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POSITIVE SEMIDEFINITE SUPPORT VECTOR

REGRESSION METRIC LEARNING
Lifeng Gu

Abstract—Most existing metric learning methods focus on
learning a similarity or distance measure relying on similar
and dissimilar relations between sample pairs. However, pairs
of samples cannot be simply identified as similar or dissimilar
in many real-world applications, e.g., multi-label learning, label
distribution learning. To this end, relation alignment metric
learning (RAML) framework is proposed to handle the metric
learning problem in those scenarios. But RAML framework uses
SVR solvers for optimization. It can’t learn positive semidefinite
distance metric which is necessary in metric learning. In this
paper, we propose two methods to overcame the weakness.
Further, We carry out several experiments on the single-label
classification, multi-label classification, label distribution learning
to demonstrate the new methods achieves favorable performance
against RAML framework.

Index Terms—Metric Learning, Heterogeneous Classification.

I. INTRODUCTION

In many computer vision and pattern recognition tasks, e.g.,

face recognition [1], image classification [2], and person re-

identification [3], it is crucial to learn a discriminative distance

metric to measure the similarity between pairs of samples.

Intuitively, metric learning aims to learn a discriminative

similarity or dissimilarity metric by pushing the dissimilar

samples away and pulling the similar samples together. Typical

distance metrics include Euclidean distance, cosine distance,

and Mahalanobis distance. Most existing metric learning meth-

ods focus on learning a discriminative Mahalanobis distance.

Beyond Mahalanobis distance, generalized distance metric

learning methods are presented by learning high-order dis-

criminant functions [4]. According to the availability of the

label information, metric learning can be partitioned into three

categories, i.e., the unsupervised, semi-supervised and super-

vised methods. To deal with the heterogeneous data, multi-

modal [5] and cross-modal [6] metric learning algorithms are

developed. Because of the diversity of the feature space, linear,

kernel and tensor distance metrics are learned for different

data structures. Different from shallow metric learning, deep

learning based methods learn the feature and metric jointly

and achieve superior performance [7].

One of the key steps in existing metric learning methods is

to generate doublet [8], triplet [9] or even quadruplet [10]

constraints using the label information. Doublet constraints

are the most commonly used in metric learning methods.

Similar and dissimilar sample pairs are generated in the k-

nearest neighbors or ε-neighborhood by measuring whether

two samples belong to the same class. In some applications,

e.g., weakly supervised learning [11] or social networks [12],

Tianjin University.

sample pairs are generated from connectivity information or

other side information. Generally, there are two sets of sample

pairs, i.e., one contains the similar sample pairs and the other

one contains the dissimilar ones.

However, for some learning tasks, e.g., multi-label learning

[13] and label distribution learning [14], relations between

sample pairs cannot be simply identified as similar or dissim-

ilar. Thus, the existing metric learning methods cannot work

on the above tasks.

The problem arises that it is difficult to classify two images

into similar or dissimilar sample pair. Above discussions

encourage us to propose a generalized metric learning method,

which can be flexibly adopted to various kinds of tasks.

In machine learning community, one of the basic assump-

tions is that samples should keep with the same relations

in different spaces, especially in the feature space and label

space. The principle of metric learning is to encourage samples

in the feature space to satisfy the expected relations induced

by supervised information. Manifold learning emphasizes lo-

cality preserving, which requires that the nearest neighbors of

samples should be close to each other in the projected low-

dimensional feature space [15]. For kernel learning machines,

the kernel matrix can be considered as the similarity rela-

tion of all samples. Kernel alignment exploits the similarity

between kernel matrices for learning kernels [16] and matrix

completion [17]. For multi-modal learning, the sample relation

in feature spaces of different modalities should be consistent

with that in the label space. For metric learning, as long as

the sample relations in the decision space are modeled, the

distance metric can be learned by minimizing the difference

between sample relations in feature space and decision space.

In this paper, we propose two metric learning formulation,

namely RAML-PCSVR and RAML-NCSVR. Our methods

aims to overcome the limitations of RAML framework. The

contributions of this paper are summarized as follows.

• Two metric learning formulation are proposed to learn

distance metrics for different learning tasks, including

single-label learning, multi-label learning, and label dis-

tribution learning.

• The proposed methods can learn positive semi-definite

distance metric directly than RAML framework.

• Experiments on single-label classification, multi-label

classification and label distribution learning tasks show

that our RAML-PCSVR and PAML-NCSVR achieves

superior performance against RAML framework.

http://arxiv.org/abs/2008.07739v1
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II. RELATED WORK

For metric learning, doublet constraint is a kind of descrip-

tion of relationship between a pair of samples in the decision

space. f(xi,xj ,M, b) is used to measure the sample relations

in feature space while g(yi,yj) is used to measure the sample

relations in decision space. g(yi,yj) is specially designed for

different tasks. Let A ∈ R
n×n and E ∈ R

n×n be the sample

relation matrix in feature and decision spaces, respectively.

In general, sample relation in the feature space should be

consistent with that in the decision space, i.e.,








a11 ... ai1 ... an1

... ... ... ... ...

a1i ... aii ... ani

... ... ... ... ...

a1n ... ain ... ann









=









e11 ... ei1 ... en1

... ... ... ... ...

e1i ... eii ... eni

... ... ... ... ...

e1n ... ein ... enn









where aij and eij represent the sample relation of xi and xj

in the feature space and decision space, respectively. Here, to

keep consistency, we require that

f(xi,xj ,M, b) = g(yi,yj). (1)

where g(yi,yj) is the difference degree of two samples in the

decision space. g(yi,yj) reflects the sample relation in the

decision space, and guides the learning of (M, b) in feature

space.

f(xi,xj ,M, b) = (xi − xj)
T
M (xi − xj) + b

= 〈M,Tij〉+ b
(2)

where 〈·, ·〉 is defined as the Frobenius inner product of two

matrices, b is the bias item, and Tij = (xi − xj) (xi − xj)
T

.

Then we rewrite (1) to

g(yi,yj) = 〈M,Tij〉+ b (3)

Once the relation function g(yi,yj) is chosen, (3) can be

considered as a linear regression problem. Hence, the metric

learning problem is converted to solve a sample pair regression

problem with the scaled second sample moment Tij of sample

pair (xi,xj) as the input.

A. Sample Pair Kernel

To formulate the sample pair regression problem in (3),

[18] introduce a 2-degree polynomial kernel for sample pairs.

Let zi denote the sample pair (xi1,xi2). Then the 2-degree

polynomial kernel is defined as

k(zi, zj) = 〈Ti,Tj〉

= tr
(

(xi1 − xi2) (xi1 − xi2)
T
(xj1 − xj2) (xj1 − xj2)

T
)

=
(

(xi1 − xi2)
T (xj1 − xj2)

)2

(4)

With the sample pair kernel, given a sample pair z = (x1,x2),
the regression function can be rewritten as

f(z) =
∑n

i=1
βi 〈T,Ti〉+ b = 〈M,T〉+ b (5)

where T = (x1 − x2) (x1 − x2)
T

and Ti =
(xi1 − xi2) (xi1 − xi2)

T
. Here M =

∑n
i=1

βiTi. M is

actually a linear combination of the scaled sample moments

of the difference between two samples in one pair.

III. SUPPORT VECTOR REGRESSION METRIC LEARNING

In this section, we first review RAML framework, then we

will point out it’s limitations. [18] propose RAML formulation

to develop a SVR-like distance metric method:

min
M,ξ,ξ∗

λr(M) + ρ(ξ, ξ∗)

s.t.







g(zi)− (〈M,Ti〉+ b) ≤ ε+ ξi
(〈M,Ti〉+ b)− g(zi) ≤ ε+ ξ∗i
ξ∗i , ξi ≥ 0

(6)

where ξi and ξ∗i are slack variables, and ρ(ξ, ξ∗) is the margin

loss item. By using Frobenius norm regularization for r(M)
and ε-sensitive loss function for ρ(ξ, ξ∗), the metric learning

problem in (6) can be formulated as:

min
M,ξ,ξ∗

1

2
‖M‖2F + λ

∑n
i=1

(ξi + ξ∗i )

s.t.







g(zi)− (〈M,Ti〉+ b) ≤ ε+ ξi
(〈M,Ti〉+ b)− g(zi) ≤ ε+ ξ∗i
ξ∗i , ξi ≥ 0

(7)

where ‖M‖
2

F is the Frobenius norm of M, and λ is a trade-off

constant. By using the Lagrange multipliers, we have

L =















1

2
‖M‖2F + λ

∑n
i=1

(ξi + ξ∗i )−
∑n

i=1
ai (ε+ ξi − g(zi) + 〈M,Ti〉+ b)−

∑n
i=1

a∗i (ε+ ξ∗i + g(zi)− 〈M,Ti〉 − b)−
∑n

i=1
(ηiξi + η∗i ξ

∗

i )















(8)

All dual variables should satisfy the positivity constraints, i.e.,

ai, a
∗

i , ηi, η
∗

i ≥ 0. According to the saddle point condition, the

partial derivatives of L with respect to the primal variables

will be vanishing, i.e.,

∂L

∂b
=
∑n

i=1
(ai − a∗i ) = 0 (9)

∂L

∂M
=M−

∑n

i=1
(ai − a∗i )Ti = 0 (10)

∂L

∂ξ∗i
= λ− a∗i − η∗i (11)

Substituting (9), (10) and (11) into (8), we get the dual

optimization problem of (7) with

max











− 1

2

∑

i,j=1

(ai − a∗i )
(

aj − a∗j
)

〈Ti,Tj〉

−ε
n
∑

i=1

(ai + a∗i ) +
n
∑

i=1

g(zi) (ai − a∗i )











s.t.
n
∑

i=1

g(zi) (ai − a∗i ) = 0, ai, a
∗

i ∈ [0, λ]

(12)

Similar to the solution of SVR, we can get the solution for

(12), i.e.,

M =
∑n

i=1
(ai − a∗i )Ti (13)

Then, the corresponding regression function can be rewrit-

ten as

f(z) =
∑n

i=1
(ai − a∗i ) 〈Ti,T〉+ b (14)

For the metric learning task, M is required to be positive semi-

definite. Whereas, the solution for (12) cannot ensure that M is

a PSD matrix. [18] compute the singular value decomposition

of M = UΛV and only keep the positive part of Λ to form

a new matrix Λ+. Finally, the PSD matrix M = UΛ+V.
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IV. POSITIVE SEMIDEFINITE SUPPORT VECTOR
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In order to use efficient SVR solvers instead of quadratic

programming solvers to speed up algorithm, the M learned

by (12) is not a PSD matrix,[18] transform it simplified by

singular value decomposition to get a PSD matrix, but it

will heart the discriminating power of M. Now we propose

RAML-PCSVR and RAML-NCSVR, we describe how to

learn a PSD matrix directly by SVR.

RAML-PCSVR is easy: In (13), if we make sure

ai ≥ a∗i , i = 1, 2, . . . , n, the M learned will be a PSD

matrix. We can easily prove it.

Denote by µ ∈ R
d a random vector, We have:

µTMµ = µT
(
∑n

i=1 (ai − a∗i )Ti

)

µ

= µT
(

∑n

i=1 (ai − a∗i ) (xi1 − xi2) (xi1 − xi2)
T
)

µ

=
∑n

i=1
(ai − a∗i )µ

T (xi1 − xi2)µ
(

xi1 − xi2
T
)

=
∑n

i=1
(ai − a∗i )

(

µT (xi1 − xi2)
)2

(15)

Since (ai − a∗i ) (xi1 − xi2)
2
≥ 0, µTMµ ≥ 0, therefore

M is a PSD matrix. Our optimization objective becomes

max











−1

2

∑

i,j=1

(ai − a∗i )
(

aj − a∗j
)

〈Ti,Tj〉

−ε
n
∑

i=1

(ai + a∗i ) +
n
∑

i=1

g(zi) (ai − a∗i )











s.t.
n
∑

i=1

g(zi) (ai − a∗i ) = 0, ai, a
∗

i ∈ [0, λ] , ai ≥ a∗i

(16)

(16) just modified (12) by add constraints, it can be solved by

quadratic programming. It’s slower than best SVR solvers.

Now, we introduce RAML-NCSVR, trying a different way

to learn a PSD matrix through RAML formulation instead

of modifying it’s dual problem, we define M =
∑n

i=1 µiTi,

where µi is the scalar combination coefficient and µi ≥ 0,

similar than (15), M is a PSD matrix, by substituting M with
∑n

i=1
µiTi, we write the new formulation:

min
µ,ξ,ξ∗

1

2

∑

i,j=1

µiµj 〈Ti,Tj〉+ λ
∑n

i=1
(ξi + ξ∗i )

s.t.











g(zi)−
∑

j=1

µj〈Tj ,Ti〉 ≤ ε+ ξi
∑

j=1
µj〈Tj ,Ti〉 − g(zi) ≤ ε+ ξ∗i

ξ∗i , ξi ≥ 0, µi ≥ 0

(17)

By introducing the Lagrange multipliers, it’s Lagrangian is:

L =



























1

2

∑

i,j=1

µiµj 〈Ti,Tj〉+ λ
∑n

i=1
(ξi + ξ∗i )

+
∑

i=1
αi

(

g(zi)−
∑

j=1
µj〈Tj ,Ti〉 − ε− ξi

)

+
∑

i=1
α∗

i

(

∑

j=1
µj〈Tj ,Ti〉 − g(zi)− ε− ξ∗i

)

−
∑

i=1
ηiξi −

∑

i=1
η∗i ξ

∗

i −
∑

i=1
σiµi



























(18)

where αi, α
∗

i , ηi, η
∗

i , σi are the Lagrange multipliers, which

satisfiedαi ≥ 0, α∗

i ≥ 0, ηi ≥ 0, η∗i ≥ 0, σi ≥ 0. The paritial

derivatives of L with respect to the primal variables are:

∂L
∂ui

=
∑

j=1
uj − (αj − αj∗)−

∑

(αi − α∗

i ) 〈Ti,Tj〉

−σi = 0
(19)

∂L
∂ξi

= λ− αi − ηi = 0 (20)

∂L
∂ξ∗

i

= λ− α∗ − η∗i = 0 (21)

In order to solve (19), we introduce a auxiliary variable ρ,

which satisfies σi =
∑

j=1
ρj 〈Ti,Tj〉, (19) becomes

∑

j=1

(

µj −
(

αj − α∗

j

)

− ρj
)

〈Ti,Tj〉 = 0 (22)

Because〈Ti,Tj〉 ≥ 0, so we have:

µj −
(

αj − α∗

j

)

− ρj = 0 (23)

µj =
(

αj − α∗

j

)

+ ρj (24)

Substituting above back into (18), we get the following

Lagrange dual problem:

max
ρ,α,α∗



































1

2

∑

i,j=1

(αi − α∗

i + ρi)
(

αj − α∗

j + ρj
)

〈Ti,Tj〉

+λ
∑n

i=1
(ξi + ξ∗i ) +

∑

i=1
αi(g (zi)−

∑

j=1

(

αj − α∗

j + ρj
)

〈Tj ,Ti〉 − ε− ξi)

+
∑

i=1
α∗

i (
∑

j=1

(

αj − α∗

j + ρj
)

〈Tj ,Ti〉

−g(zi)− ε− ξ∗i )−
∑

i=1
ηiξi

−
∑

i=1
η∗i ξ

∗

i −
∑

i=1
σi

(

αj − α∗

j + ρj
)



































s.t.ai, a
∗

i ∈ [0, λ] ,
∑

j=1
ρj 〈Ti,Tj〉 ≥ 0

(25)

There are three groups variables in (25), we adopt an alterna-

tive optimization approach to solve them. They can be solved

by quadratic programming. First, given ρ, the variables α and

α∗ can be solved as follows:

max
α,α∗







− 1

2

∑

i=1

∑

j=1
(αi − α∗

i )
(

αj − α∗

j

)

〈Ti,Tj〉

+
∑

i=1
(αi − α∗

i ) g(zi)−
∑

i=1
(αi − α∗

i )
∑

j=1
ρj 〈Ti,Tj〉







s.t.ai, a
∗

i ∈ [0, λ]
(26)

Then, given the variables α and α∗, ρ can be solved as

follows:

max
ρ

{

− 1

2

∑

i=1

∑

j=1
ρiρj 〈Ti,Tj〉

−
∑

i=1

∑

j=1
(αi − α∗

i )ρj 〈Ti,Tj〉

}

s.t.
∑

j=1
ρj 〈Ti,Tj〉 ≥ 0

(27)

We summarize them in Algorithm 1

V. DISCUSSIONS

A. Sample Relation Function

We reuse the sample relation function in RAML. The

motivation of RAML is keeping relation consistency in dif-

ferent spaces, including feature space and label space. As the

sample relations in the decision space are used to guide the

metric learning in feature space, it is important to choose

proper sample relation functions for different kinds of decision

spaces. We consider four learning tasks, i.e., single label

learning, multi-label learning, label distribution learning and



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Algorithm 1 The algorithms of our proposed RAML-PCSVR

and PRML-NCSVR

Input:

Training data X ∈ R
d×m, where d and m are the numbers

of feature dimension and samples, respectively.

1: Generate sample pairs (xi1,xi2),i = 1, 2, ..., n.

2: Compute sample relation g(xi1,xi2),i = 1, 2, ..., n.

3: RAML-PCSVR: Solve (25) by quadratic programming

RAML-NCSVR:

4: repeat

5: Update α and α∗ by (26)

6: Update ρ by (27)

7: Update µ by (24)

8: until converge

9: RAML-PCSVR: M =
∑n

i=1
(ai − a∗i )Ti.

RAML-NCSVR: M =
∑n

i=1
µiTi.

Output:

Distance metric matrix M

regression task. Let yi and yj denote the label vector of xi

and xj . The sample relation function is defined as:

g(yi,yj)=‖yi − yj‖1 (28)

where ‖a‖
1

is the l1-norm of a. For single label classification,

when g(yi,yj) is defined as (28), RAML degenerates to a

sample pair classification problem. For multi-label learning,

(28) reflects the difference with respect to positive classes of

two samples. For label distribution learning, there are many

metrics to evaluate the difference between two distributions.

For regression, it reflects the difference between two continues

value. Here, we experimentally find that (28) reflects sample

difference in the decision space and achieves superior perfor-

mance. Therefore, we choose (28) in RAML-SVR, RAML-

KRR for all learning tasks. The choice of optimal relation

functions for different tasks are still an open problem, which

will be investigated in our future work. If we want to learn

a similarity metric in feature space, the inner product of two

vectors, or other kernel functions can be used for g(yi,yj).

B. Sample Pair Selection

Sample pair selection method is not changed in our meth-

ods. Relation alignment learning aims to preserve the consis-

tency of the sample relations between the feature space and the

decision space. However, we do not need to use the relations

of all sample pairs.

For support vector regression, the support vectors are mainly

lying on the decision boundary. Therefore, sample pairs are

only generated in the k nearest neighbors , which is similar

to most existing metric learning algorithms. Besides, using

only part of sample pairs can greatly reduce computational

complexity and storage burden.

VI. CONNECTIONS BETWEEN DIFFERENT RAML

FORMULATIONS

We find there are connections between RAML and our

proposed methods. when we get the solution of M. (16)

modified (8) by add constrains in Lagrange multipliers α

and α∗ so that we can get a PSD matrix directly, auxiliary

variables ρ introduced in (17) relax the constraints in (16) and

we can get a better matrix, we summary their connections in

I

VII. EXPERIMENTS

In this section, we conduct experiments to validate the

performance of the proposed metric learning methods. We

consider three applications, including single-label classifica-

tion, multi-label classification, label distribution learning . The

following part will be organized as the corresponding parts.

A. Single-Label Classification

Experiment setup. The detailed information of datasets is

listed in Table Table II, where ”S/F/C” represents the number

of samples, features and classes. We compare our methods

with the state-of-the-art methods, i.e., ITML [8], LMNN [9],

DML [20], DoubletSVM (DSVM) [21],,GMML [22] on each

dataset. For fair comparison, the parameters of all compared

methods are set as the default setting of the original references.

For DSVM, we set k = 1, and the penalty factor C < 10, 000.

For GMML, the weight t is set within [0,1] and chosen

by greedy search. Ten-fold cross validation is introduced to

evaluate the metric learning performance, i.e., 90% for training

and 10% for testing. The average accuracy of 10-fold cross

validation is reported.

Experimental analysis. Table II list the classification accuracy

of different metric learning methods on image datasets, respec-

tively, where the best results are marked in bold face. RAML-

SVR indicate support vector regression metric learning, Our

methods achieves superior results in terms of the evaluation

criteria on most dataset. RAML-PCSVR and RAML-NCSVR

both perform better than RAML-SVR in all dataset, approx-

imation operation in RAML-SVR heart the discrimination

power of distance matrix, but RAML-SVR is much faster than

RAML-PCSVR and RAML-NCSVR. It can be used to process

big dataset. For RAML-KRR, when the number of samples

increase significantly, the efficiency will be reduced because its

time complexity is o(n3), where n is the number of samples.

B. Multi-Label Classification

Datasets. In this section, we evaluate the proposed method

using three datasets 1, i.e., emotion [23], flags, and corel800

dataset [24]. The emotion dataset [23] consists of 100 songs

from each of the following 7 different genres, Classical,

Reggae, Rock, Pop, Hip-Hop, Techno and Jazz. The collection

was created from 233 musical albums choosing three songs

from each album. The flag dataset contains 194 instances, 19

features and 7 labels (red, green, blue, yellow, white, black,

orange). The corel 800 dataset [24] contains 800 grayscale

images of 10 individuals with 80 images per class.

Evaluation metrics. We employ five multi-label classification

1http://mulan.sourceforge.net/datasets-mlc.html
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RAML-SVR RAML-PCSVR RAML-NCSVR

distance matrix M
∑

n

i=1

(

ai − a
∗

i

)

Ti

∑

n

i=1

(

ai − a
∗

i

)

Ti

∑

n

i=1

(

ai − a
∗

i
+ ρi

)

Ti

constraints
ai ≥ 0, a∗

i
≥ 0 ai ≥ 0, a∗

i
≥ 0 ai ≥ 0, a∗

i
≥ 0, ρi ∈ R

ai − a
∗

i
≥ 0 ai − a

∗

i
+ ρi ≥ 0

loss function ε-sensitive ε-sensitive ε-sensitive

regularization Frobenius norm Frobenius norm Frobenius norm

TABLE I: connections and differences between different RAML formulations

Data S/F/C ITML LDML LMNN DSVM GMML DML RAML-SVR RAML-PCSVR RAML-NCSVR

binalpha 1404/320/36 0.6303±0.0501 0.6542±0.0317 0.6112±0.0358 0.5625±0.0322 0.5338±0.1986 0.5063±0.0251 0.7250±0.0348 0.7296±0.0386 0.7315±0.0349

caltech101 8641/256/101 0.5803±0.0162 0.5528±0.0157 0.5795±0.0126 0.5584±0.0159 0.5500±0.0117 0.3936±0.0123 0.5855±0.0095 0.6065±0.1824 0.6128±0.0174

MnistDat 3495/784/10 0.8695±0.0142 0.8858±0.0124 0.8721±0.0255 0.8848±0.0194 0.8589±0.0171 0.8323±0.0239 0.9019±0.0175 0.9272±0.0109 0.9330±0.0987

Mpeg7 1400/6000/70 0.8214±0.0333 0.7971±0.0365 0.8253±0.0232 0.8271±0.0353 0.8429±0.0228 0.7071±0.0267 0.8450±0.0305 0.8529±0.02569 0.8536±0.02802
news20 3970/8014/4 0.8678±0.0200 0.8816±0.0145 0.8734±0.0290 0.8594±0.0159 0.8647±0.0143 0.8166±0.0222 0.9025±0.0132 0.9245±0.0165 0.8864±0.0752

TDT2 20 1938/3677/20 0.9587±0.0358 0.9531±0.0306 0.9352±0.0197 0.9499±0.0175 0.9437±0.0275 0.6333±0.0176 0.9679±0.0244 0.9845±0.0198 0.9875±0.0101

uspst 2007/256/10 0.8979±0.0261 0.9084±0.0243 0.9096±0.0217 0.9125±0.0172 0.8858±0.0168 0.8030±0.0330 0.9525±0.0147 0.9477±0.0177 0.9519±0.0165

TABLE II: Classification accuracy on image datasets

measures as evaluation metrics including Hamming loss, rank-

ing loss, one error, coverage and average precision. Hamming

loss measures accuracy in a multi-label classification task.

Ranking loss has the property that the minimization of the

loss functions will lead to the maximization of the ranking

measures. MLKNN is the multi-label version of KNN [25]

and it is based on statistical information derived from the

label sets of an unseen instance’s neighboring instances. As no

specific metric learning algorithms are developed for MLKNN,

here we use MLKNN as the baseline. If the performance of

RAML is superior to MLKNN, the effectiveness of RAML

is verified. Experimental analysis. Experimental results of

RAML and MLKNN are reported in Table III, where the

best result on each evaluation criterion is shown in bold face.

The ”↓” after the measures indicates “the smaller the better“

and ”↑” after the measures indicates “the larger the better“.

As shown in Table III, both RAML-SVR, RAML-PCSVR

and RAML-NCSVR achieve superior results in terms of the

five evaluation measures. Compared with MLKNN, RAML

can learn a discriminative distance metric, making the sample

relation in the feature space more consistent with that in the

decision space. RMAL-NCSVR perform best.

C. Label Distribution Learning

Datasets. The dataset employed in this experiment includes

2,000 natural scene images [25]. There are nine possible

labels associated with these images, i.e., plant, sky, cloud,

snow, building, desert, mountain, water and sun. The image

features are extracted using the method in [26]. Each image is

represented by a feature vector of 294 dimensions. The output

of each instance is a distribution rather than discrete labels.

AAKNN is the extended version of KNN in label distribution

learning. Here AAKNN is used as the baseline without metric

learning in the label distribution task.

Evaluation metrics. Different from both the single label

output and the label set output of multi-label learning, the

output of label distribution learning algorithm is a label distri-

bution. The evaluation measures for label distribution learning

is the average distance or similarity between the predicted

and real label distributions. On a particular dataset, each of

the measures may reflect some aspects of an algorithm. It is

hard to say which evaluation metric is the best. Therefore, we

use several measures to evaluate the proposed algorithm, and

compare RAML and our methods with the classical AAKNN

method. Finally we employ five measures: Chebyshev distance

(Cheb), Clark distance (Clark), Canberra metric (Canber), co-

sine coefficient (Cosine), and intersection similarity(Intersec)

[27]. The first three are distance measures and the last two are

similarity measures.

Experimental analysis. Table IV shows RAML and AAKNN

in terms of five measures. We show the best result with respect

to each measure in bold face. The ”↓” after the measures

indicates “the smaller the better“. ”↑” after the measures

indicates “the larger the better“. RAML-PCSVR and RAML-

NCSVR perform better than AAKNN in terms of five different

measures. It owes to more discriminative metric learned by the

proposed methods.

Data emotion flags corel800

MLKNN

Hamming Loss↓ 0.2137 0.3099 0.0137
Ranking Loss↓ 0.1729 0.2228 0.1888

One Error↓ 0.3317 0.2154 0.6825
Coverage↓ 1.9158 3.8154 88.5100

Average Precision↑ 0.7808 0.8084 0.3276

RAML-PCSVR

Hamming Loss↓ 0.2103 0.2901 0.0135
Ranking Loss↓ 0.1551 0.2053 0.1893

One Error↓ 0.2722 0.1692 0.6675
Coverage↓ 1.8317 3.7692 88.5400

Average Precision↑ 0.8052 0.8244 0.3297

RAML-SVR

Hamming Loss↓ 0.2054 0.2967 0.0135
Ranking Loss↓ 0.1577 0.2179 0.1882

One Error↓ 0.2376 0.2000 0.6425
Coverage↓ 1.8960 3.8115 88.2350

Average Precision↑ 0.8101 0.8128 0.3386

RAML-NCSVR

Hamming Loss↓ 0.1955 0.2549 0.0135
Ranking Loss↓ 0.1560 0.1967 0.1891

One Error↓ 0.2723 0.2000 0.6700
Coverage↓ 1.8168 3.6769 88.1775

Average Precision↑ 0.8044 0.8283 0.3294

TABLE III: The performance of RAML-SVR, RAML-PCSVR,
RAML-NCSVR, HRAML and MLKNN in terms of five evaluation
measures.

.
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Criterion Chebyshev↓ Clark↓ Canberra↓ Cosine↑ Intersection↑

AAKNN 0.3261 1.8448 4.3412 0.6905 0.5506
RAML-PCSVR 0.3097 1.8160 4.2435 0.7077 0.5739
RAML-NCSVR 0.3092 1.8186 4.2509 0.7050 0.5676

RAML-SVR 0.3102 1.6986 3.8576 0.7051 0.5739

TABLE IV: The performance of RAML-SVR, RAML-PCSVR,
RAML-NCSVR and AAKNN in terms of five measures on Nature
Scene dataset.

VIII. CONCLUSIONS

In this paper, we proposed two methods to learn distance

metrics for various kinds of learning tasks. Different from

RAML, our methods can learn positive semidefinite distance

metric directly. Experimental result show RAML-PCSVR and

RAML-NCSVR are very competitive with state-of-the-art met-

ric learning methods on single-label classification, moreover

they can improve the performance of multi-label learning,

label distribution learning, and they perform better than RAML

in most datasets.
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