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Abstract

We study federated learning (FL), where power-limited wireless devices utilize their local

datasets to collaboratively train a global model with the help of a remote parameter server (PS).

The PS has access to the global model and shares it with the devices for local training using

their datasets, and the devices return the result of their local updates to the PS to update the

global model. The algorithm continues until the convergence of the global model. This framework

requires downlink transmission from the PS to the devices and uplink transmission from the

devices to the PS. The goal of this study is to investigate the impact of the bandwidth-limited

shared wireless medium in both the downlink and uplink on the performance of FL with a

focus on the downlink. To this end, the downlink and uplink channels are modeled as fading

broadcast and multiple access channels, respectively, both with limited bandwidth. For downlink

transmission, we first introduce a digital approach, where a quantization technique is employed

at the PS followed by a capacity achieving channel code to transmit the global model update

over the wireless broadcast channel at a common rate such that all the devices can decode it.

Next, we propose analog downlink transmission, where the global model is broadcast by the PS

in an uncoded manner. We consider analog transmission over the uplink in both cases, since

its superiority over digital transmission for uplink has been well studied in the literature. We

further analyze the convergence behavior of the proposed analog transmission approach over the

downlink assuming that the uplink transmission is error-free. Numerical experiments show that

the analog downlink approach provides significant improvement over the digital one, despite a

significantly lower transmit power at the PS, with a more notable improvement when the data
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distribution across the devices is not independent and identically distributed. The experimental

results corroborate the convergence results, and show that a smaller number of local iterations

should be used when the data distribution is more biased, and also when the devices have a better

estimate of the global model in the analog downlink approach.

I. Introduction

Wireless devices, such as mobile phones, wearables, and Internet-of-things (IoT) devices,

continuously generate massive amounts of data. This massive data can be processed to infer

the state of a system, or to anticipate its future states with applications in autonomous

driving, unmanned aerial vehicles (UAVs), or extended reality (XR) technologies. Due to the

growing storage and computational capabilities of wireless edge devices, it is increasingly

attractive to store and process the data locally by shifting network computations to the

edge. Also, in contrast to traditional machine learning (ML) solutions, it is not desirable

to offload such massive amounts of data available at the wireless edge devices to a cloud

server for centralized processing due to latency, bandwidth, and power constraints in wireless

networks, as well as privacy concerns of users. Federated learning (FL) has emerged as an

alternative method enabling ML at the wireless network edge by utilizing wireless edge

computational capabilities to process data locally.

In FL the goal is to fit a global model to data generated and stored locally at the wireless

devices by exploiting edge processing capabilities collaboratively with the help of a remote

parameter server (PS) [1]. The PS keeps track of the global model, which is updated using

the local model updates received from the participating devices, and shares it with the

devices for training using their local data. When FL is employed at the wireless edge, the

PS can be a wireless access point or a base station, and the communication between the

PS and the devices takes place over the shared wireless medium with limited energy and

bandwidth. There have been several studies to develop distributed ML techniques with

communication constraints [1]–[11]. However, these studies focus on limiting the uplink

communication from the devices to the PS by assuming rate-limited error-free links, and do

not take into consideration the physical layer characteristics of the wireless medium.

Recently there have been efforts to develop a federated edge learning (FEEL) framework

considering the physical layer aspects of the underlying wireless medium. FL over power-

and bandwidth-limited multiple access channel (MAC) for the uplink is studied in [12], and
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novel digital and analog transmission techniques at the wireless devices are proposed. While

the former employs gradient sparsification followed by quantization and channel coding

for digital transmission, the latter utilizes the superposition property of the underlying

wireless MAC, and introduces a novel bandwidth-efficient transmission technique employing

sparsification and linear projection. FL over a broadband wireless fading MAC is studied in

[13], where the devices have channel state information (CSI) to perform channel inversion,

while [14] proposes analog transmission over the wireless fading MAC without any power

control. The extension of the approach introduced in [12] to the wireless fading MAC

studied in [15], [16], which combines the linear projection idea of [12] with power control.

Furthermore, FL over wireless networks with a multi-antenna PS is studied in [17]–[20],

where beamforming techniques are used for efficient gradient aggregation at the PS. In [21]

digital transmission over a Gaussian MAC from the devices to the PS is considered with

quantization based on the channel qualities, and [22] studies digital transmission using the

over-the-air aggregation property of the wireless MAC. Various device scheduling policies

are studied for FEEL aiming to select a subset of the devices sharing the limited wireless

resources efficiently, including frequency of participation in the training [23], minimizing the

training delay [24], link qualities of the devices [25], energy consumption [26], and importance

of the model update along with the channel quality [27]. Resource allocation for FEEL is

formulated as an optimization problem to speed up training [28], to minimize the empirical

loss function [29], and to minimize the total energy consumption [30]. Also, convergence of

FEEL with limited bandwidth from the devices to the PS is analyzed in [31].

All the aforementioned works assume an error-free PS-to-devices shared link, and availabil-

ity of an accurate global model at the devices for local training. In this paper, we consider a

bandwidth-limited wireless fading broadcast channel from the PS to the devices with limited

transmit power at the PS. We introduce digital and analog transmission approaches over

the downlink. In the digital downlink, the PS employs quantization followed by channel

coding to broadcast the quantized global model update over the wireless fading broadcast

channel, at a rate targeting the device with the worst channel, so that all the devices can

successfully receive the global model. On the other hand, with the analog downlink approach,

the PS broadcasts the global model vector in an analog/uncoded manner over the wireless

fading broadcast channel, and the devices receive different noisy versions of it. We model

the uplink from the devices to the PS, over which the devices send their model updates, as
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a bandwidth-limited fading MAC. We follow the existing works highlighting the efficiency of

the analog transmission over the uplink fading MAC for FEEL [12], [13], [16], and consider

analog communications. The convergence analysis of the proposed digital downlink approach

is provided in [32]. Here, we provide the convergence analysis of the analog downlink ap-

proach, where for ease of analysis we assume error-free uplink transmission and focus on

the impact of a noisy downlink transmission on the convergence behavior. Our theoretical

analysis is complemented with numerical experiments on the MNIST dataset, which clearly

illustrate the significant advantages of the analog downlink approach compared to its digital

counterpart. We observe that the improvement is more significant when the data is not

independent and identically distributed (iid) across the devices. The performance of both

approaches improve with the number of devices thanks to the additional power introduced by

each device. Our numerical results corroborate the analytical convergence analysis, showing

that reducing the number of local iterations provides the best performance when introducing

bias in the data distribution across the devices. Also, both analytical and experimental

results show that, for non-iid data distribution, the number of local iterations at the devices

should reduce when the transmit power at the PS increases.

Imperfect downlink transmission in FL is also treated in [33] and [34]. In [33], the shared

link from the PS to the devices is assumed to be rate-limited without taking into account

the physical layer characteristics of the wireless medium; the PS sends a compressed version

of the current global model to the devices through quantization. The efficiency of quantizing

the global model diminishes significantly since the peak-to-average ratio of the parameters

is high. Therefore, [33] proposes employing a linear projection at the PS to first spread the

information of the global model vector more evenly across its dimensions, and the devices

perform the inverse of the linear projection to estimate the global model vector. Instead,

in our proposed digital downlink approach, the PS broadcasts the quantized global model

update, with respect to the global model estimate at the devices, and the devices recover

an estimate of the current global model using their knowledge of the last global model.

We highlight that the global model update has significantly less variability/variance than

the global model itself. Hence, compared to the proposed digital downlink approach, the

approach in [33] requires significantly higher computation overhead at the PS and the devices

due to the linear projection and its inverse, respectively, and this overhead grows with the

number of model parameters. Moreover, the results in both [33] and [34] are limited to
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simulations, where [34] illustrates the advantages of analog transmission in the downlink

but does not provide a convergence result. In this paper, we provide an in-depth analysis of

the impact of a noisy downlink on the performance of FEEL through extensive experimental

results together with theoretical convergence analysis.

The rest of this paper is organized as follows. In Section II, we present the system model.

The digital and analog downlink approaches are introduced in Section III and Section

IV, respectively. In Section V, we provide the convergence results of the analog downlink

approach. Numerical results are presented in Section VI. Finally, we conclude the paper in

Section VII, and provide a detailed proof of the main theorem in the Appendices.

Notation: We denote the set of real, natural and complex numbers by R, N and C,

respectively. For i ∈ N, we let [i] , {1, . . . , i}. We denote a circularly symmetric complex

Gaussian distribution with real and imaginary components with variance σ/2 by CN (0, σ).

For vectors x and y with the same dimension, x ◦ y returns their Hadamard/entry-wise

product. Also, Re{x} and Im{x} return entry-wise real and imaginary components of x,

respectively, and (x)−1 represents entry-wise inverse of vector x. The notation |·| represents

the cardinality of a set, the l2-norm of vector x is denoted by ‖x‖2, and 〈x, y〉 denotes the

inner product of vectors x and y. The imaginary unit is represented by j.

II. System Model

We consider FEEL where M wireless devices collaboratively train a model parameter

vector θ ∈ Rd with the help of a remote parameter server (PS). Device m has access to Bm

local data samples, the set of which is denoted by Bm, i.e., Bm = |Bm|, m ∈ [M ], and we

define B ,
∑M

m=1 Bm. The goal is to minimize loss function

F (θ) =
∑M

m=1

Bm

B
Fm (θ) , (1)

where Fm (θ) denotes the loss function at device m,

Fm (θ) =
1

Bm

∑
u∈Bm

f (θ, u) , m ∈ [M ], (2)

where f(·, ·) is an empirical loss function defined by the learning task. Device m performs

multiple iterations of stochastic gradient descent (SGD) algorithm based on its local dataset

and the global model parameter vector shared by the PS to minimize Fm (θ), m ∈ [M ].
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FEEL involves iterative communications between the wireless devices and the PS until

the model parameter vector converges to its optimum, minimizing loss function F (θ). It

consists of downlink and uplink wireless transmissions, where in the downlink the PS shares

the global model parameter vector with the devices for local training, and in the uplink

the devices transmit their local model updates to the PS, which updates the global model

parameter vector accordingly.

During the t-th global iteration, the PS broadcasts the global model parameter vector,

denoted by θ(t), to the devices over the downlink channel. We model the downlink wireless

channel as a fading broadcast channel, where OFDM with ndl subchannels is employed for

transmission. We denote the length-ndl channel input by the PS at the global iteration t by

xdl(t) ∈ Cndl

, and consider a transmit power constraint P dl at the PS at any global iteration.

The received signal at device m is given by

ydl
m(t) = hdl

m(t) ◦ xdl(t) + zdl
m(t), for m ∈ [M ], (3)

where hdl
m(t) ∈ Cndl

is the downlink channel gain vector from the PS to device m with each

entry iid according to CN (0, σdl), and zdl
m(t) ∈ Cndl

is the downlink additive noise vector at

device m with each entry iid according to CN (0, 1). We assume that device m has channel

state information (CSI) about the downlink channel, and denote the noisy estimate of the

global model parameter vector θ(t) at device m by θ̂m(t), m ∈ [M ].

Having estimated θ̂m(t), device m, m ∈ [M ], updates the model by running SGD τ steps

locally, for some τ ∈ N. The i-th SGD step at device m during global iteration t is given by

θi+1
m (t) = θi

m(t) − ηi
m(t)∇Fm

(
θi

m(t), ξi
m(t)

)
, i ∈ [τ ], (4)

where θ1
m(t) = θ̂m(t), ηi

m(t) represents the learning rate, and ∇Fm

(
θi

m(t), ξi
m(t)

)
denotes

the stochastic gradient estimate with respect to θi
m(t) and the local mini-batch sample ξi

m(t),

chosen uniformly at random from the local dataset Bm, for m ∈ [M ]. We highlight that

Eξ

[
∇Fm

(
θi

m(t), ξi
m(t)

)]
= ∇Fm

(
θi

m(t)
)

, ∀i ∈ [τ ], ∀m ∈ [M ], ∀t, (5)

where Eξ denotes expectation with respect to the randomness of the stochastic gradient

function. After performing the local SGD algorithm, device m aims to transmit the local

model update ∆θm(t) = θτ+1
m (t) − θ1

m(t) to the PS over the uplink channel, m ∈ [M ].
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We model the uplink channel as a fading MAC, where, similarly to the downlink, OFDM

is employed for transmission. We assume nup subchannels are available to each device in

the uplink with transmit power constraint P up during each global iteration. The length-nup

channel input by device m at the global iteration t is denoted by xup
m (t) ∈ C

nup

, for m ∈ [M ].

The channel output received at the PS during the global iteration t is given by

yup(t) =
∑M

m=1
hup

m (t) ◦ xup
m (t) + zup(t), (6)

where hup
m (t) ∈ Cnup

is the uplink channel gain vector from device m to the PS with each

entry iid according to CN (0, σup), and zup
m (t) ∈ Cnup

is the uplink additive noise vector at

the PS with each entry iid according to CN (0, 1). We assume that the PS knows all the

channel gains, while each device knows the states of its own subchannels. The PS’s goal is

to recover the average of the local model updates, 1
M

∑M
m=1 ∆θm(t), whose estimate at the

PS is denoted by ∆̂θ(t), which is then used to obtain the updated global model parameter

vector, θ(t + 1).

In this paper, we study the impact of noisy downlink transmission on the performance of

FEEL. For this purpose, we consider digital and analog transmission approaches over the

downlink channel. When performing digital transmission, we assume that the PS has CSI

about the downlink wireless channels, while for the analog transmission, no CSI about the

downlink channels at the PS is needed. On the other hand, following the results in [12], [13],

[16], which have shown the superiority of analog transmission for the uplink transmission

over a wireless MAC, here we only consider analog transmission over the uplink.

III. Digital Downlink Approach

In this section, we present a digital approach for the downlink transmission of the global

model update to the devices.

A. Downlink Channel Capacity

At the global iteration t, the PS aims to transmit vector xdl(t), containing information

about the global model vector θ(t), to all the devices using digital transmission with transmit

power P dl over the bandwidth-limited wireless channel. The PS broadcasts xdl(t) at a

“common rate” such that all the devices can decode it. The downlink is a parallel fading

broadcast channel with ndl subchannels, where CSI is known at both the transmitter and
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the receivers. In the following, we provide an upper bound on the maximum common rate of

broadcasting over this ndl parallel fading channels. Given an average transmission power P dl

at global iteration t, the maximum common rate of downlink transmission over ndl parallel

Gaussian channels, denoted by Cdl(t), is the solution of the following optimization problem

[35], [36]:

max
P1,...,P

ndl

min
m∈[M ]

∑ndl

i=1
log2

(
1 + P dl

m,i(t)
∣∣∣hdl

m,i (t)
∣∣∣
2
)

,

subject to
∑ndl

i=1 P dl
m,i(t) = P dl, ∀m ∈ [M ]. (7)

The above problem is a convex optimization problem which can be efficiently solved by

the minimax hypothesis testing approach [35]–[37]. Note that this rate would be achievable

by coding across infinitely many realizations of the ndl parallel Gaussian channels under

consideration, and will serve as an upper bound on the rate transmitted over a single

realization.

B. Compression Technique

In the following, we present the compression technique employed by the PS for trans-

mitting information about the global model over the bandwidth-limited downlink channel,

where we adopt the scheme introduced in [38] with a slight modification. Assume that vector

x(t) ∈ Rd, whose i-th entry is denoted by xi(t), i ∈ [d], is to be quantized and transmitted

over the downlink channel by the PS. The PS first sparsifies x(t) by setting all but s entries

of x(t) with the highest magnitudes to zero, for some integer s ≤ d. We denote the set of

s indices of the resultant sparse vector with non-zero entries by S(t). We also denote the

resultant vector with dimension s after removing the zeroed entries due to the sparsification

by xs(t), whose i-th entry is denoted by xs,i(t), for i ∈ [s]. Then the PS quantizes the entries

of xs(t), and transmits the quantized values along with their locations in x(t), which are

available in set S(t). We define

xmax , max
i∈[s]

{|xs,i(t)|} , (8a)

xmin , min
i∈[s]

{|xs,i(t)|} . (8b)
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Given a quantization level q(t), which will be determined later, we define the compression

technique applied to the i-th entry of xs(t), for i ∈ [s], as

Q (xs,i(t)) , sign (xs,i(t)) ·
(

xmin + (xmax − xmin) · ϕ
(

|xs,i(t)| − xmin

xmax − xmin
, q(t)

))
, (9a)

where, for x ∈ R,

sign (x) ,





1, if x ≥ 0,

−1, otherwise,
(9b)

and ϕ(·, ·) is a quantization function defined in the following. For 0 ≤ x ≤ 1 and some

integer q ≥ 1, let l ∈ {0, 1, . . . , q − 1} be an integer such that x ∈ [l/q, (l + 1)/q). We then

define

ϕ (x, q) ,






l/q, with probability 1 − (xq − l),

(l + 1)/q, with probability xq − l.
(9c)

We denote the compressed version of xi(t) by S (xi(t)), for i ∈ [d], which is given by

S (xi(t)) =





Q (xi(t)) , if i ∈ S(t),

0, otherwise,
(10)

and represent S (x(t)) =
[
S (x1(t)) , . . . , S

(
xd(t)

)]T
. Note that we normalize the entries of

xs(t) with xmax − xmin rather than ‖xs(t)‖2 as introduced in [38].

With the above compression technique, the PS needs to transmit

Rdl(t) = 64 + s (1 + log2(q(t) + 1)) + log2

(
d

s

)
bits (11)

over the wireless broadcast channel to each of the devices, where 64 bits are used to represent

the real numbers xmax and xmin, s bits for presenting sign (xs,i(t)), ∀i ∈ [s], s log2(q(t) + 1)

bits are used for ϕ ((|xs,i(t)| − xmin) /(xmax − xmin), q), ∀i ∈ [s], and log2

(
d
s

)
bits represent

the indices of x(t) in set S(t). We set q(t) to the largest integer satisfying Rdl(t) ≤ Cdl(t).

C. Model Update

Here we present the model update scheme including the global model update broadcasting

from the PS to the devices and aggregation of the local updates via uplink transmission from
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the devices to the PS.

Downlink transmission. We first elaborate on the downlink transmission. We highlight

that, for the digital downlink approach, all the devices have the same estimate of θ(t) during

global iteration t, denoted by θ̂(t), i.e., θ̂m(t) = θ̂(t), ∀m ∈ [M ]. In the downlink, at the

global iteration t, the PS wants to broadcast the global model update θ(t) − θ̂(t − 1) to all

the devices. We define

∆̂θ(t − 1) , θ(t) − θ̂(t − 1) ∈ R
d. (12)

The PS first quantizes ∆̂θ(t−1) using the compression technique described in Section III-B,

obtaining S
(
∆̂θ(t − 1)

)
= S

(
θ(t) − θ̂(t − 1)

)
, which results in Rdl(t) bits as given in (11).

The PS then broadcasts these bits to all the devices using a capacity achieving channel code,

where q(t) is set to the largest integer satisfying Rdl(t) ≤ Cdl(t), where Cdl(t) given as the

solution of (7). After decoding S
(
θ(t) − θ̂(t − 1)

)
, each device computes θ̂(t) as

θ̂(t) = θ̂(t − 1) + S
(
θ(t) − θ̂(t − 1)

)
, (13)

which is equivalent to

θ̂(t) = θ(0) +
∑t

i=1
S
(
θ(i) − θ̂(i − 1)

)
, (14)

where we have assumed that θ̂(0) = θ(0). Having knowledge about the compressed vector

S
(
θ(i) − θ̂(i − 1)

)
, ∀i ∈ [t], the PS can also recover θ̂(t), which is used at the devices to

compute the local updates.

Uplink transmission. For ease of presentation, we assume that nup = d/2, and we will

discuss the generalization of the prorposed approach. Device m, m ∈ [M ], performs τ local

SGD steps, where the i-th step is given by

θi+1
m (t) = θi

m(t) − ηi
m(t)∇Fm

(
θi

m(t), ξi
m(t)

)
, i ∈ [τ ], (15)

where θ1
m(t) = θ̂(t). It then transmits the local model update ∆θm(t) = θτ+1

m (t) − θ̂(t) in

an analog (uncoded) fashion. We define

∆θm,re(t) , [∆θm,1(t), . . . , ∆θm,d/2(t)]T , (16a)

∆θm,im(t) , [∆θm,d/2+1(t), . . . , ∆θm,d(t)]T , (16b)
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where ∆θm,i(t) denotes the i-th entry of ∆θm(t), for i ∈ [d], m ∈ [M ], and we have ∆θm(t) =
[
∆θm,re(t)

T , ∆θm,im(t)T
]T

. Device m, m ∈ [M ], transmits

xul
m(t) = αul

m(t) ◦ (∆θm,re(t) + j∆θm,im(t)) , (17)

where αul
m(t) ∈ Cd/2 is the power allocation vector, whose i-th entry, i ∈ [d/2], is set as

αul
m,i(t) =






γm(t)

hul
m,i

(t)
, if |hul

m,i(t)| ≥ λthr(t),

0, otherwise,

(18)

for some γm(t), λthr(t) ∈ R, which are set to satisfy the transmit power constraint ‖xul
m(t)‖2

2 ≤

P ul. We assume that device m first transmits the scaling factor γm(t) to the PS in an error-

free fashion, m ∈ [M ]. The PS receives the following signal:

yul(t) =
∑M

m=1
αul

m(t) ◦ (∆θm,re(t) + j∆θm,im(t)) ◦ hul
m(t) + zul(t), (19)

whose i-th entry, i ∈ [d/2], is given by

yul
i (t) =

∑
m∈Mi(t)

γm(t)
(
∆θm,i(t) + j∆θm,d/2+i(t)

)
+ zul

i (t), (20)

where we have defined

Mi(t) ,
{

m ∈ [M ] :
∣∣∣hul

m,i(t)
∣∣∣ ≥ λthr(t)

}
. (21)

With the knowledge of the channel state, and consequently Mi(t), ∀i ∈ [d/2], the PS

estimates 1
|Mi(t)|

∑
m∈Mi(t) ∆θm,i(t) and 1

|Mi(t)|

∑
m∈Mi(t) ∆θm,d/2+i(t) with

∆θ̂i(t) =






Re{yul
i

(t)}
γ̄(t)|Mi(t)|

, if |Mi(t)| 6= 0,

0, otherwise,
(22a)

∆θ̂d/2+i(t) =





Im{yul
i

(t)}
γ̄(t)|Mi(t)|

, if |Mi(t)| 6= 0,

0, otherwise,
(22b)

respectively, where we have defined γ̄(t) , 1
M

∑M
m=1 γm(t). The estimated vector ∆̂θ(t) ,

[∆θ̂1(t), . . . , ∆θ̂d(t)]T is used to update the global model parameter vector as

θ(t + 1) = θ̂(t) + ∆̂θ(t). (23)



12

Algorithm 1 Digital Downlink Approach

1: Initialize θ(0)
2: for t = 0, . . . , T − 1 do

• Downlink transmission:

3: PS broadcasts S
(
θ(t) − θ̂(t − 1)

)

4: θ̂(t) = θ̂(t − 1) + S
(
θ(t) − θ̂(t − 1)

)

• Uplink transmission:

5: for m = 1, . . . , M in parallel do

6: xul
m(t) = αul

m(t) ◦ (∆θm,re(t) + j∆θm,im(t))

7: αul
m,i(t) =





γm(t)

hul
m,i

(t)
, if

∣∣∣hul
m,i(t)

∣∣∣ ≥ λthr(t),

0, otherwise
, for i ∈ [d/2]

8: end for

9: θ(t + 1) = θ̂(t) + ∆̂θ(t)
10: end for

We remark here that for nup < d/2, we carry out the uplink transmission in ⌈d/(2nup)⌉ time

slots, where in each time slot we perform the above transmission.

Algorithm 1 summarizes the downlink and uplink transmissions for the digital downlink

approach employing the compression technique presented in Section III-B.

IV. Analog Downlink Approach

In this section, we propose that the PS broadcasts the global model parameter vector

θ(t) in an analog (uncoded) manner. For ease of presentation, we consider ndl = d/2, and

we will argue that the proposed approach can be readily extended to the general case.

Downlink transmission. We define

θre(t) , [θ1(t), . . . , θd/2(t)]T , (24a)

θim(t) , [θd/2+1(t), . . . , θd(t)]T , (24b)

where θ(t) =
[
θre(t)

T , θim(t)T
]T

. At the global iteration t, the PS broadcasts xdl(t) =

αdl(t) (θre(t) + jθim(t)) in an uncoded manner, where αdl(t) is set to satisfy ‖xdl(t)‖2
2 ≤ P dl.

Before broadcasting xdl(t), we assume that the PS shares αdl(t) with the devices in an

error-free fashion. The received signal at device m is given by

ydl
m(t) = αdl(t)hdl

m(t) ◦ (θre(t) + jθim(t)) + zdl
m(t), m ∈ [M ]. (25)
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Device m, m ∈ [M ], performs the following descaling:

ŷdl
m(t) ,

(
1

αdl(t)

)
ydl

m(t) ◦
(
hdl

m(t)
)−1

= θre(t) + jθim(t) +
(

1

αdl(t)

)
zdl

m(t) ◦
(
hdl

m(t)
)−1

, (26)

and uses ŷdl
m(t) to recover the global model parameter vector θ(t) as

θ̂m(t) ,
[
Re{̂ydl

m(t)}T , Im{̂ydl
m(t)}T

]T
. (27)

We highlight that the proposed approach can be extended for any number of subchannels

ndl through transmission over different time slots.

Uplink transmission. After recovering θ̂m(t), device m, m ∈ [M ], performs τ local SGD

steps as in (15), where θ1
m(t) = θ̂m(t). It then transmits the local model update ∆θm(t) =

θτ+1
m (t) − θ̂m(t) in an analog (uncoded) fashion over the wireless MAC, m ∈ [M ]. The

uplink transmission follows the same steps as the one presented in Section III-C for the

digital downlink approach. However, the PS recovers ∆̂θ(t), given in (22), and updates the

global model parameter vector as θ(t + 1) = θ(t) + ∆̂θ(t).

Remark 1. We highlight that with the independent random noise added to the model pa-

rameter vector in the downlink at different devices, the analog downlink approach inherently

introduces additional data privacy for the FL framework.

V. Convergence Analysis of Analog Downlink Approach

Here we analyze convergence behavior of the analog downlink approach presented in

Section IV. For simplicity of the convergence analysis, we assume that the device-to-PS

transmission is error-free, and focus on the impact of noisy downlink transmission on the

convergence performance. We first present the preliminaries and assumptions, and then

the convergence result for the analog downlink approach, whose proof is provided in the

Appendix.

A. Preliminaries

We define the optimal solution of minimizing F (θ) as

θ∗
, arg min

θ
F (θ), (28)
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and the minimum loss as F ∗ , F (θ∗). We also denote the minimum value of Fm(·), the

local loss function at device m, by F ∗
m, m ∈ [M ]. We then define

Γ , F ∗ −
∑M

m=1

Bm

B
F ∗

m, (29)

where Γ ≥ 0, and its magnitude indicates the bias in the data distribution across devices.

We note that for i.i.d. data distribution, given a large enough number of local data samples,

Γ approaches zero.

According to (26) and (27), we have

θ̂m(t) = θ(t) + z̃dl
m(t), for m ∈ [M ], (30)

where, for ease of presentation, we have defined

z̃dl
m(t) ,

(
1

αdl(t)

) [
Re
{

zdl
m(t) ◦

(
hdl

m(t)
)−1 }T

, Im
{

zdl
m(t) ◦

(
hdl

m(t)
)−1 }T

]T

. (31)

For simplicity of the convergence analysis, we consider ηi
m(t) = η(t), ∀m, i. Thus, the i-th

step local SGD at device m is given by

θi+1
m (t) = θi

m(t) − η(t)∇Fm

(
θi

m(t), ξi
m(t)

)
, i ∈ [τ ], m ∈ [M ], (32)

where θ1
m(t) = θ̂m(t), given in (30). Thus, we have

θτ+1
m (t) = θ1

m(t) − η(t)
∑τ

i=1
∇Fm

(
θi

m(t), ξi
m(t)

)
, for m ∈ [M ]. (33)

Device m transmits the local model update ∆θm(t) = −η(t)
∑τ

i=1 ∇Fm

(
θi

m(t), ξi
m(t)

)
, m ∈

[M ]. After receiving the local model updates from all the devices, ∆θm(t), ∀m ∈ [M ], the

PS updates the global model parameter vector as

θ(t + 1) = θ(t) +
M∑

m=1

Bm

B
∆θm(t) = θ(t) − η(t)

M∑

m=1

τ∑

i=1

Bm

B
∇Fm

(
θi

m(t), ξi
m(t)

)
. (34)

Assumption 1. The loss functions F1, . . . , FM are all L-smooth; that is, ∀v, w ∈ Rd,

Fm(v) − Fm(w) ≤ 〈v − w, ∇Fm(w)〉 +
L

2
‖v − w‖2

2 , ∀m ∈ [M ]. (35)
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Assumption 2. The loss functions F1, . . . , FM are all µ-strongly convex; that is, ∀v, w ∈ R
d,

Fm(v) − Fm(w) ≥ 〈v − w, ∇Fm(w)〉 +
µ

2
‖v − w‖2

2 , ∀m ∈ [M ]. (36)

Assumption 3. The expectation of the squared l2-norm of the stochastic gradients are

bounded; that is,

Eξ

[∥∥∥∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥
2

2

]
≤ G2, ∀i ∈ [τ ], ∀m ∈ [M ], ∀t. (37)

Assumption 4. We assume

E

[∥∥∥∥
∑M

m=1

Bm

B

(
∇Fm(θ(t) + z̃dl

m(t), ξ1
m(t)) − ∇Fm(θ(t), ξ1

m(t))
)∥∥∥∥

2
]

≤
Z2

MσdlP dl
, (38)

for some Z ∈ R, where the upper bound reduces with the variance of the downlink channel

gains, the downlink transmit power, and the number of devices, M . We have assumed that

the effect of the downlink noise is alleviated by averaging over the devices.

B. Convergence Rate

Here we provide the convergence rate for the analog downlink approach introduced in

Section IV assuming that the devices can send their local model updates accurately.

Theorem 1. Let 0 < η(t) ≤ min
{

µ
µ+1

, 1
µτ

}
, ∀t. For the analog downlink approach, we have

E

[
‖θ(t) − θ∗‖2

2

]
≤
(∏t−1

i=0
A(i)

)
‖θ(0) − θ∗‖2

2 +
∑t−1

j=0
B(j)

∏t−1

i=j+1
A(i), (39a)

where

A(i) ,1 − µη(i) (τ − η(i)(τ − 1 + 1/µ)) , (39b)

B(i) ,
Z2

MσdlP dl
+ (1 + µ(1 − η(i))) η2(i)G2 τ(τ − 1)(2τ − 1)

6

+
(
τ − 1 + η2(i)(τ 2 + τ − 1)

)
G2 + 2η(i)(τ − 1)Γ, (39c)

and the expectation is with respect to the stochastic gradient function and the randomness of

the underlying wireless channel.

Proof. See Appendix A.
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Corollary 1. From the L-smoothness of function F (·), after T global iterations of the analog

downlink scheme, for 0 < η(t) ≤ min
{

µ
µ+1

, 1
µτ

}
, ∀t, we have

E [F (θ(T ))] − F ∗ ≤
L

2
E

[
‖θ(T ) − θ∗‖2

2

]

≤
L

2

(∏T −1

i=0
A(i)

)
‖θ(0) − θ∗‖2

2 +
L

2

∑T −1

j=0
B(j)

∏T −1

i=j+1
A(i), (40)

where the last inequality follows from (39a).

Remark 2. We remark that A(i) is a decreasing function of τ , while B(i) increases with τ .

Therefore, the impact of τ on the convergence performance in the general case is not evident,

since it depends also on other parameters. However, for a more biased data distribution

across devices, which results in a higher Γ and G, the destructive effect of increasing τ on

B(i) is more significant, while the reduction in A(i) is the same as having a less biased

data distribution. We note that A(i) is not a function of the data distribution; therefore, for

a less diverse data distribution, designing an efficient τ is more critical. This corroborates

our intuitive understanding of convergence in this problem, where for a more biased data

distribution, increasing the number of local iterations excessively leads to a more divergent

local updates with a less chance of convergence.

Remark 3. The two terms, Z2

MσdlP dl and (τ − 1)G2 in B(i), are not scaled with the learning

rate, η(i). Therefore, even for a decreasing learning rate, where lim
t→∞

η(t) = 0, we have

lim
t→∞

B(t) = Z2

MσdlP dl + (τ − 1)G2 6= 0, which shows that lim
t→∞

E [F (θ(t))] − F ∗ 6= 0. We

highlight that having these two terms is the result of the noisy downlink transmission, where

Z2

MσdlP dl and (τ − 1)G2 have appeared in the convergence analysis in inequalities (47) and

(55), respectively, in the appendices.

VI. Numerical Experiments

Here we compare the performance of the proposed digital and analog downlink approaches

for image classification on the MNIST dataset [39] with 60000 training and 10000 test

samples. We train a convolutional neural network (CNN) with 6 layers including two 5 × 5

convolutional layers with ReLU activation and the same padding, where the first and the

second layers have 32 and 64 channels, respectively, each with stride 1, and followed by a

2 × 2 max pooling layer with stride 2. Also, the CNN has a fully connected layer with 1024
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units and ReLU activation with dropout 0.8 followed by a softmax output layer. We utilize

ADAM optimizer [40] to train the CNN.

We consider two scenarios: in the iid data distribution scenario, we randomly split the

60000 training data samples to M disjoint subsets, and allocate each subset of data samples

to a different device; while in the non-iid data distribution scenario, we split the training

data samples with the same label (from the same class) to M/5 disjoint subsets (assume

that M is divisible by 5). We then assign two subsets of the data samples, each from a

different label/class selected at random, to each device, such that each subset of the data

samples is assigned to a single device.

We assume ndl = nul = d/2 subchannels, and a variance of σdl = σul = 1 for the downlink

and uplink channel gains. We set the transmit power constraint at the devices to P ul = 10,

and the threshold on the uplink channel gains to λthr(t) = 10−4, ∀t. We also set the sparsity

level of the digital downlink approach to s = ⌊d/50⌋ and the size of the local mini-batch

sample for each local iteration to |ξi
m(t)| = 500, ∀i, m, t. We measure the performance as the

accuracy with respect to the test samples, called test accuracy, versus the global iteration

count, t.

For the analytical results on the convergence rate of the analog downlink approach, we

set η(t) =
min{ µ

µ+1
, 1

µτ }
(10−3t+1)

, ∀t, and consider M = 40 devices. We assume that µ = 0.2, L = 10,

‖θ(0) − θ∗‖2
2 = 5×103, and Z2 = 2×104. We also model the iid and non-iid data distributions

by setting (G2, Γ) = (10, 5) and (G2, Γ) = (100, 50), respectively, where we note that the

non-iid scenario results in higher G and Γ values.

In Fig. 1 we compare the performance of the proposed digital and analog downlink

approaches for both the iid and non-iid data distribution scenarios. We investigate the

impact of the number of devices on the performance by considering M ∈ {20, 40}. For

the analog downlink approach, we consider P dl = 102; while for the digital approach, we

consider a significantly higher value for the downlink transmit power constraint at the PS,

P dl = 106, which is to make sure that q(t) ≥ 1, ∀t. For each experiment, whose result is

illustrated in Fig. 1, we have found the number of local iterations, τ , which results in the

best accuracy. Despite the significantly lower transmit power at the PS, we observe that

the analog downlink scheme remarkably outperforms the digital one for both iid and non-

iid scenarios with a notably larger gap between the two for the non-iid case. It can also

be seen that the accuracy of the analog downlink approach is more stable than its digital
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Fig. 1: Accuracy of the digital and analog downlink approaches for ndl = nul = d/2, σdl =
σul = 1, P ul = 10, λthr(t) = 10−4, ∀t, s = ⌊d/50⌋ for the digital approach, and |ξi

m(t)| = 500,
∀i, m, t.

counterpart, and the degradation in the performance of the analog approach due to the

introduced bias in the non-iid data distribution is marginal. This shows that the analog

approach is fairly robust against the heterogeneity of data distribution across devices. We

highlight that with the analog downlink approach the destructive effect of the devices with

relatively bad channel conditions, and consequently with a noisier/less accurate estimate of

the global model, is alleviated with the devices with good channel conditions, since devices

receive different estimates of the global model vector transmitted by the PS depending on

their channel conditions. On the other hand, with the digital downlink approach the common

rate at which the global model vector is delivered to the devices should be adjusted such

that all the devices, including those with relatively bad channel conditions, can decode it.

This limits the capacity of the devices with good channel conditions, and provides the same

copy of the global model estimate to all the devices whose rate is adjusted to accommodate

even the worst device. Another reason for the inferiority of the digital downlink approach is

that it requires digitization/quantization of the model parameter vector to a limited number

of bits, which provides a less accurate estimate of the global model vector to rely on for

local training at the devices than the noisy estimate received from the analog downlink

transmission. This is due to the limited capacity of the wireless broadcast channel.

The performance of both digital and analog downlink approaches improve with M for
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Fig. 2: Accuracy of analog downlink for the non-iid data distribution with M = 40, ndl =
nul = d/2, σdl = σul = 1, P ul = 10, λthr(t) = 10−4, ∀t, and |ξi

m(t)| = 500, ∀i, m, t.

both iid and non-iid scenarios. This is mainly due to the uplink transmission. With more

devices, each with its own power budget, analog transmission over the MAC is more robust

against the noise, which is due to the additive nature of the MAC. However, the accuracy

of the digital downlink approach is unstable in both iid and non-iid cases. This is due

to the inaccurate model parameter vector estimate at the devices for the digital downlink

approach, which leads to a more skewed/less similar local updates at the devices compared

to the case of having the actual model parameter vector at the devices. This deficiency can

be clearly seen for M = 20 in the iid scenario. By relying on the local updates from fewer

devices, the chance of having more similar local updates (local updates with relatively small

Euclidean distance) decreases, and it is less likely that the resultant vector recovered from the

output of the MAC provides a good estimate of the gradient of the actual model parameter

vector. Another interesting observation is about the best number of local iterations τ for

each experiment. We observe that the best τ value for the analog downlink approach for

M = 40 (M = 20) in the iid case is the same as that for the digital downlink approach

for M = 40 (M = 20) in the non-iid scenario. The same observation can be made also for

the performance of the digital downlink approach in the iid case and the analog downlink

approach in the non-iid scenario. The reason for this opposite behavior is that, in contrast

to the digital downlink approach, with the analog approach the devices have a relatively

good estimate of θ(t). For the analog downlink approach with sufficiently many devices,
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i.e., M = 40, the best τ value for the iid case is larger than that for the non-iid case.

This is intuitive since increasing τ excessively for the non-iid case provides biased local

updates at the devices, which is due to the biased local datasets, with a relatively poor

similarity. On the other hand, the digital downlink approach for M = 40 shows the opposite

behavior, which is due to the relatively inaccurate estimate of θ(t) at the devices. In this

case, for the iid scenario, in which the local data is homogeneous, the inaccuracy of the

model parameter vector estimate harms the performance when a relatively large number of

local SGD iterations are performed for both M values. Whereas, for M = 40 in the non-

iid scenario, a relatively small τ might not provide reliable local updates, since the local

training dataset is biased and a relatively good estimate of θ(t) is not available to rely on.

On the other hand, for the digital approach with M = 20, where devices receive a more

accurate estimate of θ(t), due to the higher achievable common rate, a relatively small τ

value provides a better performance. A similar observation is made for the analog downlink

approach with M = 20 devices in the iid case, where a relatively small τ , τ = 2, provides the

best performance. This is due to the fact that, having less devices for training, where each

device performs local updates using homogeneous local data and a distinct noisy version

of the global model, the chance of having the noise in the local updates cancelled out at

the aggregation phase at the PS reduces when a relatively large τ is used for local updates.

We provide a more in-depth investigation of the impact of number of local SGD iterations

on the performance of the analog downlink approach in Figures 2 and 3. We remark here

that the randomness in the experiments also have an impact on the experimental results

presented here.

In Fig. 2 we study the impact of τ on the performance of the analog downlink approach fo-

cusing on the non-iid data distribution for two different transmit power levels P dl ∈ {10, 102}

at the PS with τ ∈ {1, 3, 4, 5, 7, 10} and M = 40 devices. We note that with a higher P dl

the devices receive a better/less noisy estimate of θ(t). Observe that, for a smaller P dl,

P dl = 10, τ = 4 provides the best performance, while for P dl = 102, the best performance

is achieved for τ = 3. Therefore, for the non-iid scenario, when having a less accurate

estimate of θ(t) at the devices, a larger number of local SGD iterations should be performed

compared to having a more accurate estimate of θ(t) at the devices. As discussed for the

performance of the digital downlink approach in Fig. 1, a relatively small τ value might

not provide the most reliable local updates for the non-iid scenario when a good estimate
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Fig. 3: Upper bound on E [F (θ(t))] − F ∗ for analog downlink for different τ values, τ ∈
{1, 3, 4, 5, 7, 10}, considering non-iid data distribution with (G2, Γ) = (100, 50), for η(t) =
min{ µ

µ+1
, 1

µτ }
(10−3t+1)

, ∀t, M = 40, µ = 0.2, L = 10, ‖θ(0) − θ∗‖2
2 = 5 × 103, and Z2 = 2 × 104.

of θ(t) is not available at the devices. This observation is corroborated in Fig. 3, which

demonstrates the analytical results on the convergence rate bound of the analog downlink

approach for the non-iid scenario for different τ values, τ ∈ {1, 3, 4, 5, 7, 10}, with two P dl

values, P dl ∈ {10, 102}. We observe in this figure that, for P dl = 10, τ = 4 provides the

best performance in terms of the convergence speed and the final level of the average loss.

Whereas, for P dl = 102, τ = 3 provides the lowest average loss, although it has a negligibly

smaller convergence speed compared to τ = 4, 5, 7.

In Fig. 4, we consider the analytical convergence result of the analog downlink approach

for the iid and non-iid scenarios for various τ values, τ ∈ {1, 3, 4, 5, 7, 10}. We observe that,

for the iid scenario, considering both the convergence rate and the final average loss, τ = 5

provides the best performance, although it has a slightly smaller convergence speed compared

to τ = 7, 10. On the other hand, we observe that a smaller τ value, τ = 3, has the best

performance in the non-iid scenario. This result corroborates the observation made in Fig.

1 for the analog downlink approach with M = 40 devices, in which a larger τ value should

be used for a less biased data distribution to obtain the best performance. A relatively large

τ for non-iid data results in a more biased/skewed local updates with less consensus.

There results suggest that a schedule for τ that depends on the iteration t might work well

in a wide range of scenarios. Specifically, start with a larger τ and decrease it as t increases.
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(a) Iid data distribution, (G2, Γ) = (10, 5)
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(b) Non-iid data distribution, (G2, Γ) = (100, 50)

Fig. 4: Upper bound on E [F (θ(t))] − F ∗ for the analog downlink approach for different τ

values, τ ∈ {1, 3, 4, 5, 7, 10}, with P dl = 102, for η(t) =
min{ µ

µ+1
, 1

µτ }
(10−3t+1)

, ∀t, M = 40, µ = 0.2,

L = 10, ‖θ(0) − θ∗‖2
2 = 5 × 103, and Z2 = 2 × 104.

VII. Conclusions

We have studied FEEL, where the PS with a limited power budget transmits the model

parameter vector to the wireless devices over a bandwidth-limited fading broadcast channel.

We have proposed digital and analog transmission approaches for the PS-to-devices trans-

mission. With the digital approach, the PS quantizes the global model update, with respect

to the global model estimate at the devices, with the knowledge of the highest common

rate sustainable over the downlink broadcast channel. For the analysis, we have utilized a

capacity achieving channel code to broadcast the same estimate of the global model update

to all the devices. On the other hand, with the analog approach, the PS broadcasts the global

model vector in an uncoded manner without employing any channel code, and the devices

receive different estimates of the global model through independent wireless connections. In

both approaches, the devices perform multiple local SGD iterations with respect to their

global model estimates utilizing their local datasets. The power-limited wireless devices

then transmit their local model updates to the PS over a bandwidth-limited fading MAC

in an analog fashion, whose superiority over digital transmission for the uplink has been

shown in the literature [12], [13], [16]. We have also provided a convergence analysis for the

analog downlink approach to study the impact of imperfect downlink transmission, leading

to noisy estimates of the global model at the devices, on the performance of FL, where for
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the ease of analysis we have assumed that the uplink transmission is error-free. Numerical

experiments on the MNIST dataset have shown a significant improvement of the analog

downlink approach over its digital counterpart, where the improvement is more pronounced

for the non-iid data scenario. The analog downlink approach benefits from providing the

devices with different estimates of the global model with the quality of these estimates

depending on their downlink channel conditions, in which case the destructive effect of the

devices with relatively worse channel conditions, and consequently less accurate estimates,

can be alleviated by the devices with better channel conditions. However, with the digital

downlink approach, the devices receive the same estimate of the model parameter vector

with a common rate limited by the capacity of the worst device. Therefore, it is likely that all

the devices perform local SGD iterations using an inaccurate estimate of the global model.

Both the experimental and analytical results have shown that a smaller number of local

SGD iterations should be performed to obtain the best performance of the analog downlink

approach for non-iid data compared to iid data. Also, for non-iid data, by increasing the

transmit power at the PS, which leads to a more accurate global model estimate at the

devices, a smaller number of local SGD iterations should be performed at the devices.

Appendix A

Proof of Theorem 1

The global model parameter vector for the analog downlink approach is updated as

θ(t + 1) = θ(t) +
∑M

m=1

Bm

B
∆θm(t). (41)

We have

E

[
‖θ(t + 1) − θ∗‖2

2

]
=E

[
‖θ(t) − θ∗‖2

2

]
+ E

[ ∥∥∥∥
∑M

m=1

Bm

B
∆θm(t)

∥∥∥∥
2

2

]

+ 2E
[
〈θ(t) − θ∗,

∑M

m=1

Bm

B
∆θm(t)〉

]
. (42)

Next we bound the last two terms on the right hand side (RHS) of (42).

From the convexity of ‖·‖2
2, it follows that

E

[ ∥∥∥∥
∑M

m=1

Bm

B
∆θm(t)

∥∥∥∥
2

2

]
≤
∑M

m=1

Bm

B
E

[
‖∆θm(t)‖2

2

]
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= η2(t)
∑M

m=1

Bm

B
E

[∥∥∥
∑τ

i=1
∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥
2

2

]

≤ η2(t)τ
∑M

m=1

∑τ

i=1

Bm

B
E

[∥∥∥∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥
2

2

]
(a)

≤ η2(t)τ 2G2, (43)

where (a) follows from Assumption 3.

We rewrite the third term on the RHS of (42) as follows:

2E
[
〈θ(t) − θ∗,

∑M

m=1

Bm

B
∆θm(t)〉

]

= 2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t),

∑τ

i=1
∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

= 2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t) + z̃dl

m(t), ξ1
m(t)

)
〉
]

+ 2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t),

∑τ

i=2
∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

. (44)

We have

2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t) + z̃dl

m(t), ξ1
m(t)

)
〉
]

= 2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t), ξ1

m(t)
)
〉
]

+ 2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t) + z̃dl

m(t), ξ1
m(t)

)
− ∇Fm

(
θ(t), ξ1

m(t)
)
〉
]

. (45)

In the following, we bound the two terms on the RHS of (45). We have

2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t), ξ1

m(t)
)
〉
]

(a)
= 2η(t)

∑M

m=1

Bm

B
E [〈θ∗ − θ(t), ∇Fm (θ(t))〉]

(b)

≤ 2η(t)
∑M

m=1

Bm

B
E

[
Fm(θ∗) − Fm (θ(t)) −

µ

2
‖θ(t) − θ∗‖2

2

]

= 2η(t)
(

F ∗ − E [F (θ(t))] −
µ

2
E

[
‖θ(t) − θ∗‖2

2

])
, (46)

where (a) and (b) follow from (5) and Assumption 2, respectively. Also, from Cauchy-Schwarz

inequality, we have

2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t) + z̃dl

m(t), ξ1
m(t)

)
− ∇Fm

(
θ(t), ξ1

m(t)
)
〉
]

≤ η2(t)E
[
‖θ(t) − θ∗‖2

2

]
+ E

[∥∥∥∥
∑M

m=1

Bm

B

(
∇Fm(θ(t) + z̃dl

m(t), ξ1
m(t)) − ∇Fm(θ(t), ξ1

m(t))
)∥∥∥∥

2
]

(a)

≤ η2(t)E
[
‖θ(t) − θ∗‖2

2

]
+

Z2

MσdlP dl
, (47)



25

where (a) follows from Assumption 4. Substituting (46) and (47) into (45) yields

2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θ(t) + z̃dl

m(t), ξ1
m(t)

)
〉
]

≤ −µη(t) (1 − η(t)/µ)E
[
‖θ(t) − θ∗‖2

2

]
+

Z2

MσdlP dl
+ 2η(t) (F ∗ − E [F (θ(t))]) . (48)

Lemma 1. For 0 < η(t) ≤ µ
µ+1

, we have

2η(t)
∑M

m=1

Bm

B
E

[
〈θ∗ − θ(t),

∑τ

i=2
∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

≤ −µη(t)(1 − η(t))(τ − 1)E
[
‖θ(t) − θ∗‖2

2

]

+ (1 + µ(1 − η(t)))η2(t)G2 τ(τ − 1)(2τ − 1)

6
+ 2η(t)(τ − 1)Γ

+
(
η2(t) + 1

)
(τ − 1) G2 + 2η(t)

∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

. (49)

Proof. See Appendix B.

By substituting (48) and (49) in (44), it follows that

2E
[
〈θ(t) − θ∗,

∑M

m=1

Bm

B
∆θm(t)〉

]
≤ −µη(t) (τ − η(t)(τ − 1 + 1/µ))E

[
‖θ(t) − θ∗‖2

2

]

+
Z2

MσdlP dl
+ (1 + µ(1 − η(t)))η2(t)G2 τ(τ − 1)(2τ − 1)

6
+
(
η2(t) + 1

)
(τ − 1) G2

+ 2η(t)(τ − 1)Γ + 2η(t)
∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

+ 2η(t) (F ∗ − E [F (θ(t))]) ,

(50)

which together with the inequality in (43), according to (42), the following upper bound on

E

[
‖θ(t + 1) − θ∗‖2

2

]
is obtained:

E

[
‖θ(t + 1) − θ∗‖2

2

]
≤ (1 − µη(t) (τ − η(t)(τ − 1 + 1/µ)))E

[
‖θ(t) − θ∗‖2

2

]
+

Z2

MσdlP dl

+ (1 + µ(1 − η(t)))η2(t)G2 τ(τ − 1)(2τ − 1)

6
+
(
τ − 1 + η2(t)

(
τ 2 + τ − 1

))
G2

+ 2η(t)(τ − 1)Γ + 2η(t)
∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

+ 2η(t) (F ∗ − E [F (θ(t))])

(a)

≤ (1 − µη(t) (τ − η(t)(τ − 1 + 1/µ)))E
[
‖θ(t) − θ∗‖2

2

]
+

Z2

MσdlP dl

+ (1 + µ(1 − η(t)))η2(t)G2 τ(τ − 1)(2τ − 1)

6

+
(
τ − 1 + η2(t)

(
τ 2 + τ − 1

))
G2 + 2η(t)(τ − 1)Γ, (51)
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where (a) follows sine F ∗ − F (θ(t)) ≤ 0, ∀t, and F ∗
m − Fm(θi

m(t)) ≤ 0, ∀m, i, t. It is trivial

to prove Theorem 1 from the inequality in (51) for 0 < η(t) ≤ min
{

µ
µ+1

, 1
µτ

}
, ∀t.

Appendix B

Proof of Lemma 1

We have

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

= 2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θi

m(t) − θ(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

+ 2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θ∗ − θi

m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]
. (52)

For the first term on the RHS of (52), we have

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θi

m(t) − θ(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

= 2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θi

m(t) − θ1
m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

+ 2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈z̃dl

m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

. (53)

From Cauchy-Schwarz inequality, we have

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θi

m(t) − θ1
m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

≤ η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
1

η(t)

∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2
+ η(t)

∥∥∥∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥
2

2

]

(a)

≤
∑M

m=1

∑τ

i=2

Bm

B
E

[∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2

]
+ η2(t) (τ − 1) G2, (54)

and

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈z̃dl

m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

≤ η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
η(t)

∥∥∥z̃dl
m(t)

∥∥∥
2

2
+

1

η(t)

∥∥∥∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥
2

2

]

(a)

≤ η2(t)(τ − 1)
∑M

m=1

Bm

B
E

[∥∥∥z̃dl
m(t)

∥∥∥
2

2

]
+ (τ − 1) G2, (55)
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where (a) follows from Assumption 3. Thus, the term on the left hand side (LHS) of (53)

is bounded as

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θi

m(t) − θ(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

≤
∑M

m=1

∑τ

i=2

Bm

B
E

[∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2

]
+ η2(t)(τ − 1)

∑M

m=1

Bm

B
E

[∥∥∥z̃dl
m(t)

∥∥∥
2

2

]

+
(
η2(t) + 1

)
(τ − 1) G2. (56)

From convexity of ‖·‖2
2, we have

M∑

m=1

τ∑

i=2

Bm

B
E

[∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2

]
= η2(t)

M∑

m=1

τ∑

i=2

Bm

B
E

[∥∥∥∥
∑i−1

j=1
∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥∥
2

2

]

≤ η2(t)
M∑

m=1

τ∑

i=2

Bm

B
(i − 1)

i−1∑

j=1

E

[∥∥∥∇Fm

(
θi

m(t), ξi
m(t)

)∥∥∥
2

2

]
(a)

≤ η2(t)G2 τ(τ − 1)(2τ − 1)

6
, (57)

where (a) follows from Assumption 3. For the second term on the RHS of (52), we have

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θ∗ − θi

m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

(a)
= 2η(t)

∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θ∗ − θi

m(t), ∇Fm

(
θi

m(t)
)
〉
]

(b)

≤ 2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
Fm(θ∗) − Fm(θi

m(t)) −
µ

2

∥∥∥θi
m(t) − θ∗

∥∥∥
2

2

]

= 2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
Fm(θ∗) − F ∗

m + F ∗
m − Fm(θi

m(t)) −
µ

2

∥∥∥θi
m(t) − θ∗

∥∥∥
2

2

]

= 2η(t)(τ − 1)Γ + 2η(t)
∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

− µη(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[∥∥∥θi
m(t) − θ∗

∥∥∥
2

2

]
, (58)

where (a) follows since Eξ [∇Fm (θ(t), ξi
m(t))] = ∇Fm (θ(t)), ∀i, m, t, and (b) follows due to

the fact that Fm is µ-strongly convex. We have

−
∥∥∥θi

m(t) − θ∗
∥∥∥

2

2
= −

∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2
−
∥∥∥θ1

m(t) − θ∗
∥∥∥

2

2
− 2〈θi

m(t) − θ1
m(t), θ1

m(t) − θ∗〉

(a)

≤ −
∥∥∥θi

m(t) − θ1
m(t)

∥∥∥
2

2
−
∥∥∥θ1

m(t) − θ∗
∥∥∥

2

2
+

1

η(t)

∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2
+ η(t)

∥∥∥θ1
m(t) − θ∗

∥∥∥
2

2

= −(1 − η(t))
∥∥∥θ1

m(t) − θ∗
∥∥∥

2

2
+
(

1

η(t)
− 1

)∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2
, i ∈ [τ ], m ∈ [M ], (59)
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where (a) follows from Cauchy-Schwarz inequality. For η(t) ≤ 1, we have

− (1 − η(t))E
[∥∥∥θ1

m(t) − θ∗
∥∥∥

2

2

]
= −(1 − η(t))E

[∥∥∥θ(t) + z̃dl
m(t) − θ∗

∥∥∥
2

2

]

= −(1 − η(t))
(
E

[
‖θ(t) − θ∗‖2

2

]
+ E

[∥∥∥z̃dl
m(t)

∥∥∥
2

2

]
+ E

[
2〈θ(t) − θ∗, z̃dl

m(t)〉
] )

(a)
= −(1 − η(t))

(
E

[
‖θ(t) − θ∗‖2

2

]
+ E

[∥∥∥z̃dl
m(t)

∥∥∥
2

2

])
, (60)

where (a) follows since E

[
z̃dl

m(t)
]

= 0, and the fact that θ(t) is independent of z̃dl
m(t), for

m ∈ [M ]. According to (59) and (60), it follows that, for i ∈ [τ ], m ∈ [M ],

−E

[∥∥∥θi
m(t) − θ∗

∥∥∥
2

2

]
≤ − (1 − η(t))E

[
‖θ(t) − θ∗‖2

2

]
+
(

1

η(t)
− 1

)
E

[∥∥∥θi
m(t) − θ1

m(t)
∥∥∥

2

2

]

− (1 − η(t))E
[∥∥∥z̃dl

m(t)
∥∥∥

2

2

]
. (61)

Substituting (61) into (58) yields

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θ∗ − θi

m(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

≤ −µη(t)(1 − η(t))(τ − 1)E
[
‖θ(t) − θ∗‖2

2

]
+ µ(1 − η(t))η2(t)G2 τ(τ − 1)(2τ − 1)

6

+ 2η(t)(τ − 1)Γ − µη(t) (1 − η(t)) (τ − 1)
∑M

m=1

Bm

B
E

[∥∥∥z̃dl
m(t)

∥∥∥
2

2

]

+ 2η(t)
∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

, (62)

where we have used the inequality in (57). Substituting (56) and (62) into (52) yields

2η(t)
∑M

m=1

∑τ

i=2

Bm

B
E

[
〈θ∗ − θ(t), ∇Fm

(
θi

m(t), ξi
m(t)

)
〉
]

≤ −µη(t)(1 − η(t))(τ − 1)E
[
‖θ(t) − θ∗‖2

2

]
+ (1 + µ(1 − η(t))) η2(t)G2 τ(τ − 1)(2τ − 1)

6

+ 2η(t)(τ − 1)Γ − η(t)(τ − 1) (µ − η(t)(µ + 1))
∑M

m=1

Bm

B
E

[∥∥∥z̃dl
m(t)

∥∥∥
2

2

]

+
(
η2(t) + 1

)
(τ − 1) G2 + 2η(t)

∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

(a)

≤ −µη(t)(1 − η(t))(τ − 1)E
[
‖θ(t) − θ∗‖2

2

]
+ (1 + µ(1 − η(t))) η2(t)G2 τ(τ − 1)(2τ − 1)

6

+ 2η(t)(τ − 1)Γ +
(
η2(t) + 1

)
(τ − 1) G2 + 2η(t)

∑M

m=1

∑τ

i=2

Bm

B

(
F ∗

m − E

[
Fm(θi

m(t))
])

,

(63)

where (a) follows since η(t) ≤ µ
µ+1

. This completes the proof of Lemma 1.
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