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Abstract 

 

A Bacillus subtilis derivative was obtained from strain ATCC 6633 by the replacement of the 

native promoter of the mycosubtilin operon by a constitutive one, originating from the 

replication gene repU of the Staphylococcus aureus plasmid pUB110. The recombinant strain 

named BBG100 produced up to 15-fold more mycosubtilin than the wild-type. This 

overproducing phenotype was related to the enhancement of antagonistic activities against 

several yeasts and pathogenic fungi. Hemolytic activities were also clearly increased in the 

modified strain. Mass spectrometry analyses of enriched mycosubtilin extracts showed similar 

patterns of lipopeptides for BBG100 and the wild-type. Interestingly, these analyses also 

revealed a new form of mycosubtilin which is more easily detected in BBG100 sample. When 

tested for its biocontrol potential, the wild-type strain ATCC 6633 was almost ineffective at 

reducing Pythium infection of tomato seedlings. However, treatment of seeds with the 

BBG100 overproducing strain resulted in a marked increase of the germination rate of 

plantlets. This protective effect afforded by mycosubtilin overproduction was also visualized 

by the significantly higher fresh weight of emerging seedlings treated with BBG100 

compared to controls or those inoculated with the wild-type strain. 
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INTRODUCTION 

 

Members of the Bacillus subtilis family produce a wide variety of antibacterial and 

antifungal antibiotics. Some of them like subtilin (41), subtilosin A (2), TasA (34) and 

sublancin (27) are of ribosomal origin but others such as bacilysin, chlorotetain, mycobacillin 

(41), rhizocticins (19), bacillaene (28), difficidin (40) and lipopeptides from the surfactin, 

iturin and fengycin families (41) are formed by non-ribosomal peptide synthetases and/or 

polyketide synthases. The later are amphiphilic cyclic peptides composed of seven (surfactins 

and iturins) or ten -amino acids (fengycins) linked to one unique -amino (iturins) or -

hydroxy (surfactins and fengycins) fatty acid. The length of this fatty acid chain may vary 

from C13 to C16 for surfactins, from C14 to C17 for iturins and from C14 to C18 in the case of 

fengycins. Different homologous compounds for each lipopeptide family are thus usually co-

produced (1, 16). Iturins and fengycins display a strong antifungal activity and are inhibitory 

for the growth of a wide range of plant pathogens (11, 17, 20, 22, 35). Surfactins are not 

fungitoxic by themselves but retain some synergistic effect on the antifungal activity of iturin 

A (23). 

B. subtilis ATCC 6633 produces subtilin (21), subtilosin (33), rhizocticin (19) and two 

lipopeptides: surfactin and mycosubtilin, a member of the iturin family (21). Production of 

surfactin requires the srf operon encoding the three subunits of surfactin synthetase that 

catalyse the thiotemplate mechanism of non-ribosomal peptide synthesis to incorporate the 

seven amino acids into the surfactin lipopeptide. The mycosubtilin gene cluster consists of 

four ORFs designated fenF, mycA, mycB and mycC controlled by the same promoter Pmyc 

(Fig. 1) (9). The subunits encoded by the three myc genes contain the seven modules 
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necessary to synthesize the peptidic moiety of mycosubtilin. The N-terminal multifunctional 

part of mycA shows strong homology with fatty acid and polyketide synthases.  

The production of surfactin is activated by a regulatory system coupled to the 

accumulation of cell-derived extracellular signals at the end of the exponential growth (7) 

while iturin synthesis is induced during the stationary phase (16). 

Among the biological control alternatives to chemical pesticides used for reducing 

plant diseases, the application of non-pathogenic soil bacteria living in association with plant 

roots is promising. Treatment with these beneficial organisms was in many cases associated 

with reduced plant diseases in greenhouse and field experiments. These bacteria can 

antagonize fungal pathogens by competing for niche and nutriments, by producing low 

molecular weight fungitoxic compounds and extracellular lytic enzymes and more indirectly 

by stimulating the defensive capacities of the host plant (10, 26, 30, 35). On the basis of the 

wide diversity of powerful antifungal metabolites that can be synthesized by B. subtilis, it was 

suggested that antibiotic production by these strains played a major role in plant disease 

suppression (4, 32, 35, 38). These bacteria were reported to be effective at controlling many 

plant or fruit diseases caused either by soilborne, aerial or post-harvest pathogens (4, 22, 35, 

37, 39). Some of these strains are currently used in commercially available biocontrol 

products (3, 5). However most of the studies have primarily focused on the degree of disease 

reduction and mechanisms of suppression in soil have not been as extensively investigated. 

In this study, the native promoter of the mycosubtilin operon from B. subtilis ATCC 

6633 was replaced by the promoter PrepU from the staphylococcal plasmid pUB110 which was 

proved to be strong and constitutive in Bacillus subtilis (36). Growth and lipopeptide 

production by the derivative were compared to the wild-type as well as their antimicrobial and 

hemolytic activities. The effect of the early overproduction of mycosubtilin in the biocontrol 

of damping-off caused by Pythium aphanidermatum on tomato seedlings was also evaluated. 
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MATERIALS AND METHODS 

 

Bacterial strains, plasmids, and growth conditions. The microorganisms and 

plasmids used in this study are listed in Table 1. B. subtilis strains were grown at 30°C in 

either Landy medium (20) or medium 863 (1). E. coli DH5 was cultured at 37°C in Luria-

Bertani medium (LB) supplemented, when required, with various antibiotics: ampicillin (Ap; 

Sigma, St. Louis, MO; 50 µg ml-1), neomycin (Nm; Serva, Heidelberg, Germany; 20 µg ml-1) 

and streptomycin (Sm; Sigma; 25 µg ml-1). The yeast strains were grown at 28°C in medium 

863 (1) and the fungal strains were cultured at 30°C on potato-dextrose-agar (PDA; Biokar 

Diagnostics, Beauvais, France) . 

 

Molecular biology procedures. Total genomic DNA was extracted from B. subtilis 

ATCC 6633 and purified using the genomic tips 20/G together with the corresponding buffers 

purchased from Qiagen (Hilden, Germany). Plasmid DNAs were prepared from E. coli using 

either the Miniprep Spin or Maxiprep kits (Qiagen). Screening for hybrid plamids within 

various E.coli transformants was done by the “boiling” procedure of Holmes and Quigley 

(13). Restriction endonucleases digestions, ligation and transformation of E. coli by the CaCl2 

thermal shock followed standard procedures (31). B. subtilis ATCC 6633 was transformed by 

electroporation according to the method of Dennis and Sokol (8). 

For the construction of the pUC19-derived plasmid dedicated to promoter exchange by 

homologous recombination in B. subtilis, the pbp and fenF fragments were generated by PCR 

using Taq polymerase “Arrow” from Qbiogene (Montreal, Canada). The primers were 

designed according to the published sequence of the mycosubtilin operon from strain ATCC 

6633 (PubMed Nucleotide AF184956) (9). The primers were: (i) for pbp, the forward one, 5’-

TTAGAAGAGCATGCAAAAATG-3’ (the underlined artificial SphI site was generated by 
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substitution of the two bases in bold characters); and the reverse one,  

5’-CCCTCCAATCTTTTCGAACG-3’; and (ii) for fenF, the forward one, 5’-

GACATGTATCCGTTCTAGAAGATTG-3’ (the underlined artificial XbaI site was 

generated by substitution of the two bases in bold characters); and the reverse one, 5’-

ATCGGCCATTCAGCATCTC-3’). PCR conditions consisted of an initial denaturation step 

at 95°C for 2 min, followed by 30 cycles of (i) 30 s at 95°C; (ii) 30 s at 45°C; and (iii) 30 s at 

70°C. The final extension step was at 70°C for 2 min. 

The two PCR-generated cassettes were purified from 2% agarose gels using the 

QIAquick kit (Qiagen), treated with proteinase K (50 µg ml-1) for 1 h at 37°C and subjected to 

deproteinisation using a phenol/chloroform procedure. The fenF fragment was XbaI and 

BspE1 double digested and introduced between the XbaI and XmaI sites of pUC19 to yield 

pBG101. After SphI and Mph1103I double digestion, the pbp fragment was inserted within 

SphI and PstI sites of pUC19 generating pBG102. Then, after EcoRI and SalI double 

digestion, the fenF fragment was inserted at the corresponding sites of pBG102. The resulting 

construct was named pBG103. After XbaI digestion, the PrepU –neo fragment was extracted 

from pBEST501 (15) and inserted into the XbaI site of pBG103. This construct, named 

pBG106 (Fig. 1), was then used to transform B. subtilis ATCC 6633, which was plated on LB 

agar containing neomycin to select recombinants and incubated at 37°C. 

 

Lipopeptide purification and identification. Cultures were centrifuged at 15,000 x g 

for 1 h at 4°C. For lipopeptide extraction, 1-ml samples of supernatants were purified on C18 

Maxi-Clean cartridges (Alltech, Deerfield, IL) according to the recommendations of the 

supplier. Lipopeptides were eluted with 5 ml of pure methanol (HPLC grade, Acros Organics, 

Geel, Belgium). The extract was brought to dryness and the residue dissolved in methanol 

(200 l) before analysis by high-performance liquid chromatography (HPLC) using a C18 
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column (5 m, 250 x 4.6 mm, VYDAC 218 TP, Hesperia, CA). Each family of lipopeptides 

was separately analyzed with the solvent system acetonitrile/water/trifluoroacetic acid (TFA) 

which was used in the proportions (40:60:0.5; vol/vol/vol) and (80:20:0.5, vol/vol/vol) for 

iturins and surfactins respectively. 20-l samples were injected and compounds were eluted at 

a flow rate of 1ml min-1. Purified iturins and surfactins were purchased from Sigma (Saint 

Louis, MO). Retention time and second derivatives of UV-visible spectra (Diode Array 

Waters PDA 996, Millenium Software) of each peak were used to identify the eluted 

molecules. 

Lipopeptide extracts were further analyzed by MALDI-TOF MS. A saturated solution 

of CHCA (-cyano-4-hydroxy-cinnamic acid) was prepared in a 3:1 (vol/vol) solution of 

CH3CN/H2O 0.1% TFA. The cell culture supernatant was diluted tenfold with CHCA-

saturated solution. 0.5 µl of this solution was deposited on the target. Measurement was 

performed using the UV laser desorption time-of-flight mass spectrometer Bruker Ultraflex 

tof (Bruker Daltonics), equipped with a pulsed nitrogen laser ( = 337 nm). The analyzer was 

used at an acceleration voltage of 20 kV. Samples were measured in the reflectron mode. 

 

Evaluation of antimicrobial and hemolytic activities. Supernatants from B. subtilis 

cultures obtained from various media were filter-sterilized through 0.2 µm pore size 

membranes and treated or not for 1 h at 37°C with protease (Sigma, type XIV; at 10 µg ml-1, 

final concentration) to neutralize subtilin and subtilosin activities. 

Antimicrobial activities of supernatant samples from both wild-type and modified 

strains were tested on plate bioassays. Bacterial and yeast strains to be tested were grown in 

LB or 863 medium, respectively. Overnight bacterial cultures (2 ml) were diluted (10-2) and 

inoculated by flooding a 2-ml volume on LB plates. The excess of liquid was withdrawn and 

the plates were allowed to dry under a laminar flow hood for 30 min. In tests performed with 
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yeast strains, 4 ml of semi-solidified 863 medium (0.8% agar) containing 100 µl of diluted 

cell suspension (10-1) were spread onto 863 plates. In both cases, 200 µl of supernatant 

samples were deposited in 10 mm diameter wells created in the solidified media using sterile 

glass tubes. The plates were incubated at either 30°C or 37°C depending on the strain to be 

tested. A similar method was used to test supernatant samples for their antifungal activities 

against filamentous fungi. Mycelial plugs (5 mm) were deposited in the center of the plates, at 

equal distances from the wells. Plates were incubated at 28°C and inhibition zones were 

measured after 1 to 3 days. To evaluate hemolytic activity of the various supernatants, 200 µl-

samples were dispensed in wells made in blood agar plates (with 5% defibrinated sheep 

blood; Eurobio, Les Ulis, France). Hemolytic activity was visualized by the development of a 

clear halo around the wells after incubation at 37°C. In all cases, two replicate plates were 

used for each strain on each medium and the experiment was repeated once. 

 

Determination of MIC. Serial half-dilutions of filter-sterilized culture supernatants, 

containing known concentrations of mycosubtilin, were performed up to 1/1024 using 863 

medium. After inoculation with 100 µl of diluted S. cerevisiae culture (about 105 cell ml-1), 

the test tubes were incubated at 30°C. The MIC was determined by taking into account the 

higher dilution where no growth of the test organism was visible. 

 

Biocontrol assays with tomato. For the preparation of bacterial inoculum, the 

Bacillus strains were grown at 30°C for 24 h in Landy medium. Cells were harvested by 

centrifugation at 35,000 x g for 20 min and the cell pellet was washed twice with sterile saline 

water (0.85% NaCl). Vegetative cell suspensions were then diluted in order to obtain the 

desired bacterial concentration for seed treatment. The origin of the fungal pathogen Pythium 
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aphanidermatum, its maintenance and the preparation of suspensions used in the bioassays 

were previously described (24).  

In the damping-off assays, tomato seeds (Lycopersicon esculentum L. cv Merveille 

des Marchés) were germinated in a peat substrate (Brill Substrate GmbH & Co KG, 

Georgsdorf, Germany) hereafter referred to as “soil”. Prior to sowing, seeds were washed 

three times (for 5 min each) with sterile distilled water and soaked for 10 min in the 

appropriate bacterial suspension at a concentration of approximately 4 x 108 CFU ml-1 or in 

NaCl 0.85% in the case of control plants. In every experiment, 200 seeds were used for each 

treatment. They were sown in large plastic trays containing soil previously infected with P. 

aphanidermatum by mixing with a suspension of mycelial fragments. Final concentration of 

the pathogen in the substrate for plant growth was 105 propagules g-1 of soil dry weight. The 

trays were incubated in a growth cabinet set to maintain the temperature at 28°C, a 95%-

relative humidity and a photoperiod of 16 h. Seedling emergence was recorded after 12 days 

and the number of healthy plantlets was reported to the number of seeds. 
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RESULTS 

Construction of the BBG100 mutant by allelic exchange. Several transformation 

experiments of B. subtilis ATCC6633 with the pBG106 led to the isolation of 15 NmR 

colonies. Genomic DNA of these clones and the wild-type strain was purified. Direct 

observation of the restriction endonucleases (HindIII and PstI) profiles did not point out any 

major difference (data not shown). The replacement of the natural promoter by the 

constitutive one PrepU associated with the neo gene was demonstrated by PCR amplification of 

genomic DNA with the pbp forward and the fenF reverse primers. For one of the different 

tested colonies,  a ~ 2.8 kb fragment was obtained instead of the ~1.5 kb fragment obtained 

with the wild-type. The corresponding modified strains, named BBG100, was further 

compared to the wild-type for its lipopeptide production level and biological activities. 

Mycosubtilin overproduction by BBG100. Mycosubtilin production was followed 

up upon growth of both strains in agitated Erlenmeyer flask and 3-L bioreactor during 3 days 

(Table 2). Although the absolute level of mycosubtilin is different in shake flasks versus the 

bioreactor, 12- to 15-fold increases were observed after 72 h in BBG100 culture supernatant 

in the two different growth conditions. The higher productivity of mycosubtilin was obtained 

in flask with BBG100 (63.6 mg/g of cells). As expected, surfactin synthesis was not affected 

by the promoter replacement since production levels in BBG100 and wild-type remained 

similar under both growth conditions. The lower concentrations found in bioreactors 

compared to those obtained in shake flasks are probably due to the low aeration rate used in 

the bioreactor in order to limit liquid extraction by foaming. This resulted in lower oxygen 

transfer compared to well-agitated flasks and thereby in reduced lipopeptide production rate 

since the synthesis of these molecules is positively influenced by oxygen (16). 

Time course evolution of biomass concentration and pH value during the 72-h growth 

in fermentor were also closely similar for both strains. Typically, acidification of the medium 
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was observed during the early exponential growth phase being due to the production of 

organic acids from glucose. This was followed by a neutralization step during the second 

growth phase related to the consumption of these acids and by a slight alcalinization step due 

to the use of glutamic acid as carbon source by the cells (data not shown). It is thus likely that 

BBG100 conserved a physiological behavior similar to the wild-type. 

Analysis of lipopeptide production during the first 8 h of growth in bioreactor revealed 

a early synthesis of mycosubtilin by BBG100 (Fig 2). Significant amounts of mycosubtilin 

were already produced after 4 h of incubation when the cells entered the exponential growth 

phase. Despite similar biomass level, mycosubtilin production by the wild–type was not 

observed over the first 8 h as expected since the synthesis of these compounds is known to 

occur only at the beginning of the stationary phase.  

MALDI-TOF mass spectrometry analyses of lipopeptide extracts allowed the 

identification of several homologues for surfactins and mycosubtilins produced by both 

strains (Fig. 3). Signal attributions to protonated form of mycosubtilin and surfactin and their 

Na+ and K+ adducts are summarized in Table 3. However, MS peaks showing a higher 

intensity were detected in the extract from the BBG100: a signal at m/z 1095.65 which 

corresponds to the M+K+ ion of the C-15 homologue of mycosubtilin and, more interestingly, 

a signal at m/z 1137.7 which cannot be attributed to known ions of surfactin or mycosubtilin. 

 

Biological activities. BBG100 and wild-type were compared for their antagonistic 

properties against a wide range of microorganisms. Supernatants from both strains did not 

inhibit the growth of E. chrysanthemi, E. coli and P. aeruginosa even upon tenfold 

concentrations. When tested on M. luteus, however, the two supernatants generated similar 

growth inhibition zones that completely disappeared upon treatment with protease type XIV 

which neutralize bacteriocin-like activities. By contrast, BBG100 culture supernatant induced 
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growth inhibition zones significantly greater than those observed for the wild-type one when 

tested against three phytopathogenic fungi, B. cinerea, F. oxysporum and P. aphanidermatum 

and two yeasts, P. pastoris and S. cerevisiae (Table 4). Protease treatment of the supernatants 

slightly reduced the antifungal activity against P. aphanidermatum.  

Serial dilutions of culture supernatant from both strains were tested independently for 

their inhibitory effect toward growth of S. cerevisiae. Eight-fold higher dilution of BBG100 

supernatant was necessary to obtain the minimal inhibitory concentration (MIC) of 

mycosubtilin as compared to wild-type. In both cases, this MIC was determined as 8 g ml-1. 

It confirmed that antagonistic activity against yeast of both supernatants was essentially due 

to mycosubtilin. 

When tested for its lytic activity on blood corpuscles, the supernatant from BBG100 

yielded greater hemolytic areas than those observed for the wild-type (Fig. 4). 

 

Protection against Pythium damping-off of tomato seedlings. Biocontrol assays 

were conducted in the tomato/Pythium pathosystem to compare the ability of the wild-type 

strain ATCC 6633 with that of BBG100 at reducing seedling infection. As shown in Table 5, 

pre-treatment of tomato seeds with vegetative cells of the wild-type strain failed to provide 

any protective effect but appeared to be conducive to disease development. However 

inoculation with the lipopeptide-overproducing derivative prior to planting led to enhanced 

seedling emergence that was consistently observed over four independent experiments while 

strong differences were observed in disease incidence. Whatever they were previously 

inoculated with the wild-type or with the BBG100 strain or none (healthy control), the 

germination rate of seeds in the absence of pathogen did not vary significantly and was in 

most of the cases comprised between 90% and 95% (Table 5). The protective effect of 

BBG100 was also illustrated by an increase in the size and vigor of emerging plantlets 
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compared to disease controls or plants inoculated with the wild-type (Fig. 5). In one 

representative experiment, the mean value for fresh weight of individual plants (aerial part, 

harvested after 18 days of incubation) was significantly higher following seed treatment with 

the BBG100 strain (0.79 g/plant) than for non-bacterized plants (0.31 g/plant) or for those 

inoculated with the wild-type strain 6633 (0.23 g/plant). 

 



 14 

DISCUSSION 

 

In this work, we replaced the native promoter of the mycosubtilin operon of B. subtilis 

ATCC 6633 by a constitutive one which governs the replication gene repU from the S. aureus 

plasmid pUB110. This led to the isolation of the BBG100 derivative displaying a 15-fold 

increase in mycosubtilin production rate. This PrepU promoter was previously reported to 

enhance the biosynthesis of iturin A, another antifungal lipopeptide structurally very close to 

mycosubtilin, by about three times in B. subtilis RB14 (36).  

When tested against different bacteria, yeast and fungi, the supernatant of wild-type 

strain only showed a very good antagonistic activity against M. luteus. This activity which 

was also detected with the supernatant of the modified strain, completely disappeared upon 

pre-treatment with protease. This antibiotic activity could thus be attributed to some protease 

sensitive compounds like subtilin and subtilosin, known to be produced by this strain (21, 33). 

The very weak antifungal activity displayed by the wild-type strain suggested that rhizocticins 

and mycosubtilin are produced in very low amounts. The slight reduction of antagonistic 

activity against P. aphanidermatum observed after proteolytic treatment could result from 

amino acids or oligopeptides liberated by the treatment and known to neutralize biological 

activity of rhizocticin (19). By contrast, PrepU–governed mycosubtilin overproduction in B. 

subtilis BBG100 led to clearly enhanced fungitoxic activities showing that this lipopeptide 

plays a crucial role in the antagonism developed by the strain.  

When applied to seed or mixed with soil, some B. subtilis strains were reported to 

provide crop protection mostly by direct control of soilborne pathogens through an efficient 

production of various fungitoxic metabolites (3, 29, 32). By using the tomato/P. 

aphanidermatum pathosystem, this study demonstrates that overproduction of mycosubtilin 

by B. subtilis ATCC 6633 may confer some biocontrol potential to a strain naturally not 
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active at protecting plants. Considering the mean values calculated from pooled data, the 

germination rate of plants treated with the mycosubtilin overproducer increased by 31% when 

compared to control seeds and by 48% as compared to the wild-type. As mycosubtilin 

displays a strong antifungal activity in vitro against P. aphanidermatum, it is obvious that the 

15-fold higher in vitro production rate of this compound is tightly involved in the protective 

effect developed in vivo by the modified strain. An early and higher production of the 

lipopeptides probably enhances the biological effect of the strain by immedially reducing 

plant pathogen growth. The role played by these molecules is reinforced by the fact that other 

possible biocontrol mechanisms are seemingly not concerned. For example, some B. subtilis 

strains were reported to reduce disease incidence indirectly by triggering systemic resistance 

in the plant (25). We have performed some experiments with tomatoes pre-inoculated at the 

root level with either the wild-type ATCC 6633 or the mycosubtilin overproducer derivative 

before challenge with the pathogen B. cinerea on leaves. Such procedure is used to reveal 

disease suppression due to induction of resistance in the host plant by the bacteria. However, 

none of the strains was able to develop some protective effect under these conditions showing 

that they do not retain any plant resistance inducing activity (data not shown). In the same 

line, growth-promotion activity sensu stricto could also probably not be evoked to explain the 

beneficial effect of the mycosubtilin overproducer. Size and robustness of plants inoculated 

with the modified strain were higher than those of disease controls and very similar to 

untreated controls when grown in a soil not infested with the pathogen (data not shown). By 

contrast with its overproducing derivative, the wild type strain ATCC 6633 did not display 

any protective effect on tomato seedlings. Surprisingly the strain 6633 even appeared to be 

conducive to the disease. However, when grown in the absence of pathogen, tomato plantlets 

inoculated with the wild-type were similar to the control plants suggesting that the strain did 

not develop any phytotoxic effect per se. 
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Mass spectrometry analyses of supernatants from B. subtilis ATCC 6633 and 

BBG100 revealed the presence of two main molecular ions corresponding to the homologous 

mycosubtilins with C16 or C17 fatty acid chains. These homologues are considered as more 

biologically active compared to the iturins that bear shorter hydrocarbon side chain (C14-C15) 

(11). It was shown that fungitoxicity increases with the number of carbon in the fatty acid 

chain i.e. C17 homologues are 20-fold more active than the C14 forms. This is also evidenced 

by the similarity of in vitro antagonistic activity developed by BBG100 and the one shown by 

other Bacillus strains producing higher amounts of iturinic compounds but with shorter fatty 

acid chains (16, 35). 

The overproduction of mycosubtilin in the BBG100 derivative is also accompanied by 

qualitative changes in the pattern of lipopeptides. Interestingly a signal at m/z 1137.7 was 

clearly enhanced. The corresponding compound is probably structurally similar to iturins 

since it followed the purification of mycosubtilin. In addition, it should correspond to a K+ 

adduct since MS/MS analysis did not yield any fragmentation (data not shown). Bacillomycin 

F with a C17 fatty acid chain is the sole iturin form that could correspond to this molecular 

weight. However, a single insertion of the new promoter was confirmed in the mycosubtilin 

operon. So, overexpression of bacillomycin synthetases is obviously not involved. This signal 

could thus preferably be attributed to a modified mycosubtilin with either a C18 chain of fatty 

acid or a peptide moiety containing a Thr instead of a Ser. In both cases, this molecule 

represents a new form of mycosubtilin. Indeed, such long fatty acid chain was never 

encountered in iturin-like lipopeptides and amino acid residue replacement has never been 

demonstrated with iturin derivatives. However this last phenomenon may occur as shown in 

the case of the non-ribosomal surfactin synthetase which possesses adenylation domains able 

to activate different amino acid residues with similar side chains (18). Similarly, the 

mycobactin synthetase contains an adenylation domain that may recognize both L-serine and 
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L-threonine (6). Such a low specificity could thus also be observed in mycosubtilin 

synthetase. Further structural investigations are being performed to confirm this hypothesis. 
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FIGURE LEGENDS 

 

FIG. 1. Replacement in B. subtilis ATCC 6633 of the original Pmyc promoter by the 

PrepU-neo cassette using homologous recombination between genomic DNA of the strain and 

the hybrid plasmid pBG106. (A) Recognition of homologous regions located (i) after the 

termination region of the pbp gene (coding for a penicillin-binding protein) situated upstream 

the mycosubtilin operon (for convenience, the cassette generated by PCR in this region was 

named “pbp”); and (ii) immediately downstream the pmyc promoter (cassette fenF). The 

four genes fenF, mycA, mycB and mycC constitute the mycosubtilin operon, and code for a 

malonyl-CoA transacylase and three peptide synthetases, respectively; yngL, gene coding for 

an unknown function; PrepU, promoter of the replication gene of pUB110; and neo, gene 

conferring resistance to neomycin/kanamycin from pUB110 (15); (*) site newly created after 

ligation between the BspEI and XmaI compatible cohesive ends. (B) Construct obtained 

within the genomic DNA of the strain following homologous recombination (generated by the 

inability of pUC19 to replicate in Bacillus spp., together with the selective pressure for 

resistance to neomycin); the mycosubtilin operon became under control of the PrepU 

constitutive promoter. 

 

FIG. 2. Early stage of growth (solid symbols) and mycosubtilin (open symbols) 

production of B. subtilis ATCC 6633 () and its BBG100 derivative () in bioreactor. 

 

FIG. 3. MALDI-TOF spectra of lipopeptides produced by B. subtilis ATCC 6633 (A) 

and BBG100 (B). 

 

FIG. 4. Hemolytic activities of supernatants obtained after growth of the wild-type 

strain in Landy (a) or 863 (c) medium; and of the strain BBG100 in Landy (b) or 863 (d) 

medium.  
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FIG. 5. Illustration of plantlets obtained from seeds treated either with the wild-type B. 

subtilis strain ATCC 6633 (A), with its mycosubtilin overproducing derivative BBG100 (B) 

or with water (C) (disease control) in P. aphanidermatum-infested soil, 18 days after sowing. 
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TABLE 1. Strains and plasmids 

 

Strain or plasmid Descriptiona Source or 

reference 

Bacterial strains 

Escherichia coli DH5 

 

 

Bacillus subtilis ATCC 6633 

 

B. subtilis BBG100 

 

Erwinia chrysanthemi 3937 

Micrococcus luteus 

Pseudomonas aeruginosa 7NSK2 

Fungi 

Botrytis cinerea 

Fusarium oxysporum 

Pythium aphanidermatum 

Yeasts 

Pichia pastoris 

Saccharomyces cerevisiae 

Plasmids 

pUC19 

 

pBG101 

 

pBG102 

 

pBG103 

 

pBEST501 

 

pBG106  

 

 

80dlacZM15 recA1 endA1 gyrA96 

thi-1 hsdR17 (rk-, mk+) supE44 relA1 

deoR, (lacZYA-argF)U169 phoA 

Produces mycosubtilin, surfactin, 

subtilin, subtilosin and rhizocticins 

ATCC 6633 derivative overproducing 

mycosubtilin, Nmr 

 

 

 

 

Wild-type 

Wild-type 

Wild-type 

 

Wild-type 

Wild-type 

 

Cloning vector, Apr 

 

0.5kb fenF PCR fragment  inserted in 

pUC19, Apr 

0.7kb pbp PCR fragment  inserted in 

pUC19, Apr 

0.5kb SalI – EcoRI  fenF fragment from 

pBG101 inserted in pBG102, Apr 

pGEM4 carrying the PrepU promoter and 

neo gene from pUB110, Nmr 

PrepU-neo fragment inserted in pBG103, 

Apr Nmr 

 

Promega, 

Madison, WI 

 

9 

 

This study 

 

14 

Lab stock 

12 

 

Lab stock 

Lab stock 

26 

 

Lab stock 

Lab stock 

 

Biolabs, 

Beverly, MA 

This study 

 

This study 

 

This study 

 

15 

 

This study 

 

a Apr, resistance to ampicillin; Nmr, resistance to neomycin. 
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TABLE 2. Biomass and lipopeptide production by the wild-type 6633 strain and its BBG100 

derivative after 72 h of growth 

 

  Lipopeptide production (mg l-1)a 

 Biomass  

g. l-1 

Mycosubtilin Surfactin 

    

Wild-type in flask 3.23 (SD = 0.13) 17 (SD = 0.5) 15 (SD = 4.1) 

BBG100 in flask 3.19 (SD = 0.24) 203 (SD = 12.6) 10 (SD = 3.4) 

    

Wild-type in bioreactor 3.25 (SD = 0.35) 4.35 (SD = 5.1) 1.15 (SD = 1.2) 

BBG100 in bioreactor 4.45 (SD = 1.4) 66 (SD = 0.7) 3.35 (SD = 4.03) 

 

a values are mean data from 2 experiments 

SD : Standard deviation 
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TABLE 3. Calculated mass values of M+H+, M+Na+ and M+K+ ions corresponding to 

identified homologues of surfactins and mycosubtilins in culture extracts from B. subtilis 

ATCC 6633 and its overproducing derivative 

 

Lipopeptide M+H+ M+Na+ M+K+ 

Surfactin C13 1008.66 1030.64 1046.61 

Surfactin C14 1022.67 1044.66 1060.63 

Surfactin C15 1036.69 1058.67 1074.65 

Mycosubtilin C15 1057.57 1079.55 1095.52 

Mycosubtilin C16 1071.58 1093.56 1109.54 

Mycosubtilin C17 1085.6 1107.58 1123.55 
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TABLE 4. Growth inhibition activities of supernatants obtained from growth of the ATCC 

6633 wild-type strain and its BBG100 derivative 

 

Strain Antagonistic activity a 

 

 Wild-type 

 

Strain BBG100 

 Supernatant 

 

Protease treated Supernatant Protease treated 

E. chrysanthemi 

E. coli 

P. aeruginosa 

M. luteus 

B. cinerea 

F. oxysporum 

P. aphanidermatum 

P. pastoris 

S. cerevisiae 

  

- 

- 

- 

+++ 

+/- 

+/- 

+/- 

- 

+/- 

- 

- 

- 

- 

+/- 

+/- 

- 

- 

+/- 

- 

- 

- 

+++ 

+++ 

++ 

++ 

++ 

+++ 

- 

- 

- 

- 

+++ 

++ 

+ 

++ 

+++ 

 

a Intensity of antagonistic activity was rated on the basis of the size of growth inhibition zones 

from the wells in which supernatant samples were deposited to the edge of the spreading 

fungal mycelium or cell colony, - : 0 mm, +/- : 1 – 4 mm, + : 5 – 7 mm, ++ : 8 – 9 mm, +++ : 

10 mm or more. ND, Not done. 
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TABLE 5. Effect of strain 6633 and of its overproducing derivative on the reduction of 

damping-off of tomato plants caused by P. aphanidermatuma 

Treatment  Seedling emergence (%) 

Pathogen Bacterium  Exp. 1 Exp. 2 Exp. 3 Exp. 4 

- None ND b 96 95 ND 

- 6633 ND 90 92 ND 

- BBG100 ND 93 88 ND 

+ None 38 48 59 8 

+ 6633 31 25 42 6 

+ BBG100 53 59 69 34 

a Two hundred seeds were used for each treatment in every experiment and the number of 

healthy plantlets was counted 12 days after planting. 

b ND, Not done. 
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