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Abstract 

Here, we report analysis and summary of research in the field of localization microscopy for optical 

imaging. We introduce the basic elements of super-resolved localization microscopy 

methods for PALM and STORM, commonly used both in vivo and in vitro, discussing the core 

essentials of background theory, instrumentation and computational algorithms. We discuss the 

resolution limit of light microscopy and the mathematical framework for 

localizing fluorescent dyes in space beyond this limit, including the precision obtainable as a function 

of the amount of light emitted from a dye, and how it leads to a fundamental compromise between 

spatial and temporal precision. The properties of a “good dye” are outlined, as are the features of 

PALM and STORM super-resolution microscopy and adaptations that may need to be made to 

experimental protocols to perform localization determination. We analyse briefly some of 

the methods of modern super-resolved optical imaging that work through reshaping point spread 

functions and how they  utilize aspects of localization microscopy, such as stimulated 

depletion (STED) methods and MINFLUX, and summarize modern methods that push localization 

into 3D using non-Gaussian point spread functions. We report on current methods for analyzing 

localization data including determination of 2D and 3D diffusion constants, molecular 

stoichiometries, and performing cluster analysis with cutting-edge techniques, and finally discuss 

how these techniques may be used to enable important insight into a range of biological processes. 
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1. The optical resolution limit 

Antony van Leeuwenhoek (1632-1723) was the pioneer of the light microscope [1]. Using glass beads 

with radii of curvature as small as 0.75 mm taken from blown or drawn glass, he managed to 

construct the seminal optical microscope, with a magnification of 275x and spatial resolution only 

slightly above one micron. Granted, the microscope had to be in effect jammed into the user’s eye 

and the sample held fractions of an inch from the lens, but it is remarkable that ca. 350 years ago a 

simple light microscope existed which had a spatial resolution only 3-4 times lower than a the so-

called “diffraction-limited barrier”, subsequently known as the optical resolution limit.  

Why is it, then, that such a “diffraction limit” exists? The answer emerged ~150 years after van 

Leeuwenhoek’s death from the theoretical deliberations of the German polymath Ernst Abbe: he 

argued that, when we image an object due to its scattering of light at a large distance from it (“large” 

being greater than several wavelengths of light), optical diffraction reduces sharpness in direct 

proportion to the wavelength of light used and in inverse proportion to the largest possible cone of 

light that can be accepted by the objective lens used (this quantity is characterized by the numerical 



aperture, or “NA”). Expressed algebraically we find that the minimum resolvable distance using 

ordinary light microscopy assuming imaging through a rectangular aperture is 

𝑑 =
𝜆

2NA
 

A variant of this formula as we will see below includes a factor of 1.22 in front of the wavelength λ 

parameter to account for circular apertures as occur in traditional light microscopy. Visible light has 

a wavelength approximately in the range 400-700 nm, and the best objective lenses commonly used 

in single objective lens research microscopes, at least those that avoid toxic organic solvent 

immersion oil, have an NA of around 1.5, implying that this Abbe limit as denoted above is 

somewhere between 100-250 nm, larger than many viruses but good enough to easily visualize 

bacteria, mammalian cells, and archaea as well as several subcellular features such mitochondria, 

chloroplast, nuclei, endosomes and vacuoles. However, this spatial resolution is clearly not sufficient 

to observe the activity of the cell on a single-molecule level whose length scale is 1-2 orders of 

magnitude smaller. 

Fortunately, this apparent hard limit can be softened: if one images an object that has a known 

shape (or at least that has a shape that has a known functional form) then we may fit an 

approximate mathematical model to the image obtained from the microscope. A parameter of this 

fit will be the intensity centroid of the object – and this is the key feature of “localization 

microscopy”. This centroid may be expressed to a sub-pixel resolution albeit with a suitable error 

related to parameters such as the number of photons sampled, the noise of the detector and the 

size of the detector pixels. In brightfield imaging this principle is commonly used to track beads 

attached to filamentous molecules for tethered particle motion experiments, for example; the first 

reported use of Gaussian fitting for localization microscopy was actually in 1988 by Jeff Gelles and 

co-authors, who found the intensity centroid of a plastic bead being rotated by a single kinesin 

motor to a precision of a few nanometers [2]. With the added binding specificity potential of 

fluorescence labelling and subsequent imaging, localization microscopy can go much further though. 

2. Super-resolved localization in 2D 

Fluorophores imaged onto the Cartesian plane of a 2D camera detector are manifest as a 

characteristic point spread function (PSF) known as the Airy disk, consisting of an intense central 

Gaussian-like zeroth order peak surrounded by higher order concentric rings of intensity, as shown 

in Figure 1a. Physically, the concentric rings arise due to Fraunhofer diffraction as the light 

propagates through a circular aperture.  Mathematically, the intensity distribution due to this effect 

is given by the modulus of the Fourier transform of the aperture squared. The Rayleigh criterion 

(though note there are other less used resolution criteria that could be used, such as the Sparrow 

limit) specifies that the minimum separation of two resolvable Airy disks is when the intensity peak 

of one coincides with the first intensity minimum of the other, and for circular lenses we find 

𝑑 =
0.61𝜆

NA
 

For example, for two green fluorescent protein (GFP) fluorophores [3], a very common dye use in 

live cell localization microscopy, emitting at a peak wavelength of 507 nm under normal 

physiological conditions and a typical 1.49 NA objective lens this value of d is 208 nm and therefore 

to obtain spatial localization information for more than one molecule they must be separated by at 

least this distance, or alternatively emitting at different times such that each molecule can be 

analyzed separately. 



Algorithm Name Description Features Pros Cons Notes 

Haar wavelet kernel 
(HAWK) analysis [4] 

Data pre-processing 
method 

Decomposes high-
density data to 
create longer, lower 
density dataset for 
further analysis 

May not collapse 
structures ~200 nm 
apart into one 
structure; 
experiments easier 
as high density can 
be worked around 

Depending on 
imaging, the 
localization 
precision may be 
comparable to 
lower resolution 
techniques e.g. 
structured 
illumination 
microscopy (SIM) [5] 

Versatile: can be 
used with any 
frame-by-frame 
localization 
algorithm 

DAOSTORM [6] STORM-type 
analysis package 

Fits multiple PSF 
model to pixel 
cluster to deal with 
overlapping 
fluorophores 

Increases workable 
density from ~ 1 to 
~7 molecules/µm2 
dependent on 
conditions 

Requires long 
STORM-type 
acquisitions; no 
temporal 
information 

Adapted from 
astronomy software 

FALCON [7] Localization for 
STORM/PALM-type 
data 

Iteratively fits 
Taylor-series 
expanded PSFs to 
data to find best fit 

Data treated as a 
continuum rather 
than on a grid 

Low temporal 
resolution 
(~2.5 s/frame) 

Localization error 
ca. 10 to 100 nm 
depending on 
imaging conditions 

ThunderSTORM [8] PALM/STORM 
localization 

Toolbox of analysis 
algorithms user can 
choose from 

Flexible Many methods need 
careful selection of 
parameter values, 
though some can be 
set algorithmically 

Free ImageJ plugin. 
Also functions as a 
data simulator for 
testing routines 

Bayesian analysis of 
blinking and bleaching 
(3B) [9] 

Factorial hidden 
Markov model 
which models whole 
system as a 
combination of dark 
and emitting 
fluorophores 

Produces a 
probabilistic model 
of the underlying 
system; exact 
positions may have 
high error bars 

Can analyse 
overlapping 
fluorophores, 
eliminates need for 
traditional user-
defined parameters, 
no dependence on 
specialized 
hardware 

Results require 
nuanced 
interpretation, 
Bayesian priors 
must be well known, 
resolution may vary 
along and 
perpendicular to a 
line of fluorophores 

Spatial resolution 
ca. 50 nm; temporal 
~s 

ADEMSCode [10] Matlab toolkit for 
single-molecule 
tracking and analysis 
described in this 
Section 

Can analyze 
stoichiometries, 
diffusion 
coefficients, 
localization 

Powerful, flexible Human-selected 
parameters require 
careful treatment 

Accesses high 
temporal resolution 
(~ms) as well as 
localization 

Single-Molecule Analysis 
by Unsupervised Gibbs 
sampling (SMAUG) [11] 

Bayesian approach 
analysing 
trajectories of single 
molecules 

Analyzes 
trajectories to find 
underlying mobility 
states and 
probabilities of 
moving between 
states 

Non-parametric, 
reduces bias 

Reliant on the 
quality of input 
data, needs good 
priors 

Post-processing – 
input data 
generated by other 
techniques 

RainSTORM [12] MATLAB image 
reconstruction code 

Complete STORM 
workflow including 
data simulation 

Simple, out-of-the 
box operation 

Weaker with dense 
data, relatively 
inflexible, no 
dynamical 
information 

 

QuickPALM  [13] PALM analysis 
software 

3D reconstruction, 
drift correction 

Complete PALM 
solution 

Static reconstruction Plugin for ImageJ 
[14] 



Table 1: Comparison of some modern super-resolving localization microscopy analysis packages. 

If we meet these conditions, we will generate an image similar to that in Figure 1b. The diffraction-

limited fluorescent “spot” (essentially the zeroth order peak of the Airy disk) is clearly visible spread 

over multiple pixels, though there is significant background noise, and taking line profiles shows that 

it is approximately Gaussian in both x and y Cartesian axes.  One way to proceed with localization 

determination using a computational algorithm is the following, exemplified by software that we 

have developed called ADEMSCode [10], but with a plethora of similar algorithms used by others in 

this field (see Table 1), including probabilistic Bayesian approaches (e.g. 3B [9]) and pre-processing 

steps to reduce fluorophore density and improve the effectiveness of subsequent analysis [4]. Most 

of these are capable of analyzing fluorophore localizations, but to our knowledge our own package 

[10] is the only one which is capable of evaluating localizations, dynamical information such as 

diffusion coefficients, and utilizing photobleaching dynamics to estimate molecular stoichiometries. 

ADEMSCode proceeds with localization analysis in the following way: first, find the peak pixel 

intensity from the camera image, and draw a small bounding box around it (typically 17x17 pixels 

(i.e. one central pixel with a padding of 8 pixels on each side), where for us a pixel is equivalent to 

50-60 nm at the sample). Within that square then draw a smaller circle (typically of 5 pixel radius) 

centered on the maximum of intensity which approximately contains the bulk information of the 

fluorophore’s PSF. The pixels which are then within the bounding box but not within the circle may 

have their intensities averaged to generate a local background estimate. Each pixel then has the 

local background value subtracted from it to leave the intensity due only to the fluorophore under 

examination, and this corrected intensity may now be fitted. An optimization process then occurs 

involving iterative Gaussian masking to refine the center of the circle and ultimately calculate a sub-

pixel precise estimate for the intensity centroid. A similar effect can be achieved by fitting a 2D 

Gaussian function plus uniform offset to intensity values that have not been background corrected, 

however, fit parameters often have to be heavily constrained in the low signal-to-noise regimes 

relevant to imaging single dim fluorescent protein molecules and due to the centroid output, 

iterative Gaussian masking is often more robust. 

Although it has an analytic form, for historical reasons relating to past benefits to computational 

efficiency, the central peak of the Airy disk is commonly approximated as a 2D Gaussian that has 

equation 

𝐼(𝑥, 𝑦) = 𝐼0𝑒
−(

(𝑥−𝑥0)2

2𝜎𝑥
2 +

(𝑦−𝑦0)2

2𝜎𝑦
2 )

 

where the fittable parameters are 𝐼0, the maximum brightness of the single fluorophore, 𝑥0 and 𝑦0, 

the co-ordinates of the center of the Gaussian, and 𝜎𝑥 and 𝜎𝑦 which are the Gaussian widths in 𝑥  

and 𝑦 respectively (interested readers should read the work of Kim Mortensen and co-workers on 

the improvements that can be made using a more accurate formulation for the PSF function [15]). 

Using conventional fluorescence microscopy, assuming any potential polarization effects from the 

orientation of the dipole axis of the fluorophore are over a time scale that is shorter that the imaging 

time scale but typically 6-7 orders of magnitude, the Airy disk is radially symmetrical, and so 𝜎𝑥 and 

𝜎𝑦 ought to be identical, and they may therefore be used as a sanity check that there is only one 

molecule under consideration – a chain of individually unresolvable fluorophores will have a far 

higher spread in 𝑥 or 𝑦. Similarly, the brightness of individual fluorophores in a dataset acquired 

under exactly the same imaging conditions is a Gaussian distribution about a mean value. After 

fitting the 2D Gaussian one may usefully plot the fitted 𝐼0 values to check for outliers; indeed, with a 

well-characterized fluorophore and microscope one may be able to include these checks in the 

analysis code itself. When iterative masking is used to determine the intensity centroid an initial 



guess is made for the intensity centroid, and a 2D function is then convolved with the raw pixel 

intensity data in the vicinity of each fluorescent spot. These convolved intensity data then have a 

revised intensity centroid, and the process is iterated until convergence. The only limitation on the 

function used is that it is radially symmetric, and it has a local maximum at the center. In other 

words, a triangular function would suffice, if the purpose is solely to determine the intensity 

centroid. However, a Gaussian function has advantages in returning meaningful additional details 

such as the sigma width and the integrated area. 

Having fit the 2D Gaussian, the fitting algorithm will usually report to the user not only the best-fit 

values but also either estimated errors on these fits or the matrix of covariances which may be 

trivially used to obtain the error bars. It is tempting to take the error on 𝑥0 and 𝑦0 optimized fitting 

values as the localization precision, but this reflects the fitting precision that only partially indicates 

the full error involved. In fact, the error on the centroid needs to be found by considering the full 

suite of errors involved when taking the experimental measurement. Principally, we must include 

the so-called “dark noise” in the camera, the fact that we cannot know which point in a pixel the 

photon has struck and therefore the PSF is pixelated, and the total number of photons that find their 

way from the fluorophore to the sensor. Mathematically, the formulation is given in reference [16] 

as 

𝛿 = √(
𝑠2 +

(𝑙𝑚)2

12
𝑁

) + (
4√𝜋𝑠2𝑏2

𝑙𝑚𝑁2 ) 

where 𝑠 is the fitted width of the Gaussian PSF and would usually be taken as a mean of 𝜎𝑥 and 𝜎𝑦, 

𝑁 is the number of photons, 𝑏 is the camera dark noise, 𝑙 is the camera pixel edge length and 𝑚 is 

the magnification of the microscope. We can instantly see that a compromise must be reached 

during experiment. If we image rapidly we will have fewer photons to fit to and the spatial 

localization precision worsens. The approximate scaling is with the reciprocal of the square root of 

the number of photons sampled in the case of relatively low dark noise and small camera pixels. If 

we image for a long time we can see localization precisions as low as one nanometer at the cost of 

losing dynamical information. In practice we find that imaging on the order of millisecond exposures 

leads to lateral (i.e. In the 2D plane of the camera detector) localization precisions of 30-50 nm for 

relatively poor dyes such as fluorescent protein molecules, while imaging for a second or more on 

far bright organic dyes may give single nanometer precision [17]. This fundamental trade-off has led 

to two complementary but different forms of super-resolved localization microscopy – long time-

course imaging on fixed cells for nm precision localization, and lower spatial resolution imaging that 

can access temporal information. 

If we have obtained a time-series acquisition of a system with mobile fluorophores (either freely 

diffusing or attached to a translocating molecular machine, for example) we may wish to work out 

where and how quickly the fluorescent spots are moving, or if their mobility is Brownian or 

‘anomalous’ or confined. The localization information may then be used to infer the underlying types 

of single-molecule mobility [18]. With localizations in hand this is relatively straightforward and is 

achieved by comparing successive frames (𝑛 and 𝑛 + 1) and accepting a that a spot in frame 𝑛 + 1 is 

the same molecule as a spot in frame 𝑛 if the two spots are sufficiently close together, have 

sufficiently comparable intensities, and are of sufficiently comparable shape. The vector between 

the spots may then be taken and the process repeated for frames 𝑛 + 1 and 𝑛 + 2, iteratively 

building up a 2D track. This is a threshold-based method and should therefore be used with care, 

with the threshold determined by converging one physical parameter like diffusion coefficient with 



respect to the distance cut-off (a useful review of this effect is found in reference[19]). There should 

also be sufficiently few fluorophores such that a spot in frame 𝑛 + 1 is not (or only rarely could be) 

accepted as being the same molecule as two or more spots in frame 𝑛 (or vice versa); should that 

occur the track will need to be terminated at that point. Deciding whether spots in two successive 

frames are the same molecule is clearly fraught with danger; modern methods with Bayesian 

analysis will be discussed later in our study here. 

 

Figure 1. a) a Gaussian PSF; b) A Gaussian PSF as seen with background noise; c) the Gaussian PSF with noise 

after background correction; d) The results of fitting a 2D Gaussian to c. White cross is the center of the fit 

Gaussian and the black cross is the true center of the PSF. Bar: 100 nm. 

 

Figure 2. Combining localizations from multiple frames to build a 2D track. 

3. STORM and PALM 

Though STORM (STochastic Optical Reconstruction Microscopy) and PALM (PhotoActivated Light 

Microscopy) have differences in their methods, they work towards the same goal: to spatially and 

temporally separate the “on” states of the fluorophores used so they the PSFs can be fitted to as 

described above. By fitting a large population of fluorophores an image of the overall structure or 

distribution of the system of interest may be generated. Here we will briefly describe each technique 

and their relative pros and cons. 

1. STORM 

STORM (STochastic Optical Reconstruction Microscopy) [20] is a powerful technique which relies on 

the inherent ability of some fluorophores to switch between “on” (emitting) and “off” (non-emitting) 

states when irradiated by a high intensity laser. At the beginning of the image acquisition almost all 

fluorophores will be in the on state. However, as time goes on, the population gradually moves to a 

combination of fluorophores that have photobleached and are permanently non-emissive, and some 

that are in the photoblinking state in which they transition between on and off states. At some 

point, the ratio of these populations will reach the correct state such that individual fluorophores 

are visible separated from their neighbors, i.e. the mean nearest-neighbor distance between 

photoactive fluorophores is then greater than the optical resolution limit and so a distinct PSF image 

associated with each separate fluorophore molecule can be seen. A time series of frames must be 



acquired of the system in these conditions, and each fluorophore in each frame is localized as 

described above. The loci found may then be all be plotted in one frame, showing the base 

distribution of the fluorophores and thus the structure of the system. This is “optical reconstruction” 

– although in each image frame only a few individual foci may be visible, by combining several 

hundreds or thousands of these image frames enough fluorophores will be captured to give the 

overall picture in detail far beyond non super-resolution microscopy methods. 

For this process to be feasible, several conditions must be met. First, the excitation laser power must 

be high enough to force the fluorophores into their photoblinking state. Though it is 

counterintuitive, a low power laser will enable the fluorophores to stay on longer but photobleach 

permanently afterwards, without any blinking. In general, laser excitation intensities at or above ca. 

1800 W/cm2 are effective depending on the dyes used. Secondly, the fluorophores of interest should 

be capable of photoblinking behavior, and when they do blink their single-molecule brightness must 

be above the background noise. Fluorophores which are suitable under these constraints will be 

discussed in Section 4.  

2. PALM 

PALM (PhotoActivated Light Microscopy) [21] takes a second approach to separating fluorophore 

emissions in space and time. While STORM relies on all fluorophores being excited at the same time 

but randomly blinking on and off, PALM randomly activates a random subset of the fluorophores in 

the system with one laser, and then excites them for imaging with a second laser. Activated 

fluorophores return to the initial state after they are imaged. Then repeat, and image a second set of 

fluorophores. Activation can mean either one of two processes. Either the fluorophore is initially 

dark and switches to a fluorescent state, or under illumination of the activation laser the 

fluorophore undergoes a color change, commonly from red to green. In either case the activating 

laser is usually ~long UV at around 400 nm wavelength, while the fluorescence excitation laser is in 

the ordinary visible range. 

The constraints for PALM fluorophores are obvious. Although they do not need to photoblink, they 

must be capable of switching states in response to UV light exposure, and once again they must be 

bright enough in their emissive state to be well above the background noise level. As PALM images 

single molecules, the laser intensity must be relatively high as for STORM.  

3. Pros and cons 

STORM and PALM are powerful techniques that enable reconstruction of tagged systems, for 

example microtubules in vivo or the architecture of organelles in the cell. In this respect, the 

information offered by STORM and PALM is unrivalled by other techniques – more detailed 

information is difficult to find as the crowded cellular environment precludes whole-cell X-ray or 

neutron diffraction experiments. Imaging tagged substructures using traditional diffraction-limited 

optical microscopy is possible but gives less detailed information, and even mathematical post-

processing techniques such as deconvolution (if they are suitable for the imaging conditions) give a 

lower resolution than super-resolution imaging itself. 

However, these are not “magic bullet” techniques and have their own drawbacks. Principally, both 

are slow methods. To collect enough information to properly reconstruct the base fluorophore 

distribution hundreds to thousands of frames at least must be taken, meaning that total imaging 

times are seconds to minutes. Given that many biological processes occur over millisecond 

timescales or faster this obviously precludes capturing time-resolved information from these rapid 

dynamic processes. Further, if there is some biological process restructuring the cellular 



environment during imaging a false picture may be obtained. For this reason, biological samples are 

usually “fixed” i.e. rendered static and inert before imaging to ensure that the fluorophore 

distribution does not change during image acquisition. Photodamage is also of concern. As 

fluorophores photobleach, they produce free radicals which attack and damage the biological 

sample. Various imaging buffers exist which minimize this though these can induce lower 

photoblinking, so a tradeoff must be struck.  

4. Techniques using modified point spread functions that use localization microscopy at some 

level 

STORM and PALM are both powerful techniques in their own right but they are not the only way to 

generate data that can be processed with a super-resolution algorithm. In 2000, Stefan Hell (who 

went on to share the 2014 Nobel Prize in Chemistry with William E. Moerner and Eric Betzig for “the 

development of super-resolved fluorescence microscopy” [22]) published an account of a new 

super-resolution method based around stimulated emission of fluorophores, and known as STED 

(Stimulated Emission Depletion) microscopy [23], [24]. In brief, STED involves two lasers that are 

focused on the same position, one that excites the fluorophores while a donut-shaped beam around 

this has the effect of suppressing emission from fluorophores in this region, achieved via 

stimulated emission when an excited-state fluorophore interacts with a photon whose energy is 

identical to the difference between ground and excited states. This molecule returns to its ground 

state via stimulated emission before any spontaneous fluorescence emission has time to occur, so 

in effect the fluorescence is depleted in a ring around the first laser focus. By making the ring 

volume arbitrarily small the diameter of this un-depleted central region can be made smaller than 

the standard diffraction-limited PSF width, thus enabling super-resolved precision using standard 

localization fitting algorithms to pinpoint the centroid of this region, <30 nm being typical at video-

rate sampling of a few tens of Hz.. Other related STED-like stimulated depletion approaches include 

Ground State Depletion (GSD) [25], saturated pattern excitation microscopy (SPEM) [26] and 

saturated structured illumination microscopy (SSIM) [27]. A similar result to STED using reversible 

photoswitching of fluorescent dyes but not reliant on stimulated emission depletion is known as 

RESOLFT (reversible saturable/switchable optical linear (fluorescence) transitions) microscopy [28] 

that also utilizes localization microscopy algorithms. 

Similar to but going beyond STED approaches is a recently developed method also from Stefan Hell 

and colleagues known as MINFLUX (MINimal photon FLUXes) [29] which does not need a depletion 

laser. Here, the excitation beam is the donut and so a fluorophore at the center of the beam will not 

be excited. By scanning the beam and finding the intensity minimum, the position of a fluorophore 

can then be found with a nanoscale spatial precision small spatial precision with an exceptionally 

fast scan rate of up to ca. 10 kHz. 

 



 

a. Figure 3: Schematic of STORM and PALM localization. A) the underlying fluorophore 

distribution. b-d) fluorophores are stochastically excited during STORM. e) reconstructing 

the original distribution from the emissions observed. f-i) In PALM, fluorophores are first 

activated with a UV laser (activated fluorophores in blue) and are then excited to fluoresce 

(red). j) The underlying distribution reconstructed. A given experiment time will produce 

fewer emission events in PALM and thus sample the underlying distribution slower than 

STORM. Bar: 200 nm. 
4. Choosing a fluorophore 

Selecting the correct fluorophore for the system of interest is clearly a prime concern. Summarized, 

fluorophores must: 

 be bright enough for single molecules to be seen above background noise 

 be photoactivatable or photoblink under the correct conditions 

 not interfere with ordinary cell processes if imaging in vivo 

 not unduly change the structure or function of an in vitro system 

 (for multi-color experiments) be sufficiently spectrally separated that they may be imaged 

individually without cross-excitation 

This is a considerable list of necessary attributes, and there are some further desirable ones. For 

example, some fluorophores are more photodamaging than others, and some laser lines are also 

more damaging to cells and tissues than others. Fluorophores may be sensitive to pH or ionic 

strength and thus be inappropriate for the system of interest. Fluorescent proteins that are 

expressed in vivo are often describedas being either definitively “monomeric” or non-monomeric. 

Non-monomeric fluorophores will have more of a propensity to form homo-oligomers, and if 

imaging freely diffusing proteins may seed aggregation. In some cases, therefore, care must be taken 

to choose the monomeric form of the protein, the nomenclature for which is a lowercase “m” 

before the fluorescent protein name. For example, the monomeric form of the commonly used 

green fluorescent protein (GFP) is mGFP [30] that has an A206K mutation that suppresses putative 

dimerization between GFP molecules. Table 2 lists commonly used fluorophores alongside their 

usual applications. 

  



 

Fluorophore class Example fluorophores Applications Notes 

First generation fluorescent 
proteins  

Green fluorescent protein 
[31], yellow fluorescent 
protein [32], red 
fluorescent protein [33] 

In vivo protein labelling 
through genomic 
integration; FRET, in vitro 
labelleing, STORM  

Not all suitable for single-
molecule imaging e.g. cyan 
fluorescent protein. 
Derived from sea 
anemones (RFP) or jellyfish 
(GFP) 

Second generation red 
fluorescent proteins 
(mFruits) 

mCherry, mOrange, 
mStrawberry [34] 

As above Increased brightness over 
first generation RFPs 

Second generation GFPs  Enhanced GFP [35], 
monomeric GFP [30], 
superfolder GFP [36] 

As above Improved brightness, 
reduced dimerization, and 
quickly-maturing, 
respectively  

First generation cyanine 
dyes 

Cy3 (orange), Cy5 (far-red) 
[37] 

Labelling nucleic acids, 
proteins, both in vitro and 
in vivo; FRET 

 Can be chemically 
conjugated to proteins, not 
genomically integrated. 
Sensitive to local conditions 

 Alexa Fluor family Alexa Fluor 488 [38] As above Second generation of 
xanthene, cyanine, and 
rhodamine dyes with 
improves brightness and 
photostability 

Hoechst  Hoechst 33342 [39] Minor groove binding DNA 
stain 

 Excited by UV light 

Janelia Fluor family JF525 [40] Cell permeable dyes, used 
in vivo with protein 
labelling such as Halo 
Tag/Snap Tag 

Improved quantum yields, 
ca. 2x brighter than 
comparable first-
generation cyanines 

Photoactivatable 
fluorescent proteins  

PAGFP [41], PA-mKate2 
[42] 

PALM in vitro and in vivo  Enters fluorescent state on 
application of UV 
lightPALM in vivo 

Photoconvertible 
fluorescent proteins  

mEos2 [43], Kaede [44], 
Dendra 2 [45] 

As above Change color on 
application of UV light 

Table 2: Table of commonly used classes of fluorophores and their principal applications. 

 

5. Ideal properties of a super-resolution microscope relevant to localization microscopy 

In Section 4 we discussed the properties of a good fluorophore for super-resolution imaging. Here 

we will briefly describe the properties of a good super-resolution microscope appropriate for 

localization microscopy.  

Lenses used should be clean and ideally coated with an anti-reflective coating for the wavelengths 

used, and care must be taken to ensure they are mounted truly perpendicular to the optical axis. 

Lasers should be able to produce a few milliwatts at a minimum and should produce stable output. 

Mirrors should be rated for the correct wavelength – what is reflective for infrared may be largely 

transparent to visible light. The whole system should be mounted on an air table to reduce 

mechanical vibration. Cameras should be capable of acquiring at the desired speeds, e.g. 

10ms/frame, and should be cooled to reduce shot noise. It is necessary also that the camera have 

some gain function to amplify the light collected, for example electron multiplying (EM) gain which 

produces a cascade of electrons to hit the CCD and thus enhance the signal – but also the noise. In 

general, for best fitting of single molecule spots the camera should be imaging at a resolution of 

approximately 40-60nm/pixel. This is a key consideration and may necessitate additional optics prior 

to the camera to expand the imaged light. 



The objective lens is one of the key components. For best performance this lens should have a high 

numerical aperture and be ideally oil-immersion (that is, oil is placed between the coverslip and the 

objective lens) to ensure good optical contact and enable high photon capture. That said, for 

imaging in excess of a few microns depth a water immersion lens may mitigate potential issues of 

spherical aberration that occur with oil immersion lenses, but with the caveat of a reduced 

numerical aperture of ~1.2, that reduces the photon capture budget. For dual-color experiments, 

chromatic aberration can be a problem – red and green light for example will come to focus at 

slightly different distances by a simple non-achromatic lens and therefore at a given height a red 

fluorophore may be in focus and a red fluorophore slightly defocused. There are four principal ways 

to get around this. i. One can measure the chromatic aberration and correct for it in image post-

processing. ii. One can use an automatic stage with multiple settable heights and move between 

focal distances between acquisitions. iii. One may acquire all the green fluorescence data, manually 

refocus, and then take all the red fluorescence data (for example). iv. One may purchase an 

objective lens that is apochromatic and has minimal chromatic aberration. The first three techniques 

have drawbacks – careful calibration is needed for correcting chromatic aberration in post-

processing, automatic stages may suffer from drift, and acquiring the data separately is non-trivial 

on unfixed samples since the acquisition may take some time. Moreover, the first acquisition may 

damage the system before you get the chance to look at the second fluorophore. Overall, if 

resources permit, an apochromatic lens is the best method for multi-color experiments. Though 

each optical microscope is different, the basic principles are similar across all, and a sample 

schematic is given in Figure 4. For convenience we will refer here only to an epifluorescence 

microscope, which is one in which the excitation light goes through the back of the objective and 

enters the sample collimated. The path the light takes is as follows: first, it is emitted from the laser, 

and if there are multiple lasers present then the fluorescence emissions are combined using dichroic 

mirrors to form one beam. This beam is then expanded using a telescope and then propagates 

through a lens that focusses the light on the back focal plane of the objective lens. The beam is 

directed into the objective lens by way of a dichroic mirror that reflects the excitation light but not 

the emitted light. The light hitting the objective lens then has originated from one focal distance 

away from the objective and is therefore collimated after the objective. This process of focusing and 

collimating with the objective is a second telescope that has the effect of reducing the beam width 

considerably. To get a beam of the correct width at the sample the expansion of the laser by the first 

telescope can be varied. After the excited fluorophores have emitted photons, a proportion of these 

is captured by the objective lens once more and collimated by it. The light path then goes back down 

the microscope and this time through the dichroic mirror and is focused typically on the back port of 

the microscope, where it may be re-collimated or imaged directly. For a dual-color experiment, the 

different color light must be split and imaged separately, either on two cameras or on separate parts 

of the same camera chip, or potentially using time-sharing just as with Alternating Laser Excitation 

[46] that uses a multi-bandpass filter set. In Figure 4b we show the simplest setup, a static color 

splitter based on a dichroic mirror imaging each channel on a separate part of the detector. 



 

Figure 4. Schematic of a super-resolution STORM/PALM microscope. The lasers are combined by 

the dichroic mirror D1 and the beam is expanded by the lens pair L1 and L2. The lens L3 just before 

the microscope body forms a telescope with the objective lens and ensures the beam is the 

correct width and comes out of the objective collimated. Excitation light is directed into the 

objective using the dichroic mirror D2, which allows the captured fluorescence (pink) though. The 

imaged light is then focused on the side port of the microscope with the lens L4 within the 

microscope housing itself, though for convenience we do not image here but recollimated the 

imaged light with a lens placed at the conjugate image plane (marked). b) Principles of a color 

splitter. Collected light is passed through the dichroic mirror D3, which separates the two channels 

(here orange and blue). The distinct channels are focused on the camera chip with the lens L5, so 

that each color channel hits a separate half of the chip as seen in panel c. c) separate channels may 

be merged to recover the true image. 

 

6. 3D localization 

Localization in 3D can be approached in one of two ways. Firstly, a sample can be scanned through in 
the z direction building up a full 3D stack of the entire system of interest. Then the z position can be 
approximated as being the slice in which a given PSF is most in focus. This has the distinct 
disadvantage of being extremely slow – the best frame rates are around 2 full stacks per second, but 
almost all cellular processes happen three orders of magnitude quicker than that. For fixed samples 
this may be appropriate but for understanding dynamical processes it is simply inappropriate. 
 
Instead, the PSF of the fluorophores can be altered through lenses or spatial light modulators (SLMs) 
so that they are non-symmetric about the focal point in z. Two principal techniques for this have 
emerged, namely astigmatism microscopy [47] and double-helix point spread function (DH-PSF) 
imaging [48]. 
 



For astigmatism imaging, the emitted light from the sample propagates through a cylindrical lens 
between the microscope and camera. This modifies the PSF from being rotationally symmetric – a 
Gaussian profile – into more of an elliptical profile. The orientation of the ellipse is dependent on 
whether the fluorophore is above or below the focal plane when imaged, and the ratio of the major 
to minor axes depends on the specific distance, as shown in Figure 5, which shows a simulated 
fluorophore’s appearance as a function of z position. For this to work in practice, before experiments 
an in vitro fluorophore sample should ideally be imaged and scanned in z in known increments using 
an automated nanostage. The ratio of vertical to horizontal axis may then be measured for each slice 
and plotted against vertical distance. A fluorophore’s focal point is where the ratio is 1, so that the 
relative absolute distance from the focus can be found. When imaging in an experiment, the focal 
plane is set and kept constant and the z positions of the fluorophores measured relative to that. In 
practice, this look-up table-based methodology is robust and requires only one additional lens in an 
existing fluorescence microscope, while the fluorophores themselves have only the same constraints 
as for 2D imaging. To date, astigmatism imaging with fluorophores in vitro and in vivo has shown an 
ability to beat the axial resolution limit by approximately a factor of 2-3, with axial spatial precisions 
of ca. 50 nm being common [49]. 
 
DH-PSF is a more complex technique requiring considerable different optics and a reconfiguration of 
the imaging path of the microscope. In a typical design, emitted light is collected and reflected off an 
SLM, while the light itself is imaged at an angle of 30° from the emitted light’s optical axis. This 
produces a PSF that forms a double helix along the optical axis.  When imaged in 2D, this appears as 
two separate dots, whose orientations are dependent on the z position of the fluorophore as seen in 
Figure 6, which simulates the appearance through z of a double-helical PSF. An angle may be 
generated by finding the angle between the vector linking the two fluorescent spots and the x axis. 
Then, as for astigmatism imaging, the angle-to-distance lookup table must be generated ideally from 
in vitro fluorophores before production data is acquired. The xy position of the fluorophore is taken 
to be the center of the two spots. This can be calculated by finding the centers of the spots 
themselves by fitting a 2D Gaussian to each, or by finding the centroid of the two-spot system with a 
specific centroid algorithm, through this latter technique is computationally more costly. An 
important drawback of DH-PSF imaging is that to generate the double helix the light is effectively 
split in two, and each spot has half the brightness of the full fluorophore at a given z position. If one 
is working in a low signal-to-noise regime, this reduction in brightness may make the spots 
indistinguishable from background. However, the z axis resolution is excellent – with sufficient 
photons detected the localization precision can be below 6 nm [50]. 

 

 

Figure 5: astigmatism point spread functions with distance from the focal plane. PSF modelled as a 2D 

Gaussian with x and y sigma values set according to simulated “height”. With each height step, σx is reduced 



by 1 and σy is increased by 1. For the lower panels, Gaussian noise has been added to each pixel to simulate 

background, but more complex noise such as camera shot noise are not included. Bar: 200 nm 

 

 

Figure 6: double helical point spread functions with distance from the focal plane. PSFs are simulated as two 

Gaussian distributions at opposite ends of an axis that rotates with each step in z. Again only Gaussian 

background noise is included in the lower panel simulations. Bar: 200 nm 

7. Analyzing 2- and 3D localization data 

Having found the trajectories of individual spots, a question immediately arises what to do with it. 
Broadly, we may define three categories of the trajectories that may each give useful information: 
position, velocity, and brightness. 

 
Analysis of the positions themselves gives access to diffusion coefficients by comparison to Brownian 
motion, as well as colocalization information between molecules – i.e. tagging different targets with 
different color fluorophores, measuring the positions of each and identifying if they are in the same 
place. Simple positional analysis also may tell us if a protein is in the nucleus or cytoplasm, for 
example. As well as these, the overall spot distribution may be analyzed to determine if there are 
identifiable distinct regions to which multiple fluorophores belong. This suite of techniques is known 
as cluster analysis. 
 
Various methods exist to perform cluster analysis. Most straightforward are distance-based methods 
such as the Voronoi method [51]. This generates a set of regions around each PSF such that each 
region is the area closer to the seed PSF than to any other, with small regions then indicating a 
cluster. Also widely used are density techniques such as density based spatial clustering of 
applications with noise (DBSCAN) [52] which iterates across all localizations and assesses the local 
density within a set radius r. If there is a minimum number of spots within the circle defined by r a 
cluster is accepted. This continues until the boundary of the dense area – and thus the entire cluster 
– is found. This repeats through all spots to find all clusters. Similarly using density are pure statistics-
based methods of measuring clustering, particularly Ripley’s H, K, and L functions [53]. These are a 
group of well-defined statistical transforms which can be applied to the image data and which have 
minima and maxima correlating to how clustered the data is. The values of the functions however 
only indicate whether over the spatial extent analyzed clustering is indicated. To classify points into 
discrete clusters requires analysis beyond the functions. This could be done by using the extended L 
function as proposed by Getis and Franklin [54], [55] 
 



More recently, Bayesian analysis techniques have been developed which make use of advanced 
statistical models to evaluate clustering and in general aim to remove the level of human input or 
parameter selection needed during analysis. Bayesian implementations often make use of the 
statistical functions described above [56] and the number of clusters is then predicted with reference 
to the model, usually that the clusters are approximately spherical with molecules inside the cluster 
distributed according to a Gaussian [57]. Bayesian approaches are also valuable for determining the 
mode of molecular mobility of tracking data in localization microscopy, for example, are molecules 
freely diffusing or confined [18]. 
 
In principle, the outputs of these deterministic methods can also be used to train machine learning 
models. However, machine learning is often sensitive to the input – if the data to be analyzed is too 
dissimilar from the training data the output will be unreliable at best. One implementation of neural 
networks for cluster analysis was published in 2020, which used a neural network trained on a given 
number of nearest-neighbour distance values, showing efficient computational performance 
compared to Bayesian methods or DBSCAN on both simulated and experimental data [58]. However, 
the extensive training needed may offset this gain depending on the size of the dataset to be 
analyzed.  
 
Velocities may also be characterised, and this is most commonly done in the context of molecular 
machines, where the step sizes and overall movement speed are difficult to determine by any other 
means and yet are crucial to biological function. By tracking fluorescently tagged molecular machines 
or cargoes these parameters can be accurately determined. Similarly, the overall drift of diffusing 
molecules may be examined to understand whether the Brownian motion they are undergoing is 
directed (for example facilitated diffusion, or an active process requiring the input of external free 
energy) or whether it is truly a random walk. 
 
Finally, the intensity (i.e. brightness) of the fluorescent spots contains significant information about 
the system. Specifically, if we have a population of fluorescently-tagged molecules, we may analyze 
the distribution of intensities to uncover whether they are monomeric or aggregating into clusters. 
For systems where we know that aggregation happens – for example in liquid-liquid phase separation 
[59] – we can use the intensity through time to work out the total stoichiometry of molecules within 
the cluster. Whatever the purpose, the method for this is the same, and is done by taking the initial 
total intensity and dividing it by the intensity of a single fluorophore. The most important parameter 
to determine is thus the intensity of a single fluorophore which we denote as the Isingle value. By 
plotting the total intensity of a cluster through time we will see the decrease in intensity as the 
fluorophores in the cluster photobleach occurs in a step-wise fashion such that the size of a step, 
once noise is removed, is an integer multiple of the Isingle value. There may be differences of ca. a 
few tens of percent with estimates made in vitro for Isingle due to different in local excitation 
intensity, and buffering conditions inside a cell. Therefore, it is important to determine Isingle in the 
physiological context. The simplest way to achieve this is to use only the final photobleaching step 
where there is only one fluorophore that bleaches to leave only the background noise – more 
accurate than attempting to count all steps since these are limited to a maximum of 6-7 depending 
on the dye used. Further, steps involving more the one photobleached molecule in a sampling time 
window will have a higher associated noise due to Poisson sampling of photons at higher intensities. 
To obtain Isingle, the full intensity through time track can be fitted to a stepwise function usually 
such as a hidden Markov model [60], or other edge-preserving filters such as Chung-Kennedy [61], 
and the step sizes extracted and averaged – simulated data of an intensity track is shown in Figure 
7a. Alternatively, the intensities of every spot can be plotted. If the was taken in the truly single 
molecule photoblinking regime, the majority of tracked spots should be single molecules, and 
therefore on a plot of intensity against number of spots a peak would be expected around Isingle. 
This overall process is known as step-wise photobleaching and is suitable for analysing either in vivo 



or in vitro data with the proviso that the Isingle values should ideally be determined separately for 
each sample. An illustration of simulated intensity-time data is in Figure. 

 

a. Figure 7 a) simulation of a step-wise photobleaching of a single intensity track; b and c) 

schematic of simple cluster analysis  

 

8. Applications of localization microscopy 

Single-molecule localization methods have been extensively applied both in vivo and in vitro to 

elucidate a wide range of biological processes. These include organization of molecules within the 

cell, the interplay between various cytoskeleton elements, and measuring diffusion coefficients. 

These details can tell us about what the key molecular interactions inside cells for specific biological 

process, as well as insights into mobility of molecular complexes and how these are influenced by 

the microenvironment of the cell. Here, we briefly present some biological results obtained to date. 

DNA and RNA processes are amongst the most important in the cell and they have been studied 

extensively with single molecule tools. Yan et al used single molecule imaging to monitor mRNA 

translation and measure the switching between translating and non-translating states, finding 

translation repression due to specific sequences [62]. Also working on replication, Syeda et al. used 

dual-color imaging of the Rep helicase to demonstrate its dependence on PriC and the helicase’s 

means of negotiating proteins bound to DNA [63]. Wooten et al. recently demonstrated super-

resolution imaging could be used for epigenetic studies of chromatin fibers [64] in eukaryotes.  

Away from DNA, localization microscopy has been used extensively to image the cellular 

cytoskeleton such as the organization of actin in 2D [65] and 3D [66] as well as the distribution and 

degradation of intermediate filaments [67] and intracellular trafficking dynamics where 

microtubules intersect [68]. Live cell imaging with 3D localization has shown colocalization of 

proteins and the cell surface [69], as well as the distribution of eukaryote transcription factors which 

may be used to map the overall genome [49]. 2D localization of synthetic sensors inside living cells 

has also recently been demonstrated which suggests that localization of proteins may soon be 

correlated with the physical conditions around them [70], while diffusion coefficient analysis has 

shown that under osmotic stress eukaryotes experience slower diffusive behavior in the cytosol [71]. 

Super-resolution microscopy has also been used to observe clustering of key eukaryotic proteins 

[72], and more generally are being used to understand the currently murky world of liquid-liquid 

phase separation [59]. 

Alongside this in vivo work, considerable progress has been made through in vitro experiments also. 

Protein aggregation can readily be studied in a microscope slide, and amyloid proteins implicated in 

Alzheimer’s disease have been imaged aggregating in human cerebrospinal fluid [73]. Step-wise 

photobleaching has been used to understand aggregation of amyloid-β [60] in vitro also. DNA 

origami has been extensively studied for some time, and as well as imaging the structure of the 

origami tile, it has been used to more robustly characterize protein copy number using 

immunofluorescence [74].   



9. Conclusion and future perspectives 

Overall, it is clear that localization microscopy is an enormously valuable technique, enabling new 

insight into a range of complex biological process. Both PALM and STORM methods can be used for 

reconstructing the fine structure of biological structures, while fitting to diffusing molecules exposes 

diffusion coefficients, and subcellular organization in response to stress or during key biological 

processes. The detail we are now able to obtain using the methods in this chapter is immense. 

However, there remain technical challenges that need to be addressed, and there remain drawbacks 

of STORM/PALM-type experiments, for example in certain instances cells may need to be fixed, 

losing valuable dynamic information. As we look to the future of biological microscopy, the focus will 

increasingly be on multi-method and correlative approaches, which promise to give information 

beyond what is currently possible. Life does not exist separately to physics; rather, cells leverage 

physical laws to organize and regulate their internal conditions. With cutting-edge physical sensors 

now available to measure crowding, pH, and ionic strength, we may now begin to correlate our 

precise local data with the prevailing physical processes and conditions. This integrative 

understanding across disciplines will be the key battleground in the quest to understand life and 

develop the medical therapies of the future. 

10. Take home message 

 A fluorophore may be localized by fitting a PSF to an acquired image 

 The best spatial precision in fixed cells is ~1 nm and in living cells ~30 nm for millisecond to 

tens of milliseconds time resolution 

 Multiple molecules of interest may be labeled and imaged in multiple colors in the same cell 

that can enable insight into dynamic molecular interactions  

 Photoblinking and localization of single molecules requires high laser power and so there is a 

trade-off with photodamage of samples 

 Step-wise photobleaching can be used to determine molecule copy numbers and molecular 

complex/assembly stoichiometries 

 Tracking molecular complexes can yield valuable information about the molecular mobility 

and the local microenvironment of cells 

 Reshaped PSFs can enable 3D spatial information 
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