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Abstract

Deep Q-Learning is an important reinforcement learning algorithm,
which involves training a deep neural network, called Deep Q-Network
(DQN), to approximate the well-known Q-function. Although wildly suc-
cessful under laboratory conditions, serious gaps between theory and prac-
tice as well as a lack of formal guarantees prevent its use in the real world.
Adopting a dynamical systems perspective, we provide a theoretical anal-
ysis of a popular version of Deep Q-Learning under realistic and verifiable
assumptions. More specifically, we prove an important result on the con-
vergence of the algorithm, characterizing the asymptotic behavior of the
learning process. Our result sheds light on hitherto unexplained proper-
ties of the algorithm and helps understand empirical observations, such
as performance inconsistencies even after training. Unlike previous the-
ories, our analysis accommodates state Markov processes with multiple
stationary distributions. In spite of the focus on Deep Q-Learning, we
believe that our theory may be applied to understand other deep learning
algorithms

1 Introduction

Reinforcement Learning (RL) is an important branch of machine learning, which
has received increasing attention in the recent past. Roughly speaking, it con-
siders an autonomous agent interacting with a dynamic environment, and seeks
to learn a policy (prescribing actions depending on the current state of the en-
vironment) maximizing the agent’s welfare in the course of time. A popular
variant of RL, called Deep Reinforcement Learning (DeepRL), combines the
fundamental principles of RL with the power of deep learning. DeepRL has
exhibited tremendous empirical success in recent years in wide ranging fields,
from games to self-driving cars [14].

In this paper, we focus on the popular DeepRL algorithm Deep @Q-Learning,
which was introduced in and shown to achieve superhuman performance in
playing ATARI video games. Q-learning is a specific approach to RL, which
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focuses on learning the so-called Q-function to evaluate state-action pairs. In
Deep Q-Learning, this function is represented by a deep neural network, called
the Deep Q-Network (DQN), and learning the optimal Q-function is accom-
plished by minimizing the squared Bellman loss (error). DQN training typically
involves repeated interactions with a simulator, or the use of historical data. In
spite of its undoubted potential, Deep Q-Learning is still lacking a solid the-
oretical foundation. This also explains, at least partly, its slow adoption for
real-world applications, although it generally performs well in a laboratory set-
ting. The lack of a comprehensive understanding of the training process also
hampers the explanation of empirical findings, such as suboptimal performance
even when training is deemed sufficient.

First theoretical results include sufficient conditions for convergence of Deep
Q-Learning, provided the DQN uses rectified linear units as activation func-
tions [21]. The analysis requires strict conditions on the Bellman operator and
the distribution of state Markov process. In [23], a non-asymptotic finite sample
analysis of Deep Q-Learning with linear function approximation (instead of deep
neural network (DNN) approximation) is presented. While studies like these fo-
cus on sufficient conditions for convergence, the focus in [1] is on characterizing
conditions under which Deep Q-Learning is divergent. Although understand-
ing divergence is of paramount importance, assuming linearity of the function
approximator reduces the applicability of such results in real-world scenarios.
This is because, in practice, deep neural networks, which are non-linear func-
tions, are used as function approximators. There are many recent theoretical
results that are based on the linearity of the function approximator, see for
e.g., [20], |9] and [8]. In [7], the topic of efficient exploration in policy opti-
mization is explored from a theoretical perspective. While these preliminary
results are important and interesting, they do not immediately apply to Deep
Q-Learning as implemented in practice, due to unrealistic simplifications and
restrictive assumptions.

Our contributions. The performance of Deep Q-Learning strongly depends
on the training procedure. Empirically, it has been observed that performance
is great in some test scenarios and poor in others. The hitherto available the-
ory does not explain this phenomenon, nor does it account for other empirical
observations of similar kind. The main contribution of this paper is a compre-
hensive analysis of Deep Q-Learning that provides such explanations—under
assumptions that are practical and verifiable.

We show that the squared Bellman loss is minimized over the set of state-
action pairs, distributed in accordance with a measure obtained as a limit of a
natural measure process associated with the training procedure. We also show
that this limiting measure is stationary with respect to the state Markov process.
Further, its empirical estimate can be used to retrain and boost performance. As
stated earlier, the limiting measure is strongly shaped by the training process.
It is worth mentioning that, unlike previous literature, our analysis allows for
multiple stationary distributions of the state Markov process.

The most popular implementation of Deep Q-Learning involves the use of
a target network. The use of such a network is shown to improve learning
stability. However, it can be shown that the convergence properties of Deep
Q-Learning does not change with the use a target network. Since, we focus on



convergence in this paper, and not stability, we do not consider implementations
with target networks. More importantly, it has recently been shown in [12] that
Deep Q-Learning that uses the “mellowmax” operator, instead of the usual
“max” operator eliminates the need for target networks. They show superior
performance as compared to traditional Deep Q-Learning with target networks,
in many benchmark scenarios. Although, we do not explicitly consider the
algorithm described [12], through appropriate modifications of the loss function
our analysis can be extended to encompass this scenario as well.

Another popular implementation involves the use of a buffer memory called
the experience replay. It stores past experiences for relearning purposes. The
main analysis presented in Sections [3] and [4] do not account for the use of an
experience replay. However, in Section [6] we discuss the steps involved in ex-
tending our analysis to account for this. We show that experience replay affects
the quality of performance by shaping the limiting distribution. Additionally,
it may aid in stabilizing the DQN training.

For our analyses, we utilize tools from the fields of stochastic approxima-
tion algorithms (SA) [6|13], stochastic processes [10], measure theory [4], and
viability theory [2].

2 PRELIMINARIES

For a fairly detailed introduction to reinforcement learning, the reader is referred
to Appendix |8l In what follows, we discuss the architecture of Deep Q-Network.

2.1 Deep Q-Network (DQN)

Since a DQN is essentially an artificial neural network, or simply a neural net-
work (NN), we begin by describing one. In particular, we discuss the archi-
tecture of a fully connected feedforward network with real-valued vector inputs.
Activation functions form the basic building blocks of an NN. The typical do-
main for an activation function o is R, and its range & is usually a subset of
R, ie., 0 : R — # C R. Depending on whether the range of o, &%, is compact
or unbounded, it is said to be squashing or non-squashing, respectively. There
are many activation functions, the following are a few examples considered in
this paper: (a) Sigmoid [1/1+e*], (b) Hyperbolic Tangent [¢"~¢™"/e*+e=*], (c)
xr
Gaussian Error Linear Unit |z [ e vt/ *Ivar dy] , and (d) Sigmoid Linear Unit
—0o0
fofrre=].

An NN is a collection of activations that are arranged in a sequence of layers,
starting with an input layer, then followed by one or more hidden layers, and
ending with the output layer. An NN with two or more hidden layers is called
a Deep Neural Network (DNN). Figure [2|illustrates one such NN architecture.
By convention, an NN is constructed from left to right starting with the input
layer and ending with the output layer. Further, the layers are arranged in a
feedforward architecture, in that any two successive layers constitute a complete
bipartite graph with edges directed from the left layer into the right.
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Figure 1: Single activation from some layer

Figure [1] illustrates a single activation o within some layer. There are k
edges leading into and m leading out of o, where m,k > 1. When o is in the
input layer, the in-edges connect the & components of the input vector to it. As
a part of other layers, the in-edges connect the k activation-outputs from the
previous layer to its input. Further, each in-edge is associated with a weight
that equals the product of the corresponding previous layer activation output
act;,(;) (or input component x;) and network-weight 6;,;), 1 < i < k. The
input value to the activation is given by

k
Z actm(i)em(i) +0b

i=1

or Zle 2ilin (i) + b, where b is a tunable bias term. Suppose o is part of an
input or hidden layer, then the edges leading out of it, the out-edges, connect

its output
k
o <Z actiyiyOini) + b) (1)

i=1

(or U(Zle 7i0;n(;) +b)) to the input of the m activations in the following layer.
Finally, if o is part of the output layer, its output is combined with the
output from other activations that also belong to the outer layer, to obtain the
required NN output. For more details the reader may refer to [11}22].

Note on tunable biases: Subsequently, we assume that there are no tunable
biases added to the activation inputs. In particular, we assume that the input
is merely ) 0y actin @y (or Y 0;n)x; if the activation belongs to the input
layer). We make this simplification for the sake of clarity in presentation. Our
analysis will remain unaltered, except for minor bookkeeping, if one wishes to
account for tunable biases.
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Figure 2: Schematic Representation of a DQN



We are now ready to discuss the DQN architecture, also illustrated in Fig.
Its input is the state vector x € S, and its output is a vector of dimension |&/|.
The DQN output layer is a union of |&/| separate (sub) output layers, one for
each action. The output-layer-i associated with action a;, is fully connected
to the previous hidden layer, see Fig. 2l In particular, they are connected
to the same layer. Let I{(a) be the number of activations in the output layer

associated with action a, then Q(z,a;0) = Zi(:al) acty(i)0q(i), where acty; is
the activation-i output and ,(;) is the associated network weight. Note that
we use O4;) and act,;y, instead of merely using 0; and act;, respectively, to
emphasize the association with action.

In a nutshell, DQN is a parameterization of the vector (Q*(z,a)),c, where
Q" is the optimal Q-function. In Deep Q-Learning, one updates the DQN
weights 6 := (0. | e is an edge in the DQN) iteratively, in order to find 6* such

that Q(z,a;0%) =~ Q*(x,a), V (z,a) € Sx .

3 DEEP Q-LEARNING

To minimize the squared Bellman loss, Deep Q-learning iterates the update
0n+1 — an + ’Y(TL)V@E(en, Ty an) (2)
of the DQN weight vector # € R?, where the following notation is used:

(i) 0, € R?, 2, €S, and a,, € o for n € Ny. The state space S is assumed to
be R™ for some n > 1, and & is a finite set of actions.

(ii) The loss gradient of is given by

Vog(emxman) = VGQ(xnvan;gn)x (3)

(T’(In, an) + ama;{f Q(In—i-ly a/; en) - Q(Ina Qn; an)) )
a’'e

where « is the discount factor. Since a,, is the action taken at time n,
Vol(0y, Zn,an) denotes the loss-gradient back-propagated via a,,.

(iii) ~y(n) is the step size sequence satisfying the standard assumptions of non-
summability and square summability.

Note that the loss gradient is calculated using the sample value max Q(xpt1,a’;0,)
a’e
instead of the ezpected value | max Q(z',a’;0,)p(dx’ | ©,a). This is because the
a’e

transition kernel p is unknown in real applications. The algorithm observes the
next state x,41 and the reward r(z,, a, ), after applying a,, in state x,.

The state Markov process is determined by the transition kernel p(dy | x, a).
In training, actions are picked through a policy that exploits the approximation
capability of DQN, while simultaneously ezploring new actions. In other words,
the transition kernel is indirectly influenced by the network weights. Hence, we
denote the controlled transition kernel by p(dy | x, a, ). For fixed weights 6 and
a fixed stochastic policy 7y, the transition kernel is given by

po(dy | z) = Zp(dy | z,a,0)mg(x,da) .
acd



The policy is subscripted with # to emphasize that it depends on the net-
work weights (via exploitation). Let us suppose that my only exploits and does
not explore. Then the above stochastic policy is the Dirac measure given by

7o(x, da) = Jargmax@ (2, a; 0). Furthermore, the above kernel becomes
acd

pe(dy | ) =p <dy | x,argmaxQ(x,a;@),G) .
acd

Note on notation: We use dy and da (instead of just y and a) to represent the
variables on which p and 7y, respectively, define distributions, so as to easily dis-
tinguish the variable under consideration. Suppose 7y is a Dirac measure. Then,

through a slight abuse of notation, we use my(x) to represent argmax Q(z, a; 6).
acd

3.1 Assumptions

The assumptions required to analyze are as follows:

(A1) v(n) >0 for all n >0, 3", ~,v(n) = 00 and Y, -, v(n)* < co. Further,
the sequence monotonically decreasing. B

(A2) (a) sup,>¢llfnllz2 < 00 a.s., (b) sup,sgllznll2 < oo a.s.
(A3) The state transition kernel p(-| x, a) is continuous in the z-coordinate.

(A4) The DQN is composed of activation functions that are squashing and twice
continuously differentiable.

(A5) The reward function r : S x & — R is continuous.

The first assumption regarding the step size sequence (learning rate) is stan-
dard in the literature. Recall that the loss gradient in is calculated using
samples that are supposed to approximate expected values. The resulting sam-
pling errors are controlled using step sizes that are square summable. The
stability assumption (A2) is essential for analyzing the long-term behavior of
.

Consider two different but “closely neighbored” states in the environment.
Assumptions (A3) and (A5) state that the consequences (successor states and
rewards, respectively) of taking the same action in these states are similar.
These assumptions are not only natural, but also ensure the performance of
approximation-based algorithms like Deep Q-learning. As long as the state-
action pairs encountered during training are a rich enough representation of
S x o, (A3) and (Ab) facilitate good approximation of the Q-function.

The assumption of squashing activations (A4) is mainly made for the sake
of clarity of presentation and can easily be relaxed. An extension to general
(twice continuously differentiable) activations is provided in Section

3.2 Properties of the loss gradient

The aim of this section is to prove certain useful properties that facilitate an
abstract view of the loss gradient, with lesser “moving parts”. In particular, we
show that V£ is (A) locally Lipschitz continuous in the #-coordinate, and (B)



continuous in the x and a-coordinates. Suppose we equip & with the discrete
topology. Then, since  is a finite set, the resulting discrete space is compact, so
that Vgl is trivially continuous in the a-coordinate. As for the rest, we relegate a
couple of technical lemmata to Appendix[J] and summarize the required results
in Lemma [Tl below.

Let us define the sequence { M, },>0 as follows:

n—1
M, = Z ¥(m)m, n >0, where

m=0

Y = a[r;lea; Q(Tmy1,a;0m,)—
[ mx Q. 036,)p(d | 11,0 )| T 0@ i)

It can be shown that {M,, },>0 is a zero-mean martingale with respect to the fil-
tration F,—1 == 0{(Tm, Gm, Om | m < m), n > 1. Recall that we assume stability
of (2) and the state sequence, i.e., sup,,~q ||0n|] < 00 and sup,,~q [|z.|| < o a.s.
This, together with the twice continuous differentiability of @ in the §-coordinate
(shown in Lemmal(9, Appendix|9)), lets us conclude that sup,~ |Q(xn, an; 0,)| <
K < o0, and that |VeQ (2, an;0,)|| < K2 < 0o, where K and K; are possi-
bly sample-path dependent. Hence sup,,~¢ [|#n] < K < oo, where K may again
be sample-path dependent. Finally, the square summability of the step size
sequence, assumption (A1), implies that > _ v(m)?||M,||* < co a.s. Conver-
gence of the martingale sequence {M,},,>¢ follows from the martingale conver-
gence theorem, see [10].

Recall the loss gradient Vl(0,,, 2p,an) given by , and let us rewrite it
using the definition of ,, as

Vol(On, Tp,an) = (r(xn,an)Jr
o [ max Q5,00 | 20.0,61) 4
a’'e
- Q(xny Ap en))VGQ(xna An; gn) + /wn
Hence, becomes
0n+1 — 0, + 7(”) [Veg(am T, an) + wn:| y (5)
where Vgé(@n,zn,an) = (r(xp, an)+
.
0‘/2512;}@(9’“ ;0n)p(dy | 0, an, 0r,)
_Q<xn7 An; en))vé)Q(xru Qn; en)

Since the martingale sequence { M, },>0 converges a.s., the impact of 1, van-
ishes asymptotically. In other words, and are asymptotically identical to
(have the same limiting set as)

Opir ¢ O +~(n) [veé(an, T, an)] . (6)

Note on notation: Rather than keeping track of two versions of the loss gradi-
ents, Vgl and V! from equations and @7 respectively, we redefine Vgl =



Vol. With this slight abuse of notation, we hope to avoid unnecessary confu-
sion. The reader does not need to track two different losses. In our subsequent
analysis, when we refer to , the associated loss gradient is

Vol (0, Tnyan) = (1(Tn,an) +

n}gﬁ@(y;a/ﬂn)p(dl’ | Ty @,y On)— (7)

Q(xnv Qn; GTL))VQQ(mna Qn; en)

Lemma 1. Vyl(0,,,x,,ay), redefined as , s continuous and locally Lipschitz
continuous in the 0-coordinate.

Proof. For the proof, one can combine the consequences of (i) Lemmas|8] [o] and
(see Appendix |§[), (ii) assumption (A5), i.e., the continuity of the reward
function r, and (iii) the fact that the sum and product of continuous and lo-
cally Lipschitz continuous functions are also continuous and locally Lipschitz
continuous, respectively. O

The Lipschitz constant from the above statement is local and changes with 6.
However, as discussed before, following the proof of Lemmal9] (see Appendix [J),
it also depends on z. If the domain of a locally Lipschitz continuous function is
restricted to a compact subset, then the restricted function is Lipschitz contin-
uous. Assumption (A2) states that sup,,~q [|fn|l2 < 00 and sup, ¢ ||zn]l2 < c©
a.s. This can be used to conclude that Vy¢ is Lipschitz continuous in the 6-
coordinate, when restricted to an appropriate compact subset of R? x S. We
note that the Lipschitz constant may be sample-path dependent and refer to
the proof of Lemma 1 in [17], where something very similar is shown.

4 CONVERGENCE ANALYSIS

To analyze the long-term behavior of (2)), we first construct an associated
continuous-time trajectory with identical limiting behavior. Then, instead of
, we may analyze the continuous-time trajectory.

First, we divide the time axis [0,00) using the given step size sequence as

follows:
n—1

tnzoandtn:Z'y(m)fornzl.

m=0
We now define the required trajectory 8 € C([0,00), R%) as follows:
(a) O(tp) =0,, n >0,
(b) 6(t) = 0(t,) + =2~ [O(tns1) — O(tn)] for t € (tn,tns1) and n > 0.

tnt1—tn

As the sequence of actions taken are directly linked to the DQN-weights 6
via “exploitation”, we need to better understand them. To this end, we define
the following measure process:

N’(t) = 5(90,,,,(1")7 te [tnvtn+1)a

where ¢, ) is the Dirac measure that places mass 1 on the state-action pair
(x,a) € S x 9. Hence p : [0,00) = P(S, o) defines a process of probability



measures on S X /. For our analysis, we need to define limits for the “left-
shifted” measure process {u([tn,0))}n>0. For that purpose, we first define a
metric space (similar to the one from [5]) consisting of such measure processes
below.

To start with, we observe that the action space o/ is compact metrizable,
as it is discrete and finite. As for S, recall our assumption S = R". Thus,
it follows from the Alexandroff extension that S is one-point compactifiable.
In particular, the inverse stereographic projection S~!' : S — & is such that
S\ S7YS) = (0,...,0,1), where $™ represents the (n + 1)-dimensional Haus-
dorff compact sphere of radius 1 centered at the origin, and (0,...,0,1) is the
“north pole”. In other words, the inverse stereographic projection is the required
compactification embedding of S into 8™, see |16].

Every measure v € P(S x &) has a push forward counterpart in (8" x &).
It places mass 0 on (0,...,0,1) x of. Moving forward, note that we shall use
the same symbol to represent both the measure and its push forward counterpart.
Also note that ™ x o is compact Hausdorff in the product topology.

Let us define % to be the space of all measurable functions v(- ) = v(-,dz, da)
from [0, 00) to P(S™ x ).

Lemma 2. % is compact metrizable. Further, this metric coincides with the
coarsest topology that renders continuous the map

T
V»—)O/g(t)/fdu(t) dt,

for all, T >0, f € C(8™ x &) and g € L?([0,T),R).

Proof. By emulating the proof of Lemma 3 in [5] with “S™ x &/” replacing “S”,
and making appropriate modifications, the required proof is obtained. We do
not repeat it here, to avoid redundancies. O

Define VU(0,v) = [Vel(0,,a) v(dr,da), where v € P(S,d). Lemma
implies that V¢ is continuous in both coordinates and locally Lipschitz contin-
uous in the O-coordinate. Further, |VE(0,v)|| < K (1 + ||0]), i.e., its growth is
bounded as a function of 8 alone. Let us also define the following sequence of tra-
jectories in C([0, 00), R9): " (¢) = g(tn)Jrfot V(0™ (s), u"(s)) ds, where p™(t) ==
w(tp,+t), t > 0and n > 0. In other words, we consider solutions to the set of non-
autonomous ordinary differential equations: {9” (t) = VL™ (t), (t))}n>0. As

stated earlier, to understand the long-term behavior of , one can study the
behavior of the limit of sequence {0([t,,0))}n>0, in C([0,00),R?) as n — oc.
We can show the following property.

Lemma 3. For every T > 0,

lim sup [0(t, +t) —6™(t)| =0 .
n—=00 10,7

Proof. Please refer to Appendix for a proof. O

Then, instead of or the associated trajectory 8, we could focus on the se-
quence of trajectories {67 ([0, 00)) },>0. Now we may tap into the rich literature
of tools and techniques available from viability theory [2}[3].



The family of trajectories {67 ([0,00))}n>0, in C([0,00), R?), is equicontinu-
ous and point-wise bounded. It follows from the Arzela-Ascoli theorem [4] that
it is sequentially compact. Note that the topology of C([0,00), R?) is the one
induced by the topologies of C([0,7],R?) for every 0 < T < co. Now, let us
consider the family {u"},>0 C %. As % is a compact metric space, {¢"}n>0
is sequentially compact. Hence, there is a common subsequence {m(n)} C {n}
such that p™(™ — 4> in % and ™™ — 9§ in C([0,00),R?). With a slight
abuse of notation, we have u™ — p™ in % and 6™ — 6> in C(]0,00),R9). In
other words, the sequences u™ and 6™ are convergent in their respective spaces.

Below we state another important result, namely that convergence of the
measure process in % implies convergence in distribution of the corresponding
measure sequence, at every point in time.

Lemma 4. If u™ — u*> in %, then a.e. p™(t) — p™(t) in P(S x ) for
t €10,00).

Proof. We begin by recalling that the same notation is used to denote a measure
on S x & and its push forward counterpart on ™ x of. It follows from the defini-

T T
tion of convergence in % that [ g(s) [ fu™(s,dz,da) ds — [ g(s) [ fu(s,dx,da) ds
0 0

as n — oo, for every g € L2([0,T],R) and f € C(S™ x &). We claim that this
implies, for every f € C(8™ x o), [ fu™(s,dx,da) = [ fu(s,dz,da) a.e. for
s € [0,00). Once this claim is proven, we can conclude that s-a.e. u™(s) — pu>°(s)
in (8™ x o), which finally yields the lemma.

To prove the claim, let us assume the contrary. In particular, we assume
df € C(8" x ), T > 0, ¢ > 0 and a non-zero Lebesgue measure set A €
([0,TY)), such that at least one of the following properties holds for all s € A:

(a) liminf [ fu™(s,dz,da) — [ fu(s,dz,da) > €,
n—oo
(b) lirginfffu"(s,dm,da) — [ (s, dz,da) < —e,

(c) lmsup [ fu"(s,dz,da) — [ fu(s,dz,da) > €,

n—oo

(d) limsup [ fu"(s,dz,da) — [ fu(s,dz,da) < —e.
n—oo
We only present arguments for case (a), as the corresponding ones for the oth-
ers are identical. Since f is bounded, we apply the Dominated Convergence
Theorem (DCT) [10] to conclude that

n—oo

liminf/TILA {/f/ﬂ(s,dx,da) —/fu(s,dx,da)} ds

>el(A) >0,

where [(A) denotes the Lebesgue measure of A. This directly contradicts the
definition of convergence of measures in %.

It is left to show that u™(¢) — pu™(t) in P(S x o) a.e. for t € [0,00). To do
this, we pick ¢ € [0, 00) such that p™(t) — p°°(t) in P(S™ x o) and show that
their pull back versions converge in P(S x o). This is done by showing that

10



limsup u™(t,C) < p>(t,C) for every closed set C' € B(S x o) (Portmanteau

n— oo

theorem [4]).
We first observe that the measures {u™(¢)}o<n<oo are tight as a conse-
quence of (A2). Hence they place a mass of 0 on (0,...,0,1) x &. If we

d
LS)xd “Oo|sfl(5)ng'
Next, we consider an arbitrary closed subset C' € (S x ). Since the stereo-
graphic projection is bicontinuous, C' == {(S~1(z),a) | (z,a) € C} is closed in
S7L(S) x o, equipped with subspace topology (with respect to $™ x &). Clearly,
limsup p™(t,C) < pu>®(t,C). Now, as u™(t,C) is the push forward measure of

n— oo

u™(t,C) for all 0 < n < 0o, we obtain the required result. O

restrict these measures to S~1(S) x o, then ,u"} o

We can use one of the many available measurable selection theorems [19]
to drop the a.e. clause in the statement of Lemma |4 Hence, we have hitherto

shown that 6" — 6> in C([0, 00),R?) and p"(s) :d>~ p(s) for all s € [0, 00).
We now need to show that 6 is a solution of 0(t) = V£(0(t), p>°(t)). Then, one

can study the limiting behavior of a solution to the ODE 8(t) = V£((t), u>(t)),
to understand the long-term behavior of Deep Q-Learning given by .
Lemma 5. 0% is a solution to 0(t) = VL(O(t), u>(t)).

Proof. Fix an arbitrary 7" > 0. We need to show that

sup [07() — 6=(0) — / V(6% (s), 1 (s)) ds|| — 0.
t€[0,T] 5

Let us first consider the following:

0"(0)+ [ V0 51 (5)) ds - 67(0)-
0
t (3)
[ o). s
0

t

16™(0) — 6= (0)[| + /W(ﬁn(S%u”(S)) ds—
0

Next, we note the following:

(A) From Lemma {4| we have p™(s) N 1> (s) (converges in distribution on
S x ¢f) for all s € [0,T].

11



(B) From (A2), i.e., the stability of the algorithm, and the boundedness of V¢
as a function of 6, we get Vgl(0°°(s),-) € Cu(S x o). Hence, as a con-
sequence of note (A), [ Vol(0>(s),z, a)u™(s) = [ Vol(0=(s),x, a)u>(s)
for all s € [0, 7.

Using DCT, we get

O/ V(6 (5), 1" (s)) ds — / U6 (5), 1= (s)) ds o

— 0.

Further, it follows from the Arzela-Ascoli theorem that the convergence in
is uniform over [0, 7.
Since V/ is locally Lipschitz continuous in 6, we get

[ 5006 s) ds = [ Te6(5). 75 ds
0 0 (11)

<L [ 167(s) 0] s
0

As 6™ — 6°° uniformly over [0, 7], the Lh.s. of — 0 uniformly over [0,T].
The discussion surrounding and implies that @ — 0 and hence —
0, uniformly over [0,T]. As T is arbitrary, the lemma follows. O

To develop a better understanding of Deep Q-Learning, we need to study
1°°, the limiting distribution over the state-action pairs. In the following lemma,
we show that p®(t,dr x of) is stationary with respect to the state Markov
process, V t > 0. Recall that p(-| x,a,0) is the controlled transition kernel
of the state Markov process. We use p(-| z,9,0) to denote the probability
associated with transitioning out of state z (when some action is picked). We
use p(dy | z,,0) p(dz x o) to denote [, p(dy | z,a,0) p(dz,da). In words,
it represents the probability to transition from state x to state y, given that

(x’ Cl) ~ M-

Lemma 6. For allt € [0,00), p>(t,dyx ) = [sp(dy | z,o,0°°(t)) p>(t, dx x
). In other words, the limiting marginal constitutes a stationary distribution
over the state Markov process. Further, {u(t,dx, da)}i>0 is tight.

For a proof of this lemma, we refer to Appendix [10.2]

Tightness of {u>(¢,dz,da)}s>0 implies that it is relative compact in the
Prokhorov metric. This property, combined with the stability of 7 yields
{n(k)}r>0 C {n}n>0, such that both lim, )« g(tn(k)) and limy, (4) 00 t(tn(k), dz, da)
have limits in R and P(S x o), respectively. The properties of these limits,
let us call them 6 and 1>, determine the long-term behavior of . Lemmas
[8 to [6] were stated and proved to build up to the most important result of this
paper, which concerns the limiting behavior of . We state and prove this

result below, followed by a discussion of its implications.
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Theorem 1. Assuming (A1)-(A5), the limit 07 of the deep Q-learning algo-
rithm, i.e., iteration (2)), is such that VO™, 7)) = 0 and 5>=(dz x o) is a
stationary distribution of the state Markov process x.

Proof. From previous lemmas we know that tracks 6, a solution to the
non-autonomous ODE (t) = V£(6(t), u>°(t)). Further, there is a sample path
dependent compact subset of R, %, such that € remains inside of it. This
is because the algorithm is assumed to be stable, i.e., 6, € F VYn>0. To
determine the limit of the algorithm, 6, we need lim;_, o(1).

To analyze (t) = VL(8(t), u>(t)), we transform it into an autonomous ODE
through the standard change of variables trick. For this, we define s(t) := %ﬂ’

then $(t) = (1 — s(t))? and t = 1f(8t()t). We get the following transformed

autonomous ODE:

(6(1), 3(t) =

(oo () o-r).

Before proceeding, we state the following useful theorem, paraphrased to suit
our purpose:

[Theorem 2, Chapter 6 of |2]] Let F' be a continuous map from a closed
subset X C X to X. Let x(-) be a solution trajectory of ©(t) = F(x(t)), such
that it is inside & . Then, the solution converges to x*, an equilibrium of F'.

To utilize the theorem, we define the following: 2 = R? x [0,1], H =
% % [0,1], and F : % — & such that F(6,s) = (w (e,uoo (g ) (1 5)2).

S

It now follows from the above theorem that the transformed ODE ([12)) converges

to (87, 1), an equilibrium of F. Further, 1 is the unique equilibrium point of
(1—s5)2, and 8 is an equilibrium of VA(6™, i), where lim;_, o0 1> (t) =L 7.
We discussed the existence of the limit 7* in the paragraph before stating this
theorem.

Lemma [6] shows that 1 (t) is a stationary distribution of the state Markov
process x for all t > 0, i.e.,

i (tdy x ) = [ pldy | . 60,6%(0) 5 (t,do x ).
s
Letting t — oo on both sides of the above equation yields
> (dy x o) = /Sp(dy |z, .07 5> (dz x o).

In other words, the marginal over the states, ™ (dz x &), is stationary with
respect to the state process. L]

4.1 On practical implications of the theory

The primary goal of Deep Q-Learning is to find the optimal DQN-weights 6*
such that argmax,., Q(z,a;0*) = argmax,., Q*(z,a), where Q* is the op-
timal Q-function. This is achieved by minimizing the squared Bellman loss.

13



Theorem (1| states that the Deep Q-Learning algorithm given by converges
to 500, a local minimizer of the average squared Bellman loss. The averaging
over state-action pairs is induced by the limiting measure g € P(S x &). In
particular, we have

/V@E(@w,m,a) > (dx,da) = 0. (13)

Lemma [f] states that the limiting marginal distribution 1°°(dz x o), over the
state space S, is stationary. Deep Q-Learning is typically employed in complex
environments with multiple stationary distributions. Since ™ captures the
long-term behavior of the training process, it directly depends on the distribu-
tion of the data encountered during training. As the squared Bellman loss is
minimized on average in accordance to u°°, the quality of learning is entirely
captured by z*°. In particular, the trained DQN approximates the optimal Q-
factors accurately for state-action pairs that are distributed in accordance to
7°°. Performance is therefore good when encountering states arising from the
“limiting marginal”.

Fix a € o and let S(a) be a measurable subset of S such that a is the
optimal action associated with every = € S(a). For the sake of illustration,
we consider a scenario wherein 7™ (S(a) x &) > 0 and ™ (S(a) x a) = 0.
Roughly speaking, the set of state-action pairs given by {(z,a) | z € S} were
not encountered during training. This could happen, for example, due to poor
exploration-exploitation trade-offs, or due to improper initialization of the DQN
weights. The Q-factors may hence be poorly approximated on S(a) X a, and the
trained DQN-agent cannot be expected to take optimal actions in these states.
This explains the observation that, in practice, Deep Q-Learning sometimes
fails to generalize well beyond the data encountered during training. Existing
literature (see e.g. [21;[23]) does not account for such behaviors. Since DQN
is usually trained using a simulator, it may be possible to empirically estimate
7. This knowledge may help identify scenarios wherein DQN is undertrained,
thereby avoiding circumstances like the one sketched above.

5 Weakening (A4) to allow twice continuously
differentiable non-squashing activation func-
tions

The hitherto presented analysis accounts for DQN architectures with differen-
tiable squashing activations. In this section, we discuss modifications to our
analysis that allow for general activations as well. In particular, the modifi-
cations account for activations such as Sigmoid Linear Unit (SiLU), Gaussian
Error Linear Unit (GELU), etc.

Let us begin by understanding the role of squashing activations in our analy-
sis. In Lemma the squashing property is used to find a z-independent L such
that |Q(z,a;0)| < L||0]|2. Note that Lemmais true even when the activations
are non-squashing, provided S is a compact metric space. Since (A2) states that
sup ||z, ||2 < oo a.s., there is a sample path dependent compact set S, C S such
n>0

that z,, € S, V n > 0. Using this information, we may modify the statement of
Lemma | as follows:

14



Lemma 7. V 6 € R? sup|Q(z,a;0)| < L||0|l2, and L > 0 is dependent on
acd

x. Further, there is a sample path dependent IA/, independent of x, such that

sup sup |Q(z, a; 0)| < L||6]|2, where S, is as defined above.
€S acd

Parts of the analysis using Lemma[§ must now be modified to use Lemmal7}
Other Lemmata, for e.g., Lemma[I0]do not change when using Lemma[7] instead
of Lemma

6 Extension to account for experience replay

Now, we extend our analysis to account for experience replay, an idea that allows
the RL agent to relearn from past experiences. Specifically, at time T, the agent
has ready access to {(zk, @k, (@K, ak), Th+1) }r—H+1<k<T, the history of states
encountered, actions taken, rewards received and transitions made. The optimal
size of the experience replay H is problem dependent, and tunable. At time T,
to update the NN weights 6, the agent first samples a mini-batch of size H<H
from the experience replay and calculates the following average loss gradient:

H
1
s E V9€ (0T7xk(T,i)aakt(T7i)) y where
H i=1

T-H+1<k(T,i)<T.
The DQN weights are updated as follows:

A
1
9n+1 =0n + ’Y(n) E Z Vol (9n7 Th(n,i)» ak(n,i)) . (14)

i=1
To analyze (14)), we must redefine p. For ¢ € [t,,t,41), redefine u(t) to be the
probability measure (on S x &) that places a mass of 1/ on (Zy(n,i), Gk(n,i)) for
1 <i < H. With the new definition of u, for t = t,, we get:

TU@(1), p(t)) = / Vol(@(t),x, a) ut) =
H

1
I Z Vol (Ons Th(n,i)s Qs(nsi)) -

i=1
Emulating the proofs of the Lemmata up to Lemmafoy the new pu, shows that
tracks a solution to the non-autonomous o.d.e. 6(t) = VL(O(t), > (1))
Again, p* is a limit of the redefined measure process sequence {pu([t,o0))}i>0
in%.

Lemma |§| states the the limiting marginal measure process u*(t,dz x &) is
stationary with respect to the state Markov process for every ¢ > 0. For it to
hold in the presence of experience replay we redefine &, and %, as follows:

n—1 1 H
En = Z E Z(f(xk(m,i)+l)_

m=0 i=1

/f(y)p(dy \ xk(m,i)aak(m,i),9k<m,i)))} ;
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Fn-1 = 0 (TmyAm, O, Zm | m < n) for n > 1, where {E,},>0 is the random
process associated with mini-batch sampling. Typically the mini-batches are all
sampled independently over time, hence {=,, },,>0 constitutes an independent se-
quence of random variables. With these modifications the rest the steps involved
in the proof of Lemma [f] may be readily emulated. This would directly lead to
the statement of the main result, Theorem [I] In conclusion, Deep Q-Learning
with experience replay, , converges to 6 such that ng(éoo7 [1%°) = 0, where
£ is a limit of {f™°(t)}4>0 as t — oo, and 4 is the limiting measure process
of the redefined p-process. Again, > (dx x &) is stationary with respect to the
state Markov process.

It is a common belief among deep learning practitioners that experience
replay plays an important role in stabilizing the DQN training. In regards
to the long-term behavior, we show that the use of experience replay has a
qualitative effect on learning. This is because the limiting measure > is shaped
by the mini-batches sampled from experience replay during training, and it is
richer than the one resulting from no experience replay.

7 CONCLUSION

In this paper, we presented an asymptotic analysis of Deep Q-Learning under
practical and verifiable assumptions. An important contribution is the complete
characterization of the DQN performance as a function of training. We obtained
this result by analyzing the limit of a closely associated measure process (on the
state-action pairs). The result has various implications that we shall elaborate
on more closely in future work. In particular, is helps explain empirical obser-
vations regarding the performance of Deep Q-Learning that current theory does
not account for. Practically motivated extensions and generalizations like this
one are also on our agenda of future work.
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8 Appendix: Preliminaries: Reinforcement Learn-
ing (RL)

In RL an agent interacts with an environment over time, via actions. It takes
the current (environment) state into consideration to pick an action, and receives
a feedback in terms of a reward. The environment then moves to a new state.
This is schematically represented in Figure |3} The goal in RL is to ensure that
the agent takes a sequence of actions, such that the rewards accumulated over
time are mazimized.

o Environment

TTn+1
7(8ny @n) \/(w | @y an)

Figure 3: Snapshot of interaction at step n

Formally speaking, the above stated interactions can be modelled as a Markov
Decision Process (MDP). It is defined as a 5-tuple (S, &/, p, r, o), where:

S is the state space. In typical applications S = R*, k > 0.
of is the action space. In this paper, & is a discrete finite set.

p is the “controlled” transition kernel. We use p(-| x,a) to represent the
distribution of the next state given the current state and action.

r is the reward function. In particular, r(z, a) denotes the reward associated
with taking action a at state x.

« 1is the discount factor with 0 < v < 1. It is used to discount the relevance
of future consequences of actions.

A policy 7 is defined as a function from S to &/. Given 7, we can associate a Value

function V™ (x) with each € S, with V™ (z) :=E | 3 a"r(xn, n(zy)) |x0 =uzx|.
n>0

The goal in RL can be restated to find 7* such that V™ (z) = max V™ (x) for

*

all z € S. In Dynamic Programming parlance 7* is a solution to the infinite

horizon discounted reward problem.
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Closely related to the value function is the concept of Q-function, defined
over state-action pairs (z,a) € Sx & by Q™(z,a) = r(z,a) +«a [ V™ (z') p(dz’ |
x,a), where 7 is a fixed policy. The optimal Q-function is defined as:

Q* (z,a) =r(z,a) + a/V“*(x’) p(d’ | x,a).

Clearly, max Q*(x,a) = V™ (x) and 7*(x) = argmax Q*(z,a) for all x € S.
a o

a

Hence, in order to find 7* it is sufficient to find E}* This is the idea behind
Q-Learning. Its variant, Deep Q-Learning, has shown tremendous promise in
solving complex problems involving continuous state spaces, where Q-Learning
typically fails. It involves parameterizing the optimal Q-function using a DNN,
called the Deep Q-Network (DQN). The goal is to find the optimal set of pa-
rameters (DQN weights) 6%, by interacting with the environment, such that
Q(z,a;60%) = Q*(x,a) for all (x,a) € S x o. The DQN is trained to minimize
the following squared Bellman loss over all state-action pairs (x,a):

2

)+ o [ s Qs0) p(ds’ | .0) - Qovai0)

9 Appendix: Technical lemmas supporting Lemma 1]

Let us recall that every action is associated with a different output layer:
I(a)

Q(z,a;0) = 3 acty(i)0,(i), with I(a) the width of the layer associated with
i=1

action a.

Lemma 8. sup |Q(z,a;0)| < L||0]|2, for some L > 0.

z€S, acd
Proof. We begin by noting that activation functions considered herein are also
squashing. Hence, absolute values of their outputs are bounded by some 0 <
¢ < co. Let us fix arbitrary = € S and a € &, then

l(a)
Q(,a;0)| < ¢y 10a(i)] = c]fall1,
i=1

where ||- [|1 is the 1-norm. It now follows from |6, [|1 < I(a)|[04|2, that [Q(x, a; 0)| <
cl(a)]|0q]|2- If we let L := ¢ l(a), then the statement of the lemma follows. [

Since we allow for possibly unbounded @Q-factors, the above lemma indicates
that we need arbitrarily large DQN weights for good approximation. Depend-
ing on the system states encountered during training, the Deep Q-Learning
algorithm explores an appropriate subspace associated with the weight vector.
Hence, the approximation capability of the trained DQN depends on the state-
action pairs encountered during training. The difference, in state distributions,
between the training and test scenarios will determine performance.

Recall that we parameterize the Q-function using a neural network that con-
sists of twice continuously differentiable activation functions. Hence, @ may be
viewed as a composition of twice continuously differentiable activations, and the
DQN weight vector. In other words, @ itself is twice continuously differentiable.
This intuition is formalized in the next lemma.
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Lemma 9. Q(z,a;0) is twice continuously differentiable in the 0-coordinate for
every x € S and a € o, where 6 is the DQN weight vector.

Proof. Recall that the DQN weights are updated using the back propagation
algorithm, i.e., the chain rule. Given the DQN weight-vector # € R?, we need
to show that 82Q(ip’&59)/aef exists and is continuous for 1 < i < d. Also, recall
from the note on tunable biases at the end of Section that without loss of
generality we may only consider tunable edge weights, and ignore tunable bias
terms.

Let us fix an arbitrary & € S, @ € & and 7 € {1,...,d}. DQN weight 6; is
associated with an edge of the NN. Also associated with this edge is another
weight e; := act;0;, where act; is the output of an activation from the previous
layer (from the head of the edge). This is illustrated in Fig.

€j(1) = actj)0;

€jk) = act;x

Figure 4: Section of a DNN

20)(4 4-
To prove the lemma, we show something stronger, i.e., that both 9 Q(a?,aﬁ)/agiz

and 0?Q(z ,&;9)/ 0€? are continuous. The proof involves inducting on the depth

of the DNN, starting from the output layer, and going backwards. Note that
I(a)

Q(Z,a;0) = > ea), where €,y = acty;) 040y, where [(a) is the number
i=1

of activations in the output layer of action a. Also, note that act;(; is the

output of the i-th activation in the output layer associated with action a, and
0a(i) is the corresponding network edge-weight, 1 < i < 1(a), see Section for
details. We have, 52@(»’%7&;9)/395(1,) = 52@(@@;9)/302(1,) = 0 for all a # a,
where subscript a(i) is used to indicate that 0,(; and €q;) are associated with
the output layer of action a. Twice continuous differentiability with respect to
aiy and eg(;) directly follows from the same property of the activation units,
1 <i<li(a).

Let us assume that the hypothesis is true for weights associated with edges
out of the (I 4 1)* layer and prove for the I** layer. Fig. 4| illustrates an edge
out of an I*" layer activation, and its associated weight e; = act; 6;, where
i €{1,...,d}. Also note that, in the Fig. |4, act;,) = acty for all 1 <m < k.
It follows directly from the back-propagation algorithm (chain rule) that:

0Q(#,4;0)  dact z’“: 9Q(#,:0) )
3€i o 892- 8ej(m) DN

m=1

02Q(5,4;0)  [dacty\? <~ |02Q(#,4:0) ,
De? :< de, ) D [Taez . Bem |t
7 ? m=1 J(m)
Pacty <~ [0Q(&,a;0)
Oe} mz::l [ ¢ (m) aj(m)}'
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From the induction hypothesis and the twice continuous differentiability of acty,

we get that % is continuous. Next, we observe:
0Q(z,a;0) 0Q(Z,a;0) Oe; 0Q(,a;0)
0, oe 06 "N oe,
3262;:?;;2&;9) — (act;)’ 82@;1,?&;9)_
The continuity of %ﬁ;iﬁ&;m follows from the twice continuous differentiability
of 82%(—2%&;@. O

Since @ is two times continuously differentiable in the #-coordinate, it is
locally Lipschitz continuous in that coordinate. Also, the Lipschitz constant
may depend on z, in addition to 6. Let us fix arbitrary @ € & and # € R%.
Since Q(-, a; é) and VyQ(-, a; é) are composed (via addition and multiplication)
of twice continuously differentiable functions (activation units), we get that both
@ and Vy@Q are continuous in the z-coordinate. Although we do not need it
here, the stronger property of local Lipschitz continuity may also be shown.
Finally, note that @ and V@ are continuous in the a-coordinate, since & is
finite.

Lemma 10. The following map is continuous and locally Lipschitz continuous
in the 0-coordinate:

(.0.0) > [ maxQ(',ai0) p(ds’ | 2.0,6).
ac

Proof. We begin by fixing arbitrary & € S and a@ € of. Given § € R%, Lemma |§|
implies the existence of 4 (6, Z), without loss of generality a compact neighbor-
hood of 0, and L(6, &) > 0, such that V¥ 61,02 € 4 (0, &):

|Q(&,a;01) — Q(2,4;02)] < L(0, 2)[|01 — 02 2.

Since a is fixed, p(-| &,a,0) = p(-| &,a), i.e., the transition kernel does not

depend on 6. Recall that the dependence of p on € is only via the action a.

Define a1 (z) = argmax Q(z,a;6;), then following the above line of thought
acd

9

(with “z” replacing “Z” and “ai(z)” replacing “a”) we get:

max Q(z,a; 01) — max Q(x, s )
ac

acd
< |Q(z,a1(x);01) — Q(z,a1(x); 01)]
< L(0, ) |61 — 02|

(15)

Hence, from Lemma [8| and the compactness of 4 (6, ), we conclude that

sup  sup sup ‘Q(x,a;é)’ < 00.
ben(0,8) zE€S acd
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In particular, there exists a bounded measurable function Fop:axm L(z,0) such
that is satisfied for every x € S, with Fp(z) as the Lipschitz constant.
Hitherto presented arguments and observations yield:

[ masQGe.as0npla | 2.4.0)-

/m&y@(m,aﬂg)p(dw | &, a,6s) <

gm—%m/uammw@®SMM—%m

where L =2x sup sup sup ‘Q(x,a;é)‘.
éEA/(G,OE) €S acd

Let us fix arbitrary § € R? and @ € &. Define a(x) € argmax Q(x,a;0)
acd

and Q(z) == Q(z,a(z),) for all z € S. Note that there may be many ac-
tions that maximize the @ function, a(-) selecting one of them. First, we show
that 2, — « implies that Q(z,) — Q(z), and hence that Q € Cy(S) (from
Lemma . To this end, we show that every subsequence of {Q(xn)}nzo has a
further subsequence that converges, and the limit always equals Q(m) Let us
begin by considering the entire sequence itself. Since & is a compact metric
space, 3 {n(m)}m>0 C {n}n>o such that a(z,n)) — a for some a € o, hence
Q(xn(m) (xn(m))) 6) — Q(x,a;0). We claim that @ = a(z), thus implying
Q(xn(m ) — Q( ). To see that the claim is true assume the contrary. In other
words, a(z) # a and Q(z, a(z); ) > Q(x, a; f)+e, for some e > 0. From the con-

tinuity of @, we get that 3 M > 0 with ‘Q(wn(m),a(aﬁ);é) Q(z,a(x);0)| < ¢/a
and |Q(Z(m)s A(Tp(m)); 0) Q(l‘,&;é)‘ < ¢/4, for allm > M. Hence, we get that
QT (m), a(T); 6) > Q(Tr(m)> A(Tr(m)); 0), a contradiction. Finally, we note that
the above set of arguments can be repeated starting with any subsequence of
{n}n>0. )

Now that we have ) € Cy(S), we are ready to prove continuity in the a-
coordinate. Recall that we have assumed the trag?sition kernel to be continuous
in z. Hence x,, — z implies that p(-| ©,,d,0) = p(-| z,a,0), i.e., the kernels
converge in distribution. It now follows from the definition of “convergence in

distribution” that [ Q(y)p(dy | zn, , 6) — [ Q(y)p(dy | z,a,6). In other words,
we have the required, namely

Ty > T = /me%i/( Q(y,a,é)p(dy | xn,&,é) —
/Tﬁé{ Q(y,a,0)p(dy | x,a,0)

as n — oo Finally, recall that &/ is compact metrizable as it is a finite. Hence
continuity in the a-coordinate is trivial. O
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10 Appendix: Missing Proofs
10.1 Proof of Lemma [3]

Proof. First we define the notation [t] for t > 0 as [t] := tsupnt, <t}- Next, we
need to show that:

sup [|0(t, +t) — 0([tn +t])|| € O(v(n)).
te[0,T

For this, we fix ¢t € [0, T}, then [t,, + t] = ;1% for some k > 0. Recall that

ty +1—thtk

’Y(TL + k) (g(tn-&-k-&-l) - g(tn—i-k)) .

O(tn +1t) = Otnix) +

We use the following: ||0(tn4r+1) — O(tnsk)|| < Y(n+E) | Vol(O(tnsr), Tntki Gnre) |l
the stability of the algorithm, i.e., (A2); the monotonic property of the step-size
sequence, i.e., (Al); and the boundedness of Vgl as a function of 6, to obtain
0(t, +t) — O(tnir)|| € O(y(n)). Similarly, let us show that:

sup 0™ (t) — 0" ([tn +t] — tn)[| € O(7(n)).
t€[0,T]

Again, [t, + t] = tp4r for some & > 0. We also have ||0™(t) — 0" (tpik —

t ~
to)ll = [ Ve(O(s),u™(s)) ds||. Using arguments similar to the ones made
tn+k_tn
before, the required statement directly follows. It follows from all of the above
arguments that it is enough to show the following in order to prove the lemma:

sup [|0([tn +t]) — 0" ([tn +t] — t,)] — O.
te[0,T]

Once again we let [t,, + t] = t,,4+x for some k > 0, and observe that

10([tn + t]) = 0" ([tn + 2] — tn) [l <

nt+k—1 tmt1

3 / IFE@(s]). 1™ (s — )~

m=n
tm

VO (s —tn), 1" (s — tn)))]| ds,

10([tn + t]) = 0" ([tn + 1] — tn)I| <

ntk—1 tm+1

3 / L|[As)) — 0 (s — t)]).

m=n tm
Adding and subtracting 6™ ([s] — t,), the R.H.S. of above equation is less than

or equal to

n+k—1 tm+1
S L / 167 (s — ) — 0" ((s] — )] +

tm
ntk—1 tm41

> L / 18([s]) — 0" ([s] — ta)]| -
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Considering that ||0(t, +1) — 0(tasr)| and |07 (t) — 0" ([tn +t] —ta)|| € O(y(n)),
n+k—1 tm+1 n+k—1
weget > [ [07(s—tn) —0"([s] —tu)|| < X O(v(m)?), which goes to

tm,

zero as n — co. Now we use the discrete version of Gronwall’s inequality to get:

Hg([tn + tD - en([tn +t] - tn)” <

n+k—1
(L > @(v(m))2> exp(LT).

10.2 Proof of Lemma

Proof. Pick f from Cy(S), the convergence determining class for 2(S). Without
loss of generality, we assume that 0 < f < 1. We define the following zero mean

Martingale with respect to the filtration F,_1 = 0 (Tm,am,0m | m < n), for
n>1:
n—1
&= X 9(m) | Faman) = [ £ | o). (7
m=0

Since f is bounded and " v(n)? < oo, the quadratic variation process associ-
n>0

ated with the above Martingale is convergent. It follows from the Martingale

Convergence Theorem [10] that &, converges almost surely. Hence for ¢ > 0,

7(n,t)

S A (m) [f<xm+1> - [ s wm,am,em] S0as,  (18)

m=n

where 7(n,t) == min{m > n | t,, > t, +t}. Since the steps-sizes are eventually
7(n,t)
decreasing, hence > [y(m) —y(m + 1)]f(Zm+1) — 0 a.s. Then becomes:

7(n,t)
pORTD [ﬂxm) - [ sy xm,am,emﬂ S0as (19)

Using the definition of u, we rewrite as:

/:H/Sxd {f(x) - /Sf(y)p(dy | x,a,G(s))] (s, dz, da)ds

— 0 a.s.

(20)

Let us define a new function f(z,a) := f(z) for all (x,a) € S x o, then f €
Cp(S x ). Since p(t,+-) — p(-) in %, it follows that as n — oo:

bttt .
/ flz,a)u(s, dz,da)ds —
tn Sx o

¢
/ flx, a)p™ (s, dx, da)ds.
0 JSxd
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Further, the limit in equals fot Js flx)po (s, dx x of )ds.
Recall that (z,a,0) — p(-| z,a,8) is a continuous map Since f is a conver-

gence determining function in 2(S), it follows that [; f( dy | z,a, 9( ) —
Js f( dy | 2,a 000( )) for all s € [O t]. Define h, (s x,a) = fS p(dy |
xa@( +5)) and hoo (s, z,a) = [ f(y)p(dy | x,a,0°(s)). Foraﬁxedse[O t],

hn(s,+), n >0, and heos, ) belong to (Cb(S x o). Hence,

/ hn(s, 2, a)u(t, + s, dz, da) —
Sxd

(22)
/ heo (8,2, a)u™> (s, dz, da).
Sxd
It then follows from Dominated Convergence Theorem (DCT) [10] that:
tn+t
/ / hn(s,z,a)u(s, dz,da)ds —
tn Sx o (23)

¢
/ / hoo (8,2, a) ™ (s, dx, da)ds.
0 JSxd

In other words, we have

/:H /Sw/gf(y)p(dy | z,a,0(s))u(s,dr,da)ds —

t
/ / / F@)p(dy | ,a,6%(s)u™(s, dz, da)ds. (24)
0 Sxd JS
From , and we get:

/t f(x)p™ (s, dx, da)ds =
0 JSxd

Atéxd/sf(y)p(dy | z,a,0°(s))u> (s, dr, da)ds.

Using Lebesgue’s theorem we get that a.e. on [0,t]:

(25)

f@)pu>(s,dx,da) =

Sx o

/ / F)p(dy | 7, 0,0 ()™ (s, dx, da).
Sxd JS

Applying Fubini’s theorem [10] to swap the double integral on the R.H.S. of the
above equation, gives us:
/ fl@)p>(s,dz, o) =

/f / (dy |z, o,0°(s))u>(s,dx, o).

Since f is a convergence determining function, we get that p®(s,dy, o) =
Jsp(dy | x,of,0°(s))pu>(s,dz, o). Hence, we have shown that the limiting
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distribution over the state-action pairs p* is such that, almost everywhere on
[0,00), its marginal over the state space constitutes a stationary distribution
over the state Markov process with transition kernel p(- | z, &/, ).

Now, it is left to show that the family of measures {u™(¢,dxz,da)}i>0 is
tight. From previous discussions and observations, given ¢ > 0, we can find
{n(m)}m>0 C {n}n>o such that

lim  pu(ty(m), dz, da) N u>(t, dx, da).

Using the Portmanteau Theorem [4], we get > (t, # x") > lmsup pu(ty(m), F X
'), where # C S is compact and &’ C &. Given e > 0, there exists # (¢) C S,
compact, such that ir;fou(tn(m),%(e) x ') > 1—¢for any o/’ C o, as

p(tn(m))m>o is tight. Hence > (t, X (¢) x @') > 1 —e. As t was arbitrary,
we get that {u (¢, dz, da)}i>¢ is tight. O
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