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Abstract

Cortical pyramidal neurons receive inputs from multiple distinct neural
populations and integrate these inputs in separate dendritic compartments.
We explore the possibility that cortical microcircuits implement Canonical
Correlation Analysis (CCA), an unsupervised learning method that projects
the inputs onto a common subspace so as to maximize the correlations between
the projections. To this end, we seek a multi-channel CCA algorithm that
can be implemented in a biologically plausible neural network. For biological
plausibility, we require that the network operates in the online setting and its
synaptic update rules are local. Starting from a novel CCA objective function,
we derive an online optimization algorithm whose optimization steps can be
implemented in a single-layer neural network with multi-compartmental neu-
rons and local non-Hebbian learning rules. We also derive an extension of
our online CCA algorithm with adaptive output rank and output whiten-
ing. Interestingly, the extension maps onto a neural network whose neural
architecture and synaptic updates resemble neural circuitry and non-Hebbian
plasticity observed in the cortex.

*Equal contribution



Contents

1

2

Introduction
Canonical Correlation Analysis

A biologically plausible CCA algorithm

3.1 A similarity matching objective . . . . . . ... ...
3.2 A min-max objective . . . . ... .. Lo
3.3 An offline CCA algorithm . . . . . ... ... ... .. ...
3.4 An online CCA algorithm . . . .. ... ... ... .....

Online adaptive CCA with output whitening
Relation to cortical microcircuits

Numerical experiments

6.1 Datasets . . . . . . . ..
6.2 Bio-CCA . . . . . . .
6.3 Adaptive Bio-CCA with output whitening . . . . .. .. ..

Discussion
Sums of CCSPs as principal subspace projections

Adaptive Bio-CCA with output whitening

B.1 Detailed derivation of Algorithm 3 . . . . .. ... .. ...
B.2 Comparison with Bio-RRR. . . . . . . ... ... .. .. ...
B.3 Decoupling the interneuron synapses . . . . .. .. ... ..

Numerics

C.1 Experimental details . . . . . ... ... ... ... .....
C.2 Orthonormality constraints . . . . . . . . ... .. ... ...

On convergence of the CCA algorithms

13

15

20
20
22
25

29

31

33
33
34
35

36
36
37

40



1 Introduction

Our brains can effortlessly extract a latent source contributing to two synchronous
data streams, often from different sensory modalities. Consider, for example, fol-
lowing an actor while watching a movie with a soundtrack. We can easily pay
attention to the actor’s gesticulation and voice while filtering out irrelevant visual
and auditory signals. How can biological neurons accomplish such multi-sensory
integration?

In this paper, we explore an algorithm for solving a linear version of this problem
known as Canonical Correlation Analysis (CCA) [19]. In CCA, the two synchronous
datasets, known as views, are projected onto a common lower-dimensional subspace
so that the projections are maximally correlated. For simple generative models, the
sum of these projections yields an optimal estimate of the latent source [3]. CCA is a
popular method because it has a closed form exact solution in terms of the Singular
Value Decomposition (SVD) of the correlation matrix. Therefore, the projections
can be computed using fast and well understood spectral numerical methods.

To serve as a viable model of a neuronal circuit, the CCA algorithm must map
onto a neural network consistent with basic biological facts. For our purposes, we
say that a network is “biologically plausible” if it satisfies the following two minimal
requirements: (i) the network operates in the online setting, i.e., upon receiving an
input, it computes the corresponding output without relying on the storage of any
significant fraction of the full dataset, and (ii) the learning rules are local in the
sense that each synaptic update depends only on the variables that are available as
biophysical quantities represented in the pre- or post-synaptic neurons.

There are a number of neural network implementations of CCA [22, 38, 15, 49];
however, most of these networks use non-local learning rules and are therefore not
biologically plausible. One exception is the normative neural network model derived
by Pehlevan et al. [37]. They start with formulating an objective for single-(output)
channel CCA and derive an online optimization algorithm (previously proposed in
[22]) that maps onto a pyramidal neuron with three electrotonic compartments:
soma, as well as apical and basal dendrites. The apical and basal synaptic inputs
represent the two views, the two dendritic compartments extract highly correlated
CCA projections of the inputs and the soma computes the sum of projections and
outputs it downstream as action potentials. The communication between the com-
partments is implemented by calcium plateaus that also mediate non-Hebbian but
local synaptic plasticity.

Whereas Pehlevan et al. [37] also propose circuits of pyramidal neurons for multi-
channel CCA their implementations lack biological plausibility. In one implemen-
tation, they resort to deflation where the circuit sequentially finds projections of
the two views. Implementing this algorithm in a neural network requires a central-
ized mechanism to facilitate the sequential updates, and there is no experimental
evidence of such a biological mechanism. In another implementation that does not



Figure 1: Single-layer network architecture with &£ multi-compartmental neurons for
outputting the sum of the canonical correlation subspace projections (CCSPs) z =
(z1,...,2,), see Algorithm 2. Here a = W,x and b = W,y are projections of the
views X = (x1,...,2y) and y = (y1, . . ., Yn) onto a common k-dimensional subspace.
The output, z = M~!(a + b), is the sum of the CCSPs and is computed using
recurrent lateral connections. The components of a, b and z are represented in three
separate compartments of the neurons. Filled circles denote non-Hebbian synapses
and empty circles denote anti-Hebbian synapses. Importantly, each synaptic update
depends only on variables represented locally.

require a centralized mechanism, the neural network has asymmetric lateral con-
nections among pyramidal neurons. However, that algorithm is not derived from
a principled objective for CCA and the network architecture does not match the
neuronal circuitry observed in cortical microcircuits.

In this work, starting with a novel similarity-based CCA objective function, we
derive a novel offline CCA algorithm (Algorithm 1) and an online multi-channel
CCA algorithm (Algorithm 2), which can be implemented in a single-layer net-
work composed of three-compartment neurons and with local non-Hebbian synaptic
update rules, Figure 1. While our neural network implementation of CCA cap-
tures salient features of cortical microcircuits, the network includes direct lateral
connections between the principal neurons (see Figure 1), which is in contrast to



cortical microcircuits where lateral influence between cortical pyramidal neurons is
often indirect and mediated by interneurons. With this in mind, we derive an ex-
tension of our on-line CCA algorithm (Algorithm 3), which adaptively chooses the
rank of the output based on the level of correlation captured, and also whitens the
output. This extension is especially relevant for online unsupervised learning algo-
rithms which are often confronted with the challenge of adapting to non-stationary
input streams. In addition, the algorithm naturally maps onto a neural network
with multi-compartmental principal neurons and without direct lateral connections
between the principal neurons (see Figure 3 of Section 5). Interestingly, both the
neural architecture and local, non-Hebbian plasticity resemble neural circuitry and
synaptic plasticity in cortical microcircuits.

There are a number of existing consequential models of cortical microcircuits
with multi-compartmental neurons and non-Hebbian plasticity [21, 47, 16, 42, 17,
41, 31]. These models provide mechanistic descriptions of the neural dynamics and
synaptic plasticity and account for many experimental observations, including the
nonlinearity of neural outputs and the layered organization of the cortex. While
our neural network model is single-layered and linear, it is derived from a princi-
pled CCA objective function, which has several advantages. First, since biological
neural networks evolved to adaptively perform behaviorally relevant computations,
it is natural to view them as optimizing a relevant objective function. Second, our
approach clarifies which features of the network (e.g., multi-compartmental neurons
and non-Hebbian synaptic updates) are central to computing correlations. Finally,
since the optimization algorithm is derived from a CCA objective that can be solved
offline, the neural activities and synaptic weights can be analytically predicted for
any input without resorting to numerical simulation. In this way, our neural network
model is interpretable and analytically tractable, and provides a useful complement
to nonlinear, layered neural network models.

Organization. The remainder of this work is organized as follows. We state the
CCA problem in Section 2. In Section 3, we introduce a novel objective for the
CCA problem and derive offline and online CCA algorithms. In Section 4, we derive
an extension of our CCA algorithm, and in Section 5, we map the extension onto
a simplified cortical microcircuit. We provide results of numerical simulations in
Section 6.

Notation. For positive integers p, ¢, let R? denote p-dimensional Euclidean space,
and let RP*? denote the set of p x ¢ real-valued matrices equipped with the Frobenius
norm ||-||p. We use boldface lower-case letters (e.g., v) to denote vectors and boldface
upper-case letters (e.g., M) to denote matrices. We let O(p) denote the set of p x p
orthogonal matrices and S% | denote the set of p x p positive definite matrices. We
let I,, denote the p x p identity matrix.
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Figure 2: Tllustration of CCA. The left column depicts point clouds of 2-dimensional
views X and Y with lines indicating the span of the top principal component and
top canonical correlation basis vector for each view (labeled “PCA” and “CCA” | re-
spectively). The center and right columns depict point clouds of joint 1-dimensional
projections of X and Y onto their top principal component or top canonical cor-
relation basis vector, with the correlations between the 2 projections listed. As
illustrated in the lower right plot, the correlation between the projected views is
maximized when each view is projected onto its top canonical correlation basis vec-
tor.

2 Canonical Correlation Analysis

Given T pairs of full-rank, centered input data samples (xi,y1),...,(Xr,y7) €
R™ x R™ and k& < min(m,n), the CCA problem is to find k-dimensional linear
projections of the views x1,...,xr and yy,...,yr that are maximally correlated,
see Figure 2. To be precise, consider the CCA objective

arg max Tr (V, C,yV,) (1)

VzeRka,VyGR"Xk



subject to the whitening constraint!
V;ngcvx + V;—nyvy = Ik’a (2)

where we have defined the sample covariance matrices

1 < 1 < 1 &
C,, = T ;xtxj, C,y = T ;Xty;, C,y = T ;yty;. (3)

To compute the solution of the CCA objective (1)—(2), define the m x n corre-
lation matrix

R., = C,}/*C,,C, % (4)

Let p1 > -+ > pPmin(m,n) denote the singular values, and let U, € O(m) and U, €
O(n) denote the matrices whose column vectors are respectively the left- and right-
singular vectors of the correlation matrix. The i*" singular value p; is referred
to as the ™ canonical correlation, and the i*" column vectors of C;j/ U, and
C;yl/ 2Uy are jointly referred to as the i*" pair of canonical correlation basis vectors,
for i = 1,...,min(m,n). The maximal value of the trace in Equation (1) is the
normalized sum of canonical correlations: (p; + --- + pi)/2. For simplicity, we
assume p, > pro1 so the subspace spanned by the first k& canonical correlation basis
vectors is unique. In this case, every solution of the CCA objective (1)—(2), denoted
(V., V,), is of the form

V., =C,,*uq, Vv, =C,*uMq, (5)

where UV (resp. U?(Jk)) is the m x k (resp. n x k) matrix whose i*® column vector
is equal to the i column vector of U, (resp. U,) fori=1,...,k, and Q € O(k) is
any orthogonal matrix. Since the column vectors of any solution (V,, V,)) span the
same subspaces as the first k£ pairs of canonical correlation basis vectors, we refer
to the column vectors of V, and Vy as basis vectors. We refer to the k-dimensional
projections szt and V;yt as canonical correlation subspace projections (CCSPs).

The focus of this work is to derive a single-layer biologically plausible network

whose input at each time ¢ is the pair (x;,y;) and the output is the following sum
of the CCSPs:

=T T
2=V, X+ V,yi, (6)

which, as mentioned in the introduction, is a highly relevant statistic (see, also,
Section 6.1). This is in contrast to many existing CCA networks which output one

!This constraint differs slightly from the usual CCA whitening constraint V;CMVI =
VJ C,,Vy, = I; however, the constraints are equivalent up to a scaling factor of 2.
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or both CCSPs [22, 38, 15, 49, 14]. The components of the two input vectors x; and
y; are represented by the activity of upstream neurons belonging to two different
populations, which are integrated in separate compartments of the principal neurons
in our network. The components of the output vector z; are represented by the
activity of the principal neurons in our network, see Figure 1.

While CCA is typically viewed as an unsupervised learning method, it can also
be interpreted as a special case of the supervised learning method Reduced-Rank
Regression, in which case one input is the feature vector and the other input is the
label (see, e.g., page 38 of [48]). With this supervised learning view of CCA, the
natural output of a CCA network is the CCSP of the feature vector. In separate
work [14], we derive an algorithm for the general Reduced-Rank Regression problem,
which includes CCA as a special case, for outputting the projection of the feature
vector. The algorithm derived in [14] resembles the adaptive CCA with output
whitening algorithm that we derive in Section 4 of this work (see Algorithm 3 as
well as Appendix B.2 for a detailed comparison of the two algorithms); however,
there are significant advantages to the algorithm derived here. First, our network
outputs the (whitened) sum of the CCSPs, which, as discussed above, is a relevant
statistic in applications. The algorithm in [14] only outputs the CCSP of the feature
vector, which is natural when viewing CCA as a supervised learning method, but
not when viewing CCA as an unsupervised learning method for integrating multi-
view inputs. Second, in contrast to the algorithm derived in [14], our adaptive
CCA with output whitening algorithm allows for adaptive output rank. This is
particularly important for analyzing non-stationary input streams, a challenge that
brains regularly face.

3 A biologically plausible CCA algorithm

To derive a network that computes the sums of CCSPs for arbitrary input datasets,
we adopt a normative approach in which we identify an appropriate cost function
whose optimization leads to an online algorithm that can be implemented by a
network with local learning rules. Previously, such approach was taken to derive a
biologically plausible PCA network from a similarity matching objective function
[35]. We leverage this work by reformulating a CCA problem in terms of PCA of a
modified dataset and then solving it using similarity matching.

3.1 A similarity matching objective

First, we note that the sums of CCSPs zq, ...,z are equal to the principal subspace
projections of the data &, ..., &, where &, is the following d-dimensional vector of



concatenated whitened inputs (recall d := m + n):

~1/2
T ] . (7)

—1/2
ny/ Y

(See Appendix A for a detailed justification.) Next, we use the fact that the principal
subspace projections can be expressed in terms of solutions of similarity matching
objectives. To this end, we define the matrices E := [£,,...,&7] € RPT and
Z = [zy,...,27] € R**T sothat Z is a linear projection of E onto its k-dimensional
principal subspace. As shown in [9, 51|, the principal subspace projection Z is a
solution of following similarity matching objective:

1
areg min — ||ZTZ — ET=||3. 8
g min | I3 g

The objective (8), which comes from classical multidimensional scaling [9], minimizes
the difference between the similarity of output pairs, z,zy, and the similarity of
input pairs, 5: &,, where similarity is measured in terms of inner products. Finally,
defining X := [x1,...,x7] € R™T and Y := [yy,...,yr] € R™7T we use the
definition of &, in Equation (7) to rewrite the objective (8) as follows:

1
arg min —||Z'Z - X'C_ !X -Y'C, Y|} 9
ZngxT 272 || Tx Yy ||F ( )
In the remainder of this section, we derive our online CCA algorithm. Then, in
Sections 4 and 5, we derive an extension of our CCA algorithm and map it onto the
cortical microcircuit. The reader who is primarily interested in the derivation of the
extension and its relation to the cortical microcircuit can safely skip to Section 4.

3.2 A min-max objective

While the similarity matching objective (9) can be minimized by taking gradient
descent steps with respect to Z, this would not lead to an online algorithm because
such computation requires combining data from different time steps. Rather, we
introduce auxiliary matrix variables, which store sufficient statistics allowing for the
CCA computation using solely contemporary inputs and will correspond to synaptic
weights in the network implementation, and rewrite the minimization problem (9)
as a min-max problem.

Expanding the square in Equation (9) and dropping terms that do not depend
on Z yields the minimization problem

. 1 _ 1 _ 1
Juin, — Tr (2'ZX'C_X) — 7 Tr (Z'ZY'C,)Y) + 573 r (2'22'Z).



Next, we introduce dynamic matrix variables W, W, and M in place of the matri-

ces %ZXTC;;, %ZYTC;; and %ZZT, respectively, and rewrite the minimization

problem as a min-max problem:

min  min min  max L(W,, W, M, Z)

ZeRFXT W eRFX™M Wy eRFX" MeSk

where
1
L(W,, W, M, Z) := 7 Tr (—2Z'"W,X — 2Z"W,Y + Z'MZ)
1
+ Tr (chmwj +W,C,,W, — §M2) . (10)

To verify the above substitutions are valid, it suffices to optimize over the matrices
W., W, and M; e.g., by differentiating L(W,, W,,, M, Z) with respect to W,, W,
or M, setting the derivative equal to zero, and solving for W,, W, or M. Finally,
we interchange the order of minimization with respect to Z and (W,, W,), as well
as the order of minimization with respect to Z and maximization with respect to

M:

min min  max min L(W,, W, M, Z). (11)
erRka WyeRan MES!CHF ZEREXT

The second interchange is justified by the fact that L(W,, W,, M, Z) satisfies the
saddle point property with respect to Z and M, which follows from its strict con-
vexity in Z (since M is positive definite) and strict concavity in M.

Given an optimal quadruple of the min-max problem (11), we can compute the
basis vectors, as follows. First, minimizing the objective L(W,, W, M, Z) over Z
yields the relation

Z = arg min L(W,, W, M,Z) =M 'W, X+ M 'W,Y. (12)

ZEREXT

Therefore, if (W, W,, M, Z) is an optimal quadruple of the min-max problem (11),
it follows from Equation (6) that the corresponding basis vectors satisfy

V,=M W, ad V,=M W, (13)

3.3 An offline CCA algorithm

Before deriving our online CCA algorithm, we first demonstrate how the objective
(11) can be optimized in the offline setting, where one has access to the data matrices
X and Y in their entirety. In this case, the algorithm solves the min-max problem

10



(11) by alternating minimization and maximization steps. First, for fixed W,, W,
and M, we minimize the objective function L(W,, W,, M, Z) over Z to obtain the
minimum Z defined in Equation (12). Then, with Z fixed, we perform a gradient
descent-ascent step with respect to (W,, W,) and M:

OL(W,, W, M,7Z)
oW,
OL(W,, W, M,7Z)
OW,
nOL(W,, W,, M, Z)

T oM

W, + W, —1n

W, W, -7

M+ M+

Here n > 0 is the learning rate for W, and W, which may depend on the iteration,
and 7 > 0 is the ratio of the learning rates for W, (or W,) and M. Substituting
in the explicit expressions for the partial derivatives of L(W,, W, , M, 7Z) yields our
offline CCA algorithm (Algorithm 1), which we refer to as Offline-CCA.

Algorithm 1: Offline-CCA
input: data matrices X, Y; dimension k
initialize: matrices W,, W, and positive definite matrix M

C.r — %XXT ;o Cyy — %YYT > covariance matrices
repeat
Z+—M'W,X+M'W,Y > optimize over output
W, «— W, + 29 (%ZXT - Wme) > gradient descent-ascent steps

W, W, + 2 (%ZYT — Wyny)
M M+ 2 (3227 — M)
until convergence

Recall that M is optimized over the set of positive definite matrices Sﬁ 4+ To
ensure that M remains positive definite after each update, note that the update
rule for M can be rewritten as the following convex combination (provided n < 7):
M « (1 —2)M + 2(£ZZ"). Since +ZZ" is positive semidefinite, to guarantee
that M remains positive definite given a positive definite initialization, it suffices to
assume that n < 7.

3.4 An online CCA algorithm

In the online setting, the input data (x;,y;) are streamed one at a time and the
algorithm must compute its output z; without accessing any significant fraction of
X and Y. To derive an online algorithm, it is useful to write the cost function as

11



an average over time—separable terms:
1 T
L(Wwa Wy7 M7 Z) = T tzz; lt<Wx7 Wya M; Zt)7

where

(W, W,, M, z,) == —22] W,x, — 22/ W,y, + z] Mz,

1
+ Tr <Wgc}ct>{tT\7\/",;cr +W,yy/ W, — 51\/[2) . (14)

At iteration ¢, to compute the output z,, we minimize the cost function l,(W,, W,, M, z;)
with respect to z; by running the following gradient descent dynamics to equilibrium:

dz, ("Y)
dy

= ¢ + bt — MZt('}/), (15)

where we have defined the following k-dimensional projections of the inputs: a; :=
W.x; and b; := W,y,. These dynamics, which will correspond to recurrent neural
dynamics in our network implementation, are assumed to occur on a fast timescale,
allowing z(7) to equilibrate at z; := M~!(a; + by) before the algorithm outputs its
value. After z,(7) equilibrates, we update the matrices (W,, W,, M) by taking a
stochastic gradient descent-ascent step of the cost function l,(W,, W,, M, z,) with
respect to (W,, W) and M:

Ol (W, W,, M, z,)
OW,,
ol,(W,, W,, M,z,)
oW,

n Ol(W,, W,,M,Z,)

T OM

W, <+~ W, —n

W, W, -1

M+ M+ :
Substituting in the explicit expressions for the partial derivatives of [,(W,, W,, M, z;)
yields our online CCA algorithm (Algorithm 2), which we refer to as Bio-CCA.
Algorithm 2 can be implemented in a biologically plausible single-layer network
with £ neurons that each consist of three separate compartments, Figure 1. At each
time step, the inputs x; and y; are multiplied by the respective feedforward synapses
W, and W, to yield the k-dimensional vectors a; and b, which are represented in
the first two compartments of the k£ neurons. Lateral synapses, —M, connect the
k neurons. The vector of neuronal outputs, z;, equals the normalized sum of the
CCSPs, and is computed locally using recurrent dynamics in Equation (15). The

12



Algorithm 2: Bio-CCA
input data {(x1,y1),..., (X7, y7)}; dimension k

initialize matrices W,, W, and positive definite matrix M.
fort=1,2,...,T do

a+— Wyxy ; b+ Wy, > projection of inputs
run

dz;—y) =a; + b, — Mz,(y) > neural dynamics
until convergence
W, «— W, + 2n(z; — a;)x, > synaptic updates

W, «— W, + 2n(z; — by,
M < M + 2(zz] — M)
end for

synaptic updates can be written elementwise, as follows:

Wi < Waii + 120 — aei) e j, 1<i<k 1<j5<m,
Wyij < Wyii +n(zei — bei)yej, 1<i<k, 1<5<n,
My ¢ My + Lzyimy — My), 1<id,j<k.
T

As shown above, the update to synapse W, ;; (resp. W, ;;), which connects the ;™
input ;. ; (resp. y; ;) to the i output neuron, depends only on the quantities z;;, a;
(resp. by;), and x4 ; (resp. y ), which are represented in the pre- and post-synaptic
neurons, so the updates are local, but non-Hebbian due to the contribution from
the a;; (resp. by;) term. Similarly, the update to synapse —A/;;, which connects the
J™ output neuron to the i output neuron, is inversely proportional to z;,;z ;, the
product of the outputs of the pre- and post-synaptic neurons, so the updates are
local and anti-Hebbian.

4 Online adaptive CCA with output whitening

We now introduce an extension of Bio-CCA which addresses two biologically relevant
issues. First, Bio-CCA a priori sets the output rank at k; however, it may be
advantageous for a neural circuit to instead adaptively set the output rank depending
on the level of correlation captured. In particular, this can be achieved by projecting
each view onto the subspace spanned by the canonical correlation basis vectors
which correspond to canonical correlations that exceed a threshold. Second, it is
useful from an information theoretic perspective for neural circuits to whiten their
outputs [39], and there is experimental evidence that neural outputs in the cortex are
decorrelated [10, 32]. Both adaptive output rank and output whitening modifications
were implemented for a PCA network by Pehlevan and Chklovskii [34], and can be

13



adapted to the CCA setting. Here we present the modifications without providing
detailed proofs, which can be found in the supplement of [34].

In order to implement these extensions, we need to appropriately modify the
similarity matching objective function (9). First, to adaptively choose the output
rank, we add a quadratic penalty Tr(Z'Z) to the objective function (9):

1Z7Z - XTC)X - Y C Y[R+ = Tr (Z7Z) . (16)

1
arg min Y T

ZekaT 2T2

The effect of the quadratic penalty is to rank constrain the output, with a > 0
acting as a threshold parameter on the eigenvalues values of the output covariance.
Next, to whiten the output, we expand the square in Equation (16) and replace

the quartic term Tr(Z'ZZ"Z) by a Lagrange constraint enforcing Z'Z < TIr (i.e.,
TIy — Z'Z is positive semi-definite):

1
i — Tr(-Z"ZXTCIX —ZTZY'C'Y + oTZ'Z 17
VeI N e T o wY +odZ2) (1)

1
+ 73 Tr[N'N(Z'Z — T17)].

The effect of the Lagrange constraint in Equation (17) is to enforce that all non-zero
eigenvalues of the output covariance are set to one.

Solutions of the objective (17) can be expressed in terms of the eigendecompo-
sition of the Gram matrix 2 2 = TUAU/, where Ue € O(T) is a matrix of
eigenvectors and Ag = diag(A1,..., A4, 0,...,0) is the T x T" diagonal matrix whose

non-zero entries A\ > --- > Ay > 0 are the eigenvalues of the d x d covariance matrix
1 « I, R
o T _ m TY
055 T ;Etgt - {Rly I, } . (18>
Assume, for technical purposes, that o ¢ {\1,...,A\s}. Then, as shown in [35,

Theorem 3], every solution Z of objective (17) is of the form
Z—QyTA UM AL = diag(H(M\ — a),..., HO\ — ),

where Q € O(k) is any orthogonal matrix, Uék) € RT*% is the T' x k matrix whose
i™ column vector is equal to the i™® column vector of Ug, for ¢ = 1,...,k, and
H is the Heaviside step function defined by H(r) = 1 if r > 0 and H(r) = 0
otherwise. Finally, we note that, in view of Equation (18) and the SVD of R, the

top min(m,n) eigenvalues of Cpg, satisfy

Ai =1+ p;, i=1,...,min(m,n),

14



where we recall that pi, ..., pmin(m,n) are the canonical correlations. Thus, H(\; —
a) = H(p; — (e — 1)), for i = 1,..., k. In other words, the objective (17) outputs
the sum of the projections of the inputs x; and y; onto the canonical correlation
subspace spanned by the (at most k) pairs of canonical correlation basis vectors
associated with canonical correlations exceeding the threshold max(a — 1,0), and
sets the non-zero output covariance eigenvalues to one, thus implementing both the
adaptive output rank and output whitening modifications.

With the modified objective (17) in hand, the next step is to derive an online
algorithm. Similar to Section 3.2, we introduce dynamic matrix variables W,, W,
and P in place of $ZX'C,}, zZY'C, and 7ZN" to rewrite the objective (17)

xx)

as follows:
arg min max  min min  max Z(WI, W,,P,Z,N), (19)
ZGRkXT NeRkXT WmEkam Wyekan Pekak
where
~ 1
L(W,,W,,P,Z N) := 7 Tr (—2Z"W,X —2Z"W,Y + oZ'Z)

1
+ o T (2N'P'Z-N'N)

+Tr (W,Coe W, + W,C, W, —PPT).

After interchanging the order of optimization, we solve the min-max optimization
problem by taking online gradient descent-ascent steps, with descent step size n
and ascent step size 2. Since the remaining steps are similar to those taken in
Section 3 to derive Bio-CCA, we defer the details to Appendix B.1 and simply state
the online algorithm (Algorithm 3), which we refer to as Adaptive Bio-CCA with

output whitening.

5 Relation to cortical microcircuits

We now show that Adaptive Bio-CCA with output whitening (Algorithm 3) maps
onto a neural network with local, non-Hebbian synaptic update rules that emulate
salient aspects of synaptic plasticity found experimentally in cortical microcircuits
(both in the neocortex and the hippocampus).

Cortical microcircuits contain two classes of neurons: excitatory pyramidal neu-
rons and inhibitory interneurons. Pyramidal neurons receive excitatory synaptic
inputs from two distinct sources via their apical and basal dendrites. The apical
dendrites are all oriented in a single direction and the basal dendrites branch from
the cell body in the opposite direction [45, 23], Figure 3. The excitatory synaptic
currents in the apical and basal dendrites are first integrated separately in their
respective compartments [45, 23]. If the integrated excitatory current in the apical
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Algorithm 3: Adaptive Bio-CCA with output whitening

input data {(x1,¥y1), ..., (X7, y7)}; max output-dimension k; threshold «
initialize weight matrices W,, W, and P.
fort=1,2,...,T do

a+— Wyxy ; b+ Wy, > projection of inputs
run
dz;—y) =a; + b, — Pny(y) — az(y) > neural dynamics
dn
—jy(v) =Plz(y) —mi(y)
until convergence
W, «— W, +1(z; — a;)x; > synaptic updates

Wy < Wy + U(Zt - bt>y;r
P+ P+ 2(zn] — P)
end for

compartment exceeds the corresponding inhibitory input (the source of which is ex-
plained below) it produces a calcium plateau potential that propagates through the
basal dendrites, driving plasticity [45, 23, 5]. When the apical calcium plateau po-
tential and basal dendritic current coincidentally arrive in the soma, they generate a
burst in spiking output [24, 23, 5]. Inhibitory interneurons integrate pyramidal out-
puts and reciprocally inhibit the apical dendrites of pyramidal neurons, thus closing
the loop.

We propose that a network of k& pyramidal neurons implements CCA on the in-
puts received by apical and basal dendrites and outputs the whitened sum of CCSPs
(Algorithm 3). In our model, each pyramidal neuron has three compartments — two
compartments for the apical and basal dendritic currents, and one compartment for
the somatic output. The two datasets X and Y are represented as activity vectors x;
and y; streamed onto the apical and basal dendrites respectively, Figure 3. At each
time step, the activity vectors are multiplied by the corresponding synaptic weights
to yield localized apical and basal dendritic currents, a, = W;x, and b, = Wy,
thus implementing projection onto the common subspace. This is followed by the
following linear recurrent neural dynamics:

dz ()

At by — Pny(v) — az,(v) (20)
d“;y) —PT2(7) - nu(y), (21)

where the components of z; are represented by the spiking activity of pyramidal neu-
rons, the components of n; are represented by the activity of inhibitory interneurons,
the components of P are represented by the synaptic weights from the interneurons
to the pyramidal neurons, the components of P are represented by the synaptic
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Figure 3: Cortical microcircuit implementation of Adaptive Bio-CCA with output
whitening (Algorithm 3). The black cell bodies denote pyramidal neurons, with the
apical tufts pointing upwards. The red and blue lines denote the axons respectively
transmitting the apical input x and basal input y. The black lines originating from
the bases of the pyramidal neurons are their axons, which transmit their output z.
The green cell bodies denote the interneurons and the green lines are their axons,
which transmit their output n. Filled circles denote non-Hebbian synapses whose
updates are proportional to the input (i.e., x or y) and the weighted sum of the
calcium plateau potential plus backpropagating somatic output [i.e., ¢’ + (1 — a)z
or ¢+ (1 — a)z]. The directions of travel of these weighted sums are depicted
using dashed lines with arrows. Empty circles denote Hebbian or anti-Hebbian
synapses whose updates are proportional or inversely proportional to the pre- and
post-synaptic activities.
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weights from the pyramidal neurons to the interneurons, and « is the threshold
parameter of the adaptive algorithm. These dynamics equilibrate at n, = P "z, and

z, = (PP" +al,)(a, + by). (22)
Provided o > 0, we can rearrange Equation (22) to write the output as
zZ; = O{_1<bt + C?),

where the components of ¢ := a;—Pn, are represented by the apical calcium plateau
potentials within each pyramidal neuron. In other words, the output is proportional
to the sum of the basal dendritic current and the apical calcium plateau potential,
which is consistent with experimental evidence showing that the output depends on
both the basal inputs and apical calcium plateau potential [5, 6, 28].

Next, we compare the synaptic update rules with experimental evidence. Re-
arranging Equation (22) and substituting into the synaptic update rules in Algo-
rithm 3, we can rewrite the synaptic updates as follows:

W, + W, +n(c)+(1—a)z)x,
W, W, +n(cf+(1—a)z)y/
PP+ lzn —P)
T

where the components of ¢ := b; — Pn; are represented by basal calcium plateau
potentials within each pyramidal neuron. The learning signal for the basal (resp.
apical) synaptic updates of this circuit is the correlation between the sum of the
apical (resp. basal) calcium plateau potentials plus the scaled spiking activity of the
pyramidal neurons, ¢? + (1 — a)z; [resp. ¢ + (1 — @)z, and the synaptic inputs to
the basal (resp. apical) dendrites, x; (resp. y;). When a = 1 the spiking (action po-
tentials) of the post-synaptic neuron is not required for synaptic plasticity, whereas
when « # 1 the spiking of the post-synaptic neuron affects synaptic plasticity along
with the calcium plateau. Therefore, our model can account for a range of ex-
perimental observations which have demonstrated that spiking in the post-synaptic
neuron contributes to plasticity in some contexts [13, 11, 6, 28], but does not appear
to affect plasticity in other contexts [46, 43]. Unlike Hebbian learning rules which de-
pend only on the correlation of the spiking output of the post-synaptic neuron with
the pre-synaptic spiking, the mechanisms involving the calcium plateau potential
represented internally in a neuron are called non-Hebbian. Because synapses have
access to both the corresponding presynaptic activity and to the calcium plateau
potential, the learning rule remains local.

Note that the update rule for the synapses in the apical dendrites, W, depend
on the basal calcium plateau potentials c?. Experimental evidence is focused on
apical calcium plateau potentials and it is not clear whether differences between
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basal inputs and inhibitory signals generate calcium signals for driving plasticity
in the apical dendrites. Alternatively, the learning rule for W, coincides with the
learning rule for the apical dendrites in [14], where a biological implementation in
terms of local depolarization and backpropagating spikes was proposed. Due to the
inconclusive evidence pertaining to plasticity in the apical tuft, we find it useful to
put forth both interpretations.

Multi-compartmental models of pyramidal neurons have been invoked previ-
ously in the context of biological implementation of the backpropagation algorithm
[21, 47, 16, 17, 42, 41]. Under this interpretation, the apical compartment repre-
sents the target output, the basal compartment represents the algorithm prediction
and calcium plateau potentials communicate the error from the apical to the basal
compartment, which is used for synaptic weight updates. The difference between
these models and ours is that we use a normative approach to derive not only the
learning rules but also the neural dynamics of the CCA algorithm ensuring that the
output of the network is known for any input. On the other hand, the linearity of
neural dynamics in our network means that stacking our networks will not lead to
any nontrivial results expected of a deep learning architecture. We leave introducing
nonlinearities into neural dynamics and stacking our network to future work.

We conclude this section with comments on the interneuron-to-pyramidal neu-
ron synaptic weight matrix P and pyramidal neuron-to-interneuron synaptic weight
matrix P T, as well as the computational role of the interneurons in this network.
First, the algorithm appears to require a weight sharing mechanism between the
two sets of synapses to ensure the symmetry between the weight matrices, which
is biologically unrealistic and commonly referred to as the weight transport prob-
lem. However, even without any initial symmetry between these feedforward and
feedback synaptic weights, because of the symmetry of the local learning rules,
the difference between the two will decay exponentially without requiring weight
transport (see Appendix B.3). Second, in Equations (20)—(21), the interneuron-to-
pyramidal neuron synaptic weight matrix P is preceded by a negative sign and
the pyramidal neuron-to-interneuron synaptic weight matrix P ' is preceded by
a positive sign, which is consistent with the fact that, in simplified cortical mi-
crocircuits, interneuron-to-pyramidal neuron synapses are inhibitory whereas the
pyramidal neuron-to-interneuron synapses are excitatory. That being said, this in-
terpretation is superficial because the weight matrices are not constrained to be
non-negative, which is due to the fact that we are implementing a linear statistical
method. Imposing non-negativity constraints on the weights P and PT may be
useful for implementing nonlinear statistical methods; however, this requires further
investigation. Finally, the activities of the interneurons N were introduced in Equa-
tion (17) to decorrelate the output. This is consistent with previous models of the
cortex (e.g., [20, 50]), which have introduced inhibitory interneurons to decorrelate
excitatory outputs; however, in contrast to the current work, the models proposed
in [20, 50] are not normative.
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6 Numerical experiments

We now evaluate the performance of the online algorithms, Bio-CCA and Adap-
tive Bio-CCA with output whitening. In each plot, the lines and shaded regions
respectively denote the means and 90% confidence intervals over 5 runs. Detailed
descriptions of the implementations are given in Appendix C.1. All experiments were
performed in Python on an iMac Pro equipped with a 3.2 GHz 8-Core Intel Xeon W
CPU. The evaluation code is available at https://github.com/flatironinstitute/
bio-cca.

6.1 Datasets

We first describe the evaluation datasets.

Synthetic. We generated a synthetic dataset with 7" = 100, 000 samples according
to the probabilistic model for CCA introduced by Bach and Jordan [3]. In particular,
let s1,...,s7 beii.d. 8-dimensional latent mean-zero Gaussian vectors with identity
covariance. Let T, € R***% T, € R ¥, € 8§ and ¥, € 8 be randomly
generated matrices and define the 50-dimensional observations xq,...,x7r and 30-
dimensional observations yq,...,yr by

Xt = szt+¢t7 y: = Tyst+’l:bt7 tzl?“'7T7

where ¢y, ..., ¢ (resp. ¥q,...,¢Pp) are i.i.d. 50-dimensional (resp. 30-dimensional)
mean-zero Gaussian vectors with covariance ¥, (resp. ¥,). Thus, conditioned on
the latent random variable s, the observation x (resp. y) has a Gaussian distribution
with mean T,s (resp. Tys) with covariance ¥, (resp. ¥,), i.e.,

Xt|St ~ N(szt, \I’:c)7 Yt|St ~ N(TySn ‘I’y)-

For this generative model, Bach and Jordan [3] showed that the posterior expectation
of the latent vector s; given the observation (x;,y;) is a linear transformation of the
sum of the 8-dimensional CCSPs z,; that is, E [s;|(x;, y:)] = Lz, for some 8 x8 matrix
L. (To see this, set M; = My = Pdl/2 in the paragraph following [3, Theorem 2].)
The first 10 canonical correlations are plotted in Figure 4 (left). Observe that the
first 8 canonical correlations are close to 1 and the remaining canonical correlations
are approximately 0. This sharp drop in the canonical correlations is a consequence
of the linear generative model and is generally not the case in real data (see, e.g.,
the right panel in Figure 4). Still, we find it useful to test our algorithms on this
synthetic dataset since the generative model is well studied and relevant to CCA

3]-
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Figure 4: Top 10 canonical correlations py, ..., p1o of the synthetic dataset (left)
and Mediamill (right).

Mediamill. The dataset Mediamill [44] consists of 7" = 43,907 samples (includ-
ing training and testing sets) of video data and text annotations, and has been
previously used to evaluate CCA algorithms [1, 37]. The first view consists of 120-
dimensional visual features extracted from representative video frames. The second
view consists of 101-dimensional vectors whose components correspond to manually
labeled semantic concepts associated with the video frames (e.g., “basketball” or
“tree”). To ensure that the problem is well-conditioned, we add Gaussian noise
with covariance matrix €lygg (resp. €lyg;), for € = 0.1, to the first (resp. second)
view to generate the data matrix X (resp. Y). The first 10 canonical correlations
are plotted in Figure 4 (right).

Non-stationary. To evaluate Adaptive Bio-CCA with output whitening, we gen-
erated a non-stationary synthetic dataset with 7" = 300,000 samples, which are
streamed from 3 distinct distributions that are generated according to the prob-
abilistic model in [3]. In this case, the first N = 100,000 samples are gener-
ated from a 4-dimensional latent source, the second N samples are generated from
an 8-dimensional latent source, and the final N samples are generated from a 1-
dimensional latent source.

Specifically, we let sq,...,sy (resp. Syi1,...,82ny and Son.i1,...,87) be iid.
4-dimensional (resp. 8-dimensional and 1-dimensional) mean-zero Gaussian vectors
with identity covariance. We then let TV € R30x4 T ¢ Ro0x8 T ¢ Rooxt,
TV € 304 TP ¢ R30xs TP ¢ R3OX1 ¢ S and ¥, € 8% be randomly
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generated matrices and define the 50-dimensional observations xy,...,x7r and 30-
dimensional observations yq,...,yr by

Xy = T:(vl)st+¢t7 Yt = Tél)sf+¢ta t=1,...,N,
Xy = Tgf)st‘f‘d)tv Yt = T§2)St+¢t7 t=N+1,....2N,
Xy = T(xg)st+¢t7 Yt = T§3)St—|—¢t, t=2N+1,....T,

where, as before, ¢, ..., ¢ (resp. ¥y, ..., 1¢;) are i.i.d. 50-dimensional (resp. 30-
dimensional) mean-zero Gaussian vectors with covariance ¥, (resp. ¥, ). In Figure
5, we plot the first 10 canonical correlations for each of the 3 distributions.

Distribution 1 Distribution 2 Distribution 3
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Figure 5: Top 10 canonical correlations py, ..., p1o of the 3 distributions that con-
tribute to the non-stationary synthetic dataset.

6.2 Bio-CCA

We now evaluate the performance of Bio-CCA (Algorithm 2) on the synthetic
dataset and Mediamill.

Competing algorithms. We compare the performance of Bio-CCA with the fol-
lowing state-of-the-art online CCA algorithms:

e A two-time-scale algorithm for computing the top canonical correlation ba-
sis vectors (i.e., & = 1) introduced by Bhatia et al. [4]. The algorithm is
abbreviated “Gen-Oja” due to its resemblance to Oja’s method [33].

e An inexact Matrix Stochastic Gradient method for solving CCA, abbreviated
“MSG-CCA”, which was derived by Arora et al. [1].

e The asymmetric neural network proposed by Pehlevan et al. [37], which we
abbreviate as “Asym-NN”.
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e The biologically plausible Reduced-Rank Regression algorithm derived by Golkar
et al. [14], abbreviated “Bio-RRR”, which implements a supervised version of
CCA when s =1 (see Algorithm 4 in Appendix B.2).

Detailed descriptions of the implementations of each algorithm are provided in Ap-
pendix C.1.

Performance metrics. To evaluate the performance of Bio-CCA, we use 2 perfor-
mance metrics. The first performance metric is the following [0, 2]-valued normalized
objective error function:

max — 1r(V],C., V
Normalized objective error(t) := P (Vi Coy y’t). (23)

pmax

Here pmax := (p1+- -+ px)/2 is the optimal value of the CCA objective (1)—(2), and
(V. V1) are the basis vectors reported by the respective algorithm after iteration
t, normalized to ensure they satisfy the orthonormality constraint (2). (We do not
evaluate Bio-RRR using this metric because the algorithm only outputs one set of
basis vectors.)

The second performance metric is the (z—)subspace error function is defined by

Subspace error() := |V, (V] V,,) 'V, =V, (V,V,) "'V, |2, (24)

where V, is the matrix of optimal basis vectors defined as in Equation (5). (We
do not evaluate MSG-CCA using this metric because the algorithm outputs the
product Vx,tVzI . rather than outputting the basis vectors V,; and V,; separately.)

Evaluation on the synthetic dataset. In Figure 6 we plot the performance of
Bio-CCA, in terms of both sample and runtime efficiency, against the competing
algorithms for target dimensions £ = 1, 2,4 on the synthetic dataset, presented once
in a randomly permuted order. For k£ = 1, Gen-Oja initially outperforms Bio-CCA
in sample and runtime efficiency; however Bio-CCA eventually performs comparably
with Gen-Oja when given sufficiently many samples (and outperforms Gen-Oja in
terms of subspace error). For k = 2,4, the sample and runtime efficiency of Bio-
CCA outperforms the other competing algorithms. The MSG-CCA error does not
begin to decay until the 103 iteration because the first 10? samples are used to obtain
initial estimates of the covariance matrices C,, and C,,. The poor performance of
the asymmetric network [37] is due in part to the fact that the algorithm depends
on the gaps between the canonical correlations, which are small for the synthetic
dataset. In Figure 11 of Appendix C.2, we verify that the Bio-CCA basis vectors
asymptotically satisfy the orthonormality constraint (2).
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Figure 6: Comparisons of Bio-CCA (Algorithm 2) with the competing algorithms
on the synthetic dataset, for k = 1,2,4, in terms of the normalized objective error
defined in Equation (23) as a function of sample number and runtime (top two rows),
and in terms of the subspace error defined in Equation (24) as a function of sample
number and runtime (bottom two rows).



Evaluation on Mediamill. In Figure 7 we plot the performance of Bio-CCA,
in terms of both sample and runtime efficiency, against the competing algorithms
for target dimensions k = 1,2,4 on Mediamill, presented 3 times with a randomly
permuted order in each presentation. When tested on Mediamill, the sample and
runtime efficiency of Bio-CCA outperform the competing algorithms (for k£ = 1, Bio-
RRR performs comparably with Bio-CCA). In Figure 12 of Appendix C.2, we verify
that the Bio-CCA basis vectors asymptotically satisfy the orthonormality constraint

2).

6.3 Adaptive Bio-CCA with output whitening

Next, we evaluate the performance of Adaptive Bio-CCA with output whitening
(Algorithm 3) on all 3 datasets. Since we are unaware of competing online algorithms
for adaptive CCA with output whitening, to compare the performance of Algorithm
3 to existing methods, we also plot the performance of Bio-RRR [14] with respect to
subspace error, where we a priori select the target dimension. We chose Bio-RRR
because the algorithm also maps onto a neural network that resembles the cortical
microcircuit and because it performs relatively well on the synthetic dataset and
Mediamill.

Performance metric. To evaluate the performance of Adaptive Bio-CCA with
output whitening, we use a subspace error metric. Recall that the target output
rank of Algorithm 3, denoted r, is equal to the number of canonical correlations
P1s- -, pr that exceed max(a — 1,0), i.e.,

r:=max{l <i<k:p; >max(a—1,0)}. (25)

Since the target dimension is often less than k, the subspace error defined in Equa-
tion (24) is not an appropriate metric because the projection matrices are rank k.
Rather, we evaluate Adaptive Bio-CCA with output whitening using the adaptive
subspace error function defined by

Adaptive subspace error(t) := Hﬁztﬂ';t — V. (VIV,)"'VI2, (26)

where INJN is the m X r matrix whose column vectors are the top r right-singular
vectors of W, ,;, and {71 is the m x r matrix whose i*" column vector is equal to
the i column vector of the matrix V, defined in Equation (5), for i = 1,...,7.
(The covariance matrices used in the definition for V, are those associated with the
distribution that is being streamed at iteration ¢.) If r = k, then the error aligns
with the subspace error defined in Equation (24). Since the output dimension of
Bio-RRR is a priori set to r, the performance of Bio-RRR is evaluated using the
subspace error defined in Equation (24).
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a, r is the target output rank defined as in Equation (25).

Evaluation on the synthetic dataset. From Figure 4 (left) we see that the
first 8 canonical correlations are close to 1 and the remaining canonical correlations
are approximately 0. Therefore, for £ > 8 and a € (1.1,1.9), Algorithm 3 should
project the inputs x; and y; onto the 8-dimensional subspace spanned by the top 8
pairs of canonical correlation basis vectors, and set the non-zero output covariance
eigenvalues to one. In Figure 8 we plot the performance of Algorithm 3 with £ = 10
for @« = 1.2,1.5,1.8 on the synthetic dataset (presented once with a randomly per-
muted order). We see that Adaptive Bio-CCA with output whitening outperforms
Bio-RRR, even though the target output dimension of Bio-RRR was set a priori.
In Figure 13 of Appendix C.2, we verify that the Adaptive Bio-CCA with output
whitening basis vectors asymptotically satisfy the whitenening constraint.

Evaluation on Mediamill. From Figure 4 (right) we see that the canonical cor-
relations of the dataset Mediamill exhibit a more gradual decay than the canonical
correlations of the synthetic dataset. As we increase the threshold « in the interval
(1.1,1.4), the rank of the output of Algorithm 3 decreases. In Figure 9 we plot
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Figure 9: Comparisons of Adaptive Bio-CCA with output whitening (Algorithm
3) with Bio-RRR on the dataset Mediamill, for o« = 1.2,1.5,1.8, in terms of the
subspace error as a function of sample number (top row) and runtime (bottom row).
For each «, r is the target output rank defined as in Equation (25).

the performance of Algorithm 3 with £ = 10 for a = 1.15,1.2,1.3 on Mediamill
(presented three times with a randomly permuted order in each presentation). As
with the synthetic dataset, we find that Adaptive Bio-CCA with output whitening
outperforms Bio-RRR. In Figure 14 of Appendix C.2, we verify that the Adaptive
Bio-CCA with output whitening basis vectors asymptotically satisfy the whitenen-
ing constraint.

Evaluation on the non-stationary dataset. From Figure 5, we see that the
distributions that contribute to the non-stationary dataset all have canonical corre-
lations that are close to 0 or 1. The first distribution has 4 canonical correlations
close to 1, the second distribution has 8 canonical correlations close to 1 and the
third distribution has 1 canonical correlation close to 1. Therefore, for £ > 8 and
a € (1.1,1.9), Algorithm 3 should initially (for the first 100,000 inputs) project
the inputs x; and y; onto a 4-dimensional subspaces, then (for the second 100,000
inputs) project the inputs onto an 8-dimensional subspaces, and finally (for the fi-
nal 100,000 inputs) project the inputs onto a 1-dimensional subspaces. In Figure
10 (left) we plot the performance of Algorithm 3 with k¥ = 10 and o = 1.5 on
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Figure 10: On the left we plot the performance of Adaptive Bio-CCA with output
whitening (with o = 1.5) on the non-stationary synthetic dataset in terms of the
subspace error defined in Equation (26). On the right we plot the output rank
defined in Equation (27).

the non-stationary dataset in terms of the adaptive subspace error.? Note that the
adaptive subspace error spikes each time the algorithm is streamed inputs from a
new distribution (these epochs are denoted by the gray vertical dashed lines) before
decaying. In Figure 10 (right) we plot the output rank of Adaptive Bio-CCA with
output whitening defined by

Output rank(t) = Tr(V, ;CuaVar + V,,Cay Vs + V, ,C1 Vo + V) ,Cy V),
(27)

where, at each iteration t, the covariance matrices correspond to the distribution
from which (x;,y;) is streamed. Note that the output rank adapts each time the
algorithm is streamed inputs from a new distribution to match the dimension of the
latent variable generating the distribution. In particular, we see that the algorithm
is able to quickly adapt its output rank to new distributions.

7 Discussion

In this work, we derived an online algorithm for CCA that can be implemented in a
neural network with multi-compartmental neurons and local, non-Hebbian learning
rules. We also derived an extension that adaptively chooses the output rank and
whitens the output. Remarkably, the neural architecture and non-Hebbian learn-
ing rules of our extension resembled neural circuitry and non-Hebbian plasticity
in cortical pyramidal neurons. Thus, our neural network model may be useful for

2Since the competing algorithms are not adaptive and need to have their output dimension set
by hand, we do not include a competing algorithm for comparison.
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understanding the computational role of multi-compartmental neurons with non-
Hebbian plasticity.

While our neural network model captures salient features of cortical microcir-
cuits, there are important biophysical properties that are not explained by our
model. First, our model uses linear neurons to solve the linear CCA problem, which
substantially limits its computational capabilities and is a major simplification of
cortical pyramidal neurons which can perform nonlinear operations [12]. However,
studying the analytically tractable and interpretable linear neural network model
is useful for understanding more complex nonlinear models. Such an approach has
proven successful for studying deep networks in the machine learning literature [2].
In future work, we plan to incorporate nonlinear neurons in our model.

Second, our neural network implementation requires the same number of in-
terneurons and principal neurons, whereas in the cortex there are approximately 4
times more pyramidal neurons than interneurons [24]. In our model, the interneu-
rons decorrelate the output and, in practice, the optimal fixed points of the algo-
rithm can destabilize when there are fewer interneurons than principal neurons (see
Remark 3A in the supplementary material of [34]). In biological circuits, these insta-
bilities could be mitigated by other biophysical constraints; however, a theoretical
justification would require additional work.

Third, the output of our neural network is the equally weighted sum of the basal
and apical projections. However, experimental evidence suggests that the pyramidal
neurons integrate their apical and basal inputs asymmetrically [25, 23, 29]. In
addition, in our model, the apical learning rule is non-Hebbian and depends on a
calcium plateau potential that travels from the basal dendrites to the apical tuft.
Experimental evidence for calcium plateau potential dependent plasticity is focused
on the basal dendrites, with inconclusive evidence on the plasticity rules for the
apical dendrites [13, 43].

To provide an alternative explanation of cortical computation, in a separate
work [14], we derive an online algorithm for the general supervised learning method
Reduced-Rank Regression, which includes CCA as a special case (see Appendix B.2
for a detailed comparison of the two algorithms). The algorithm also maps onto a
neural network with multi-compartmental neurons and non-Hebbian plasticity in the
basal dendrites. Both models adopt a normative approach in which the algorithms
are derived from principled objective functions. This approach is highly instructive
as the differences between the models highlight which features of the network that
are central to implementing an unsupervised learning method versus a supervised
learning method.

There are three main differences between the biological interpretation of the
two algorithms. First, the output of the network in [14] is the projection of the
basal inputs, with no apical contribution. Second, the network in [14] allows for
a range of apical synaptic update rules, including Hebbian updates. Third, the
adaptive network derived here includes a threshold parameter o, which adaptively
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sets the output dimension and is not included in [14]. In our model, this param-
eter corresponds the contribution of the somatic output to plasticity in the basal
dendrites. These differences can be compared to experimental outcomes to provide
evidence that cortical microcircuits implement unsupervised algorithms, supervised
algorithms, or mixtures of both. Thus, we find it informative to put forth and
contrast the two models.

Finally, we did not prove theoretical guarantees that our algorithms converge.
As we show in Appendix D, Offline-CCA and Bio-CCA can be viewed as gradi-
ent descent-ascent and stochastic gradient descent-ascent algorithms for solving a
nonconvex-concave min-max problem. While gradient descent-ascent algorithms are
natural methods for solving such min-max problems, they are not always guaranteed
to converge to a desired solution. In fact, when the gradient descent step size not
sufficiently small relative to the gradient ascent step size (i.e., when 7 is not suf-
ficiently small), gradient descent-ascent algorithms for solving nonconvex-concave
min-max problems can converge to limit cycles [18,; 30]. Establishing local or global
convergence, and convergence rate guarantees for general gradient descent-ascent
algorithms is an active area of research, and even recent advances [26] impose as-
sumptions that are not satisfied in our setting. In Appendix D, we discuss these
challenges and place our algorithms within the broader context of gradient descent-
ascent algorithms for solving nonconvex-concave min-max problems.
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A Sums of CCSPs as principal subspace projec-

tions
In this section, we show that the sums of the CCPSs z, ...,z can be expressed
as the principal subspace projection of the whitened concatenated data &, ..., &,
defined by
Coa' %
£ = —-1/2 (28)
ny/ Yt

To this end, recall the CCA objective

arg max Tr (VInyVy)

VZGRka,VyGR"Xk
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subject to the whitening constraint V] C,,V, + V; C,,V, = I;,. We can rewrite
the CCA objective as a generalized eigenproblem:

-
Va: C:ch Va:
arg max Tr [V ] [Cly ] {V ] , (29)

VIE]Rka,VyER"Xk Yy Yy

subject to the whitening constraint

SIS R

The equivalence can be readily verified by expanding the matrix products in Equa-
tions (29)—(30).

Next, we transform this generalized eigenproblem formulation (29)—(30) into a
standard eigenproblem formulation. Since the trace of the left hand side of Equa-
tion (30) is constrained to equal k, we can add it to the trace in Equation (29),
without affecting the output of the argmax, to arrive at the CCA objective:

-
A% C,. C A%
arg max Tr { m} [ T my} [ I] (31
VzeRMXk V, eRnxk Vy C;cry ny Vy )

subject to the whitening constraint in Equation (30).
Our final step is a substitution of variables. Define the d x k& matrix

CH2V,

V. =
e,

(32)

After substituting into Equations (31) and (30), we see that (V., V,) is a solution
of the CCA objective if and only if V¢ is a solution of:

arg max Tr VEC&Vg subject to VgTVE = I, (33)
VecRaIxk

where we recall that Cg. is the covariance matrix defined by Cge 1= %Zthl €L,
Importantly, Equation (33) is the variance maximization objective for the stan-
dard PCA eigenproblem, which is optimized when the column vectors of V¢ form
an orthonormal basis spanning the k-dimensional principal subspace of the data
&,...,&p. Therefore, by Equations (28) and (32), the projection of the vector &,
onto its principal subspace is precisely the desired sum of CCSPs:

—T —T —T
z;:=V,x,+V, y: =V, &,
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B Adaptive Bio-CCA with output whitening

B.1 Detailed derivation of Algorithm 3

Recall the min-max objective given in Equation (19):

arg min max _ min min  max L(W,, W, P, Z N), (34)
ZeREXT NERFXT W,eRkxm W, cRkxn PcRkXE

where
~ 1
L(W,,W,,P,Z N) := 7 Tr (—2Z2"W,X —2Z'W,Y + aZ'Z)
1
+ T (2N'P'Z - N'N)
+Tr (W,C.u W, + W,C,, W, —PP").

Since E(Wz, W,,P,Z,N) is strictly convex in W,, W, and Z, and strictly concave
in P and N, we can interchange the order of optimization to obtain:

min min  max min max L(W,, W, P, Z N). (35)
W, eRkXm W, eRkxn PeRkXk ZeREXT NeRFXT

The interchange of the maximization with respect to N and the minimization
with respect to W, and W, is justified by the fact that, for fixed Z and P,

Z(WI, W,,P,Z, N) is strictly convex in (W,, W) and strictly concave in N. Sim-
ilarly, the interchange of the minimization with respect to Z and the maximiza-
tion with respect to P is justified by the fact that, for fixed N, W, and W,

L(W,, W, P, Z N) is convex in Z and strictly concave in P. In order to derive an
online algorithm, we write the objective in terms of time-separable terms:

T
~ 1 ~
L(W., Wy, P, Z,N) = > W(Wo, W, Pz, my),

t=1

where

L(W,, W, P z,n,) = —QZZWth — 2thWyyt + az:zt + 2ntTPth — n:nt
+ Tr (Woxx, W, + W,y y, W) —PPT).

At each time step ¢, for fixed W,, W, and M, we first simultaneously maximize
the objective function E(Wx, W,,P,z;,n,) over n, and minimize over z, by running
the fast gradient descent-ascent dynamics in Eqgs. (20)—(21) to equilibrium. Since
th(Wm,Wy, P,z;,n;) is convex in z; and concave in ny, these fast dynamics equi-
libriate at the saddle point where zZ, = (PP' + al;) !(a; + b;) and 7, = P'z,.
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Then, with (1, 7;) fixed, we perform a gradient descent-ascent step of the objective
function with respect to (W,, W,) and P:

77 a’i;(wxa Wy7 Pvzbﬁt)
W W, — -
w T We Ty W,

(W, W,, P, 7,7
W$<—Wy—g t( 78\;77 7Ztant)
Yy

77 aﬁ(wma Wy7 P7zt7ﬁt)

P P4+ —
< +27 oP

Substituting in with the partial derivatives yields Algorithm 3.

B.2 Comparison with Bio-RRR

In this section, we compare Adaptive Bio-CCA with output whitening (Algorithm
3) and Bio-RRR ([14, Algorithm 2]). We first state the Bio-RRR algorithm.?

Algorithm 4: Bio-RRR
input data {(x1,¥y1), ..., (X7, y7)}; max output-dimension k; weight 0 < s <1
initialize weight matrices W,, W, and P.
fort=1,2,....,7T do
a < Woxy 5z < Wyyr ;3 ny <+ Pz
W, +— W, + n.(zix] — sa;x) — (1 — s)W,)
W, « W, +n,(a; — Pn,)y,
P < P +7,(zn, —P)
end for

Bio-RRR implements a supervised learning method for minimizing reconstruc-
tion error, with the parameter 0 < s < 1 specifying the norm under which the error
is measured (see [14, section 3] for details). Importantly, when s = 1, Algorithm 4
implements a supervised version of CCA. Setting o = 1 in Algorithm 3 and s = 1
in Algorithm 4, the algorithms have identical network architectures and synaptic
update rules, namely:

Wx — W:J: + 773:(Zt - at)xtT
W, W, + T}ycfytT
P «+ P +1,(zm, — P),

3In Golkar et al. [14] the inputs x; are the basal inputs and the inputs y; are the apical inputs.
Here we switch the inputs to be consistent with Algorithm 3.
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where we recall that cf := a; — Pn;. For this parameter choice, the main difference
between the algorithms is that Adaptive Bio-CCA with output whitening is an un-
supervised learning algorithm whereas Bio-RRR is a supervised learning algorithm,
which is reflected in their outputs z;: the output of Algorithm 3 is the whitened
sum of the basal dendritic currents and the apical calcium plateau potential, i.e.,
z; = by + cf, whereas the output of [14, Algorithm 2] is the (whitened) CCSP of
the basal inputs, i.e., z; = b;. In other words, the apical inputs do not directly
contribute to the output of the network in [14]; only indirectly via plasticity in the
basal dendrites. Experimental evidence suggests that apical calcium plateau poten-
tials contribute significantly to the outputs of pyramidal cells, which supports the
model derived here. Furthermore, the model in this work allows one to adjust the
parameter « to adaptively set the output rank, which is important for analyzing
non-stationary input streams. In Table 1 we summarize the differences between the
two algorithms.

| | Adaptive Bio-CCA | Bio-RRR |

unsupervised /supervised unsupervised supervised
whitened outputs V V
adaptive output rank V X

Table 1: Comparison of Adaptive Bio-CCA with output whitening and Bio-RRR.

B.3 Decoupling the interneuron synapses

The neural network for Adaptive Bio-CCA with output whitening derived in Section
4 requires the pyramidal neuron-to-interneuron synaptic weight matrix P to be the
the transpose of the interneuron-to-pyramidal neuron synaptic weight matrix P.
Enforcing this symmetry via a centralized mechanism is not biologically plausible.
Rather, following [14, Appendix D], we show that the symmetry between these two
sets of weights naturally follows from the local learning rules.

To begin, we replace the pyramidal neuron-to-interneuron weight matrix P' by
a new weight matrix R with Hebbian learning rules:

R« R+ L(ngz —R). (36)
T

Let Py and Ry denote the initial values of P and R. Then, in view of the updates
rule for P in and R in Algorithm 3 and Equation (36), respectively, the difference
P" — R after T updates is given by

T _ N T
P -R=(1-=) (P, —Ro).
T
In particular, the difference decays exponentially (recall that n < 7 by assumption).
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C Numerics

C.1 Experimental details

Bio-CCA: We implemented Algorithm 2. We initialized W, (rexp. W,) to be
a random matrix with ii.d. mean-zero normal entries with variance 1/m (resp.
1/n). We initialized M to be the indentity matrix Ir. We used the time-dependent
learning rate of the form 7, = n9/(1 + ~t). To find the optimal hyperparameters,
we performed a grid search over ny € {1072,1073, 1071}, v € {1073,107*,107°} and
7 € {1,0.5,0.1}. The best performing parameters are reported in Table 2. Finally,
to ensure the reported basis vectors satisfy the orthonormality constraints (2), we
report the following normalized basis vectors:

_ _1y-1/2 _
V] = {M(W,C,; W] + W,C,,W/ M} "M 'W,, (37)
V] = {M(W,C,, W] +W,C,, W M} "MW, (38)
| \ synthetic | Mediamill |
Bio-CCA (19, v, 7) (1073,107%,0.1) (1072,107%,0.1)
Gen—Oja (607 7) (17 1072) (10727 1073)
Asym-NN (1, ) (2x 10745 x 107%) | (2 x 1073,5 x 107°)
Bio-RRR (10,7, 1t) (1073,107%, 10) (1072,1077, 10)
Adaptive Bio-CCA (ng,7,7) | (1073,107%,0.1) (1072,107%,0.5)

Table 2: Optimal time-dependent learning rates.

MSG-CCA: We implemented the online algorithm stated in [1]. MSG-CCA re-
quires a training set to estimate the covariance matrices C,, and C,,. We provided
the algorithm with 1000 samples to initially estimate the covariance matrix. Fol-
lowing [1], we use the time-dependent learning rate 1, = 0.1/+/%.

Gen-Oja: We implemented the online algorithm stated in [4]. The algorithm
includes 2 learning rates: o, and ;. As stated in [4], the Gen-Oja’s performance is
robust to changes in the learning rate «y, but sensitive to changes in the learning
rate 3;. Following [4], we set a; to be constant and equal to 1/R?* where R? :=
Tr(C,s) + Tr(Cyy). To optimize over [3;, we used a time-dependent learning rate of
the form 3; = /(1 +~t) and performed a grid search over 3y € {1,107, 1072} and
v € {1071,1072,1073}. The best performing parameters are reported in Table 2.
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Asymmetric CCA Network: We implemented the online multi-channel CCA
algorithm derived in [37]. Following [37], we use the linearly decaying learning
rate 7y = 1o X max(l — «at,0.1). To optimize the performance of the algorithm
we performed a grid search over 1y € {2 x 107210722 x 1073,1073} and « €
{5 x107°,1075,5 x 107%,1075}. The best performing parameters are reported in
Table 2.

Bio-RRR: We implemented the online CCA algorithm derived in [14] with s =1
(see Algorithm 4). The algorithm includes learning rates n,, 1, and 7,. Following
[14], we set n, = n and n, = 1, =,/ and use the time-dependent learning rate of
the form n; = ny/(1 +~t). We performed a grid search over 1y € {1072, 103,107},
v € {1073,107%,1075} and p € {1,10,100} and list best performing parameters in
Table 2.

Adaptive Bio-CCA with output whitening: We implemented Algorithm 3.
We initialized W,, W, and P to be random matrices with i.i.d. standard normal
entries. To find the optimal hyperparameters, we performed a grid search over
no € {1072,1073,107*}, v € {1073,1074,107°} and 7 € {1,0.5,0.1}. The best
performing parameters are reported in Table 2.

C.2 Orthonormality constraints

Bio-CCA. To verify that the Bio-CCA basis vectors asymptotically satisfy the
orthonormality constraint (2), we use the following orthonormality error function:
. HMt_l(Wa:,tCmWa—cr,t + Wy,tnyW;—,t)Mt_l - Ik”%7

= - .

Orthonormality Error(t) :
(39)

In Figure 11 (resp. Figure 12) we demonstrate that Bio-CCA asymptotically satisfies
the CCA orthonormality constraints (2) on the synthetic dataset (resp. Mediamill).

Adaptive Bio-CCA with output whitening. To verify that the top r eigenval-
ues of the output covariance asymptotically approach 1, we let A;(¢) > --- > A\(¢)
denote the ordered eigenvalues of the matrix

C..(t) =V,,CouVay + V,,CoyVy + V,,C, Vo + V, ,C Vo,

x Y,
and define the whitening error by
22:1 |>‘i(t) - 1|2 + Z?:r—i—l |)‘i(t)|2
? .

In Figure 13 (resp. Figure 14) we demonstrate that Bio-CCA asymptotically satisfies
the CCA orthonormality constraints (2) on the synthetic dataset (resp. Mediamill).

Whitening Error(t) := (40)
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Figure 11: The deviation of the Bio-CCA solution from the CCA orthonormality
constraint, in terms of the orthonormality error defined in Equation (39), on the
synthetic dataset.
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Figure 12: The deviation of the Bio-CCA solution from the CCA orthonormality
constraint, in terms of the orthonormality error defined in Equation (39), on the
dataset Mediamill.
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Figure 13: The deviation of the Bio-CCA solution from the CCA orthonormality
constraint, in terms of the orthonormality error defined in Equation (39), on the

synthetic dataset.
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Figure 14: The deviation of the Adaptive Bio-CCA with output whitening solution
from the whitening constraint, in terms of the whitening error defined in Equa-
tion (40), on the dataset Mediamill.
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D On convergence of the CCA algorithms

To interpret our offline and online CCA algorithms (Algorithms 1 & 2) mathe-
matically, we first make the following observation. Both algorithms optimize the
min-max objective (11), which includes optimization over the neural outputs Z. In
this way, the neural activities can be viewed as optimization steps, which is useful
for a biological interpretation of the algorithms. However, since we assume a sepa-
ration of time-scales in which the neural outputs equilibrate at their optimal values
before the synaptic weight matrices are updated, the neural dynamics are superflu-
ous when analyzing the algorithms from a mathematical perspective. Therefore, we
set Z equal to its equilibrium value Z = M~}(W,X + W,Y) in the cost function
L(W,, W,,M,Z) to obtain a min-max problem in terms of the synaptic weights:

min  max F(W, M), (41)

WeRkxd MeSk

where W := [W, W,] is the matrix of concatenated weights and F(W,M) :=
L(W,,W,,M,Z). After substitution, we see that F' : R¥*¢ x Sk — R is the
nonconvex-concave function

F(W,M) = Tr (—M1WAWT +WBW' — %W) :

with partial derivatives

OF (W, M) 1
—_— - =2M WA - 2WB
OW
OF (W, M) 1 S
— 2 =M "WAW M — M.
oM
where we have defined
C C C
A= | zy} , B = [ o 1 ) 42
|:C;:ry ny ny ( )

Similar objectives, with different values of A and B, arise in the analysis of online
principal subspace projection [36] and slow feature analysis [27] algorithms.

The synaptic updates in both our offline and online algorithms can be viewed
as (stochastic) gradient descent-ascent algorithms for solving the noncovex-concave
min-max problem (41). To make the comparison with our offline algorithm, we
substitute the optimal value Z into the synaptic weight updates in Algorithm 1 to
obtain:

W+ W +2n(M~'WA — WB) (43)
M« M+ {MIWAW M — M), (44)
T
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Comparing these updates to the partial derivatives of F, we see that Offline-CCA is
naturally interpreted as a gradient descent-ascent algorithm for solving the min-max
problem (41), with descent step size n and ascent step size 2. Similarly, to make
the comparison with our online algorithm, we substitute the explicit expression for
the equilibrium value z; = M~!(a; + b;), where a, = W,x; and b, = W,y,, into

the synaptic weight updates in Algorithm 2 to rewrite the updates:
W $— W + 277(M71WA,5 — WBt)
M« M + L(M'WA,W M — M),
T

where

A, = [XtXtT XthT} ’ B, = {XtX;r

vix[ vy, Yy, } '

Comparing these updates to the partial derivatives of F', we see that our online
algorithm is naturally interpreted as a stochastic gradient descent-ascent algorithm
for solving the min-max problem (41), using the time ¢ rank-1 approximations A;
and B, in place of A and B, respectively.

Establishing theoretical guarantees for solving nonconvex-concave min-max prob-
lems of the form (41) via stochastic gradient descent-ascent is an active area of
research [40]. Borkar [7, 8] proved asymptotic convergence to the solution of the
min-max problem for a two time-scale stochastic gradient descent-ascent algorithm,
where the ratio between the learning rates for the minimization step and the max-
imization step, 7, depends on the iteration and converges to zero in the limit as
the iteration number approaches infinity. Lin et al. [26] established convergence
rate guarantees for a stochastic gradient descent-ascent algorithm to an equilibrium
point (not necessarily a solution of the min-max problem). Both these results, how-
ever, impose assumptions that do not hold in our setting: the partial derivatives of
F" are Lipschitz continuous and M is restricted to a bounded convex set. Therefore,
establishing global stability with convergence rate guarantees for our offline and
online CCA algorithms requires new mathematical techniques that are beyond the
scope of this work.

Even proving local convergence properties is non-trivial. In the special case that
B = 1I,, Pehlevan et al. [36] carefully analyzed the continuous dynamical system
obtained by formally taking the step size 1 to zero in Equations (43)—(44). They
computed an explicit value 79 > 1/2; in terms the eigenvalues of A such that if
7 < 79, then solutions of the min-max problem (41) are the only linearly stable
fixed points of the continuous dynamics. The case that B # I; is more complicated,
and the approach in [36] is not readily extended. In ongoing work, we take a step
towards understanding the asymptotics of our algorithms by analyzing local stability
properties for a general class of gradient descent-ascent algorithms, which includes

Offline-CCA and Bio-CCA as special cases.
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