric distance 1, 2, 3, 4, ... is calculated. This fraction as a function of polymeric distance is called the self-contact
probability. See Fig. S4 for the self-contact probability for NL = NC = 0 at the beginning and at the end of the
simulation for the soft shell case. While there is some change between the two, in Fig. S5, we show the self-contact
probability for different times τ to demonstrate that after τ = 50, the probability does not change with time, implying
a steady state.

3. Mean-Squared Displacement

To quantify the dynamics of the chain, we compute its mean-squared displacement (MSD) measured with respect
to the center of mass of the shell. Fig. S6 plots the MSD of the chain during the duration of the simulation. At short
time scales, the chain undergoes sub-diffusive motion and the MSD follows an exponent around α ≈ 0.6 for NC = 2500
and NL = 50. At longer time scales, the MSD crosses over to a smaller exponent. The value of the exponent depends
on NC and NL. In all cases, the active systems diffuse faster than the passive system, and contractile motors enhance
diffusion more than extensile motors. The insets in Fig. S6 show the MSD for the center of mass of the chromatin
chain for the soft shell. For the crosslinked, active chain, this MSD is slightly faster than diffusive.
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FIG. S3. Contact map for a soft shell, contractile system with no linkages or crosslinks at the beginning and at the end of the
simulation, i.e. τ = 0 and τ = 500.
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FIG. S4. Self-contact probability for the hard shell case (left) and the soft shell case (right) with the latter corresponding to
right figure in previous Fig. S3.

4. Density fluctuations

The density fluctuations are computed in the following way:

• Select a spherical region in the system with radius rd and count the number of monomers in that region.

• Randomly select spherical regions at other places with the same radius and count the monomers included.

• Compute the variance of counted monomer amount σ2 for this radius rd.

• Vary rd and repeat the above three steps and obtain the variance for each rd.

We plot σ2 as a function of rd. Typically, for a group of randomly distributed monomers in three dimensions,
the density fluctuations scale as σ2 ∼ r−3

d . From Fig. S7 we see that the overall density fluctuations are broader in
the active cases, as compared to the passive cases. Contractile motors induce more anomalous density fluctuations,
particularly in the soft shell case.

5. Correlation function and correlation length

To evaluate the spatial and temporal correlation motion along the chain, we compute the spatial autocorrelation

function. Suppose ~d(~r,∆τ) is the displacement of monomer at ~r over time, ~d(~r + ∆r,∆τ) is the displacement of
another monomer, which is located a distance ∆r away and over the same time window. We then use the function
below to compute the correlation function:

C(∆r,∆τ) =
〈~d(~r,∆τ)· ~d(~r + ∆r,∆τ)〉

〈~d2(~r,∆τ)〉
.



5

100 101 102 103 104

polymeric distance

10−3

10−2

10−1

100

C
on

ta
ct

p
ro

b
ab

ili
ty

passive

contractile

100 101 102 103 104

polymeric distance

10−3

10−2

10−1

100

C
on

ta
ct

p
ro

b
ab

ili
ty

passive

contractile

FIG. S5. Self-contact probability at τ = 0, 1, 2, 10, 20, 50 τ (left) and for τ = 50 and τ = 300 (right) for soft shell passive and
contractile systems with NC = 2500 and NL = 50.

FIG. S6. MSD as a function of time for NC = 2500, NL = 50, and M = 5 (middle column) and for four extreme cases (0 or
600 linkages, 0 or 2500 crosslinks) in the hard shell (top row) and the soft shell (bottom row). Insets are MSD plots of the
center of mass of the chain.

From Ref. [13] we assume the correlation function follows Cr(r) = 21−ν

Γ(ν)

(
r
rcl

)ν
Kν

(
r
rcl

)
, where rcl is the extracted

correlation length, Kν is the Bessel of the second type of order ν, and ν is a smoothness parameter. Larger ν
denotes that the underlying spatial process is smooth, not rough, in space. In Fig. S8 we show the correlated function
computed from numerical simulations (dots) and the fitted correlation function from the above formula (lines) for
different parameters. Lines from light to dark represent time windows from short to long (1 τ , 2 τ , 5 τ , 10 τ , 20 τ , 50 τ ,
100 τ , 200 τ ). We see that the numerical results with shorter time windows fit the formula better.

In Fig. S9, we plot the correlation length a function of linkage number NL and crosslink number NC over the short
time window 5 τ and the long time window 50 τ . We observe that active motors clearly enhance the correlation length.
It is also clear that presence of crosslinks also enhance correlation length. The correlation length is larger for the soft
shell case. In the soft shell case, without subtracting the diffusion of the center of mass, the correlation length for the
long time window spans almost the radius of the system. We note that the correlation length is reduced if we subtract
the center-of-mass shell motion; however, it still remains larger than the hard shell case. A quasi-two-dimensional
correlation length is computed from a slab-like region and is also shown for potential comparison to experimental
results since, in the experiments, the correlated length is extracted using this method. There is not much difference
between the three-dimensional correlation length and the two-dimensional correlation length with the center of mass
of the shell subtracted. We also show the correlation length as a function of shell stiffness (with the COM of shell
subtracted) to demonstrate the direct effect of shell stiffness on the correlated chromatin motion (see Fig. S12).

We consider different motor parameters and types in Figs. S10-S12. With faster motor turnover (Fig. S10 column
2), correlations are reduced. With faster turnover, the forces from the active monomers change rapidly and become
more like uncorrelated active noise. In that case, we expect equilibrium-like behavior, but with a higher effective
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temperature, as predicted by a previous analysis of active polymers [14]. With slower motor turnover, correlations
are increased (Fig. S10 column 3). The strength and extent of the correlations also changes with the number of
motors, Nm, albeit somewhat weakly for appreciable numbers of motors (Figs. S11 and S12). Decreasing the number
of motors from Nm = 400 (the typical value in the main text) to Nm = 50 decreases the correlation length by ∼ 30%
(for time window ∆τ = 50), compared to a 60% decrease from Nm = 400 to Nm = 0 (i.e., the passive system). We
additionally considered motors that exert their forces in a pairwise manner, so that forces exerted by active monomers
on nearby monomers are reciprocated by the nearby monomers (Figs. S10 columns 4 and 5). Correlated motions in
such systems are largely suppressed, as such systems are either near equilibrium (as in column 4 with pairwise forces
and the usual motor turnover time, τm) or in equilibrium (as in column 5 with pairwise forces between “active” and
inactive monomers and no motor turnover, i.e., τm =∞).

6. Shape fluctuations

To evaluate shape fluctuations of the shell, we compute fluctuations in two ways. First, in order to compare with
experimental measurements, we select a random slab through the center and project the coordinates of the shell
monomers in the slab to the plane where slab lies. Then, we compute the fast-Fourier-transform (FFT) for spatial
deviations of these monomers from the average radius with the deviations with hq denoting the Fourier transform
of the deviation with respect to wavenumber q. In Fig. S13, the power spectrum of the shape fluctuations for the
passive and extensile cases follow a decay exponent of −2, as expected for a stretchable membrane or shell [15]. The
spectrum of the shape fluctuations increases monotonically with the number of crosslinks. The spectrum varies more
dramatically with contractile motors as compared to extensile motors. Moreover, the shape fluctuation spectrum also
eventually saturates as a function of chromatin-lamina linkage number. In Fig. S14 we compute the spectrum of the
shape fluctuations as characterized by the spherical harmonic functions (the Ylms with l as the dimensionless spherical
wavenumber). We obtain similar trends as in Fig. S13. Finally, in Fig. S15, we plot the spectrum for different motor
strengths and different shell stiffnesses.

We also measured shape fluctuations for simulations with different motor turnover times (τm; Fig. S16), numbers
of motors (Nm; Fig. S17), and motors that exert forces in a pairwise manner (Fig. S16). Increasing the turnover time
in the active system increases the shape fluctuations. As with correlations, varying the number of motors only weakly
affects the strength of the shape fluctuations. Simulations with motors that exert pairwise forces exhibit fluctuation
spectra similar to that of the passive system.
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FIG. S7. Density fluctuations for NC = 2500 and NL = 50 (middle column) and four extreme cases (0 or 600 linkages, 0 or
2500 crosslinks) in the hard shell (top row) and in the soft shell (bottom row). The arrangement of parameters is the same as
in the previous figure.
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FIG. S8. Correlation functions for NC = 2500 and NL = 50 (middle column) and four extreme cases (left column: 0 linkages and
0 crosslinks; second from left column: 0 linkages and 2500 crosslinks; second from right column: 600 linkages and 0 crosslinks;
right column: 600 linkages and 2500 crosslinks). Top two rows: The three-dimensional correlation function for the hard shell;
Middle two rows: The three-dimensional correlation functions for the soft shell; Bottom two rows: Two-dimensional correlation
functions for the soft shell. Color varies from light to dark as time lag equals 1 τ , 2 τ , 5 τ , 10 τ , 20 τ , 50 τ , 100 τ , 200, τ ,
respectively. Symbols denote the numerical results, while the dashed line represent the fitted correlation functios. Greyscale:
passive. Bluescale: active with extensile motors. Redscale: active with contractile motors.
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FIG. S9. Plot of correlation length as function of linkage number NL (top row) or crosslink number NC (bottom row) for time
windows 5 τ (light) and 50 τ (dark). From left to right columns: The three-dimensional correlation length for the hard shell;
the three-dimensional correlation length for the soft shell; three-dimensional correlation length for the soft shell with the COM
motion subtracted; two-dimensional correlation length for the soft shell with the COM motion subtracted.
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FIG. S10. Correlation functions for NC = 2500, NL = 50 and τm = 20 (first column) and four other cases. Column 2: τm = 2;
Column 3: τm =∞; Column 4: τm = 20 and active forces are pairwise; Column 5: τm =∞ and “active” forces are exerted in
a pairwise manner (i.e., an equilibrium model).

Appendix C: Experiments

To measure nuclear shape fluctuations in live cells, the wild-type mouse embryonic fibroblasts (MEFs) were kindly
provided by J. Eriksson, Abo Akademi University, Turku, Finland. Cells were cultured in DMEM with 25 mM Hepes
and sodium pyruvate supplemented with 10% FBS, 1% penicillin/streptomycin, and nonessential amino acids. The
cell cultures were maintained at 37 degrees C and 5% CO2.

Cell nuclei were fluorescently labeled by transient transfection with pEGFP-C1-NLS, 48 h before imaging. Cell
nuclei were imaged at 2-min increments for 2 h by using wide-field fluorescence with a 40× objective. To quantify
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FIG. S11. Correlation functions for NC = 2500, NL = 50 and Nm = 400 (last column) and three other cases. Column 1:
Nm = 50; Column 2: Nm = 100; Column 3: Nm = 200.
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FIG. S12. Left: plot of the correlation length as a function of shell stiffness for time windows ∆τ = 5, 50 (light and dark lines,
respectively). Here NC = 2500, NL = 50, and M = 5. Right: plot of the correlation length as a function of number, Nm, of
motors for the same time windows.

the structural features of nuclei, we traced the contour, r(θ), of the NLS-GFP labeled nuclei at each time point. The
shape of the nucleus was identified using a custom-written Python script, and its contour was interpolated from 0 to
2π by 150 points. Next, the shape fluctuations were calculated as h(θ) = r(θ) − r0, where r0 is the average radius
for each cell at each time point. The wave number-dependent Fourier modes of the fluctuations, hq, were obtained as
Fourier transformation coefficients, as described in Ref [16].

The shape fluctuations were quantified for each cell by computing the Fourier mode magnitude square h2(q) and
averaging over each time point. The average shape fluctuations as shown in Fig. 4 in the main text was taken as the
average over 15 cells per condition from two independent experiments.
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FIG. S14. Power spectrum of the shape fluctuations in spherical harmonics, where l is the dimensionless spherical wavenumber
for different chromatin-lamina linkages (top row) or crosslinks (bottom row). Left column: Extensile motor case. Middle
column: Contractile motor case. Right column: Passive case.

100 101 102

q

101

102

103

104

<
h

2 q
>

−3

M = 5, extensile

M = 5, contractile

M = 0, passive

M = 25, extensile

M = 25, contractile

100 101 102

l

10−4

10−3

10−2

10−1

100

<
h

2 l
>

−2

M = 5, extensile

M = 5, contractile

M = 0, passive

M = 25, extensile

M = 25, contractile

100 101 102

l

10−4

10−3

10−2

10−1

100

<
h

2 l
>

−2

Kshell = K, extensile

Kshell = K, contractile

Kshell = 20K, extensile

Kshell = 20K, contractile

Kshell = 0.5K, extensile

Kshell = 0.5K, contractile

FIG. S15. Power spectrum of the shape fluctuations for different motor strengths or shell stiffnesses. Left two: q plot. Right
two: Ylm plot.



12

100 101 102

q

101

102

103

104

<
h

2 q
>

−3

τm = 20, monopole

τm = 2, monopole

τm = +∞, monopole

τm = 20, pairwise

τm = +∞, pairwise

100 101 102

q

101

102

103

104

<
h

2 q
>

−3

τm = 20, monopole

τm = 2, monopole

τm = +∞, monopole

τm = 20, pairwise

τm = +∞, pairwise

100 101 102

l

10−4

10−3

10−2

10−1

100

<
h

2 l
>

−2

τm = 20, monopole

τm = 2, monopole

τm = +∞, monopole

τm = 20, pairwise

τm = +∞, pairwise

100 101 102

l

10−4

10−3

10−2

10−1

100

<
h

2 l
>

−2

τm = 20, monopole

τm = 2, monopole

τm = +∞, monopole

τm = 20, pairwise

τm = +∞, pairwise
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case; q plot for contractile case; Ylm plot for extensile case; Ylm plot for contractile case.
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