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We predict that junctions between an antiferromagnetic insulator and a superconductor provide
a robust platform to create a one-dimensional topological superconducting state. Its emergence
does not require the presence of intrinsic spin-orbit coupling nor non-collinear magnetism, but
arises solely from repulsive electronic interactions on interfacial solitonic states. We demonstrate
that a topological superconducting state is generated by repulsive interactions at arbitrarily small
coupling strength, and that the size of the topological gap rapidly saturates to the one of the parent
trivial superconductor. Our results put forward antiferromagnetic insulators as a new platform for
interaction-driven topological superconductivity.

The search for topological superconductors has been
one of the most active areas in condensed matter physics
in recent years1–19. These systems, pursued in particu-
lar for the emergence of Majorana zero modes, represent
one of the potential solid state platform for the imple-
mentation of topological quantum computing20,21. Due
to their elusive nature, topological superconductors are
often artificially engineered. A variety of platforms have
been proposed and demonstrated for this purpose17,22,23,
generically relying on a combination of conventional s-
wave superconductivity, ferromagnetism and strong spin-
orbit coupling7–10,15,24,25.

While ferromagnets have played a central role for arti-
ficial topological superconductivity, antiferromagnetic in-
sulators have been overlooked for this purpose. Recently,
antiferromagnets have attracted a great amount of atten-
tion due to their unique properties for spintronics26–30

and for creating novel types of topological matter31–37.
Ferromagnetism efficiently lifts Kramer’s degeneracy, a
process heavily detrimental for spin-singlet superconduc-
tivity. Antiferromagnetism, in comparison, does not lift
Kramer’s degeneracy between opposite spins in the ab-
sence of spin-orbit coupling, a feature that could po-
tentially make antiferromagnetism more compatible with
spin-singlet superconductivity.38–45.

Here we show that two-dimensional topologically triv-
ial antiferromagnetic insulators provide a platform to de-
sign one-dimensional topological superconductivity. In
our proposal, spin-orbit coupling effects are not necessary
for topological superconductivity to appear, nor a fine-
tuning between the different components of the system.
In contrast, we show that long-range interactions alone
give rise to a non-trivially gapped state hosting Majorana
excitations, and that the interaction-induced gap open-
ing is topological irrespective of details. We demonstrate
that the robustness of this unique state stems from the
solitonic nature of the emergent excitations at the inter-
face, in which interaction-induced gap opening unavoid-
ably gives rise to a topological superconducting state.
Our results put forward antiferromagnet-superconductor
junctions as a robust platform to engineer interaction-
induced topological superconductivity.

FIG. 1. (a) A sketch of the two dimensional antiferromag-
net (AF) and superconductor (SC) forming a one-dimensional
AF-SC interface. The spectral function at the surface of the
AF (b), at the surface of the SC (c) and at the interface be-
tween AF and SC (d) as given by our model Hamiltonian
(1) in a honeycomb lattice. Panel (e) shows the spatial dis-
tribution of the interfacial modes. Here we chose ∆ = 0.3t,
mAF = 0.5t, µ = t and V1 = V2 = 0.

Our system consists of a junction between a conven-
tional s-wave superconductor and antiferromagnetic in-
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sulator, as shown in Fig. 1a. To model this system, we
take a Hamiltonian in the honeycomb lattice of the form

H = Hkin +HAF +HSC +Hint (1)

where

Hkin = t
∑
〈ij〉,s

c†i,scj,s +
∑
i,s

µ(ri)c
†
i,sci,s (2)

HAF =
∑
i,s

mAF(ri)τ
z
i,iσ

z
s,sc
†
i,sci,s (3)

HSC =
∑
i

∆(ri)ci,↑ci,↓ + H.c. (4)

Hint = V1

∑
〈ij〉

(∑
s

c†i,sci,s

)(∑
s

c†j,scj,s

)
+

V2

∑
〈〈ij〉〉

(∑
s

c†i,sci,s

)(∑
s

c†j,scj,s

) (5)

where c†i,s is the fermionic creation operator for site i
and for spin s, σz denotes the spin Pauli matrix, τz

the sublattice Pauli matrix, 〈〉 the first neighbors and
〈〈〉〉 the second neighbors. Taking that the interface be-
tween the antiferromagnet and the superconductor is lo-
cated at r = (x, 0, 0) we take ∆(r) = ∆

2 [1 − sign(y)]

µ(r) = µ
2 [1− sign(y)] and mAF(r) = mAF

2 [1 + sign(y)]46.
The repulsive interaction term of Eq. 5 is solved at the
mean-field level including the usual mean-field decou-

plings Hint ≈ HMF =
∑
χijss′c

†
i,scj,s′ with χijss′ the self-

consistent mean-field parameters47. On-site interactions
are incorporated in mAF(r) and ∆(r) at the mean-field
level.

It is instructive to examine the electronic bandstruc-
ture in the absence of interactions and in the absence
of an interface. Let us consider a semi-infinite slab in
the y−direction, having translational symmetry in the
x−direction as depicted in Fig. 1a. For that geometry,
we compute the momentum-resolved spectral function at

the edge A(k||, ω) = − 1
π Im

(
ω −H(k||) + i0+

)−1
using

the Dyson formalism48. For both isolated superconduc-
tor and antiferromagnet, the surface spectral function
presents a gap, as shown in in Fig. 1bc, that simply stems
from the gapped topologically trivial band structure. In
the case of the superconductor the gap is controlled by
∆, whereas in the antiferromagnet, the gap is determined
by mAF. In stark contrast, when the antiferromagnet
and superconductor are joined together, a new branch of
interfacial modes appear as shown in Fig. 1d. By com-
puting the spectral function in real space at zero energy
A(r, ω = 0) it is clearly seen that the new branch is heav-
ily localized at the junction between the superconductor

FIG. 2. (a) Non-interacting bands in a ribbon geometry. First
neighbor interactions do not lead to a gap (b), whereas second
neighbor interactions drive a gap opening (c). When both first
and second neighbor interactions are present the gap remains.
The parameters are V1 = t in (b), V2 = 1.7t in (c) V1 = t
V2 = 2t in (d) and mAF = 0.8t ∆ = 0.4t in (a-d).

and the antiferromagnet. We have verified, that for dif-
ferent values of the superconducting and antiferromagnet
order parameters, zero modes emerge as long as the order
parameters are not substantially bigger than the typical
bandwidth.

The emergence of the interfacial zero modes can be
rationalized from a low energy model for the honey-
comb lattice49–53. For the following analytic deriva-
tion, it is convenient to take µ = 0 so that the full
antiferromagnet-superconductor can be described with a
generalized Dirac equation at the K point of the honey-
comb lattice54. The low energy excitations can be cap-
tured by an effective model around the valleys Vz = ±1,
and we will focus first on taking the momentum parallel
to the interface px = 0. By defining the Nambu spinor

Ψ† = (c†A,↑,k, c
†
B,↑,k, cA,↓,−k, cB,↓,−k), the Hamiltonian in

the electron-up/hole-down sector (⇑) can be written as
H(px = 0, py)κ = 1

2Ψ†HκΨ with

Hκ =

mAF(r) py ∆(r) 0
py −mAF(r) 0 ∆(r)

∆(r) 0 mAF(r) −py
0 ∆(r) −py −mAF(r).

 (6)

The spectrum of this effective model is gapped at
y ± ∞, as expected from its asymptotic antiferromag-
net/superconductor gap. However, a zero energy mode
H|ψ⇑〉 = 0 at the interface can be always built, taking the
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functional form ψ†⇑ = e−
∫ y
0

[∆(y′)−mAF(y′)]dy′(c†A,↑+ic
†
B,↑−

icA,↓ − cB,↓). The nature of this zero mode is analogous
to the Jackiw-Rebbi soliton49, and therefore can be un-
derstood as an antiferromagnet-superconducting soliton.
The complementary electron-down/hole-up (⇓) sector of
the Hamiltonian will therefore also host a zero mode, that
we label as ψ⇓. Away from the point px = 0, the previous
state acquires a finite dispersion given by first order per-
turbation theory vF px = 〈ψ⇑|H|ψ⇑〉. As a result, close to
the K-points two branches of zero modes appear, giving
rise to the effective low energy Hamiltonian

H(px) =
∑
κ

vF pxVzκ,κ[ψ†⇑,κ,pxψ⇑,κ,px − ψ
†
⇓,κ,pxψ⇓,κ,px ]

(7)
where κ runs over the two valleys. It is interesting to note
that the four modes are not independent, but they are
related by electron-hole symmetry operator Ξ = θyσyC
with θy the Nambu Pauli matrix and C complex conju-
gation as Ξ−1ψ⇑,+1,pxΞ = ψ⇓,−1,−px due to the built-
in Nambu electron-hole symmetry of the Hamiltonian.
Therefore, the Hamiltonian Eq. 7 hosts only two physi-
cal degrees of freedom, each one propagating in opposite
directions, realizing an effective spinless one-dimensional
model. These singly-degenerate channels are analogous
to quantum Hall edge states15, and helical channels in
topological insulators7, states that provide a starting
point for engineering a topological superconducting gap.
Remarkably in our case, as will be shown below, the soli-
tonic gapless channels will open up a topological super-
conducting gap once electron-electron interaction effects
are included.

Let us now move on to consider the impact of long-
range electronic interactions in the solitonic modes. For
computational convenience, we now perform our cal-
culations in ribbons of finite width in the x-direction,
in which we take the transverse direction wide enough
to avoid finite-size effects. The previous gapless in-
terface modes of Fig. 1d and derived in Eq. 7 appear
in this ribbon geometry as shown in Fig. 2a, where
Sz = 1

2 〈
∑
n,s σ

z
s,sc
†
n,scn,s〉Ψk

with Ψk the eigenstate. It
is shown that in the absence of interactions, the sectors
Sz = ±1/2 are fully decoupled, stemming from the U(1)-
spin symmetry of the Hamiltonian. With this lattice
model, we now explore the impact of electronic inter-
actions by solving self-consistently Eq. 1. Note that the
interactions apply both along the interface and across it.
We start by considering only first neighbor interactions,
taking V2 = 0. In this situation, a gap does not open
even when V1 is increased, as shown in Fig. 2b. We now
move on to the case of V2, taking first V1 = 0. As ob-
served in Fig. 2c, it is clearly seen that now a gap opens
up. This behavior also takes place when V1 is taken to be
non-zero, see Fig. 2d. As a result, second neighbor inter-
actions are the only interaction capable of opening up a
gap on the topological interface modes, whose magnitude
is marginally affected by the first neighbor interactions.

The emergence of a gap opening driven by electronic
interactions raises the question of potential non-trivial

FIG. 3. (a) Spectral function in the bulk in the presence of
interactions, and (b) at the edge showing the emergence of a
zero Majorana mode. Panel (c) shown the spectral function
at ω = 0 for a finite junction, featuring edge zero Majorana
modes. We used now ∆ = 0.4t, mAF = 0.8t, V1 = t and
V2 = 2t.

topological properties. From the point of view of the ef-
fective low energy model, interactions create an effective

term in Eq. 7 of the form HMF ∼ 〈Ψ⇑Ψ†⇓〉Ψ
†
⇑Ψ⇓+H.c.. It

is interesting to note that due to the solitonic functional
form of Ψ⇑ and Ψ⇓ and their relation via electron-hole

symmetry, the gap (∝ 〈Ψ⇑Ψ†⇓〉) created is odd with re-
spect to κ, the valley index, suggesting the emergence of
an effective topological superconducting state. To ver-
ify the non-trivial topological nature of the interaction-
driven gapped state, we compute both its Z2 topological
invariant1,55 and surface spectral function. We revealed
that the gapped system has a topologically non-trivial
Z2 invariant, signaling the existence of a topological su-
perconducting state. This is further verified when com-
puting the density of states at the edge of the interface
in a ribbon that spans from x = 0 to x =∞, as shown in
Fig. 3a. The edge of the system hosts a zero-mode reso-
nance associated with the unpaired Majorana stemming
from the non-trivial electronic structure. This is con-
trasted with the finite gap present in the bulk of the sys-
tem shown in Fig. 3b. The localization of the zero-mode
can also be seen when computing the spectral function
for ω = 0, Fig. 3c.

Let us now move on to look at the impact of long-range
interactions, and in particular, at the interplay between
the first and second neighbor interactions at the mean
field level. For the sake of simplicity in the following dis-
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cussion we will only consider effects that appear by means
of a mean field decoupling of Eq.5, without considering
beyond mean-field effects or additional t − J contribu-
tions. At the mean-field level, the interaction term of
Eq. 5 can give rise to two potential effects: first, inter-
action induced hoppings and second, symmetry broken
states such as charge density waves. In the weak coupling
regime considered here, only interaction-induced hopping
terms arise. In particular, the time-reversal symmet-
ric and spin-dependent part of χijss′ yield an effective
spin and spatially-dependent synthetic spin-orbit cou-
pling term of the Kane-Mele form756. This interaction-
induced term creates spin-mixing in the solitonic modes,
opening up a topological gap.

The interplay of first and second neighbor interactions
can be easily rationalized within this language. From
the mean-field point of view, first neighbor interactions
can give rise to interaction induced Rashba spin-orbit
coupling terms57, whereas second neighbor interactions
can give rise to interaction-induced Kane-Mele spin-orbit
coupling58. However, due to valley polarized nature of
the solitonic modes, interaction induced Rashba-spin-
orbit coupling does not open up a gap in them57, whereas
Kane-Mele like spin-orbit58 can create a gap. As a result,
second neighbor interactions are the only ones capable of
interaction-induced gap opening in the system. In con-
trast, the effect of the first neighbor interactions is to
simply create a Fermi velocity renormalization59,60 in-
creasing the kinetic energy of the solitonic modes, yet
without any competing mechanism for gap opening.

It is crucial to understand whether the gap opening
requires a finite minimum value of interaction strength.
We investigate this by taking the first neighbor inter-
action V1 = 0, and looking at the topological gap as a
function of the repulsive second neighbor interaction V2.
It is clearly observed that the topological gap becomes
stronger as V2 is increased, without the existence of a
critical value for the transition (Fig. 4a). In particular, a
logarithmic plot of the gap (inset of Fig. 4a) at small cou-
pling strength reveals that the topological gap δ follows

an exponential dependence δ ∼ e−
vF
V2

61. Interestingly,
whereas exponential dependences of that form are typical
for superconducting instabilities driven by attractive in-
teractions62, in our present case interactions are actually
repulsive. This behavior stems from the projection of the
interactions in the low energy solitonic model of Eq. 7,
driving a topological phase transition at arbitrarily small
couplings. At large coupling strengths V2, the topologi-
cal gap saturates to the gap of the superconductor. This
behavior should be contrasted with the other schemes
proposed for topological superconductivity, in which the
topological gap is usually substantially smaller than the
original superconductor gap. This saturation of the topo-
logical gap can be ascribed to the absence of competi-
tion between the superconductor and the antiferromag-
net. Including finite first neighbor interactions V1 keeps
the picture qualitatively unchanged, yet with a slightly
renormalized topological gap (Fig. 4b). The interplay

FIG. 4. (a) Evolution of the topological gap with the electron-
electron interaction: (a) as a function of V2 taking V1 = 0, (b)
as a function of V1 taking V2 = 2t. Panel (c) shows the topo-
logical gap as a function of the two electronic interactions V1

and V2, highlighting that only the second neighbor interaction
opens up a gap. We took ∆ = 0.2t and mAF = 0.4t.

between V1 and V2 shown in Fig. 4c shows that whereas
V2 opens the topological gap, V1 leaves the system gap-
less or slightly renormalizes the topological gap. Finally,
we note that imperfections and disorder are known to
potentially impact topological superconductors by limit-
ing the localization length and reducing the topological
gap63–65. We verified that the phenomenology presented
above is resilient towards Anderson disorder and hap-
pens for generic AF-SC interfaces66. Disorder slightly
decreases the topological gap, yet without qualitatively
impacting our results.

Finally, we address the potential experimental realiza-
tion of our proposal. For a solid-state realization, no
specific requirements are necessary for the superconduc-
tor besides conventional s-wave pairing, as realized in
NbSe2. The fundamental requirement is having a two-
dimensional honeycomb antiferromagnetic insulator67, as
its electronic structure is expected to have the gapped
Dirac points required for the emergence of the topologi-
cal solitonic modes. Within van der Waals materials, tri-
halides host a magnetic honeycomb lattice68, and in par-
ticular antiferromagnetic strained trihalides69,70 would
be suitable for our proposal. This pathway would re-
quire creating superconductor/antiferromagnet devices
with those strained van der Waals materials. Within ox-
ides, thin films of InCu2/3V1/3 O3

71 or β-Cu2V2O7
72 has

the required antiferromagnetic honeycomb lattice. For
this possibility, a single layer of the bulk oxide should
be epitaxially grown. Generic two-dimensional antifer-
romagnetic insulators hosting Dirac points in their nor-
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mal state73 would be suitable materials for our proposal,
whose specific V1, V2 parameters can be inferred by first
principles methods74–7778. Finally, future ultracold atom
setups79 are potential platforms for the realization of
our model, as honeycomb structures80, antiferromagnetic
correlations81, long-range interactions82–84 and s-wave
correlations85 in the normal state have been separately
demonstrated. Interactions can be tuned from attractive
to repulsive by magnetic fields; spatially dependent fields
could be one way of creating the AF-SC interface, once
superfluid correlations in a lattice have been reached.

To summarize, we have shown that an interface be-
tween a topologically trivial two-dimensional supercon-
ductor and antiferromagnetic insulator gives rise to a one-
dimensional solitonic gas. Upon introduction of repul-
sive long-range interactions, we have demonstrated that
a topological gap gets generated, giving rise to Majorana
zero energy modes. The emergence of topological super-
conductivity appears in the absence of intrinsic spin-orbit
coupling and is driven by repulsive Coulomb interactions.
We showed that the topological gap appears at arbitrar-
ily small interactions, and rapidly saturates to the gap
of the parent superconductor, in stark contrast with con-
ventional proposals involving competition between ferro-
magnetism and superconductivity. Our results propose a
new mechanism to generate topological superconductiv-
ity based on interacting solitons, putting forward antifer-
romagnetic insulators as a potential materials platform
for Majorana physics.
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project. J. L. L. acknowledges financial support from
the Academy of Finland Projects No. 331342 and No.
336243. P.T. acknowledges support by the Academy
of Finland under project numbers 303351, 307419, and
327293.

APPENDIX

In this Appendix, we show that an interaction-induced
topological gap appears for generic interfaces (Sec. S1),
we study the role of disorder on the topological gap (Sec.
S2), analyze the microscopic origin of the interaction in-
duced spin-orbit coupling (Sec. S3), and comment on
real material estimates of the interaction (Sec. S4).

Appendix S1: Topological superconductivity in
generic AF-SC interface

In the calculations included in the main manuscript,
the orientation of the interface is the zigzag one. Here
we show that generic orientations of the interface would
work for our proposal. First, it is worth to mention that
the emergence of the solitonic modes is not protected
by a specific lattice symmetry, but they arise at the in-
terface between inequivalently gapped Dirac equations.

FIG. S5. (a,b) Sketch of two different interfaces, where dashed
lines denote the size of the unit cell. Panels (c,d) show the
non-interacting band-structures, featuring the solitonic inter-
face modes. Panels (e,f) show the band-structures once inter-
actions are included, showing the emergence of a topological
gap. We chose ∆ = 0.2t, mAF = 0.4t, and V2 = 1.7t.

Those modes only appear when the antiferromagnet is
in contact with the superconductor, and they are absent
otherwise. The linear dispersion of the modes is then
obtained by perturbation theory to the solitonic states.
This phenomenology is expected to appear in generic in-
terfaces, suggesting the emergent topological supercon-
ductivity does not depend on the details of the inter-
face. In particular, we show in Fig. S5 the results for a
heterostructure with two different non-zigzag interfaces.
The specific structures are shown in Fig. S5ab, the non-
interacting band-structures in Fig. S5cd, and the inter-
acting mean-field band-structures in Fig. S5ef. In par-
ticular, it is observed that in the absence of interactions,
the solitonic modes appear in generic interfaces. Fur-
thermore, when interactions are included, a topological
gap opens up for both interfaces. This phenomenology
highlights the robustness of the solitonic modes to the
details of the interface, and the generic emergence of a
topological state driven by interactions.
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FIG. S6. (a,b) Band-structure for a supercell of size 5 in the
absence of disorder (a,b) and in the presence of Anderson dis-
order W = t (c,d). Panels (a,c) show the band-structure in
the absence of interactions, and panels (c,d) in the presence of
interactions. It is observed that the presence of disorder does
not destroy the topological gap. Panel (e) shows the evolu-

tion of the ratio of the topological gap δ(W )
δ(W=0)

as a function

of the disorder strength W , averaged over 100 disorder con-
figurations for each W . The inset of (e) shows a log-log plot,
highlighting the power-law behavior. We chose ∆ = 0.2t,
mAF = 0.4t, and V2 = 1.7t in (b,d,e).

Appendix S2: Impact of disorder

The robustness to disorder is one of the crucial points
of any proposal for Majorana states63–65. Since the fun-
damental physics of our proposal comes from the inter-
face modes, for the sake of concreteness here we will in
the following focus on disorder effects that affect the in-
terface.

First, we address the impact of Anderson disorder in
a periodic supercell in the x−direction. For this goal we
take a supercell of 5 in the x−direction, include Anderson
disorder by adding a term to the Hamiltonian of the form

HW =
∑
i,s

Wic
†
i,sci,s (S1)

FIG. S7. Local density of states at zero energy for a finite
slab without disorder (a) and with disorder W = t (b). We
observe that Majorana zero modes are present in both cases,
highlighting the robustness of the topological state to Ander-
son disorder. We chose ∆ = 0.2t, mAF = 0.4t, and V2 = 1.7t.

where Wi is a random number between [−W,W ]. The
pristine case corresponds to taking W = 0. We show in
Fig. S6 the comparison between the electronic structures
with and without Anderson disorder in such supercell. In
particular, for the pristine supercells we observe solitonic
gapless modes in the absence of interactions (Fig. S6a),
and a topological gap in the presence of interactions (Fig.
S6b). To demonstrate the robustness of our phenomenol-
ogy, we will consider a case with a relatively strong disor-
der W = t. When Anderson disorder is turned on, we ob-
serve than the solitonic modes remain mostly unaffected
(Fig. S6c), and that in the presence of interactions, a
topological gap remains (Fig. S6d). Interestingly, even
with this strong disorder W = t, the topological gap
keeps 73% percent of its pristine magnitude. The reduc-
tion of the topological gap as a function of the disorder
is systematically explored in Fig. S6e. In particular, we
observe that for a modest amount of disorder W = 0.3t,
the topological gap keeps 97% of its pristine value. We
have also performed a log-log plot of the gap reduction
(inset of Fig. S6e), getting that the disorder dependence
of the gap follows δ(W )/δ(0) = 1−(W/WC)γ with γ ≈ 2,
where WC is the critical disorder for the transition. The
robustness of the topological state can be rationalized
from its impact on the parent electronic structures. First,
the s-wave superconducting state is resilient towards An-
derson disorder as follows from Anderson’s theorem86,87.
The antiferromagnetic insulator is also robust to disor-
der due to its antiferromagnetic gap. And ultimately, the
interface states are resilient to Anderson disorder due to
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their solitonic nature49. Finally, since the topological gap
stems from an interaction-induced gap opening of the in-
terface modes, the impact of the disorder on the topo-
logical gap is small due to the robustness of the solitonic
modes.

Finally, we consider the effect of Anderson disorder in
a large finite system, and in particular its impact on the
Majorana zero-edge modes. For this sake, we now create
a large system formed of 60 bulk cells in the x−direction,
and we compute the density of states at zero energy. This
is compared for the case without disorder W = 0, and
for the case with Anderson disorder W = t, as shown
in Fig. S7. We observe that in both cases, Majorana
zero modes are located at the left and right ends of the
interface. In particular, the persistence of zero modes
in the disordered case highlights the robustness of the
topological state towards Anderson disorder. Its origin
can be rationalized as in the bulk case presented above.

Appendix S3: Interaction induced spin-orbit
coupling

Here we comment on the specific form of the
interaction-induced synthetic spin-orbit coupling. First,
it is worth emphasizing that generically, onsite inter-
actions U will also appear in the honeycomb model.
These interactions are effectively included in our model
at the mean-field level by means of the antiferromag-
netic field. The existence of this antiferromagnetic or-
der quenches any potential charge density wave orders
or Haldane/Kane-Mele phases induced by V1 and V2.
Therefore, both V1 and V2 do not have an impact on the
bulk antiferromagnet, as the preexisting antiferromag-
netic order quenches other emergent orders, but they only
give rise to a finite effect on the interface states as they
are originally gapless. Furthermore, we have explicitly
verified that the emergent topological superconductivity
also appears when a honeycomb lattice with U , V1 and V2

is solved at the mean-field level, with the antiferromag-
netic field dynamically emerging from the selfconsistent
solution.

The spin-orbit coupling term emerging from interac-
tions in HMF is related to the non-local terms χijss′ that
involve second-neighbor hoppings and spin-flips. In par-
ticular, the termHMF can be decomposed in its even and
odd terms with respect to time-reversal symmetry. From
the time-reversal symmetric component, we can extract
the spin-dependent and spin-independent terms. In par-
ticular, we have verified that our self-consistent solution
yields a spin-dependent time-reversal symmetric part of
HMF
KM that takes the form of a spatially-modulated Kane-

Mele spin-orbit coupling58 term of the form

HMF
KM = i

∑
〈〈αβ〉〉

σys,s′λ

(
rα + rβ

2

)
ναβc

†
α,scβ,s′ (S1)

so that

χKMαβss′ = iσys,s′λ

(
rα + rβ

2

)
ναβ (S2)

where χKMαβss′ is the time-reversal symmetric, spin-

dependent component of χαβss′ , 〈〈〉〉 denotes second
neighbors, ναβ = ±1 for clock-wise and anticlockwise
second-neighbor hopping, and λ(r) is the spatial mod-
ulation strength of the selfconsistent profile. We have
verified that this term is the one responsible for the gap
opening in our system, whereas the rest of HMF just
creates small renormalizations in the band dispersion.

We now summarize the relation between the gap open-
ing and the first and second neighbor interactions. The
reason why V2 is capable of opening a gap but not V1

simply stems from the functional form of those solitonic
modes. In particular, due to the original U(1) spin sym-
metry of the system, gapping out the modes require
creating spin-mixing between the two solitonic sectors.
However, the interactions parametrized by V1 that could
give rise to spin-mixing yield mean-field single-particle
terms that are zero when evaluated in the solitonic basis.
This can be verified by explicitly adding a Rashba-like
spin-orbit coupling term to the Hamiltonian (the inter-
action driven spin-mixing term that could appear from
V1), and observing that the interface modes remain gap-
less. In stark contrast, the interaction term parametrized
by V2 can potentially lead to a spin-mixing term of the
Kane-Mele form, that when evaluated in the solitonic ba-
sis gives rise to a finite gap opening as explained above.

Appendix S4: Estimate of V2 in real materials

Here we comment on the expected values of V2 for real
materials. First, it is worth to note that, as shown in
our main manuscript, a strong V2 > t is not necessary
for the topological phase to appear. Actually, we found
that a topological gap appears for arbitrarily small V2.
Of course, the bigger the value of V2, the bigger the topo-
logical gap would be.

In typical two-dimensional materials, second neighbor
interactions are often comparable to the hopping. For
example, in the case of graphene, second neighbor in-
teraction is on the order of 4.2 eV75. This should be
compared with the first neighbor hopping 3 eV, giving a
ratio V2/t ≈ 1.475. In the case of twisted two-dimensional
materials, known to host correlated insulating states88,
this comparison can become more radical. For example,
twisted graphene bilayers, whose effective model are also
located in a honeycomb lattice89, have second neighbor
interactions on the same order as first neighbor ones89.
A precise quantitative assessment of the second neigh-
bor interaction in the candidate materials proposed in
our main manuscript could be performed by exploiting
recent developments in first-principles methods74–77.
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